FUNCTIONAL COMBINATION

Daniel P. Friedman

David S. Wise

Computer Science Department
Indiana University

Bloomington, Indiana 47401

TecHNIcAL ReporT No. 27
FuncTioNAL COMBINATION

DanieL P. FRIEDMAN
Davip S. WISE

REViseD DeceMBER, 1976

Research reported herein was supported (in part) by the National
Science Foundation under grant no. DCR75-06678 and no. MCST75-081L45.

Accepted for publication in Computer Languages.

Functional Combination#*

Daniel P. Friedman
David S. Wise
Computer Science Department
Indiana University

Bloomington, Indiana 47401

Abstract - The algebraic functional operation of combination is
introduced as a programming tool. It has a practical semantic
interpretation in building functions which return several re-
sults, especially when such functions are directly recursive.
Example functions are given whose invocations build multiple
results from single recursions, including a new algorithm for
batch-probing binary search trees from an unordered list of

keys which returns an ordered l1list of hits.

Keywords and Phrases - recursive procedures, lists, multiple-

valued function, LISP, batch-probing, binary trees.

CR Categories - 4.22, 4,12, 3.74.

¥Research reported herein was supported (in part) by the National
Science Foundation under grant no. DCR75-06678 and no. MCS75-08145.

Introduction

This note advances the concept of functional combination as
an important tool for (side-effect free) applicative programming.
We have presented the idea elsewhere [2, 3] more completely, imbed-
ded with other recent results in applicative, particularly pure
LISP, programming. Moreover, the idea itself is not new [1, 7]
although it has not, to our knowledge, been imbedded in a practical
programming language.

The problem we address is that of writing a recursive function
which returns more than one result. Using the classic factorial
recursion as a model, one may observe that recursive functions often
contribute something to the answer on each recursion; in factorial
it's another factor. We would like to write similar functions
which return several such results, each with a contribution from
every level of the recurrence.

There are three classic solutions for specifying multiple-valued
recursive procedures, none of which meet our demands for style.

The first is not even permissible in applicative programming since
it requires an assignment to a global (or COMMON) variable or to a
parameter called by reference. Additional results may be extracted
from recursive functions by communicating them to the calling envi-
ronment in channels independent of the functions' results, but that
is not possible in a regimen, like that of pure LISP, in which all
bindings are established specifically through the function linkage
(LAMBDA). A second and more obscure alternative involves functions
passed as arguments to secondary functions which apply them to

other parameters. We would like to avoid such a solution, not

because of a ban on second-order functions, which are theoretically
sound, but because we would rather provide the programmer with a
more stylistically transparent and less powerful tool which he would
choose to use freely.

The third classic solution is semantically related to our own.
One may write a recursive function whose actual result is always
a list or a record of several desired results. The final value of
such a function is identical with ours, but the treatment of inter-
mediate results can be messy. In order to make "contributions" to
several results, the result's structure must be decomposed and
almost immediately reassembled into the same form. Our proposal is
semantically equivalent to this alternative, but it does not require
the programmer to specify the decomposition and the reconstruction.
Imbedded naturally into pure LISP, it interprets a structure in
the functional position as an invocation of functional combination
with its implicit parameter decomposition and result structuring.
The user is able to program according to the answer structure he
sees rather than one that he must explicitly and repeatedly des-
cribe. PFurthermore, a compiling phase can improve the behavior
of this code by assigning several registers, one for each consti-
tuent of the developing answer, and thus avoiding actual decomposi-

tion and reassembly across the recursion.

Functional Combination

We introduce first a bracketing notation for a list function.
If a, b, and ¢ are bound to 1, 2, and 3, respectively, then the
expression [a b c¢] evaluates to the 1list (1 2 3). This is seman-
tically identical to LISP's list function [8].

With the convention that (ax) denotes an infinite list of a's,
(aaa ...), the form [ax] evaluates to (1l*), the identity vector.
The star notation is sufficient for homogeneous infinite
suffixes: [a b c¢*] evaluates to (1 2 3*)-= (1 2 3 3 3 ...). More
complex infinite data structures are possible [4]. The remainder
of the LISP language we use is derived from the S-expressions of
McCarthy [8, Chapter 1].

We introduce a list notation for n-tuples which are elements

of non-associative Cartesian products of sets W Let

5
x(wl, Wg, < liling wn) be the set of lists of length n corresponding to
these n-tuples. X(X(Wl,wz, W3)’ X(WM’WS’W6)) is not a set of lists
of length 6. Each element is a pair of triples which we shall

view as a matrix: two rows of three elements each. When each wi=w

then we can abbreviate X(Wl, W s Wn) as W' but non-associati-

PE

vity requires that (Wn)m = (Wm)rl must imply m = n. In all the

above definitions n is a non-negative integer or the countable infinity.
We define functional combination in a manner slightly dif-

ferent from the algebraic functor of Cartesian product [7]. The

difference appears in the order and the structure of arguments.

This definition suits the language LISP since its natural data

structure, the list, is accepted by the interpreter as a structure

for arguments, as well as by its users who must provide lists as

arguments for functional combination.

We extend the definition of a function to be a A-expression
or a list of functions. Anything which functionally evaluates'

to a list of functions is called a combination. We intend bracketed

lists of function-names to be the simplest sort of combination.
In McCarthy's [8, Chapter 1] classic LISP interpreter, if the func-
tion passed to apply is a list whose car is other than label or
lambda, then the result is undefined; what we describe is, there-
fore, a proper syntactic extension.

Suppose three functions f, g, and h are defined on an r-dimen-
sional domain:

iz wr+w; g: WP+W; h: WE-W.

Then [f g hl: (WB)P+W3. A legitimate argument structure for [f g h]
may be interpreted as a matrix, a list of rows, whose first, second,
and third columns provide the arguments for f, g, and h respectively.
The structure of the result is a triple of the results of the respec-
tive functions. This definition may be generalized [3] to combina-
tions of any length. While parameters are passed from this matrix
in "column-major" order, LISP's argument evaluator, evlis, evaluates
in "row-major"™ order. In order to preserve the matrix flavor of
argument passing we shall write each argument as a separate line

under the combinator, vertically aligned if possible. For example,

TFunctional evaluation is invoked on the first item in a form being
evaluated before it is applied. In some interpreters it is a
straightforward evaluation; in others,properties (i.e. EXPR, FSUBR,
etc.) play a significant role.

evaluation of

([sum product quotient difference]

[O 3 63 4]]
[& 3 9 12 1)
yields ¢ X 9 7 7 5

Before proceeding to the next example we introduce the func-
tion second as a primitive (like prog2 in LISP) which returns its
second argument. We also adopt the convention of giving a multiple-
valued function a name hyphenated to suggest the structure of its
result.

The next example illustrates the power of functional combina-
tion as related to recursive programming. The function 2t-eg-gt
takes a list of numbers and a numeric value as parameters and returns
three results corresponding to the three components of the parti-
tion of the list by that value: those less than, those equal to,
and those greater than it. Since operations like this are common
in programming (for example Dijkstfa's Dutch National Flag and
the key step in the Quicksort [5] Algorithm), it is important that
they be expressible in a form analogous to the simple loop available
to iterative programmers.

(2t-eq-gt & V) = (cond
if (null &) then [[]1 []1 [] 1]
elseif (less? (car &) v)
then ([cons second second]
[(car %) NIL NIL]
(2t-eq-gt (cdr &) v))
elseif (greater? (car &) v)
then ([second second cons]
[NIL NIL (car %)]
(t-eq-gt (cdr &) v))
else ([second cons second]
[NIL (car %) NIL]
(2t-eqg-gt (cdr &) v)))

Another application of functional combination involves the
invocation of the function being recursively defined with the com-
binator. Whereas 2ft-eg-gt's recursions occurred as rows of the
argument matrix, these recursions occur as columns. Let £ be an
unsorted list of perhaps duplicated keys. We present a function

quickbatch which probes a binary search [6] tree to extract any

information for every key in %, and returns a list of the associa-

tions for those keys which had information planted in tree. The

list will be returned in ascending order of keys; and the search

will be batched [9], so that every subtree is visited at most once.
Define a binary tree to be () or a list of three items:

(left information right). Information represents the data stored

at the root of the tree whose subtrees are left and right, respec-

tively. In this case information is an association of a key and

data. The invocation (key tree) extracts the key from the root

of the non-null tree; the definition requires that this key be
greater than every key in the left subtree and less than every key
in the right subtree.

(quickbatch 2 tree) = (cond
if (or (null &) (null tree)) then []
else (apply APPEND ([quickbatch hit quickbatch]
(2t-eg-gt & (key tree))
tree 123
(hit % info) = (cond
if (null &) then []

else [info]).

The last line of guickbatch deserves some explanation. The result

of the use of functional combination is three lists of associations
on keys which are to be concatenated. The first and third are
derived from recursive calls on the left and right subtrees of

the non-null tree. The middle list is empty unless the key found
at the root of the tree happened to be mentioned once or more in
the target list of the search. Finally, the sorting of the answer
list is carried out by an implicit Quicksort [5] at each node in
the search tree. The function 2t-eq-gt partitions at (key tree)

the target 1list carried in an unordered batch to tree. TFor example,

if tree is
(5 asp)
(8 eel)
(1apl)
(2 ant) (4 fly)

then (quickbatch [9 2 3 6 8 7 3] tree) evaluates to

((2 ant)(3 boa)(8 eel)(9 dor)) .

Generalizations

In the examples above we have limited ourselves to combina-
tions of finite length, and to length three in the recursive exam-
ples. Moreover, all rows of the argument matrix were of the same
length. Now we relax these constraints by allowing the programmer
to provide extra elements in the combination and in the argument
rows, with the length of the shortest determining the length of the
result. Only the necessary leftmost columns are processed, with
superfluous elements belng ignored. This convention amounts to a
"guillotine rule" on the jagged matrix which results from relaxing
the constraints on uniform combination and row sizes.

Infinite rows and infinite combinations are particularly useful
under the guilllotine rule. Additionally we might usefully define
([f+x] [a*] [bx*] [ex]) to be [(f a b c¢)*]. Spreading functions and
values across data structures using this syntactic feature is then
accomplished with functional combination. The guillotine rule
truncates the infinite application. LISP's mapping functions are
thereby subsumed by this more general structure. Using our own
syntax we provide McCarthy's apply [8, page 13] properly extended

to functional combination:

(apply fn x a) = (cond

if (atom fn) then (cond

if (eq fn NIL) then []
elgelf
elgeif
elseif
elgelfl

elself

(eq
(eq
(eq
(eq
(eq

5 COMBINATION IS EMPTY
fn CAR) then (caar x)

fn CDR) then (cdar x)

fn CONS) then (cons (car x)(cadr x))
fn EQ) then (eq (car x)(cadr x))

fn ATOM) then (atom (car x))

else (apply (eval fn a) x a))

elseif (eq (car fn) LAMBDA) then

then (eval (caddr fn) (append ([consx] (cadr fn) x) a))
elseif (eq (car fn) LABEL)

then (apply (caddr fn) x (cons (cons (cadr fn)(caddr fn)) a))
elseif (member NIL x) then [] 5 GUILLOTINE RULE
else (cons (apply (car fn) ([carx] x) a)

(apply (cdr fn) ([ecdrx] x) a))) ; FUNCTIONAL COMBINATION

10

Coneclusion

Functional combination is not meant to answer any need of applica-
tive programming beyond style. Like the while statement of sequen-
tial programming, which does not add any new semantics to FORTRAN's
go to, functional combination has appeal for the applicative pro-
grammer who would express himself clearly and cconcisely without
yielding to the clutter of express decomposition, the power of
functional arguments, or the pitfalls of side-effects. Specifically,
using the two-dimensional coding conventions, it allows the clear
and transparent expression of a recurrence which builds up several
results, or of a map of a k-ary function across one or more lists

through the natural star generalization of combination.

[1]

[2]

[3]

[4]

54
(6]
E7d

(81

(9]

L1

References

W.S. Brainerd and L.H. Landweber. Theory of Computation,
Wiley, New York (1974), 18-19.

D.P. Friedman and D.S. Wise. An environment for multiple-
valued recursive procedures. Proc. 2nd Programming Symposium,
Springer-Verlag, Berlin (to appear).

D.P. Friedman and D.S. Wise. The impact of applicative pro-
gramming on multiprocessing. Proc. 1976 Intl. Conf. on Parallel
Processing (IEEE Cat. No. 76CH1127-0C), 263-272.

D.P. Friedman, D.S. Wise and M. Wand. Recursive programming
through table look-up. Proc. 1976 ACM Symp. on Symbolic and
Algebraic Computation, 85-89.

C.A.R. Hoare. Quicksort. Comput. J. 5, 1 (1962), 10-15.

D.E. Knuth. Sorting and Searching, Addison-Wesley, Reading,
MA (1973).

S. Mac Lane. Categories for the Working Mathematician, Springer-
Verlag, New York (1971), Z.

J. McCarthy, P.W. Abrahams, D.J. Edwards, T.P. Hart, and
M.I. Levin. LISP 1.5 Programmer's Manual, M.I.T. Press,
Cambridge, MA (1962).

B. Shneiderman and V. Goodman. Batched searching of sequen-
tial and tree structured files. ACM Trans. Database Systems 1,
3 (September, 1976), 268-275.

