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Abstract

We propose a facility which allows unbounded associative structures, which we call ARRAYS,
in SCHEME systems. An important application is the creation of unbounded vectors and
arrays. Another application is as the underpinings of a global, dynamic letrec capability. A
third application is the construction of memo-functions. Under this facility, ARRAY elements
are allocated space individually and not until they are side-effected. Thus, ARRAYs can be
sparse and waste little memory. In addition, the proposed facility removes some of the burdens
of writing procedural specifications that are not relevant to functional specifications such as

vector boundedness.

1 Introduction

The current trend toward ob ject-oriented style raises the following problem: how does one represent
a dynamic class of objects, each subject to common procedural actions, so that access to individual
objects is immediate and all “live” objects are mutually knowledgeable. Such a problem might
arise, for example, when modeling the interaction of processes of bounded lifetime.

Current Scheme systems force inelegant and even inadequate solutions to this problem. Vectors
may be used to achieve immediate access but they are bounded structures and may not be able
to accomodate dynamic object classes without wasting resources. On the other hand, lists do not
allow immediate access. The letrec facility handles mutual recursion of arbitrarily many objects
but cannot deal with objects that are created and destroyed on the fly. We propose to solve the
problem by introducing a new class of structures called ARRAYs.



An ARRAY is an unbounded associative structure. Its use is similar to that of vectors in
Scheme. An ARRAY is defined in a let or letrec using a special procedure make-ARRAY which is
described in section 3.1. Its scope obeys the standard rules of scope for let statements. ARRAY
elements are initially NIL and do not use memory resources until given a value by means of the
special procedure ARRAY-set! which is described in section 3.2. The special procedure ARRAY-ref,
described in section 3.3, is used to retrieve values of individual elements. ARRAYs are random
access; that is, the average time to set or retrieve element values is bounded by a constant. ARRAY
elements that are set to NIL cease to use memory resources.

In order to solve our problem, ARRAYs have a semantic component which is defined by means
of an argument to make-ARRAY. This component is a procedure which specifies how individual
objects, represented as individual ARRAY elements, interact with each other. The procedure is
capable of creating or destroying other objects as well as passing knowledge to and from them.

The properties of ARRAYs make several generalizations of existing facilities available in a stan-
dard implementation. For example, memoization, unbounded vectors, sparse vectors and arrays,
ucons cells, and dynamic letrec are all possible applications of ARRAYs. In particular, sparse
arrays are implemented in exactly the same way dense matrices are with ARRAYSs.

There are several possible implementations of ARRAYs depending on what scheme is used to
locate elements. An implementation may use, for example, Hash Tables of Common Lisp (7], Linear
Hashing, or Spiral Storage [4] in this regard. However, we shall make the assumption that large,
fast memory will eventually be standard equipment. Then, virtual memory and caching will not be
necessary to support a successful Scheme system. Without these, it makes sense to locate elements
by hashing over all available space. That is, we propose to have a hash table for locating ARRAY
elements such that individual cells in that hash table are allowed to occupy space anywhere in
memory. This arrangement certainly gives the unbounded and random-access properties we need.
It should also be more efficient than Common Lisp Hash Tables or Linear Hashing since copying
or rehashing table elements during table-size changes is not necessary.

A possible problem with hashing over all available space is it complicates garbage collection.
Ilowever, if there are few requests for large contiguous blocks of memory, then a simple and fast
garbage collector can be employed. Furthermore, garbage collection can be done off-line and in
hardware. Hence, we do not view garbage collection as a serious problem. Another weakness, in
terms of stock hardware, is that a test is required to determine whether a cons cell is a hash table
element just prior to allocating it. However, it seems possible to have this test done in hardware
by a primitive processor, perhaps the one used for garbage collection. This processor would have
the next cons cell ready when an allocation request needs to be handled.

This paper describes ARRAYSs, their implementation, and some needed modifications to garbage
collection. In section 2 we present an overview of the proposed facility. In section 3 the language
of the facility is given. Section 4 contains a simplified implementation. Section 5 discusses garbage
collection under the facility. Section 6 considers modifications to support requests for large data
allocations.



2 Overview

The random access property of ARRAY elements is attained by hashing through special cons cells
called locators. There is one unique locator for each side-effected ARRAY element. Locators are
allowed to exist anywhere in available memory and the number of locators defined by the user is
limited only by the size of memory. This has two benefits. First, under a standard, two-memory
Scheme implementation, the average number of hashes to locate an ARRAY element is less than
two. Second, there is no need for buckets or a secondary fixed hash table.

All locators belonging to the same ARRAY are in a list accessed through the ARRAY variable.
Thus, it is possible to visit ARRAY elements sequentially. In the proposed implementation the
sequence is in order of locator creation. Visiting elements in lexicographic order can be achieved if
the list is kept sorted lexicographically.

Hashing is on an ordered list of key elements, called the key-list, which is obtained from a
key-structure that must be specified by the user. A key-structure is any Scheme-definable ob ject.
Every key-list contains at least two ordered keys. At the root of the key-structure and the head
of every key-list is an atom representing the ARRAY variable. Except for this atom, each key-list
element may be any Scheme object. In the case of associative vectors and arrays the key-list is the
key-structure and all keys except the first are atoms.

Associated with each ARRAY are two procedures called FUNC and PRED which define the
hashing and matching of ARRAY elements, and a procedure NODE-DEF which defines the “se-
mantics” of ARRAY elements. All three procedures are defined by the user when an ARRAY is
created and cannot be changed once defined.

FUNC specifies how the key-list is to be assembled from a given key-structure. It takes a key-
structure as input and returns a list of values that are to be hashed. A common definition is the
identity function (lambda (KS) KS) which causes all members of the list KS to be hashed.

PRED defines the ARRAY element matching condition. It takes a list of keys K and a structure
S to be matched as input and returns true if and only if certain ordered elements of S match the
list of keys. A common definition is the equality function, (1ambda (K S) (equal? K S)) which
returns true if and only if the list S is identical to the list K. That is, the values of all the key
elements K must match the values of a given list S. Having PRED and FUNC greatly improves the
generality of the proposed system. For example, as shown in section 3.3, the UCONS facility [6]
can be completely written on top of the proposed facility.

NODE-DEF defines the “semantics” of ARRAYs. It allows ARRAY elements to be called as
procedures and is useful in combinatorial solutions which involve extensive subproblem decompo-
sition. In this role, ARRAY elements may be regarded as subproblems with “semantics” which
describe the decomposition and reconstruction process and “value” which is the result of applying
the “semantic” procedure. The “semantic” procedure can be used to insure that decomposition
is performed only once per subproblem thereby greatly enhancing efficiency. The “loose” organi-
zation of ARRAY elements frees the programmer from the burden of producing a rigid structure
in order to retain the results of subproblem computations. This rigid structure, which is common
in Pascal-like implementations of Dynamic Programming and involves limiting structure size and
enforcing interpretations to adjacent structure elements, is unnecessary from the point of view of
the functional specification. Although all possible subproblems can be “generated” by our facility,



computational resources are expended only on the subproblems that are required for the solution.
An example is given in the next section. A common definition is

(lambda (array-element)
(ARRAY-ref array-name array-element))

That is, just the value of the ARRAY element array-element of ARRAY array-name is returned.

The time and space cost of maintaining this facility is proportional to the number of ARRAY
elements in use. Thus, if no elements are in use there is no overhead penalty. The constant of
proportionality of time overhead is low. The constant of proportionality of space overhead is low
if ARRAY element values are moderately large procedures. Part of this cost is due to a slight
modification that must be made to conventional garbage collection and compaction algorithms in
order to accomodate the locators.

3 The Language of ARRAYs

The language of ARRAYs is analogous to and an extension of the language of vectors with some
minor syntactic differences. ARRAYs are used to define families of locators. There are four op-
erations for manipulating ARRAYs: definition, side-effecting, referencing, and invoking ARRAY
clements.

3.1 ARRAY Definition

ARRAY definitions are created using a new procedure of three arguments called make-ARRAY. The
first argument is NODE-DEF, the second argument is PRED, and the third argument is FUNC.
For example, the following defines ARRAYs ring and knap:

(letrec ([ring (make-ARRAY
(lambda (array-element) (ARRAY-ref ring array-element))
(lambda (K S) (equal? K S))
(lambda (X) K))]
[knap (make-ARRAY
(lambda (array-element) (ARRAY-ref knap array-element))
(lambda (K S) (equal? K S))
(lambda (K) X))1)
<body-of-letrec>).



3.2 Side-Effecting ARRAY Elements

The procedure ARRAY-set! which takes three arguments is used to create an ARRAY element, if
necessary, and store a value in it. The first argument is an ARRAY, the next argument is the key
structure, and the third argument is data. The value of the ARRAY-set! procedure is unspecified.

An example of its use is
(ARRAY-set! ring ’(1 2) ’abc)

which is equivalent to ring(1,2) « ’abc. Row 1, column 2 of ring now exists physically, regardless
of the status of other elements of ring.

3.3 Referencing ARRAY Elements

The ARRAY-ref procedure returns the value of an ARRAY element. An example of its use is the
following:
(cons (ARRAY-ref ring ’(1 2)) ’(n))

which creates the list (abc n). If the ARRAY element referenced by ARRAY-ref has never been
side-effected then NIL is returned.

Earlier we mentioned that the ucons cell of 6] could be implemented efficiently using this facility.
A ucons cell is a cons cell that can be accessed by looking at its contents. The ucons cell is useful
in memoizing [3,5]. The code for the ucons operation is as follows:

(define ucons
(letrec ([u-ARRAY
(make~ARRAY
(lambda (array-element) (ARRAY-ref u-ARRAY array-element))
(1ambda (XK S)
(and (eq? (car X) (car S))
(eq? (cadr X) (cdr S))))
(lambda (KS) (list (car KS) (cdr KS))))1)
(lambda (x ¥y)
(et ([c (coms x y)1)
(let ([b (ARRAY-ref u-ARRAY c)])
(if (null? b)
(begin (ARRAY-set! u-ARRAY c c¢) c)
b))))))

For u-ARRAY, NODE-DEF returns the value of a specified u-ARRAY element, PRED returns true if
and only if the two elements of the key-list match the car and cdr, respectively, of a specified cons
cell, and FUNC produces a key-list which contains the car and cdr of a specified cons cell. Two
arguments are passed to u-ARRAY: these are the car and cdr of a cons cell c. This cell is used as
a key-structure to determine if the cell already exists as a ucons cell. If it does then (ARRAY-ref



...) returns a non-null value to b. Otherwise the expression (ARRAY-set! u-ARRAY c c) causes
the data in the cons cell to be shared as the key-structure and its value to be returned by procedure
ucons. From then on, the cons cell may be referenced directly by the contents of its car and cdr
via an (ARRAY-ref u-ARRAY ...). This is precisely the property needed by ucons cells.

3.4 Invoking ARRAY Elements

As an example of the invocation of ARRAY elements consider the Partition Problem which is
defined as follows: given a set A = {ay,ay, ..., an} of objects, a weighting function w: A — Nt,
and an integer K, does there exist a subset A’ C A such that

> w(a)=K?

ac A’

This problem may be solved by subproblem decomposition. For example, suppose K = 6 and
the list W = {1133} represents the weights of the objects of a given A, we may decompose this
into the two subproblems Wy = {133}, K = 6, and Wy = {133}, K = 5 corresponding to a1 ¢ A’
and a; € A', respectively. The answer to the original problem is “yes” if and only if the answer
to either of the subproblems is “yes”. In this example, the answer to the first subproblem is “yes”
and the answer to the second subproblem is “no” so the answer to the original problem is “yes”.
Solutions to the subproblems may be found by further decomposition until primitive subproblems
are reached.

A solution to the Partition problem using this decomposition is

(define partition
(lambda (K W)
(letrec
([part
(make-ARRAY
(lambda (K~ W~)
(let ([y (ARRAY-ref part K~)])
(cond [(not (null? y)) y]
[(eq? K~ 0) #T]
[(< K~ 0) #F]
[(null? W~) #F]
[else (ARRAY-set!
part
K-
(or (part (- K~ (car W™)) (cdr W™))
(part X~ (cdr W™))))1)))
(lambda (K S) (equal? K S))
(lambda (K) K))1)
(part K W))))



where the list W is the list of object weights. The form of this solution is similar to the solutions
to certain graph problems in [2] using extend-syntax. The extend-syntax macro expansion facility
cannot be used to solve the Partition problem efficiently, however, since the subproblems, which
are analogous to vertices in the graph problems, are not known at compile-time and are uncovered
only during run-time. The proposed facility makes these subproblems known to all subproblems
when they are created. In other words, creation of the ARRAY part has the same effect as defining
its elements using a form of dynamic letrec.

As an example, we consider the call (partition 6 ’(1 1 3 3)). Six locators are created by
this call. We number them from 1 to 6 corresponding to ARRAY elements having keys from 1 to 6.
Locators are given values in the following order: 1,4,2,5 are given the value false, then 3,6 are given
the value true. Locator b gets the value false because it is created as a result of the call (part 5
(1 3 3)) and there is no subset of {133} which sums to 5. Similar statements can be made to
account for the false values given to locators 1,2, and 4. Because recomputation of the values of
locators 1,2, and 5 is unnecessary, the number of procedure calls is reduced by a factor of two.

4 A Simplified Implementation

We describe an implementation that is efficient but does not handle requests for large blocks of
contiguous memory. In a later section we outline a method for handling large memory requests.

The necessary structures are locators, key-structures, key-lists, and ARRAY-lists. Key-structures
and key-lists have already been described. We need to supply more information about locators. The
address of a locator is obtained by hashing on a key-structure. A locator may also be reached from
an ARRAY variable through an ARRAY-list. No locator can be reached through an inaccessible
ARRAY. The car of a locator is its value and is an ARRAY element. The cdr of a locator is a cons
cell with a pointer in its car and a key-structure in its cdr. The pointer is used during garbage
collection and will be described later. The extent of a locator is inherited from the extent of its
associated ARRAY variable. The addresses of locators, key-structures, and key-lists are hidden
from the user.

The ARRAY-list facilitates garbage collection, sequential visitation of ARRAY elements, and
allows access to NODE-DEF, PRED and FUNC. It is a singly-linked list pointed to by an ARRAY
variable and is hidden from the user. The first cell of the ARRAY-list points to a list containing
NODE-DEF, PRED and FUNC. The first cell and the list of procedures are created by make-ARRAY.
Each element in the ARRAY-list except the first points to a locator which is associated with the
ARRAY. The car of the cdr of that locator points back to the ARRAY-list element (this facilitates
garbage collection). As each new associated locator is created, a cell pointing to it is added to the
ARRAY-list. No locator can be created unless it can be referenced from an existing ARRAY. The
relationship between locators, the ARRAY-list, the key-list, and the ARRAY variable are given in
the figure below. From this we see that a locator is marked during garbage collection if and only
if the associated ARRAY is marked.



locator - key-structure key-structuref—...
ARRAY-list --—1 ARRAY-1list [—--
NODE-DEF PRED FUNC

Allocating memory for a locator that does not exist or referencing an existing locator is simple.
Let KEY denote a key-structure. The result of FUNC(K EY') is hashed to address C*. If C* is
not a locator and in use then FUNC(K EY) is rehashed until either C* is a locator or is not in
use. Suppose C* is a locator and let C*.key be the address of the key-structure associated with
locator C*. If PRED(FUNC(K EY),FUNC(C* key)) is false then FUNC(K EY) is rehashed. If
C* is a locator and PRED(FUNC(K EY),FUNC(C*.key)) is true then C* is returned. Otherwise,
C* is not in use and it is marked as a locator, a cons cell is allocated to the cdr of C* and C* is
returned. Then an ARRAY-list element is created and the car of the cons cell is set to point to that
element. The cdr of the cons cell is given the address of K EY. For ARRAY-set! with a non-NIL
value-argument the value field of C* is altered, for ARRAY-ref it is returned. If NIL is given as a
value-argument to ARRAY-set! then, if the associated locator is found to exist, the reference to it
from the ARRAY-list is broken. Thus, the locator and any non-shared structures it references will
be garbage collected. Furthermore, during garbage collection, the ARRAY-list cell with the broken
link is removed from the ARRAY-list.

5 Garbage Collection and Compaction

Garbage collection and compaction are accomplished using two memories of equal size. One memory
is referred to as active and the other inactive. Except for locators, allocations come from the active
memory until it is used up. Then, except for locators, the good cells are collected and compacted
in the inactive memory. We use a pointer, called B P, to locate the destinations of the good cells in
inactive memory. At the outset of garbage collection, B P points to the lower boundary of inactive
memory. Upon completion of compaction, the two memories switch roles.

Locators may appear in either memory at any time. They are not moved unless a key value is
changed due to compaction (this might happen, for instance, if the key value is an address). In the
remainder of this section we detail the garbage collection and compaction mechanism. We assume
that all memory requests are for cons cells.



First, all active structures are traversed and cells marked. Except for locators, the contents of
each active cell are copied to the cell pointed to by BP and BP is advanced by one cell. If the
next cell is a marked locator then BP is repeatedly advanced by one cell until it does not point to
a marked locatlor. A forwarding pointer to the new cell position is left in the old cell position. The
forwarding pointer is used later to reset pointers to the moved cell.

When copying is complete, all used cells in inactive memory are checked for pointers into active
memory. Each pointer in a used cell of inactive memory that references a cell in active memory is
replaced by the forwarding pointer in the referenced cell.

Next, all active ARRAY-lists are traversed again. The key-lists of their locators are checked
to see if the hashing address has changed. This is accomplished by hashing until either an empty
address or the locator itself is found (all unmarked locators are considered free space). If it’s the
locator then nothing happens. If it’s an empty address the locator is copied to that address and
the associated ARRAY-list element is updated (access is through the car of the cdr of the locator).
1If, during traversal, an ARRAY-list element is found not to reference a locator then it is removed
from the ARRAY-list.

6 Unbounded ARRAYs Under Requests For Large Allocations

Tor an efficient implementation of unbounded arrays under requests for large allocations, it is suffi-
cient to manage multiple blocks of free memory efficiently. Assume two-memory garbage collection
and compaction as above, allocations are taken from the active memory until no sufficient space
is available, and locators are allowed to exist anywhere in memory. The space between locators in
active memory is free space that is available. We call each such space a free-block.

Requests for memory could be satisfied sequentially as in the previous section. This method for
handling block requests would be satisfactory if block sizes are usually much less than the size of
total memory divided by the number of locators. In this case, if the current-free-block is not big
enough to accomodate the request, the next one will most likely be. Thus, the time overhead is
small. If block sizes are too large, however, a long walk through many free-blocks might be required
before a free-block big enough to service the request is found. In this case, at the cost of a factor
of O(In(n)), where n is the number of locators, the following method for managing free memory is
preferred.

The problem of choosing a free-block for allocation may be solved by maintaining a heap of
block-descriptors or descriptors, one for each free-block and containing a pointer to that free-block,
organized on free-block size. It is well known that unit time is required to find the largest element
of a heap and only In(n) time is required to re-heapify if one or two element sizes are changed [1].
Define the current-block to be the free-block from which memory requests are satisfied. All requests
are taken from the current-block until it is too small to handle one. Then the largest free-block
is checked to see if it can handle the request. If so, it becomes the current-block and allocation
continues. If not, a garbage collection and compaction are performed.

Locator creation generally splits a free-memory-block into a pair of much smaller blocks. Then
one descriptor must be updated, one must be created and the descriptor heap must be updated.
The problem of finding the free-block in which the locator is created is solved using a Trie [1]. The
leaves of the Trie point to block-descriptors. To identify the free-block associated with an arbitrary



address, one walks the Trie, from root to leaf, using the address bits to decide direction at each
node. The block-descriptor pointed to by the leaf contains the pointer to the free-block. Creation of
the new locator affects the dimensions of the current-block; therefore, the current-block descriptor
must be updated. If the locator is not at the boundary of the current-block then a new descriptor
is created, sized, and set to point to C* — 1. The descriptor heap and Trie may need to be updated
possibly employing re-heapification.

Garbage collection and compaction are complicated by the fact that a locator must be moved
if it occupies space that must be taken by a contiguous block of cells during compaction. In this
case a secondary list of locators-to-be-moved is constructed in inactive memory during compaction.
After compaction the locators in this list are rehashed to their proper addresses.

7 Conclusions

We have presented a facility which allows unbounded associative stuctures in Scheme systems.
Some of the benefits of the proposed facility are 1) unbounded vectors and arrays, 2) memoization,
3) ucons cells, 4) dynamic letrec. The facility allows removal of some procedural specifications that
are unnecessary in stating the functional specification of many programs. In particular, unbounded
vectors and arrays eliminate the need to have boundedness conditions in the specification. The
facility also allows certain solutions, based on subproblem decomposition and reconstruction, to be
realized without requiring a rigid data structure. Thus, Dynamic Programs can be implemented
at full asymptotic efficiency up to a constant factor with little thought about the data structures
used.

We have provided only enough programming examples to illustrate the use of the facility. Many
other examples were omitted to save space. Programs in which interacting objects are born and
die could benefit from this facility.
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