Multiple-Query Optimization
for Materialized View Maintenance

by

José A. Blakeley
Computer Science Department
Indiana University

and

Héctor Herndndez
Department of Computer Science
Texas A&M University

TECHNICAL REPORT NO. 267

Multiple-Query Optimization
for Materialized View Maintenance
by
José A. Blakeley and Héctor Hernandez
January, 1989

Multiple-Query Optimization for Materialized View

Maintenance
José A. Blakeley Héctor Herndndez
Computer Science Department, Department of Computer Science,
Indiana University Texas A&M University

January 22, 1989

Abstract

Maltcrialized views are a useful mechanism to speed up query processing in a DBMS. In
Lhis paper, we formulate the problem of computing the set of changes required to incrementally
updale a materialized view as a special case of multiple-query optimization (mqo). We report
our initia) results on applying three mqo approaches to this problem: a simple approach, a
state-space search approach, and a hybrid approach. In the simple approach, we prove that
the structure of the queries in our problem let us reduce significantly the optimization cost.
In the state-space search approach, we propose a judicious way of generating plans exploiting
the special structure of our problem. In the hybrid approach, we show how a single-query
optlimizer can be integrated with one based on multiple-query decomposition. This is a step
lowards integrating seemingly disparate optimizers. As part of this approach, we also present
an improved heuristic for multiple-query decomposition. Using a running example we have
found that, for our problem, the simple approach may be good enough compared to the more
complex state-space search approach, and that the hybrid approach may give significant savings

as compared Lo the other two approaches.

Keywords: Query processing, Multiple-query optimization, Materialized views, Data caching

1 Introduction

Materialized views are stored relations resulting from the evaluation of a query on a set of base
relations or views. They are a form of data caching that can be used to enhance query processing

performance in a database system.

[INTRODUCTION 2

Materialized views can be used to enhance the performance of queries in distributed DBMSs.
Today’s computer communications networks give us access to many information retrieval systems.
A common topology of these systems consists of a large network of workstations (or personal com-
puters) connected to a mainframe that manages the access to a corporate database or information
retrieval system (e.g., ADMS+ [18|). These workstations have substantial computing power as well
as large amounts of secondary storage available. Storing commonly accessed database views at the
workstations may enhance the retrieval performance of these systems mainly because of reduced
communication costs. It also relieves the mainframe from having to recompute a request repeatedly.

Materialized views can also be used to enhance the performance of some features available in
exlendible database management systems. They can be used as one of the alternatives to implement
procedures as data types as proposed in the POSTGRES database system [22]. Materialized views
can also be used as a mechanism to allow the timely execution of rules and queries in database
systems supporting time-constrained applications [5].

However, performance enhancements provided by materialized views come at a cost. As the
base relations in the database are updated, the materialized views may become out of date. There-
fore, an eflicient view maintenance mechanism must be provided. There are several methods to
keep the materialized views up to date. The simplest, and perhaps the most expensive, is to re-
compnte the expression defining the view every time the view is accessed after an update of the
base relations, however, this is often unnecessary. A better method is to maintain the view in-
crementally [3,8,13,19]. The following example illustrates the idea of incremental maintenance of

views.

Example 1.1 Consider the materialized view v = myo¢(r1 X2 X73) and suppose that a transaction
inserts sets of tuples ¢; and ¢3 into relations ry and r3, respectively. Let r{ = 71U« and 7 = 13U
represent the new state of relations 7y and 73 after the transaction is performed. The new state of
the view, v/, is v' = myoe(r] x rg x r}) = wxoe(ry X rg X r3) U mxoe(ry X v X t3) U mxoe(ty X
ra X ra)Uaxoe(ry X 7y X 13). Since v = wxo¢g(ry X 72 X r3) is the current state of the view we have
v = v U Av where Av = wxoe(ry X g X t3) Umxoe(er X rg X 73) Unxoe(tn X rg X t3). Thus, to
collect the changes required to bring v up to date we need to “union” the results of three queries.

Deletions and modifications can be handled in a similar way [3]. &

Some forms of materialization of data have been proposed before, for example, snapshots [1],
quasi-copies [2], and evolving views [23]. However, none of these proposals suggest an efficient way
of maintaining the materialized data current with the rest of the database. Materialized views

have heen used as a performance enhancement in the implementation of the Syntel programming

I INTRODUCTION 3

system which integrates capabilities of functional programming languages, database, expert, and
spreadsheet systems [16]. Syntel does provide an incremental view maintenance mechanism.

A system may guarantee several degrees of currency in the kinds of materialized views it sup-
ports. Views may be kept always current with the rest of the database, that is, a view maintenance
mechanism may be invoked as part of the commit of a transaction that updates the database.
Views may be maintained on demand, that is, before the view is retrieved the maintenance mech-
anism is invoked. Views may also be maintained periodically (e.g., every 24 hours). The above
degrees of currency determine the ends of a spectrum of possibilities. (Quasi-copies are somewhere
in the middle of the spectrum, they are a form of materialized data that is allowed to deviate from
the database according to some criteria (e.g., no more than 10% error). In general, designing a
DBMS that supports materialized data involves determining when to update them as well as how
to update them. These two problems are technically different. However, once the “when” has been
determined, the “how” can be performed by a unified mechanism used to maintain materialized
views ol diverse degrees of currency. Our paper addresses the “how” part of the problem.

Maintaining a materialized view incrementally typically requires three main steps: (1) keeping
track of updates to the base relations, (2) computing the changes that need to be applied to the
view, and (3) updating the materialized view. Gathering the changes needed to update the view
may involve the computation of several queries. The number of queries to be computed depends
on the number of base relations referenced in the view definition that have been updated since
the latest view materialization. In this paper, we concentrate on stage (2) of the incremental
approach to maintaining views defined by relational expressions using select, project, and join op-
eralors. We report the initial findings of our investigation on the use of multiple-query optimization
(mgo) [4,7,15,17,21] to efficiently compute the changes to materialized views. In particular, we have
studied three approaches to mqo. First, we propose a simple approach that uses the plans generated
by a single-query optimizer on each of the queries in the set to be optimized and then shares common
siubexpressions among the different plans. Second, we propose a way of exploiting the particular
structure of our special case of mqo to generate alternative plans for each of the queries in the set
and then use a state-space search algorithm. Finally, we propose a hybrid approach that starts by
applying multiple-query decomposition [4] to a multi-query graph representing the queries to be
optimized, and ends by applying single-query optimization when the multi-query graph has been
decomposed Lo the point where it consists only of connected components representing individual
queries without common subexpressions. Using a running example, we compare their performance
against a strategy that optimizes each query in the set individually. We have found that for our

problem, the simple approach may be good enough compared to the more complex state-space

2 NOTATION AND PROBLEM STATEMENT 4

search approach. Also, there are indications that our hybrid approach may give significant savings
when applied (o our special mqo problem as compared to the other two approaches. In addition,
the hybrid approach can be applied to the optimization of an arbitrary set of queries. Additional
experimental research is required to substantiate statistically our findings.

The rest of the paper is organized as follows. Section 2 presents the notation and background
ns well as Lhe formalization of the problem of computing the changes to the view as a mqo problem.
Section 3 presents our simple approach. Section 4 presents a state-space search approach. Section

h presents a hybrid approach, and Section 6 presents our conclusions.

2 Notation and Problem Statement

We shall follow standard notation [14,24] and only give some non-standard definitions here. We
consider a database) consisting of a set of (base) relations D = {ry,...,7,} where each relation
r; is defined on a set of attributes R;. In this paper, we deal exclusively with PSJ-expressions. A
PSJ-expression is an expression of the form @ = wxoe(fy X - -+ X Ry), where C is a conjunction of
atomic terms of the form (4 8 B + ¢), (4 8 ¢) where @ € {=,#,<,<,>,>}, Aand B are elements
of By U R,,, and cis a. constant. We assume for the rest of this paper that atomic terms are of
this form. Also, we assume that all the R;’s in the above Cartesian product are distinct (i.e., we do
not allow self-joins), and all the attributes in the R;’s are also distinct. A materialized view is the
(stored) relation v that results from the evaluation of a P.SJ-expression V' = wxo¢(Ry X -+ X Rm)

against the database D;ie., v=mxoc(ry X -+ X).

2.1 The problem

In general, suppose we want to maintain the materialized view v = mxo¢(r1 X 72 X -+ X 1), and
that a transaction updates q < p relations. The updated view v’ is given by v’ = v L) Av, where LI

denotes the simultaneous union and difference of tuples, and Awv is given by

Av = wxoe(ry X - XTp g X T;:r—q+1 X X Tp_p X ?’;,,1 xfp) U
Txae(ry X -+ X rp_g X T;-—q+l S r;_z X Ppi X r;,) U
Txoc(ry X - X rp_g X T;—q+1 K n 5K ?";o_z X oy X'Fp) U
Txoc(ry X oot X Fp_g X 'r';,_qﬂ X o o X Ppog X r;?_, x r;,) U

TTX"-TC(T'I X oo X Tp—q X T"p_q+1 X e X T;F_g X Tp-1 b4 ?"p)

2 NOTATION AND PROBLEM STATEMENT 5

Relations 7? =7; —6;,p—q+1<j<p, where §; C #; is a set of tuples to be deleted from r;.
Relations 7, represent the net changes made to the corresponding relations within the transaction,
e, f o= 4; U8, N8 = 0, where ¢; is a set of tuples to be inserted into r;. Relations 7; are
assumed to be non-empty. If ¢ relations are updated by a transaction, then Av will consist of the
union of 29 — 1 PSJ-expressions. The problem is how to compute the set of queries comprising Av
cfficiently. In other words, how can we optimize the execution of the queries required to compute
Av collectively. This is a special case of a mqo problem because all the queries are defined by the
same expression and the only differences are the operands on which the queries are performed.
Multiple query optimization is a natural approach to solving this problem for several reasons: (a)
the set of queries to be optimized is known in advance, (b) since there is extensive relation overlap
among the queries, many subexpressions can potentially be shared, and (c) since the set of queries
share Lhe same projection, selection, and join operations, all the potential common subexpressions
might be equivalent and their detection becomes a simple pattern matching problem (i.e., we might
not need Lo test subsumption of some expressions [6,10,12,17,21]; in Section 3 we prove that we do

not need to test subsumption among selection tasks).

2.2 Approaches

There are two general alternatives to computing the set of queries in Av. (a) To optimize and
execute each of the expressions individually. This alternative is included as a basis for comparing
the improvements provided by the mqo techniques discussed. (b) To optimize and execute the
expressions in Av as a set. Ilere we have several alternatives: (i) use a simple method that
combines single query optimization with a careful utilization of common subexpressions, (ii) use a
stale-space search approach, and (iii) use a hybrid approach.

The following example is used to illustrate the various mqo algorithms presented throughout

the paper.

Example 2.1 Consider four relation schemes Ry(H,I), Ra(J,K), Ra(L,M), and R4(N,O)
and Av = v U vy Uvz where vy = 0(gcioja(=J)A(E=D)A(M=N)(T1 X T2 X 73 X 14), vz =
‘-T(F--..F)J\{R':L]!\{M-.:N][f'l X Ty XT3 X 1"4), and vz = Cf(f:J);\{;{:L)ﬂ[ﬂ,I:N}(?:] X Ty X Tg X T‘4).

The expressions vy, v, and vy are generated by the differential view maintenance approach for
the case when only relations 7y and ry have been updated since the latest materialization of the
view. Relations 7y and 73 represent the sets of net changes on relations 7y and r3, respectively.
For expressions v, and vy we do not show the term (H < 10) of the view definition. We assume

that this selection is automatically performed when the relations 7#; and 73 are collected, before the

3 A SIMPLE APPROACH 6

incremental view maintenance mechanism is invoked.

Let 7 be a relation; |r| denotes the cardinality of the relation in number of pages. Let ry M 7y
be a join expression, sely; (a number between 0 and 1) denotes the selectivity of the join as
a fraction of tuples from 7y x rp that qualify for the join. Let o¢(ry) be a select expression,
scly) denotes the selectivity of the select as a fraction of the pages from 7, containing tuples
that satisly the select condition . The cost of an expression is estimated as the sum of the
number of pages read and written needed to compute the expression. We make the following
assumptions: (1) all intermediate results of expressions are written to disk; (2) joins are computed
nsing the nested loops method; (3) there are no indices on relations to be used when computing
joins or selects; and (4) the cost of computing the union of results corresponding to the queries

in Av (e.g., 7, vz, and vy above) is ignored. The cost of performing a join is estimated as:

cosi(ry M ry) = no. of pages read -+ no. of pages written = |rq|*|ra] + |ry|*|ra|*seli2. The cost
of perforing a select is estimated as: cost(o¢(r1)) = no. of pages read + no. of pages written =
Il + |7i| % selyy. Assume that |ry] = 1000 pages, |r2| = 80 pages, |r3] = 90 pages, |rs4| = 200

pages, |#1| = 1 page, |fa| = 2 pages, sely; = 0.1, selyp = 0.1, selyz = 0.15, and selzq = 0.03.
The optimal local plans corresponding to vy, v and vz above with their costs are shown in

Table 1. Thus, the total cost of computing the changes in Av is given by cost(vi) + cost(vy) +

cost(vy) = 42,231. |
l) | Cost(vy) " v2 | Cost(vz) " 3 | Cost(vs) I
8 — (T(H(]_!_\)(TL} 1,100 81 +— O'(!=J)(f'1 x 7"2) 88 8 +— 0(!=J)(f1 X 1"2) 88
32 ¢+ o(ar=n)(Fa X T4) 412 || sz + o(re=1)(s1 % 7a) 828 || s2 — oyar=ry(fa X 74) 412
Sy — O¢ rr_-j',}(?’? bes -‘I'z) 1,104 83 +— 0’(1‘,1=N)(82 > 7‘4) 22,248 83 +— 0(K=L)(31 * 82) 111
L¥T ‘—(T(;:J}(sl X-S:g) }5,840
Total: 18,456 Total: 23,164 Total: 611

Table 1: Locally optimal plans and costs for v;, vs, and v3.
¥ p

3 A Simple Approach

In this section, we show that the common structure of the queries in Av can be exploited to
write simple mqo algorithms, which are more efficient than the general algorithms proposed so
far. Simple mqo algorithins consist of two stages. In the first stage, single query optimization is
applied to each of the input queries to obtain a set of individual optimal plans. In the second stage,

common subexpressions are detected and shared to obtain a less expensive global plan; this stage

3 A SIMPLE APPROACH 7

is expensive because involves testing for subsumption, e.g. see algorithm IE in [21]. Simple mqo
algorithms are motivated by the fact that single query optimization is typically a good first-cut on

the cost of executing a set of queries. This is illustrated by the following example.

Example 3.1 Consider the two queries vy = 7y M 7y M 73 X 7y and vy = 7y M 7y M 73 M 74, where
[ri] = |ra] = |r3] = 1000 pages, and |f3] = |#4] = 2 pages. The join selectivities 512, s23, and s34
arc all 0.001. Single query optimization yields the optimal nesting order (ry X (7 M (73 X 7)) for
v and (1 M (rp M (13 M 77y))) for vy with costs 2,007 and 6,006, respectively, for a total cost of
8,013. Using single query optimization it is not possible to share the subexpression ry M 75 that
appears in both v, and v,. However, if we would insist on sharing it, we would obtain the nestings
((ry M ry) M (73 M 1y)) and ((ry M 72) X (r3 M 7)) with a total cost of 1,006,010. Clearly, in this

case single query optimization defeats multiple query optimization. .

In this section, we give a simple mqo algorithm for the queries in AV that does not need fo
check for subsumption of selection expressions, because we formally prove, under some very general
assumptions about single-query optimizers, the following result: For any two queries @; and @; in
AV, and [or each pair of selection tasks in any local optimal plans for @1 and Q3, the two tasks are

cither equivalent or non-comparable. We also prove the correctness of our simple mqo algorithm.

3.1 Tasks, plans, and costs

A task t is a statement of the form t = T = ezp, where T is a temporary relation or the keyword
RESULT, that indicates that this task provides the result of the query, and ezp is o¢, (R1), 7x(R1),
or Ry M, Ry, where Ry and R, are (base or temporary) relations. Given two tasks i1 = T = ezp,
and t, = T, = exp,, such that T; and T, are union-compatible, we say that t; is subsumed by
ty, written f; = ty, iff for any instances of the operand relations in exp; and ezp;, the result of
evaluating expy is contained in the result of evaluating ezp; ty is identical (or equivalent) to i,
written £ = 1y, il 11 = {5 and &5 = {;.

An access plan for a query @ is a sequence of tasks < t; = Ty = expy,... .11 = Tiq =
eapi_y = RESULT = exp; > whose execution produces the answer to ¢ [21]. We represent the
access plan < 1y,...,%; > as an acyclic directed graph P = (1, 4, L), where 1", 4, and L, the sets
of vertices, directed edges, and of vertex labels respectively, are defined as follows: for each task ¢;
there is a vertex u;; (;,v;) is a directed edge in A if the result of task ¢, is used in task £;; and for
each v; € V| L(v;) is “T; = exp,” if task {; = T; = exp;. The cost to perform task t; is cosi(l;) =

the number of pages read 4 the number of pages written. Also we define for all v; € V7, cost(v;)

3 A SIMPLE APPROACH 8

— cosi(l;), and the cost of plan P(V, 4, L) as Cost(P(A,V, L)) = Dy,ev cost(v;). We assume that
we have a local optimizer PG that generates minimal-cost plans for any query as follows. Given a
query @@, we shall denote by PG(Q) the plan for Q@ generated by PG, where PG(Q) is such that
Cosl(P'G(Q)) = minpep,{Cost(F;)}, and Pq is the set of all possible plans that can be used to

evaluate).

3.2 Assumptions about the plan generator

Let @ = mwxoe(Ry X Ry X -+ X Rp) be a PSJ-expression. We assume that the graph G =(V,A, L)
for PG(Q) is a tree. (This assumption is sound since we do not allow self-joins.) The root of
the tree is the vertex whose label is RESULT = exp. The tree must be well-formed in the sense
that for all v € 17, there is a directed path from v to the root of G. (Otherwise there would be
redundant tasks in PG(Q) that would violate the minimality of its cost.) Finally, we also make the
assumption that for any selection task t = T' = o¢+(R) (or join task t = T = R M¢+ §) in PG(Q)
the condition C* is a subcondition of the condition C of @ (i.e., the atomic terms in C* are atomic

lterms in ().

3.3 eo-canonical plans

Let @ = wxeoe(Ry ... % Ry) be a PSJ-expression, and let R C RyU...UR,,. Let us assume that
C=C A---ACpand let Gi,...,C;, be all the conjuncts in C that involve only attributes in R.
Then Cp shall denote the conjunction C;; A ---AC;, . Intuitively, Cg is the strongest condition on R
that can be defined using only conjuncts from C. We want to prove that under our cost-model there
are some canonical plans for @ which we call o-canonical plans. A plan P for @ is o-canonical if
for any selection task t = T' = o¢/(R) in P, ¢’ = Cr. We prove that we can assume that PG gives
ns o-canonical plans for any PSJ-expression by proving that given PG(Q), we can convert it into a
o-canonical plan preserving minimality of cost and equivalence of plans. The next example shows

that, in general, we may not have ¢-canonical plans.

Exawple 3.2 Let us consider the query @ = weplo(ass)(Ri(AB)) Mp-c)y Ro(CD)] ™
o(a=10y(F1(AB)), and assume PG(Q) is the following plan: T = o455 (Ri(AB)), To = Th M(p=c)
Ra(C 1), T3 = o as10)(T1), Ta = 7mep(T2), and RESULT = T3 ¥ Ty. In this query, Cr, =
(A > 5)A (A > 10), which is equivalent to (A > 10). Then it is easy to see that if in this plan we
replace in Ty = 0(a55)(R1(AB)) the condition (A > 5) by the stronger condition (A > 10), then

we get a plan which is not equivalent to the original one. t

3 A SIMPLE AFPPROACH 9

3.4 Equivalence of tasks for ¢-canonical plans

The following lemma proves that, under the assumptions specified above, we can assume o-

canonicity for the plans generated by PG for any PSJ-expression.

Lemma 3.1 Let @ = wyoe(Ry X -+ X Ry,) be a PSJ-expression, and let us consider PG(Q).
Let £* be any sclection task in PG(Q) of the form 7™ = o¢+(R), where R C Ry U---U R,,. Let
P' be PG(Q) with t* replaced by t' = T = o¢,(R), where (g is as defined above. Then (a)
C(losi(P') < Cost(PG(Q)), (b) P’ is an optimal plan, (¢) P' = PG(Q).

Proof. (a) Let us consider t* = T* = o¢+(R) in PG(Q) and t' = T* = o¢,(R). Since our cost
model only takes into account page accesses, cost(t') < cost(t*) (because ¢’ needs no more pages
than * to write 7*). Hence Cost(P") < Cost(PG(Q)).

(b) Notice that Cost(P') = Cost(PG(Q)) since Cost(PG(Q)) < Cost(P') by definition of
PG(Q). Therefore, we still have an optimal plan if we replace t* by ¢. This means P’ is just
another optimal plan. We now prove P’ is equivalent to PG(Q).

(¢) Let G = (V, A, L) be the graph for the access plan PG(Q). From our assumptions about PG,
(is a tree. Lel us assume that v; is the vertex in V' whose corresponding task is) = RESULT =
exp; i.e., 1 is the root of G. Let t*, ', and P’ be as defined above. Remember that from our
assnmptions about PG, the condition C* in #* must be a subcondition of the condition Cg in #.
Assume that C* is a proper subcondition of Cg; otherwise our proof is complete.

Let v* be the vertex in G that corresponds to t*. From: (i) G is a tree, (ii) all attributes and
hase relations are distinct, and (iii) the query satisfies Cg, il is not difficult to prove that in the
path from v to v or in the paths from the leaf vertices of G to v* there must be selection tasks
whose conditions include the conjuncts in Cg — C*, which denotes the conjunction of atomic terms
in Cg but not in C*. Then replacing #* by i’ is equivalent to replicating upwards or downwards

(relative to v*) o¢,_¢+, which produces an equivalent expression for Q. Therefore P' = PG(Q). O

In view of the above result, in the rest of this section we assume that the plan generated by
¢ for any I'SJ.expression is a o-canonical plan. That is, for any PSJ-expression @, PG(Q) is
such that Cost(PG(Q)) = minp.ep,{Cost(P;)}, where Pg is the set of all possible o-canonical
plans that can be used to evaluate @. The following lemma states that we do not need to detect
subsumption among selection tasks to obtain a global optimal plan to compute AV, if we use a

stimple mgo algorithmn.

3 A SIMPLE APPROACH 10

Lemma 3.2 Let Py = PG(Q;) and I = PG(Q3), where @y and @ are any two queries in AV.
Lel t; be a selection task of the form Ty = o¢,(51) in Py and let #; be a selection task of the form
Ty = 0¢,(S2) in Py, where the tasks that generate Sy and S, are equivalent. Then t; = t,.

Proof: Since the tasks that generate S; and S, are equivalent, it must be the case that they are
nnion-compatible. Then let § = S; = S5. Then since both @ and @3 are defined using exactly
the same condition C, and since we are assuming PG is generating o-canonical plans for any PSJ-
expression, (s, = Cg, = Cs. Therefore, since the tasks that generate Sy and S, are equivalent, #

must be equivalent to ;. 0

3.5 A simple mqo algorithm

We present below an algorithm where according to Lemma 3.2 we do not have to check subsumption
between selection tasks. This algorithin can also be used to merge equivalent tasks of a set of plans
whuose graphs are trees that do not contain redundant tasks.

Algorithm S. A simple mqo algorithm to obtain an optimal plan to compute AV

Input: A sel of queries AV = {17,...,155_1}, where each 1 is a PSJ-expression of the form
ax(oe(fy, x Ry x - x Ry))

Output: A directed, acyclic, labeled graph GP = (GV,GA, GL) that represents a global optimal
plan to compute AV,

Comments: See the above text for notation and assumptions.

Method:

Obtain local optimal plans for each Q; € Av. For 1 <1< 27— 1, let G; = (V;, 4, L;) be
the graph for PG(®);); we assume the vertices in all the V;’s are distinct.

2 Initialization of GP. Let GP = (GV,GA,GL), where GV, GA, and GL are defined as
follows: Let [= 22 — 1; then GV = 2:1 Vi GA = U5=1 A;; and for 1 < ¢ <[, and for
cach v; € V3, GL(v;) = Li(v;).

3 Lisi the vertices in each Vi in some order. For 1 < 1 < 27 — 1, let £; be the list of the
vertices of G; = (13, A;, L;) in postorder (e.g., L; = postorder(root;), where root; is the
vertex in G; = (13, 4;, L;) whose label is RESULT; = exp); assume L; =< v/,...,v]" >,
where 7; = |13]; then for any pair vl,v$ of vertices in L;, (we say that) v] < v{ if 7 <.

4. Orderly Merge of Identical Tasks. For 1 <1< (29— 1) — 1, do the following.

4.1 For 1 <1 < |£;] de:

qibt Obtain the tasks in plansi+1,...,27— 1 equivalent to t}. Let t! be the task corresponding

to v For i 4 1 < j < 29— 1, if there exists a vertex in £; such that its corresponding
task is equivalent to t¢, then let v} be the smallest (according to <) vertex in L; such
that its corresponding task ¢} is equivalent to tt. Let Eqtasks =< v} .-, U; > be the

3 A SIMPLE APPROACH 11

vertices whose corresponding tasks are equivalent to ¢, in the order in which they were
obtained; if Fq_tasks is the empty sequence, then we go to 4.2. Let the corresponding
i ot * x *
tasks of Ul Vg be f'JL P "tJh'

1.1.2 Mark redundant tasks and their outgoing edges. For 1 < r < k, mark in GP “for-deletion”
both the vertex v} and each edge (vi,v") in GA, for any vertex v'; we assume, without
loss of generality that v} is not the result vertex of the plan j..

4.1.3 Mark the predecessors of redundant tasks and the edges connecting them. For each vertex

vi, | <7 < kdo: Let V' be the set of all the vertices v in GI” that come from Vj_,

the graph from where v} comes from, such that there is a directed path from v to v

if 7' = 0 then mark in GP “for-deletion” the incoming edges of v, , else mark in GP
“for-deletion” the vertices in V7' along with all their incoming and outgoing edges.

4.1.4 Fizing GF and £;’s. For 1 < r <k, for each edge (v}, ,v’) in GA, where v’ is some vertex
in GV, add the edge (vf,v') to GA, and replace the relation T’ by T! in GL(v'), where

T7 is the relation in t; =T, = exp] and Tf is the relation in # = Tf = expl. Remove

from the graph G P all the vertices and edges marked “for-deletion;” also remove from
the £;’s the vertices removed from G P.

4.2 eud of for-loop that begins at Step 4.1 /* =141 %/

5: end of for-loop that begins at Step 4 /* i:=74 1%/

3.6 Correctness of Algorithm S

In this subsection, we prove that Algorithm S is correct. First, since we are deleting edges from
G P, we must prove that at the end of each iteration of the for-loop that begins at Step 4.1 and
ends at Step 4.1.4, GP still represents a complete plan; i.e., each vertex in G'P has an incoming
edge for each input that its corresponding task needs for evaluating its expression. Secondly, it has
to be proven that G P represents a plan which is equivalent to AV. Thirdly, we have to prove that
the graph output by Algorithm S is acyclic. We prove the plan represented by G P is complete and

we also prove the acyclicity of GP. Its equivalence to AV is straight forward.

Lemwa 3.3 Let Av = {vy,...,v2a_1} be the input to Algorithm S, and consider an execution of
Mgorithm S with this input. For | <7 < 29 — 1, let G; = (13, A;, L;) be the graph for PG(Q;).
Let GP = (GV,GA,GL), where GV = 'L, Vi, GA = U\, 4;, and { = 29 — 1. Let GPjk, GVj,
and Gk be the values of GP, GV, and GA before the k-th execution of the for-loop that begins
at Step 4.1, when the value of the variable 7 at Step 4 is 7 (i.e., == 7); observe that GPy = G P,
GVyy = GV, and GAyy = GA. Then for 1 < 7 <29 - 2, and for 1 < k < |L;], where L; is the list
of the vertices of 1 in postorder, if G Pjj represents a complete plan, then after the execution of

Steps 4.1.1 through 4.1.4 (inclusive) G Py still represents a complete plan.

3 A SIMPLE APPROACH 12

Proofl: Assume G Pj, represents a complete plan. Then each vertex in G Pj has an incoming edge
for each input that its corresponding task needs for evaluating its expression.
Let us consider the edges marked “for-deletion” from G Fj at Steps 4.1.2. and 4.1.3. First, it
should be clear that the edges deleted at Step 4.1.2 are replaced by the ones inserted at Step 4.1.4.
For the edges marked for deletion in Step 4.1.3, let us assume that plan m, m > j, has a vertex
vy, whose corresponding task is equivalent to tff. Let v’ be a vertex in G Pj, from Vi, the set of

» r

vertices from where v, comes, whose edges are marked “for deletion.” The deletion of any of its

m
incoming edges does not affect the completeness of the graph, because the vertex itself is deleted
as well. Let us now consider the deletion of any of its outgoing edges (v’,v”), for some v” in GVj.
There are two cases to be considered depending on whether v belongs to V,,,. If v € 17,, then
there is no problem, since v” is also marked “for deletion” in Step 4.1.3 (because by assumption
about PG, G,y = (Viny Am, Im) is a tree and it does not have redundant tasks imply that either
v is v}, or there is a path from v to v}, since (v/,v") must be in the unique path from v’ to v},).
The case v ¢ 13, it is not possible, because up to this point in the execution of Algorithm S we
have not added any new outgoing edge to any plan whose index is greater than j. This completes

onr proof, 0
Now we prove that the graph output by Algorithm S is indeed acyclic.

Lemma 3.4 The output {from Algorithm S is an acyclic graph.

’'roof: The key observation is that if we add to GA a new (directed) edge that connects v; € V;
with a vertex v; € 17, then 7 < 7. Then it should not be difficult to see that, since we start with
acyclic G,’s (by assumption about PG), and we only add edges that connect vertices in distinct

17.’s always in the direction of increasing indices of G;’s, there is no way a cycle can be formed. O

The following exainple illustrates how Algorithm S works.

rr(”{lll][?".f](ﬁ L}{ni:-_'N)(T!. X Ty X T3 X T‘.»;), vy = "«7{i_’:J](K:L](ﬂ-f::f\«’](f:l X Ty X Tz X ?"4), and Yy =
Ter-ay(K=pyar=Ny(F1 X 13 X 3 X 74). Step 1 of Algorithm S obtains optimal access plans for each
of the three queries. The plans are Py = PG(1y) = < f;% = £’(H<1r_v}(‘-“1), 2 = oar=ny(F3 X 74),
f? Pt n(ff:'.:f;}(rﬁ X f?), f‘li = g(f:]}(ti X f]q) =y .pz = PGI(T.’Q} = < fé = F(I-'J}(fl X ?‘2), f% =
2
3

C-‘(_r:.n(fw XT2), 65 = C’(M:N)(?“sx?"q),

7y

a(r=1)(13x73), (3 = ap=py(t3xre) >, P3 = PG(v3) = < 8}
13 = o(r=1)(t§ X t3) >. The equivalent tasks are t7 = 3, t;

After processing the first plan Py, task 3 is removed from P; and it is replaced by ¢} in the

cxpression for 43. So I3 becomes < t5 = o(1=7)(f1 X 72), 1§ = o(x=r)(} X t?) >. After processing

4 A STATE-STACE SEARCH APPROACH 13

the tasks in the second plan task ¢} is removed from P; and it is replaced by t3 in the expression
for £3. The final value of Py is < 3 = a(g=r)(t3 x 17) >. Since, from the tables in Example 2.1,
Cost(ly) = 18,456, Cost(P,) = 23,164, and cost(t3) = 111, the cost of this global plan is 41,731
which provides savings of 1.2% over the solution with no sharing of common subexpressions (i.e.,
12,231, see Example 2.1). We will see that, for this example, the solution given by the simple

approach is identical to the solution given by the state-space search approach of next section. 1

3.7 Remarks

Algorithm S works with the lists £;’s in any order (postorder, inorder, depth-first, arbitrary order,
elc.). We chose postorder because we felt this order is best for our particular mqo problem. The fact
that testing subsumption among selection tasks is not required provides a substantial improvement
on the cost of optimization. In the worst case we have savings in the order of [Ti%, |V;| X k, where
m o= |AV], |V;] is the number of tasks that comprises the i-th PSJ-expression in AV, and k is the
time required to Lest for subsumption of selection tasks (which in general requires a theorem prover).
As we mentioned above, Algorithm S can be applied to any set of queries as long as their plans
salisfy our assumptions about the plans generated by PG. The choices for relation cardinalities
and predicates selectivities for this example do not yield big savings, but this does not necessarily
mean mqo is not worth it. We are using this example as a measure of relative comparison among
the approaches. Finally, this section has shown that it is important to understand the properties

of the plans generated by the optimizer in order to find ways of reducing optimization costs.

4 A State-Space Search Approach

Many single- and multiple-query optimization algorithms (e.g., [7,15,20]) include a stage that per-
forms a search of the state-space defined by the alternative plans that could be used to execute
the query or queries. In this sense, all query optimizers that at some point perform a search of
the solution space can be classified within this approach. However, in this section we use the term
slaie-space search more narrowly to mean mqo algorithms whose solution guarantees some optimal-
ity of the global plan generated. A multiple-query optimizer in this approach includes the following
stages: (1) generate alternative plans per query, (2) identify equivalent tasks among the strategies
generated in the previous stage, (3) estimate costs per task and plans, and (4) use a state-space
scarch algorithm (e.g, exhaustive search, branch and bound [7], dynamic programming [15], A*

[21]) to find a globally optimal plan.

4 A STATE-S’ACE SEARCH APPROACH 14

Previous mqo research following the state-space search approach has concentrated on stages
(3) and (1) of the approach and has assumed that the generation of plans and identification of
cquivalent tasks is performed by some other component of the optimizer. Plan generation is the
focus in this section. We propose to exploit a characteristic of our mqo problem, namely, all queries
in AV are queries represented by very similar (if not the same) relational expression. Two queries
in AV differ only in their vperand relations. Because of their difference in operands, locally optimal
plans (at the logical level) generated for two queries in AV may be different. However, each locally
optimal plan is a feasible plan (i.e., a plan template) for any query in AV, provided the appropriale
operands are used. Therefore, we propose to use all distinct locally optimal plans generated for the
27— 1 queries in AV as the set of alternative plans for each query used in stage (1) of the approach.

Before we continue our discussion we need to introduce some terminology commonly used by
research in the stale-space search approach. Using Grant and Minker’s notation, we are given a set
of queries v;, | < i < n, whose evaluation is to be optimized globally; the plans P;; (a set of tasks),
1 < 7 < p,, for evaluating each query v;; the distinct atomic tasks t{-‘j, 1 < k <€ g;j, which comprise
each plan J%;; and the actual or estimated cost cosrf(tf‘_,—) for each task. Equivalent tasks among
plans are assumed to be known. The objective is to find a sequence of plans (Pig,, Paky - - -» Prkn)>
whose cost is minimal.

Consider a solution vector Sk = (Pik, y Pakys - - - » Prkn)- Since Sk is consider to be a global plan,
its cost is given by cost(Sk) = E'EU::;R'M cost(t). The coalesced cost on tasks [7] is given by
coulesced _cost(1) = l%ﬂ, where n, is the number of queries in which task ¢ occurs. Similarly,
for plans we have coalesced_cost(P;;) = 3,2, coalesced_ cost(t). A more formal description of the
stale-space search approach to mqo is given below.

Algorithwm SS
Input: a set of queries v;, 1 <1 < n.

Output: a sequence of plans (Pix,, Paky,y - - -, Pukn), Whose cost is minimal.
NMelhod:

L. For each query v;, 1 < ¢ < n, find the optimal execution plan. Identify the tasks tff_?- along

with their costs cost(f’) < k < g5, comprising each plan.

2. For cach query v; generate alternative plans F;; using each different plan obtained is Step L.
At this step identify all equivalent tasks among the different plans, and find the “actual” cost
associated with each task.

3. Compute the estimated costs for tasks and plans in the optimal solution vector (e.g., coalesced
('nsl.s)_

4. Use a search algorithm to find a solution vector of minimal cost. 0

4 A STATE-SPACE SEARCH AFPROACH 1

(s]

Ixample 4.1 Let us apply the above algorithm to the three queries in AV of Example 2.1. Step
1 of Algorithm SS finds the locally optimal access plans for each of the three queries; see Table 1.
Apart from the selection on relation 7y required in query vy, the locally optimal access plans
provide three different nesting orders for performing the joins. Thus, we have three alternative
plans (templates) that we can use for each of the queries in AV. The plans to consider are given in
Table 2. The equivalent tasks are 17, = 3, = 13, = 35, #3, = t4,, and 1, = t}; = 1}, = 13;. Table 3

shows estimated costs for tasks and plans and Table 4 shows their corresponding coalesced costs.

‘ Mans] Tasks
Iu 1 = o(m<ioy(r) £, = oar=my(fs X 14) |) = o(x=p)(rz x 8,) | th = op=u(ti x 1))
Pia s = oprciny(r) 2, = o(r=ny(thy x 12) |] = o(ae=r)(l2 X Fa) | ths = opar=n(t]s X 74)
a 1la = o(einy(r1)]y = o(r=ay(tls X 72) | ts = oppr=m)(Fs X 74) thy = oyrc=r(tls x 11s)
Py i) = opar=nmy(ra X 1) | 8y = o(r=ny(r2 x 1) | 81 = or=n)(f1 x 13,)
P 15 = o(r=ay(r1 % 12) | #32 = o(xe=1)(t32 X 73) 132 = oy pr=n)(tho X 7e)
Ha tha = oo y(f1 x 72) 20 = o=y (72 x 70) | 135 = o(xe=1)(ths x t33)
Fay thy = opar=my(fa x 7a) | 31 = ogre=py(r2 X thy) | 131 = or—g)(F1 % t31)
sy the = opr—ny(f1 x 12) 13y = o(r=p)(ths X 73) | 132 = o(ar=n)(t2 x 14)
'y Iha 8 =y F1 X T3) t3: = o(ar=ry{Fa X 14) tha = U(lr:r,}(i%s % iga)
Table 2: Alternative plans for queries vy, vy, and vs.
I Plans u Tasks | Total l
Py th = 1,100 |], =412 3, = 1,104 | t}, = 15,840 | 18,456
Pra th,=1,100 | 3, =8,800 | ¢}, =1,840 | ¢i, =49, 440 | 61,180
Iys tha = 1,100 | ¢}, =8,800 | ; =412 ti, = 11,040 | 21,352
%y i1, = 18,540 | 12, =49 680 | 3, = 7,128 75,348
Pas 13, = 88 12, = 828 13, = 22,248 23,164
Paa 134 = 88 12, = 18,540 | 13; = 4,968 23,596
Far thy =412 2, =1,104 | 3, = 159 1,675
Faz ti, = 88 12, =19 3, = 618 725
Pia 1, = 88 i3, =412 34 = 111 611

Table 3: Costs for tasks and plans.

Using Sellis” algorithm, the solution vector for the above problem is given by (7, /2, Ps3) with
a cost of 41,179 which apparently provides savings of 2.4% over the solution with no sharing of
common subexpressions (i.e., 42,231). Although the costs obtained by Algorithim 5 and Algorithm
SS appear to be different they are not so. The global plans obtained by the two methods are the

same. The difference in cost comes from the fact that Algorithm SS works with coalesced costs. In

5 A HYBRID APPROACH 16

l Tlans Tasks l Total l
P i}, = 1,100 | 7, =208), =552 tf, = 15,840 | 17,698
Pia th,=1,100 | ¢3, =8,800 |, =1,840 | t}, =49, 440 | 61,180
Pis tly =1,100 | 13, =8,800 | I, = 206 ity = 11,040 | 21,146
Py thy = 18,540 | (2, = 49,680 | 3, = 7,128 75,348
Pas th, =44 t2, = 828 13, = 22,248 23,120
Py 1Ly == 44 123, = 18,540 | 13, = 4,968 23,552
Pay th, = 206 13, = 552 3, = 159 917
I thy = 44 13, =18 3, = 618 681
Pas thy = 44 13; = 206 13y = 111 361

Table 4: Coalesced costs for tasks and plans.

this case, we used the coalesced cost 552 for task t3,. But this task is not shared among the plans,
therefore, its cost must be 1,104. This accounts for the cost difference between the results obtained
by Algorithms S and SS. Hence, for this example, the savings obtained by the state-space search

approach are the same as the ones obtained by the simple approach. W]

The following guestion arises at this point: Js it cost-effective to use a state-space search approach
to compute AV ? In many cases, the greatest reduction in cost when optimizing multiple queries
comes from the individual optimization of each of the queries. Thus, adding a stage that detects and
utilizes common subexpressions after local optimization of individual queries in AV (i.e., Algorithm
S) may be good enough. Spending a lot of effort generating arbitrary plans per query and performing
the stale-space search of an optimal plan adds a substantial portion to the optimization cost and
may not be cosi effective in the computation of AV. Initial experiments with Ingres comparing
the relative costs of computing AV using the simple algorithmn and a state-space search approach

show that often both methods yield similar results.

5 A Hybrid Approach

This algorithm is partly inspired by the multiple-query decomposition algorithm of Chakravarthy
and Minker [4] which is a generalization of query decomposition proposed by Wong and Youssefi
[25]. 'The approach is a hybrid from multiple-query decomposition and single-query optimization.
It is formed from two stages. In the first stage the set of queries is decomposed using a modified
version of multiple-query decomposition until no more common subexpressions can be shared. That
is, the multi-query graph [4] representing the set of queries has been decomposed so that it consists

only of connected components representing individual queries. At that point, the second stage of

5 A HYBRID APPROACH 17

the algorithm is activated. The algorithm switches to a single-query optimization strategy that is
hetter than query decomposition. Each of the connected components representing a subexpression

for a single query is “fully optimized” (e.g., an optimal nesting order for joins is computed).

5.1 The hybrid algorithmn

We assnme the reader is familiar with the notion of instantiation and iteration used in query
decomposition approaches [14,24,25] and with the multiple query decomposition algorithm of
Chakravarthy and Minker [4].

A problem that we identify in query decomposition algorithms previously proposed [4,14] is
that they are nondeterministic in the sense that the heuristics proposed are not precise about when
instantiation or iteration should be applied. As a consequence, when these algorithms are invoked
using as input Lwo isomorphic graphs for a given query (or set of queries) the algorithins may yield
distinct execution programs for the query.

Algorithm 11 described below removes this problem by proposing a more specific set of heuris-
tics using cost estimations as functions of predicate selectivities and cardinalities of relations to
determine a unigue order in which iteration and instantiation are applied. Thus, for a fixed set
of cost estimation functions, any two isomorphic graphs representing a given set of queries will be
decomposed into a unique execution program.

Let G = (1), E) denote an undirected multi-query graph. We abuse the notation to denote an
edge e € I as a four-tuple (7,7', 7, p) where r and 7’ are the two nodes connected by the edge, j is a
number (also called the color) that identifies the query to which the edge belongs, and p represents
the label (condition) of the edge. Let adjacent(r) be the set of vertices adjacent to node r, that is,
adjacent(r) = {v' | (3 4,p) (r,7',5,p) € E,1 < j <29 — 1}. We remind the reader that 27 — 1 is
the number of queries that form AV. Let edges(r, ') be the set of all edges between nodes r and
', that is, edges(r,7') = {e | (3 j,p) e = (r,7,4,p) € E,1 < j <29 - 1}. Let v(r,7') be a function
defined as follows:

i) = J 0 if |edges(r,7")] =0
l ledges(r,r")| — 1 if |edges(r,7")| > 1

We define a function savings(r) to be the savings in cost provided by iterating on relation r as
follows: savings(r) = X rc adjacent(r) COSHr M ") % v/(r, 7).

Briefly, what the function savings is trying to capture is the following. Suppose that there is
a pair of nodes connected by three edges representing the same predicate, meaning that there are

three queries sharing the same subexpression. If the system computes the expression defined by

5 A HYBRID APPROACH 18

one of these edges, then the system will not need to compute the same expression for the other two
querics again (provided the result is stored for later use), which basically saves twice the cost of
computing the expression. Savings are obtained when there are at least two edges representing the
same predicale hetween two nodes.

Algorithm H. A hybrid algorithm between multiple-query decomposition and single-query opti-
mization.

Input: a set of queries {vy,vs,...,v21_1} and its corresponding multi-query graph G = (V, E).
Qutput: a program that computes the expressions represented by the multi-query graph.
NMethod:

Repeal choosing the lowest numbered option among the following set of options.

I. Instantinte whenever possible. If a relation becomes empty, then eliminate all graphs con-
nected to this node.

2. Iterate on the relation that provides the highest cost saving. That is, iterate on the relation
represented by node r such that savings(r) = maz{savings(r;) | 1 <i < p} > 0.

1f there is a tie hetween nodes r and r’, then iterate on node r if

> owms) = Y w(rh),

s€adjacent(r) t€adjacent(r’)

otherwise iterate on 7'. Notice that with this tie breaker we are favoring the node that will
lead to a faster dissection of the multi-query graph. As a consequence, we are choosing to
iterate on a relation whose access will be shared by the largest number of queries.

3. The algorithm reaches this point when savings(r) = 0, ¥r € V7. However, a node may still be
connected to other nodes through single edges of several colors. Iterate on the node connected
Lo the largest number of edges of different colors. 1f there are ties, then iterate on the node
representing the relation with smallest cardinality.

4. When the algorithm reaches this point, the remaining portion of the graph consists of a
number of disconnected components where each compouent contains edges of only one color.
That means there are no more common subexpressions to be shared. Therefore, for 7 = 1 to
29 — 1: Find an optimal nesting order for computing the joins represented by the remaining
edges in query j which are defined by the set {e | e = (r,7’,7,p) € E} and then iterate on the
relations for the component j according to the optimal nesting order.

Until the multi-query graph has no edges. o

Algorithm I is applicable not only to the optimization of a set of queries in A1” but to the

optimization of an arbitrary set of queries. Example 5.1 illustrates Algorithm II.

Example 5.1 Consider the queries in Example 2.1: v1 = 0(g<10)a(I=J)A(K=L)A(M=N)(T1 X T2 X

Py X 1Ta), V2 = O naK=DNM=N)F1 XT2 XTaX74), and vz = o(1= n)a(K=L)a(M=N)(F1 X T2 X T3 X T4),
()] { n()AL

with their corresponding mulli-query graph:

5 A NYBRID APPROACH 19

H < 10

= coz{rade, K==Ly =g

@I'.:”f;.} K= F

where the expression vy is represented by solid edges, expression v, by dashed edges, and expression

=
=y
Il

=

1y by dotted edges. We assume the same cardinalities of relations and selectivities of predicates as
in xample 2.1.

In the first iteration of the algorithm, the action taken is to instantiate relation 7y (Step 1).
This action removes the edge (r1,71,1,(H < 10)) producing a new node rj replacing node 7.
The code generated by this step is: 7} <~ o(g<10)(71). The size of relation r} is estimated to be
selyp#|ry] = (0.1)(1000) = 100 pages. In the second iteration of the algorithm no more instantiations
are possible, therefore Step 2 is performed. In this step, the function sawvings is computed for each

of the nodes of the graph. The values of this function for each of the relations is: savings(ry) = 0,

Since savings(72) gives the largest value, the next action taken by the algorithm is to iterate on 3.
This action removes the edges (ra, 73, 1, (K = L)), (72,73,3,(K = L)), (f3,74,1,(M = N)), and

(Pa,74,3,(M = N)). The resulting graph is:

T'he code generated by this step is:

e o amy(r);

my = B vy e

for each { in 2 do
vi o o= r=t)m)=N) (T) X T2 X 74);
vy e U (0 x {1});
V3 = Oz (mi=N) (F1 X 72 X 14);
v+ v U (v3 x {1});

od;

vy ¢ O =iy K=D)M=N)(F1 X 72 X 13 X 74);

At the seventh iteration, the multi-query graph has a connected component with single edges

all of the same color (i.e., a query graph for a single query), shown below:

5

A HYBRID ATPROACH

20

At this point, Algorithm H switches to an optimization strategy better than single-query de-

composition. This instance of the algorithm uses a routine that finds an optimal nesting order for

computing the expression represented by the connected component of the graph [9,11]. The nesting

order ubtained is then used to decompose the rest of the graph. If at this stage in the algorithm,

the multi-query graph contains several connected components each belonging to a single query,

then single-query optimization (as described above) will be applied to each component. For this

cxample, the optimal nesting order is given by the expression (7, X (r2 X 73 X 74)). The complete

code for the set of queries is shown below:

e

-1

=

10.
1.
12,

13,
14.

15

16.

7.
18,
19,
20,
. [
22.
23,
24.

25,

26.
27
28,
29.

= agern)(m);
g s e B
for each f in 2 do
ry e o=y (r2);
Ty - ogar)=ny(Ta);
v —0; v — B
for each s in v do
Y = o=y (ri);
= ou=sap(f1);
v] — () xr3);
o 2 (08 x {3
v = (F) x r4);
3 o o3 U{odx (3
od;
o=y L (0 x {1});
w3 e vzl (r.'.g x {t});
od;
Uy +-= lﬂ,
for cach uin #; do
"g & ”ru.|r|_:_r)(?'2]§
H,;' e by
for each w in ra do
5 = o —win(r3);
ry = TiwM)=n)(re);
I
vl — vf U (vt x {w});
od;
My = 1y L {:ng b4 «{u}};
(’fl

Read Write
cost = 1000 [P} = 1000 % 0.1 = 100

cost = R0 [r5] = 80%0.15 =12
cost = 200 [rh] =200 %0.03 =6
cost = 100 [PY] =100%0.1= 10
cost = 1 [#}]- =1

cost = G0 1U§| = 60

cost = 60 |1r%| — 60

cost = 6 lvi| = 6

cost = G |vi| =6

cost = (110 + 2-- 120 -+ 120 + 36) * 12 = 4, 656

cost = (92 -+ 206 + 4,656) + 2 — 9,908

cost = 80 [P] = 80 0.1 =8

cost = 8 |[rd)= 8015 = 1.2 252
cost =200 |rh| = 200%0.03 = 6
cogt =12 el = 12

cost = 12 = 12

cost = (10 4 206 + 24) + 90 = 21, 600
cost = 12 |vg] = 12

cost = (884 24 -+ 21,600} % 1 = 21,712;

The cost of the strategy for computing the set of queries vy, v, and vz produced by Algorithm H

6 CONCLUSIONS 21

is: cost = 1,100 4 9,908 4 21,712 = 32,720. In contrast, the cost of performing each of the queries
independently is 18,456 for vy, 23,164 for vo and 611 for v3 for a total of 42,231. Therefore, using
decomposition we obtain a 22.5% saving for the set of queries (with the given predicate selectivities

and cardinalities of relations) in this example. 0

5.2 Remarks

The resnlts oblained in Example 5.1 deserve some discussion. Why has the hybrid approach yielded
better results than the state-space search approach? One reason js that the hybrid approach allows
the execution of multi-way joins (not only two-way joins). For example, at Step 3 of the program
abuve, each accessed page from 73 is immediately joined with relations 7, and 74 in Steps 4 and
5. Similarly for Steps, 22, 23, and 24. Thus, there is a richer set of elementary tasks considered
by the hybrid approach. Also, the hybrid approach provides many opportunities for pipelining
intermediate results (although we have not reflected this in our cost estimations). We believe the
optimization cost incurred by the hybrid approach will in general not be higher than that of the

state-space search approach. Additional experimental work is needed to confirm our belief.

6 Conclusions

In this paper, we have formulated the problem of computing the set of changes required to incre-
mentally update a materialized view as a special case of multiple-query optimization. We report
our initial results on applying three mqo approaches to this problem.

IFirst, in the simple approach we have proven that for our special mqgo problem we do not need
Lo test subsumption among tasks. This result provides a substantial saving on the optimization
cost because we do not need to invoke a theorem prover to perform such a test. To prove this we
have shown that it is very important to understand various properties about the behavior of the
single-query optimizer. Unlike other work in this area, we have shown that the simple algorithm we
propose is correct; our proof sheds some light on how the assumptions about plan generators affect
the difficulty of establishing the correctness of even simple mqo algorithms. The simple approach
can be integrated easily with a conventional single-query optimizer and can be used more generally
to merge equivalent subexpressions among queries whose plans are represented by trees. Second,
in the stale-space search approach, we proposed a judicious way of generating plans exploiting the
special structure of our problem. Third, in the hybrid approach we proposed an improved heuristic
for multiple-query decomposition. We also show how a single-query optimizer (not necessarily

hased on query-decomposition) can be integrated with multiple-query decomposition. This is an

REFERENCES 22

important step towards integrating seemingly disparate optimizers. Additional experimental work

is underway to obtain more definitive answers on the best approach for our special mqo problem.

Also, more work is needed to evaluate the trade-offs between the cost of optimization and the

quality of the optimization for the computation of AV.

References

[

12]

3]

4]

[8]

19

[10]

1]
12

[13)

14

Michel Adiba and Bruce (. Lindsay. “Database Snapshots.” 1In Proc. of the 6th. International
Conference on Very Large Databuses, pages 86-91, Montreal (1980).

Rafael Alonso, Daniel Barbara, Hector Garcia-Molina, and Seraya Abad. “Quasi-Copies: Efficient
Data Sharing for Information Retrieval Systems.” 1n Proc. of the 1888 International Conference on

-

Extending Database Technology, March 14-18, 1988, Venice, Italy.

José A. Blakeley, Per-Ake Larson, Frank Wm. Tompa. “Efliciently Updating Materialized Views.”
In Proc. of the ACM SIGMOD International Conference on Management of Data,, pages 61-71,
Washinglon, D.C. (May 1986).

C'hakravarihy, Upen S. and Jack Minker, “Muliiple Query Processing in Deductive Databases.”
In Proc. of the 12th. Iniernational Conference on Very Large Ilaie Bases, pages 384391, Kyoto
(August 1986).

Urgeshwar Dayal et al. HiPAC: A Research Project in Active, Time-consirained Database Manage-
ment. Technical Report CCA-83-02, Computer Corporation of America (June 1988).

Sheldon Finkelstein. “Clommon Expression Analysis in Database Applications.” In Proc. of the
ACM SIGMOD International Conference on Management of Data, pages 235-245, Orlando, FL.
(June 1982).

Jobn Grant and Jack Minker. “On Optimizing the Evaluation of a Set of Expressions.” International
Journal of Computer and Information Sciences. Vol. 11, No. 3, pages 179-191 (June 1982).

Bric Hanson, “A Perforrmance Analysis of View Materialization Strategies.” In Proc. ACM SIGMOD
Internationnl Conference on Management of Data (1987).

Toshihide Tharaki and Tiko Kameda. “On the Optimal Nesting Order for Computing N-Relational
Joins.® ACM Transoclions on Database Systems, Vol. 9, No. 3, pages 482-502 (September 1984).

Malthias Jarke. “Common Subexpression Isolation in Multiple Query Optimizalion.” In Query
Processing in Dotabase Systems, W. Kim, D. Reiner, D. Batory (eds.), Springer-Verlag, pages 191~
205 (19Rh).

Navi Krishnamurthy, Haran Boral, and Carle Zaniolo. “Optimization of Nonrecursive Queries.” In
Iroc. of the 121h. International Conference on Very Large Dota Bases, pages 128-137, Kyoto (1986).

Per-Ake Larson and H. Z. Yang. “Computing Queries from Derived Relations.” In Proc. of the 11th
Internationel Conference on Very Large Data Bases, pages 259-269, Stockholm (1885).

Brioce Lindsayv, Lanra Hass, C. Mohan, Hamid Pirahesh, and Panl Wilms. “A Snapshot Differential
Relresh Algorithun.” In Froceedings of the ACM SIGMOD International Conference on Management
of Nata, pages 53-60, Washington, D.C!. (1986).

David Maier. The Theory of Relational Databases. Computer Science Press (1983).

REFERENCES 23

[[5]

[16]

[17]

[18]

[19]

[20]

21]

22]

[24]

[25]

Jooseok Tark and Arie Segev. “Using Commeon Subexpressions to Optimize Multiple Queries.” In
Froc. of the 4th International Conference on Data Engineering, pages 311-319 (1988).

Tore Risch, René Rebol, Peter Hart, and Richard Duda. “A Functional Approach to Integrating
DNatabase and Expert Systems.” Communications of the ACM, Vol. 31, No. 12, 1424-1437 (December
1988).

Arnon Nosenthal and Upen S. Chakravarthy. “The Anatomy of a Multiple Query Optimizer.” In
I'voe. of VLB, pages 210-215 (1988).

Nicholas Tloussopoulos and Hyunchul Kang. “Preliminary Design of ADMS+: A Workstation-
Mainframe Integrated Architecture for Database Management Systems.” In Proceedings of the 12th
International Conference on Very Large Dala Bases, pages 355-364, Kyoto (August 1986).

Aric Segev and Jonseok IPark. Updating Distributed Materialized Views. Laurence Berkeley Laboratory,
1,B1-24882 (Augusl 1988).

P. (3. Selinger, M. M. Astrahan, D. 1. Chamberlin, R. A. Lorie, and T. G. Price. “Access Path
Selection in a Relational Database Management System.” In “Proc. of the ACM SIGMOD 1979
International Clonference on Management of Data,” pages 23-34 (1979).

Timos K. Sellis. “Multiple Query Optimization.” In ACM Transaections on Database Sysiems, Vol.
13, No. 1, pages 23-52, March 1988.

M. Stonebraker, J. Anton, and E. Hlanson. “Extending A Database System with Procedures.” ACM
Transactions on Database Systems, Vol. 12, No. 3, pages 350-376 (September 1987).

Dienysins (1. Tsichritzis and Frederick T. Lochovsky. Date Base Management Systems. Academic
I'ress, (1977).

Jeffrey 1. Ullinan. Principles of Database Systems, Computer Science Press, 2nd. edition (1982).

Fugene Wong and Karel Youssefi. “Decomposition - A Strategy for Query Processing.” ACM Trans-
actions on Database Systers, Vol. 1, No. 3, pages 223-241 (September 1976).

