On Counting Posets and the Structure
of the Poset of Posets
i By
Joseph C. Culberson

University of Alberta
Edmonton, Alberta, Canada T6G 2H1

and

Gregory J. E. Rawlins
Indiana University
Bloomington, IN 47405

TECHNICAL REPORT NO. 266

On Counting Posets and the Structure
of the Poset of Posets

by
Joseph C. Culberson and Gregory J. E. Rawlins
December 1988

On Counting Posets and the Structure of the Poset of Posets

Joseph C. Culberson * Gregory J. E. Rawlins

December 15, 1988

Abstract

In this paper we report on the success of a new technique for computing the number of
unlabeled partial orders on n elements based on the partial order of partial orders ordered by
containment. In addition to the number of partial orders, we obtain complete enumerations of
the number of partial orders on n elements with r relations for n < 11, where r takes on all
possible values. We point out some interesting sequences that arise in these tables.

1 Introduction

In the following sections of this paper we describe an algorithm used to generate a computer
enumeration of the number of unlabeled posets on n elements and r relations for 0 < n < 11 and
0<r< (n;). This algorithm is dependent on some simple observations about the structure of
the poset of posets on n elements, which we designate P(n).

The problem of obtaining a closed formula for such an enumeration is still open, and so far there
does not appear to exist even a simple method of computing the number of posets, either labeled
or unlabeled, short of actually generating them. For this reason, enumeration for small n has been
carried out using a computer to actually generate all posets and count them. Previous attempts
have been made at such enumerations. Evans, Harary and Lynn [?] used a computer to enumerate
the number of labeled posets and the number of labeled topologies for n < 7. For unlabeled posets,
Mohring [?] generated results for n < 10, based on the identification of comparability graphs
selected from the Read-Wormald database of graphs [?]. (His results do not agree with ours for
n = 10).

2 Poset Definitions

A partial order > is an irreflexive and transitive (and hence asymmetric) binary relation. A partially
ordered set, or poset is a structure (A, >) with a partial order > defined on the elements of 4. For
convenience we refer to the structure (.4, >) as just . 4. We use the calligraphic letters A, B,(, and
D to stand for posets. All posets discussed are assumed to be finite and their elements are assumed
to be chosen from a totally ordered set, that is, if ¢ # y then either z > yor y > =.

"Supported by Natural Sciences and Engineering Research Council Grant No. OGP8053. Department of Com-
puting Science, University of Alberta, Edmonton, Alberta, Canada, T6G 2H1. email: joe@alberta.uucp

!Department of Computer Science, Indiana University, 101 Lindley Hall, Bloomington, Indiana 47405, USA. email:
rawlins@iuvax.cs.indiana.edu

¢ and y are said to be related in A if either z > y or y > z is in A, otherwise z and y are
unrelated in A. If ¢ and y are unrelated then we write z || y. We use E(.A) to represent the set of
relations in 4. z € A is said to be a singleton if it is unrelated to every other element in 4. The
set of singletons of A is denoted singletons(.A). A is said to be in reduced form if it contains no
singletons. Two elements form a pair if they are only related to each other. The dual of A is the
poset A" for which z > y in A if and only if y > z in A*.

z coversy (z > y)in Aifz >yin A and z > 2,2z > y in A implies that z =z or 2 = y.

A chain (antichain) is a poset in which all elements are pairwise related (unrelated). The chain
and antichain on n elements is denoted by R,, and U, respectively.

Let P(n) be the set of all posets on n elements. Given two posets A and B in P(n) we say
that .A contains B (A > B) if there is an order-preserving injection from B into A. P(n) forms a
poset under containment with R, as unique maximal element and {f,, as unique minimal element.
If A > B in P(n) then we say that B is a subposet of .A. If there is an order-preserving bijection
between .A and B then we say that .4 and B are isomorphic (A ~ B). If we wish to speak of a
specific bijection f we use the relation A ~; B. We use the notation A < B to mean B > A and
the notation .4 < B to mean that A < B and 4 # B. Since P(n) is a poset, we freely use the
notation developed previously. For example, we say that 4 covers B (A > B)in P(n)if A > B
and A > C,C > B in P(n) implies that C ~ 4 or C ~ B.

A poset A is graded if there exists a function f : A — N such that Vz > yin A, z > y in A if
and only if f(z) = f(y) + 1. Aigner (|[?]) makes the following observation which we here prove:

Lemma 2.1 P(n) is graded by f(A) = |E(A)].

Proof: Consider A,B € P(n) where A > B in P(n).

Suppose that .4 > B in P(n). Consider any injection of B into .A. There must be z,y € A >
z>yin A, and = ¥ y in the embedding of B in A else A ~ B. Thus, A > A\ (z,y) > B. Hence,
|E(A)| = |E(A\ (z,v))|+ 1 > |E(B)|. If there was another cover u > v in A\ (z,y) not in the
embedding of B in A then there would exist a poset C = (A \ (z,¥)) \ (u,v) € P(n) such that
A > C > B in P(n), which implies that A ¥ B, a contradiction. Hence, there can only be one
relation in .4 not in any injection of B in A and thus, |[E(A)| = |E(B)| + 1.

Conversely, suppose that | E(A)| = |E(B)|+1. Suppose that there exists a C such that A > C > B
in P(n). Then, |[E(A)| > |E(C)| > |E(B)|. Which implies that |E(.A)| > |E(B)|+1, a contradiction.
Thus, A > B in P(n). m

Thus, P(n) is graded into levels by the number of relations function and length(P(n)) = (3).
We refer to the set of posets with k relations in P(n) as the kth level.

These observations are critical to the following algorithms used in our computer enumeration
of posets.

3 A Breadth-First Approach

The obvious method of counting posets, is to begin with {/,, and generate all possible sets of
relations. However, there are 2(3) possible sets of relations, assuming that we only allow those
compatible with some underlying total order. Most of these will violate the transitivity constraint,
and so are not partial orders. In addition, many of the results will be isomorphic, and we wish to
count only up to isomorphism. This method can be thought of as a bottom up approach.

Our approach is to construct P(n), using a top down approach. We start with R,,. Note that
|E(Rn)| = (3). It is easy to show that deleting a cover from a poset produces a new poset on
the original set of elements. We cannot delete a non-covering relation, since this would violate
transitivity. Thus, we may construct all of the posets in 7(n) with (}) — 1 relations by deleting in
turn each of the n — 1 covers of R,.

Similarly, we may construct all of the posets with (7)) — 2 relations by deleting in turn each of
the covers from each of the posets with (7)) — 1 relations. Note that some of these posets will be
isomorphic; that is, some posets will be generated more than once.

In general, to generate the set of all posets with k relations, (3) > k& > 0, given all the posets
with k + 1 relations, we delete in turn each cover from each of the given posets. ;From lemma 2.1
it follows that each poset with k relations and n elements will eventually be generated, albeit each
may be generated several times.

To count the number of non-isomorphic posets, we must eliminate isomorphic copies. This
need only be done on a level by level basis, since isomorphism can only hold between posets with
equal numbers of relations. However, as n increases, the number of potential isomorphism tests
becomes quite large. The high cost of isomorphism testing can be mitigated somewhat by using a
signature scheme based on hashing. As each poset is generated (by cover deletion from a poset on
the previous level) it is hashed using a hash key based on such factors as the length of the poset
and degree sequences. Posets in which these keys differ cannot be isomorphic, and will, in general,
hash to distinct locations.

The top down approach has several advantages. Only those structures which are posets are
constructed. Furthermore, if on constructing the posets of level k, we retain only one representative
of all isomorphic posets, then for levels less than k, we never produce the (isomorphic) descendents
of those not retained. This greatly reduces the number of redundant posets produced.

This level by level construction of P(n) is a breadth-first construction. We must at any time
be prepared to retain at least one level of P(n) in memory for the program to be efficient, and to
allow easy hashing. Since the number of posets in the widest level grows rapidly with n, this placed
an upper limit on the size of posets we are able to count using this approach.

4 A Depth-First Approach

To construct P(n) in a depth-first manner, new insights are needed. The depth-first algorithm
constructs an ordered rooted tree spanning P(n), with root node R,, in which the children of a
node are the (non-isomorphic) posets created from it by deleting its covers ordered from left to
right by order of creation.

More formally, the search tree is an ordered rooted tree, and if A is to the left of B, (A <; B)
then all descendents of A are to the left of all descendents of 3. Thus, the left to right order provides
a partial order on the set of posets, where if A is a descendent of B, A and B are incomparable.

Let ‘R be a poset at some node of the search tree. We use R to designate either the node or
the poset, with the context supplying the proper interpretation. Let X be the set of covers in R.
Then, the algorithm specifies some ordering of the covers in X, say

Ty >Y1, T2>Y2, .., T|x| > YX]|

The set of posets {R.\ (z;,v:)|(z:,v:) € X} are the potential children of R, with the subscript
indicating the left to right ordering. A potential child is a child if there does not exist a node to

the left of the potential child isomorphic to it. Thus, once the order of deletion is specified, the
tree is vnique.

The key idea in developing an efficient depth-first algorithm is to note that it is not necessary
to know all nodes to the left of a potential node to determine if there is one isomorphic to it.

Lemma 4.1 3C <; R\ (24,%) 3 C =~ R\ (i, %) off 34,4 <; B, where A is a sibling of B and B
is an ancestor of R\ (z;,y) and A > R\ (z;,%:).

Proof: (Note that for any node R, R is an ancestor of itself.)

If A€ <t R\ (=i, %) 3 C ~5 R\ (i, i), then |E(C)| = |E(R\ (s, %:))|. Thus, C and R\ (z;, %)
must have some common ancestor, say 7), distinct from both of them. Let A be the child of D
which is an ancestor of C, and let B be the child of D which is an ancestor of R \ (z;,%;). Now,
A <; B. Since C is derived by a sequence of deletions, then C < A. But then R\ (z;,y;) < A under
some embedding f.

On the other hand if R\ (z;,v;) < A, then if not equality, there exist relations in A, (z,y)
such that f(z), f(y) is not a relation in R \ (z;,y;). If equality holds then, trivially, the lemma is
true. At least one such relation must be a cover, since f(R \ (z;,¥:)) is a partial order. Deleting
this cover produces a poset A’, where the same argument applies. Eventually, we reach a poset
isomorphic to R\ (z;, ;). m

This lemma allows us to do a depth-first search wherein we only keep track of the children of
the ancestors of the current node. Each time we create a new poset, we check whether the current
poset is contained in any of those children. The maximum number of children that can be required
along any path is at most (}), since that is the maximum number of relations. In fact, a more
carcful analysis yields an upper bound of about one-half of this. As a concrete example, this means
that for n = 10 we only need at most 23 posets in memory at any time, (in addition to at most 45
ancestors) whereas, for the breadth-first algorithm we need two levels, each with potentially over
200,000 posets.

The disadvantage of this depth-first search is that testing poset containment is generally more
difficult than testing isomorphism. Furthermore, we have no scheme analogous to hashing to
eliminate the majority of containment tests. Fortunately, the number of children is usually much less
than the upper bounds given above. Nevertheless, without further insight, many redundant tests
must be made. In the next subsection we demonstrate how to eliminate most of these redundant
tests.

4.1 A Deeper Analysis

Consider the poset .4 obtained by deleting some cover, (z,y), from some node R. Then every
posel that is contained in A is a potential descendent of 4. Now consider any other potential
descendent B of R, A <; B, for which .4 is not an ancestor. If (z,y) is not a relation in B, then B
is isomorphic to a potential descendent of .4, by lemma 4.1. Thus, we need never delete (z,y) in
any other descendent of R to the right of .A. We say that the cover (z,y) has been blocked after
the generation of the subtree 4.

Similarly, if there is an automorphism (consistent with R,) which carries (z,y) to any other
cover in R, then that cover need not be deleted in any descendent of R to the right of A, since
such a deletion would lead to a poset isomorphic to a potential descendent of .A. Thus, all such

automorphic covers can also be blocked. We can extend this to say that in any node, if a cover
is carried to a blocked cover by some automorphism, then it too should be blocked. Note that a
cover remains blocked for all subsequent descendents of the node in which the blocking occurred,
even if in the descendent the automorphism which caused the blocking no longer holds because of
deletions in the interim.

We represent the partial orders by lower triangular matrices M, in which:

e M;; = 0 means that z; || z;,

e M;; = A means that ; || z; and [z;,2,] is an automorphism (see below),
e M;; = C means that z; > z;,

e M,; = X means that z; > z; but the cover is blocked, and

o M;; = 1 means that z; > z; but the relation is not a cover.

See Figure 2. (We will explain the meaning of ‘P’ shortly. This example does not record automor-
phisms). Note that only the lower triangular matrix NOT including the diagonal is presented.

Initially we represent R,, by such a matrix with all subdiagonal elements ‘C’, and the remainder
all ‘1I’. When a cover is deleted, some of the non-covering relations may become covers in the new
subposet. Note that, since the matrix is lower triangular, every poset has the linear extension R,,.

To be certain that a cover is not blocked could require that it be tested against every other
blocked cover to see if there is an automorphism. In our program we do not do full automorphism
checking, but are content to consider only those automorphisms which switch pairs of elements; for
example, f(a) = b and f(b) = a. We denote such pairs by [a, b]. Thus, a cover (z,y) is automorphic
to a cover (z,w) if there exist automorphic pairs [z, z] and [y, w], or one of the pairs if the others
are equal.

We use an automorphism [a,b] only if rows a and b are identical and columns a and b are
identical (where, for this purpose, ‘X’=‘C’ and ‘A’=‘0’) and a || b. Only the rows and columans in
question need be checked, and so this is an O(n) operation.

To record such automorphisms, we store an ‘A’ in the matrix at M,;. When a new poset
is created by deleting some cover (z,y), we can update the automorphism set by checking rows
and columns z and y for occurrences of ‘A’, and if any are found they are changed to ‘0’ since
that automorphism can no longer apply. If ‘0’ is found, then it is checked as a possible new
automorphism. [z,y] may also be an automorphism. Thus, updating the automorphism set takes
O(n?) time.

For each new automorphism [z,y] generated we check all blocked covers (z,y), (z, z), (2, z),
(z,y) and (y, 2) (for each z) to determine if they are automorphic to any other (possibly new) covers.
All of this can be done in O(n?) time as well. The complete algorithm is outlined in Figure 1.

How effective is this in reducing the number of containment checks? This depends upon the
order in which the covers are deleted from the posets. With no blocking, 1,982,737 posets were
generated for n = 9. ;From Table 1 we see that there are 183,231 distinct posets in this case, so
we generated more than ten times as many as required, and each of these was eliminated by some
containment test. By deleting the covers diagonally from top to bottom, left to right, and using
automorphisms to block covers, this was reduced to 204,468. This means that we have generated
at most 21,237 extras, or about 11.5%. For n = 10, this is reduced to about 8.5%, and for n = 11
it is 5.9%.

The order in which we do deletions does affect the efficiency of the automorphisms in reducing
the posets generated. The diagonal order seems to be better than row by row or column by column
deletion orders. The intuition is that deleting an element from the diagonal yields a high probability
of an automorphism, and the sooner this occurs, the more effective will be the pruning of the tree
we build.

The question occurs, if we generated all possible automorphisms, could we eliminate the contain-
ment test altogether? That is, would considering all automorphisms block all isomorphic posets?
The answer to this is unfortunately no, as the example on 6 elements in Figure 2 demonstrates for
the diagonal deletion order. (A different deletion order might fail elsewhere).

Recall that only the lower triangular matrix not including the diagonal is presented. Thus row
a and column f are not shown. The example starts after 6 deletions have been completed, with
the seventh poset generated by the algorithm. Each poset is a child of the poset above it, with the
cover indicated that was deleted to produce it from its parent. The numbers indicate the ordinals of
the posets in the order of generation by the program. The letter ‘P’ is used to indicate a cover that
was delcted to produce the missing descendents that are not shown. Thus, ‘P’ is in fact a blocked
cover. ‘X’ indicates a cover that is blocked because it is automorphic (or was in some ancestor) to
a‘PL

As can be easily seen, posets 57 and 69 are isomorphic. The isomorphism f : 69 — 57 is
fla) =c, f(b) =0, f(c) = a, f(d) = f, f(e) = e, f(f) = d. However, there is no automorphism in
any ancestor of 69 which could block the cover (f,a).

5 Results

For n = 10, we obtain 2,567,284 posets, while Mohring [?] found only 2,567,249 posets. To verify
the extra posets, we recomputed the results for n = 10, this time storing compact representations
of each poset generated in a database. We then ran a testing program which selected all the posets
with a given number of relations and checked to see if any two were isomorphic (again using hashing
to eliminate the obviously distinct posets). In addition, a closure test was performed on each poset
to ensure that the objects represented were (transitive) partial orders. Since they are stored as a
lower triangular matrix, they must be directed and acyclic. The generation and testing for n = 10
each required about 2 days on a Sun 3/50. No isomorphic posets were encountered.

Counting for n = 11 required 112 hours on a MIPS Computer Systems M/1000. The program
keeps track of the number of posets for r relations and n elements. The complete table for n < 11
is shown in Table 1.

In Table 2 we list the number of posets with § relations deleted from R,. This is essentially
the bottom of Table 1, but extended to larger n (and inverted). Interesting recurrences for small §
seem to hold, when n > §. We let T, be the number of posets on n elements with (3) — ¢ relations.
Then,

TO,n = TO,n—l

Ty =T+ Ton-i

Tom =Tona+Tin-1+0Tgn-1

T3n =T+ Tona+ 0T 500 4+ 20551

Tam =Tan-1+T3n-1+0T3n 1+ 271 n1 — 11501

Tsn =Tsn-1+Tan1+0T3n 1+ 2T2n 10— 1T1n1 + 5T n1

We note that To, = 1, Thp =n — 1 and Ty, = (";1). In general, the recurrence is

5
Toge = G iTiniy, for w54

i=0
The observed coeflicient sequence is
¢ =1,10,2,-1,5,-5,19,-31,92,-193,525, - 1252, 3321, — 8427, . ..

We do not know how to predict this sequence, or to prove in general that the recurrence holds,
although we show below that it is correct for the first few terms.
Another similar result is the following sequence of functions:

TU n - TD,n--l

Tym =T+ Ton-z ;

TZ n - J:;'-'12,1'1—1 + Tl,'n.—Z + ‘-TO,n—B

T3, =TGna1+Tsn2+Thin 3+ 3000«

Tyn =Tan-1+T3n_2+Topn_3+3T1n a+8Ton_s

Tsn =Tsn-1+Tan2+Tan3+3T2n_a+8T1n 5+ 21T9n 6

Again, the pattern of coefficients remains the same (except for the new term added) for each
successive level, and appears valid for n > §. The relationship between the two formulations should
be clear. In this case, the coefficients appear to be all positive and the sequence that can be derived
from the table in Figure 2 is 1, 1, 1, 3, 8, 21, 63, 195, 612, 1971, 6458, 21426, 71905, 243640 . ..
Since only when we delete n — 1 or more edges can we obtain a poset consisting of more than one
component, we suspect that the fact that the rules do not apply for n < § may be related to the
presence of components.

If we set up a matrix B by working backwards from the rightmost column of Table 2, we can
compute new values for the table when n < §. Taking the difference T — B of these two matrices,
leaves us with the lower triangle matrix shown in figure 3. Note that the values along the upper
diagonal are the Fibonacci sequence. If we let tEk) be the element in the :th column in the kth
non-zero diagonal from the top, then the following patterns can be discerned.

o tgl) = t(}_}l + tgi)z, i > 3 (the Fibonacci sequence)

1

o 13 =B 1) 4 553

D 0,024

We now verify the first three terms of the coefficient sequence C. Trivially, Tj; = 1, since there
is only one total order. Similarly, it is easy to verify that Th; = j — 1, since there are j — 1 covers
in the total order, and deleting each one leads to a unique poset.

We also verify that Tp; = (’;'). There are n — 1 covers along the subdiagonal, and we get to
delete 2 of them. However, after deleting one cover from the subdiagonal, say (z,z — 1), up to 2
new covers are created, in (z,z —2) and (z+ 1,z — 1). (When z is the second or last row, only one
new cover is formed). Thus, one might assume the above count is incomplete. But it is easily seen
that [z,z — 1] is an automorphism of the matrix after the deletion, and thus deleting (z,z — 2) is

=1

equivalent to deleting the subdiagonal cover (z — 1,z — 2) and deleting (z + 1,z — 1) is equivalent
to deleting the subdiagonal cover (z + 1,z) (when such exist). Since this is true for any z, we need
only choose 2 covers from the n — 1 on the diagonal. Each such pair yields a distinct poset.

Our program is easily modified to compute the number of lower triangular matrices which
represent posets. The number of these is the number of natural partial orders, one instance of a
class of lattices that have received some attention in the literature [7,7,?]. This problem does not
involve any isomorphism or containment testing. It is only necessary to be certain that each subset
of deleted edges is counted only once, which is easily done by blocking a cover but not any of its
isomorphisms.

We give the results for n < 9 in Table 4. These results agree with those of Avann [?] for n < 5.
In Table 5 we show the number of such matrices which represent posets with § covers deleted from
the total order. As in the number of posets, for n > § we can generate the table AMj, using the
following recurrences.

Myn = Myn_1

Myn =My 1+ Myna

Myn =Mzn 1+ Mypn1+2Mopn_

“Mr3,n = ﬂ5{3,11.—] + 1"12,11-1 + 2‘{"-{1,11.—1 o+ 33’.{0,11—1

Myn =Mypn 1+M3p1+2Mypn 1 +3Mypn 1+ 6Mon_1

Msp, =Mspn 1+ Myn 1+2M3n_1+3Mypn_1+6M1pn1+8Mopn_1

We note that Mo, = 1, My, = n — 1, and My, = ("}') — 3. Avann [?] found an equivalent
recurrence for the first few rows, but could not generalize his observed pattern. The general

recurrence is
&

Mgn =) Ks_iTin-1
=0

The sequence we find is
K=1,1,2,3,6,8,17,24,29,78,103,184,313, ...

In this case the sequence appears to have all positive terms. We can also obtain the sequence for
the diagonal recurrence as before which is 1,1,3,10,39,159,685,3042,13860,64393,303949,1453428, . ..
Again, we can do a backwards computation using this matrix and the values in the last column
and first row of Table 5 and take the difference to obtain Table 6.

In this case, the first non-zero diagonal appears to be powers of two. If we let mE
in the ith column of the kth non-zero diagonal, then we find the following patterns.

k) be the value

o m,(l)mZ*,iz 1

1

T

o m® = 2-3(7i +12),i> 2

o m{® = 2-T(7242 4 i 124), i > 4

1

Again we offer no proof or explanation for these sequences, although the first few rows of Mg, are
easy to verify.

;From a diflerent program we obtained the number of posets on r relations, where n > 2r. We
computed the number of connected posets on r relations as well as the total number of posets and
derived the number of posets with 2 or more components.

4 b 6 7 8 9
9 20 b4 134 383 1092
10 27 79 221 640 1855
19 47 133 355 1023 2947

Number of Relations
Number Connected
Number with Components
‘otal

[e B e
[i
W= N
=] W & oW

6 Conclusion

In this paper we present a new algorithm for counting partial orders. We have verified results of
Mohring [?] for n < 9 but claim an additional 35 posets for n = 10 and give results for n = 11. We
also extend the work of Avann [?] from n = 5 to n = 9 in counting the number of natural partial
orders. We have also discovered some interesting if unexplained recurrences that appear to hold for
the number of partial orders and for the number of natural partial orders. The very strong patterns
exhibited could be indicative of somne means of enumerating partial orders, or at least those with
() — 6 relations, for § < n.

We would be most interested in hearing of a predictive function for the coefficients of these
recurrences.

abbrv

7 Appendix

An alternative to counting is to find an asymptotic formula for the number of partial orders. Several
researchers have contributed to this effort. Combining results from [7,7] and [7] (ex. 3, pg. 154)

we see that

mn m

i k)
|P(n)| ~ = (5) o’ /4+3n/2 where A & 0.80587793(n even)

The following table compares these results with our counts. The asymptotic formula does not
appear to be a good predictor for small n.

10

{ Branches is a global stack of posets, which are children of ancestors of the current poset.}
Main;
Initialize Poset to Rn;
For each cover Cin Poset do
begin
Search(Poset, C, SuccessFlag, Reducedloset);
Block C'in Poset;
Push ReducedPoset onto Branches; { Always successful }
end
Print results;
end
Procedure Search(Poset, Cover, Var SuccessFlag, Var ReducedPoset);
{ If the poset formed by deleting Cover from Poset is new, }
{ then it is copied to ReducedPoset and SuccessFlagis set true }
Delete Cover from Poset;
Update the Set of Covers in Poset,
If Poset is not a subposet of any poset in Branches then
begin
SuccessFlag := true;
ReducedPoset := Poset;
Increment the number of Posets;
Update the set of automorphisms in Poset;
Update the set of blocked covers in Poset;
For each unblocked cover C'in Poset do
begin
Search(Poset, C, Flag, Red_Pos),
Block C'in Poset;
Block all covers automorphic to C'in Poset,;
If (Flag) then
Push Ked_.Pos onto Branches;
end;
end;
Pop all the posets added to Branches during this call;
end

Figure 1: The Poset Counting Algorithm

11

= O

=R ® N]

oo DU

RN S E e =R 3

= v o w o

&= o = o lg=] o o

cecl w c o M v o o

oD — = o) KD -] o WMo

ook~ dlo o K WO dlo o O

o SR = IV R L v T U L U T O Y-
o = =
.3 & = 8=

o [¥] o] 3] <

o i B2 o ERES g o o

oD U o P U o o

oo DD o o o KRS o o o KRR

oD U~ slo o OO dlo oo D

L v T U 2T Lo 2 v T U
= =)
3 Y 5L

57

0

X 0
X

X

C

(fa) b |0

d| X

o o

0

X X 0

0
0

X X 0 0

(f,a)

d|X 0

e
f

Figure 2: Counter Example to the Automorphism Conjecture

12

r\n 3 4 b 6 7 8 9 10 11 10 11
0 1 1 1 1 il 1 1 1 1 1 1 |37 3240 599653
1 1 1 1 1 1 1 1 1 1 1]38 1836 430451
2 2 3 3 3 3 3 3 3 3139 986 300981
3 1 4 6 7 7 7 7 7 7|40 506 204974
4 3 10 16 18 19 19 19 19 | 41 237 135976
B 3 10 25 38 44 46 47 47 | 42 99 87786
6 1 12 36 T4 107 124 130 132 | 43 36 55127
7 9 43 113 208 287 329 346 | 44 9 33614
8 6 46 167 381 636 841 950 | 45 1 19897
9 4 44 209 619 1257 1946 2468 | 46 11385
10 1 35 243 915 2311 4251 6171 | 47 6306
11 28 249 1219 3830 8526 14411 | 48 3351
12 17 239 1506 5891 15891 31724 | 49 1694
13 10 204 1705 8294 27259 64772 | 50 811
14 5 168 1792 10921 43572 123620 | 51 353
15 1 123 1767 13363 64851 219868 | 52 137
16 83 1621 15419 90614 366672 | 53 45
17 54 1402 16687 119179 574347 | 54 10
18 29 1136 17119 148255 849968 | 55 1
19 15 874 16578 174838 1190889
20 6 629 15309 196135 1587016
21 1 434 13421 209729 2015412
22 274 11253 214283 2446957
23 166 8999 209692 2844542
24 94 6897 196824 3174558
25 46 5054 177576 3405232
26 21 35561 154148 3518608
27 7 2386 128998 3505930
28 1 1528 104101 3374784
29 939 81200 3141073
30 541 61145 2831400
31 300 44566 2473385
32 153 31401 2096755
33 69 21414 1725908
34 28 14096 1380922
35 8 8974 1074413
36 1 5492 813564

1 2 5 16 63 318 2045 16999 183231 2567284 46749427

Table 1: The Number of Posets on n Elements and r Relations

13

& \ n 1 2 3 4 5 (3] T 8 9 10 11 12 13 14 15
] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1] 1 2 3 4 5 [i] T 8 9 10 11 12 13 14
2 1] 0 1 3 6 10 15 21 28 36 45 55 66 T8 91
3 n 0 1 4 9 17 29 46 69 99 137 184 241 309 389
4 0 0 0 3 12 28 54 94 153 237 353 509 T14 a78 1312
5 0o 0 0 1 10 35 83 166 300 506 811 1249 1862 2701 3827
6 0o o0 0 1 10 44 123 274 541 986 1694 2779 4391 6724 10025
T 0o 0 o0 0 6 46 168 434 939 1836 3351 5808 9660 15527 24242
8 0 o 0o 0 3 43 204 629 1528 3240 6306 11545 20165 33907 55229
9 D 0 0 0 1 36 239 874 2386 5492 11385 21985 40260 70684 119854
10 oo 0o 0 1 25 249 1136 3651 8974 19897 40515 TT647T 142020 250105
11 0 n o o0 0 16 243 1402 5054 14098 33614 T2382 145258 276596 505213
12 o 0o o 0 0 T 209 1621 6897 21414 55127 125818 264558 524242 992262
13 0 o o 0 0 3 167 1767 8999 31401 B7T786 213115 470396 970342 1902199
14 o o0 o 0 0 1 113 1792 11253 44566 135976 352196 817624 1757459 3568480
Table 2: The Number of Posets on n Elements with § Relations Deleted from R,
& \ n 1 2 3 4 5 6 T 8 9 10 13 12 13 14 {1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 0 0 1] 0 0 0
3 3 1 0 1] 0 0 0 0 0 0 0 0 0 0 0
4 =3 1 1 0 0 0 0 0 0 0 0 0 0 0 1]
5 16 8 5 2 0 0 0 0 0 0 0 0 0 0 0
6 -29 52 8 8 3 0 0 0 0 0 0 0 0 0 0
T 99 42 27 24 16 5 0 0 0 0 0 0 0 0 0
8 =237 -h7 17 46 47 29 8 0 0 0 0 0 0 0 0
9 686 253 123 112 121 99 53 13 0 0 0 0 0 0 0
10 -1828 -5T0 -T6 134 242 263 197 g5 21 0 0 0 0 0 0
11 5114 1813 693 458 535 631 579 388 169 34 0 0 0 0 0
12 -14135 -4847 -1311 T3 794 1281 1449 1222 749 298 55 0 0 0 0
13 39512 14132 4941 2245 2042 2718 3347 3310 2535 1427 522 89 0 0 0
14 -110775 -397569 _-12847 -287T0 1517 4502 6892 TO88 7285 5163 2685 909 144 0 0

Table 3: The Differences of the Count of Posets and the Backwards Computation

14

r\n |1 2 3 4 5 6 7 8 9
0 1. 1. i 1 1 1 1 1 1
1 1 3 6 10 15 21 28 36
2 2 11 35 85 175 322 546
3 1 11 65 260 805 2086 4746
4 T 81 526 2436 8911 27363
b 3 70 766 5348 27636 114618
6 1 51 869 9041 66007 370031
7 27 809 12407 126928 959688
8 12 633 14291 203384 2064638
9 4 423 14234 279175 3779795
10 1 243 12452 335558 6014986
11 120 9723 359588 8469363
12 50 6753 348051 10713624
13 18 4234 306795 12327354
14 5 2391 247714 13027980
15 1 1221 184106 12736837
16 555 126464 11581866
LY 227 80469 9835487
18 81 47498 7827305
19 25 26019 5853169
20 6 13222 4123506
21 1 6215 2741008
22 2688 1721422
23 1063 1021917
24 382 573767
25 121 304502
26 33 152652
27 7 72113
28 1 32030
29 13308
30 5149
31 1836
32 596
33 171
34 42
35 8
36 1

1 2 7 40 357 4824 96428 2800472 116473461

Table 4: The Number of Lower Triangular Matrices Representing Posets

15

S\n |1 2 3 4 b 6 T 8 9 10 11 12 13
0 A R | 1 1 1 1 1 1 1 1 1 1
1 0 1 2 3 4 5 6 T 8 9 10 11 12
2 o 0 3 To12 18 25 33 42 52 63 75 88
3 o o 1 11 27 50 81 121 171 232 305 391 491
4 o0 0 o 11 51 120 227 382 596 881 1250 1717 2297
5 o 0 0 6 70 243 b5h 1063 1836 2956 4519 6636 0434
6 0 0 0 1 81 423 1221 2688 5149 9023 14838 23247 35045
7 0 0 0 0 65 633 2391 6215 13308 25439 45002 75156 119983
8 o 0 o0 35 809 4234 13222 32030 67033 127667 227192 383758
9 o 0 0 0 10 869 6753 26019 72113 166295 341680 648144 1157895
10 o 0 0 0 1 766 9723 47498 152652 390420 868262 1757372 3320397
11 o o0 0 0 0 526 12452 80469 304502 870691 2104205 4552390 9100974
12 o 0 o 0 0 260 14234 126464 573767 1849790 4880559 11312182 23950134

Table 5: The Number of Matrices Representing Posets on n Elements with § Relations Deleted
from R,

d\n 1 2 3 4 5 6 T 8 9 10 11 12 13
0 i 0] 0 0 0 0 0 0 0 0 0 0
1 i} 0 0 0 0 0 0 0 0 0 [} 0 0
2 2 0 0 N 0 0 0 0 0 0 0 0 0
3 5 4 0 0 0 0 0 0 0 0 0 0 0
4 10 13 8 0 0 0 0 0 0 0 0 0 0
5 8 26 33 16 0 0 0 0 0 0 0 0 0
6 T 45 84 80 32 0 0 0 0 0 0 0 0
7 -26 49 168 254 188 64 0 0 0 0 0 0 0
8 -97 10 274 611 T04 432 128 0 0 0 0 0 0
9 -145 -90 364 1243 2031 1849 976 256 0 0 0 0 0
10 -408 -454 237 2157 4878 6119 4678 2176 512 0 0 0 0
11 -47¢ -1025 -352 3205 10275 17074 17320 11512 4800 1024 0 0 0

Table 6: The Differences of the Number of Matrices and the Backwards Matrix Computation

16

