Parallel Depth -— First Search in Directed Graphs
Imperative Multi-way Streams

Alok Aggarwal Richard J. Anderson
IBM Research Division Dept. of Computer Science
T. J. Watson Center, Box 218 University of Washington
Yorktown Heights, NY 10598 Seattle, WA 98195
and
Ming Y. Kao

Department of Computer Science
Indiana University
Bloomington, IN 47405

TECHNICAL REPORT NO. 264

Parallel Depth—First Search
In General Directed Graphs
By
Alok Aggarwal, Richard J. Anderson & Ming Y. Kao
September 1988

W

Parallel Depth-First Search in General Directed Graphs

Alok Aggarwal Richard J. Anderson*
IBM Research Division Department of Computer Science
T.J. Watson Center, Box 218 University of Washington
Yorktown Heights, NY 10598 Seattle, WA 98195

Ming-Yang Kao
Department of Computer Science
Indiana University
Bloomington, IN 47405

September 3, 1988

Abstract

A directed cycle separator of an n-vertex directed graph is a simple directed cycle such that when
the vertices of the cycle are deleted, the resulting graph has no strongly connected component
with more than n/2 vertices. This paper shows that the problem of finding a directed cycle
separator is in randomized NC. The paper also proves that computing cycle separators and
conducting depth-first search in directed graphs are deterministic NC-equivalent. These two

results together yield the first RNC algorithm for depth-first search in directed graphs.

'Supported by an NSF Presidential Young Investigator Award

1 Introduction

Depth-first search is one of the most useful tools in graph theory [Tar72] [AHU74]. The depth-first
search problem is: given a graph and a distinguished vertex, construct a tree that corresponds to
performing depth-first search of the graph starting from the given vertex. In the setting of parallel
computation, this problem has been studied by a number of authors [Rei85] [GB84] [Ram87]
[Zha86] [Smi86] [Sha88] [HY88] [JK88] [And87] [AA8S] [Kao88] [EAT77] [RCTS] [Tiw86] [SV85].
Reif [Rei85] shows that lexicographic depth-first search is P-complete even for general undirected
graphs. Ghosh and Bhattacharjee [GB84] provide an NC algorithm for lexicographic depth-first
search in acyclic directed graphs; their algorithm has an error and is corrected by Zhang [Zha86]
and independently by Ramachandran [Ram87]. Smith [Smi86] gives the first NC algorithm for
depth-first search in planar undirected graphs; Shannon [Sha88], He and Yesha [HY88], Ja'Ja
and Kosaraju [JK88] independently reduce the processor complexity to linear. Anderson [And87]
provides an RNC algorithm to find a maximal path of a general undirected graph; a maximal
path is the first branch of a depth-first search tree. Aggarwal and Anderson [AA88] give an RNC
depth-first search algorithm for general undirected graphs. Kao [Kao088] provides a deterministic
NC algorithm for depth-first search in planar directed graphs. In this paper, we give the first RNC
algorithm for depth-first search in general directed graphs.

Our general directed depth-first search algorithm uses a divide-and-conquer strategy similar to
that used by Aggarwal and Anderson for general undirected depth-first search [AA88]. In addition
to this strategy, a crucial idea used in the paper is that of directed cycle separators; this idea is
originally introduced by Kao for planar directed depth-first search [Kao88]. At the very highest
level, our algorithm finds and removes a portion of a depth-first search tree of a given directed

graph; the algorithm then recurses on strongly connected components as well as certain weakly

connected subgraphs of the resulting graph; to limit the depth of recursion, directed cycle separators
are used to divide the given graph into small pieces. While the undirected and directed depth-
first scarch algorithms have similar structures, directed graphs require more work. For instance,
a major difference between the two algorithms arises in the construction of separators. Both of
the algorithms construct separators by repeatedly joining paths until only a single path remains.
However, a key idea in the undirected case is to carry out bisection by traversing and joining the
longer half of a path; in the directed case, it is not possible to choose the direction of traversal.
Therefore, joining directed paths requires a more sophisticated idea. Another major difference is
in the application of the separator that allows the problem decomposition. In the undirected case,
once a path separator is given, the decomposition of the graph is almost immediate. In the directed
case, however, while the removal of a directed cycle separator makes all resulting strongly connected
components reasonably small, the resulting graph may still have large weakly connected subgraphs.
In order to successfully divide the graph for the recursive calls, certain weakly connected subgraphs
also must be reduced, which requires a fair amount of work.

The parallel computation model used in this paper is the EREW PRAM model, i.e., no two
processors are allowed to simultaneously read from or write into the same memory cell. Many of
our complexity results are expressed in terms of M M (n), which denotes the sequential time, cur-
rently O(n?®7®), for multiplying two n x n integer matrices in Strassen’s model [AHUT74] [CW8T].
This paper is organized as follows. Section 2 introduces the concept of directed cycle separators
and discusses a number of preliminary results. Section 3 gives the first major result of this paper,
establishing a deterministic NC-equivalence between finding directed cycle separators and perform-
ing directed depth-first search. Section 4 describes an NC reduction from the problem of finding

a directed cycle separator to a particular kind of a matching problem. Section 5 combines these

results together, estimates time complexity and processor bounds, and discusses open problems

and extensions.

2 Directed Cycle Separators

A separator of a graph is a subgraph whose removal disconnects the graph into small pieces. Most
of the works on parallel depth-first search rely on finding some form of graph separator. The general
undirected depth-first search algorithm [AA88] uses path separators. The planar undirected depth-
first search algorithms [Smi86] [Sha88] [HY88] [JK88] employ undirected cycle separators. The
planar directed depth-first search algorithm [Kao88] uses directed cycle separators and other kinds
of separators in vertex-weighted graphs. This paper follows the directed separator definition given
by Kao [Kao88]: a separator of an n-vertex directed graph G is a set of vertices S such that G — §
has no strongly connected component with more than n/2 vertices. A directed path separator is a
vertex-simple directed path whose vertices form a separator; a directed cycle separator is a vertex-
simple directed cycle whose vertices form a separator. A single vertex is considered a cycle of
length zero; thus, if the removal of a vertex separates a graph, the vertex is a cycle separator. Kao
[Kao88] has shown that every directed graph has a directed path separator and a directed cycle
separator. Furthermore, such a path separator is computable in linear sequential time, and such a
cycle separator is computable within a logn factor of the optimal linear sequential time. Here we

modify his proof and obtain the optimal sequential time bound:

Observation 1 FEvery directed graph has a directed cycle separator. Such a separator can be found

in O(n + e) sequential time for any directed graph of n vertices and e arcs.

Proof. Because every directed graph has a directed path separator and such a path separator

can be found in linear time [Kao088], it suffices to show that any directed path separator can be

converted into a directed cycle separator in linear time. In the following discussion we describe
such a conversion in two steps.

Let G be a directed graph of n vertices. For a subgraph S and a vertex vin S, let R;n(v,S) (or
Rout(v, 5)) denote the set of vertices reachable to (or respectively, from) v through directed paths
in 5. A directed path separator P = zy, ..., 2, is called serni-minimal if Rout(2p, G — {21, ..., Zp_1})
has more than n/2 vertices and R;,(z1,G — {=2,...,%,}) also has more than n/2 vertices. Given
such a P, a directed cycle separator can be built in linear time as follows. There are two cases:
p=1and p> 1 If p=1, then z; alone forms a cycle separator. If p > 1, then because both
Rin(z1,G — {23, ..., zp}) and Row(2p, G — {x1, ..., zp_1}) have more than n/2 vertices, the two sets
share at least one common vertex. Consequently, there is vertex-simple directed path P’ from 8
to zy such that P’ is completely in the two sets. Because the two sets and P share only z; and
Tp, P' and P form a vertex-simple directed cycle. Because P is already a separator, the cycle is a
directed cycle separator. This step takes linear time because P’ can be found in linear time.

To finish the proof, we show how to cut any directed path separator @ = yi,...,y, into a
semi-minimal one in linear time as follows. The idea is that if Roue(yq, G — {v1,..-,¥q_1}) has
no more than n/2 vertices, then @' = yi,...,yq_1 is still a path separator. Otherwise, let C
be the strongly connected component in G — Q' such that C' contains more than n/2 vertices.
Because @ is a separator, C must contain y,. This implies that C is a subset of R,ui(y,y, G —
{¥1, -, Yq-1}), which is a contradiction. We can extend the above idea: if ¢ is the largest index
such that Rou(ve, G —{v1, .-, ¥t—1}) has more than n/2 vertices, then Q" = v, ..., y; is still a path
separator. The index { can be identified easily in linear time by using the following recurrence
formula. Let Hoy; denote Rowe(vi, G — {y1,...,%-1}) fori=1,...,¢— 1. Then Rout; = Routis1 U

Rouwt(¥i, G — Routig1 — {v1, ..., ¥i—1}). After t is found, we perform the same computation on Q"

at the other end by computing R;,. After both ends of Q are processed, we have a semi-minimal
directed path separator. Since each end of @ can be cut in linear time, the whole process takes

linear time. W

3 Using Cycle Separators to Conduct Depth-First Search

Kao [Kao88] has also shown that given a directed depth-first search forest, finding a directed
path separator is in deterministic NC, and given a directed path separator, finding a directed
cycle separator is also in deterministic NC. In this section, we will show that given an oracle for
computing a directed cycle separator, conducting directed depth-first search is in deterministic NC.

These results immediately imply the following theorem.

Theorem 2 For general directed graphs, computing a directed path separator, computing a directed

cycle separator, and conducting directed depth-first search are deterministically NC-equivalent.

We now discuss how to use directed cycle separators to conduct directed depth-first search
in parallel. Suppose that we want to perform depth-first search in an n-vertex directed graph G
starting from some vertex r. Any such search will visit exactly the vertices reachable from r using
directed paths; we call a graph rooted at a vertex if the vertex can reach all other vertices through
directed paths. We assume, for the moment, that G is rooted at r and our goal is to build a directed
depth-first search spanning tree rooted at 7 for G; we will recursively construct, in parallel, such a
tree using directed cycle separators.

We first explain why the straightforward recursive approach used in the undirected case [Smi86)
[AA88] dues not work for directed graphs. Given a directed cycle separator, we can efficiently build
a directed path separator P, starting from r by finding a directed path from 7 to the cycle separator;

the path and the cycle separator form an directed path separator with a certain arc on the cycle

removed. The path separator P, will be a branch of the final depth-first search tree for the directed
graph G. Now let G’ be the remaining graph that is not searched by P,; in other words, G’ = G—P.,.
Suppose that we continue to search G’ starting from a vertex r’ which is not in P. but is the end
vertex of an arc starting from the last vertex of P,. This time we recurse on the subgraph G., that
consists of all the vertices reachable from r’ using directed paths in G’. Because P, is a separator
of G, every strongly connected component of G’ has at most |n/2| vertices. However, G!, may
contain several such strongly connected components; consequently G/, may still be too large for
small depth recursion. To avoid this problem, we describe below a more sophisticated subroutine
that removes a set of directed paths from G such that the remaining directed graph has small
rooted subgraphs; these removed paths will form a subtree in the final depth-first search tree.

A partial depth-first search tree in a rooted directed graph is a subtree of a depth-first search
tree such that the graph and two trees are rooted at the same vertex. Let T be a partial depth-first
search tree of G; let ¢, x5, ..., z¢ be the vertices of T listed in the depth-first search last-visit order,
i.e., if this partial depth-first search tree is traversed sequentially, then =; is visited right after all
its descendants are visited. For any =z;, let y; 1, ..., ¥ik; be the vertices which are not in T but are
the end vertices of the arcs starting from z;; the order of y; 1, ..., ¥ix; is arbitrary, and a y vertex
may have several different indices if it is adjacent from several z vertices. For a directed graph
D and a vertex ¢ € D, let R(z, D) denote the set of vertices that can be reached from z using
directed paths in D. We call a subgraph of G a dangling subgraph, denoted by DSG((i,5),T),
with respect to (i,7) and T if it is formed by the vertices in G — T that are reachable from y; ;
but not from y; ;» for any (i, 5') such that either ¢/ < 7 or (¢ = ¢ and 5/ < j). In other words,

DS5G((4,7),T) = R(%:,5, G — T) — Uir 9 R(yir jo, G — T'), where either ¢ < i or (¢ = i and j' < j).

Observe that a depth-first search tree of G is simply the union of the arcs in 7', the set of
arcs (z;, ¥;,;) for which DSG((4,7),T)is non-empty, and an arbitrary depth-first search tree rooted
at y;; for each non-empty DSG((7,5),T). Also observe that because the dangling subgraphs
are disjoint, we can simultaneously compute an arbitrary depth-first search tree for each non-
empty dangling subgraph. These observations together provide a natural way to recursively and
concurrently extend a partial depth-first search into a complete depth-first search tree.

To achieve small depth recursion, the non-empty dangling subgraphs have to be small. Keeping
this in view, we call a dangling subgraph heavy if it has more than |n/2| vertices; otherwise we
call it light. Similarly, we call a partial depth-first search tree heavy if it has a heavy dangling
subgraph; otherwise we call it light. If a partial depth-first search tree is light, the recursion
can be readily applied to its non-empty dangling subgraphs. So we may assume that the tree is
heavy. Because all dangling subgraphs are vertex-disjoint, the tree has exactly one heavy dangling
subgraph; denote this subgraph by DSG((%0,70),T). Let H denote the rooted acyclic directed
graph induced by contracting the strongly connected components of DSG((io,jo), T); further, let
a vertex in H be assigned the weight equal to the number of vertices in the corresponding strongly
connected component. Since DSG((t0,7,),T) is heavy and since H is acyclic and rooted, there
exists a vertex in H such that the total weight of this vertex and its descendants is greater than
[n/2] but the weight of each of its children and the weights of this child’s descendants sum up to
at most [n/2|. Call such a vertex a splitting vertez, and call the corresponding strongly connected
component in DSG((io, Jo),T") a splitting component. There may be several splitting vertices and
splitting components. Now pick an arbitrary splitting vertex s, and denote its corresponding
splitting component by G;. Next use the given oracle to obtain a cycle separator C; in G,. Further

build an arbitrary vertex-simple directed path P, in DSG((%0,70),T) that goes from y;_ ;, to an

arbitrary vertex of C,, and then traverses C, except its last arc. P, will be a branch of the final
depth-first search tree of G; more precisely, let the new tree be T' = T'U{(z,,¥;,,j,)} U Po. Observe
that 7" is still a partial depth-first search tree of G. If 7' has no heavy dangling subgraph, then we
have achieved our goal of building a light partial depth-first search tree. So we may assume that

T" has a heavy dangling subgraph.

Lemma 3 IfT' is a heavy partial depth-first search tree, then every splitting component of T' is

a strongly connected component of G, — P,, and consequently, consists of at most |G,|/2 vertices.

Proof. To locate the heavy dangling subgraph of 7', observe that DSG((z,, ¥o), T') is the union of
G, N P, and the dangling subgraphs of 7" rooted at vertices that are both in G, — P, and adjacent
from G, N P,. This guarantees that the heavy dangling subgraph of 7' is rooted at some vertex
that is both in G, — P, and adjacent from G, N P,. To further locate the splitting components
of T, recall that from definition, G, corresponds to a vertex s in H such that the weight of each
child of s and the weights of this child’s descendants sum up to at most |n/2|. This implies that
G, — P, must include all splitting components of 7”. Therefore, every splitting component of 7" is
a strongly connected components of G, — P,. Furthermore because P, contains the cycle separator
C, of G,, every splitting component of 7' has at most |G,|/2 vertices. W

From the above lemma, it is readily seen that after O(log n) such phases of cutting up splitting
components, any resulting splitting component is left with a single vertex. If we now extend the
partial depth-first search tree to include the vertex of an arbitrary splitting component, we can
obtain another partial depth-first search tree 7" which is light so that recursion can be performed.

We now summarize the above discussion. To construct a depth-first search tree, we start
from the partial depth-first search tree T' that consists of only the root r. It takes O(logn) cuts of

splitting components to extend T into a light partial depth-first search tree; each cut takes an oracle

call to find a cycle separator in addition to O(log® n) time and M M (n) processors for computing
transitive closures of suitable graphs with at most n vertices. To build a complete depth-first search
tree, we recurse on the non-empty dangling subgraphs of T'; this recursion has depth O(logn). So
if a directed cycle separator of an n-vertex strongly connected directed graph can be computed in
T.(n) parallel time using P.(n) processors, then a depth-first search tree of any n-vertex rooted
directed graph can be computed in O(log? n(T.(n)+log? n)) time using P.(n)+ M M(n) processors.

The above discussion applies only to rooted directed graphs. We now extend the discussion
to any general directed graph G. Our goal is to find a depth-first search spanning forest with r
being the first root. We first decompose G into rooted directed graphs as follows. Arrange the
vertices of G in an arbitrary order uy, ..., u, with w3 = 7. Let D(u;) be the set of vertices that can
be visited by depth-first search starting from wu; but cannot be visited starting from wq,..., u;_q;
in other words, D(u;) = R(u;,G) — Uj<; R(u;,G). Clearly, each non-empty D(u;) is a directed
graph rooted at u;. Now a complete depth-first search of G starting from r can be conducted by
computing an arbitrary depth-first search tree for each non-empty D(w;) with the root being wu;;
these non-empty D(u;)’s can be computed in O(log?n) time and M M (n) processors. Hence, from

this discussion, we obtain the following theorem:

Theorem 4 Suppose a directed cycle separator of any n-vertex sirongly connected directed graph
can be computed in T.(n) time using P.(n) processors. Then a depth-first search spanning forest
of any n-vertez general directed graph can be computed in O(log? n(T.(n) + log?n)) time using

P.(n) + M M(n) processors.

10

4 Constructing a Directed Cycle Separator

A directed multi-path separatoris a set of vertex-disjoint vertex-simple directed paths whose vertices
form a separator. For obtaining a directed cycle separator of any n-vertex directed graph, in
Subsection 4.1 we describe a routine REDUCE that given a directed multi-path separator £ of
more than 10[log n| + 20 paths, reduces the number of paths in § by at least one half so that the
resulting set is still a directed multi-path separator. Initially 2 is the directed multi-path separator
that consists of any [n/2] vertices in G, each vertex being a directed path of length 0. Since each
call to REDUCE decreases the size of) to at most one half of its original size, O(logn) calls are
sufficient to reduce the size of § to at most 10[logn] + 20. Once I has at most 10[logn] + 20
paths, we will merge the paths, one by one, into a single directed path separator, and then convert
this path separator into a directed cycle separator; these last two steps are described in Subsection
4.2,

In the following discussion, the lower segment of a directed path P = =z, ...,z refers to the
directed path xq, oy T kf2)5 the upper segment of P refers to the directed path T|k/2]41s s The FOT
a set) of m directed paths, we use |}] = m to denote the number of paths in £2. In unambiguous
cases, we often refer to a directed path when, in fact, we mean the vertices of that directed path.
For example, G — P denotes the induced subgraph where all the vertices contained in P are removed,
and G — {1 denotes the induced subgraph where all the vertices contained in the paths of 0 are

removed.

11

4.1 Reducing the Number of Paths While Maintaining the Separator Prop-

erty

As highlighted in the Introduction, the basic idea used in the routine REDUCE is similar to that
used by Aggarwal and Anderson [AA88] for general undirected depth-first search. The undirected
depth-first search algorithm constructs a path separator by repeatedly joining paths until only a
single path remains. A key idea in the undirected case is to carry out bisection by traversing and
joining the longer half of a path. This bisection idea is not applicable in the directed case because
it is not possible to choose the direction of traversal in directed paths. One of the new ideas for
the directed case is that given two paths L and S, we find a directed path P that goes from L
to the lower segment of S so that we can always traverse the longer half of S. To make this idea
work, the directed REDUCE uses several other new ideas; we describe these ideas in the following
discussion.

REDUCE takes as input a multi-path separator Q of m paths with m > 10[logn] + 20. RE-
DUCE will operate for O(log®n) phases to reduce the size of Q by at least one half so that the
resulting set still forms a directed multi-path separator. At the beginning of REDUCE, 0 is parti-
tioned into two sets A and I'. The set I' is further partitioned into two sets, the set of active paths
and that of inactive paths; denote these two subsets by I', and I';, respectively. In each phase of
REDUCE, these five sets is modified as follows. For notational brevity, let o = I-ETI???:TJFEJ' At the
very beginning of the routine, |T'| = a, I'c =T, |Tin| = 0, and |A| = m — a; at the very end of the
routine, |Iy| < a, [Tn| < ([logn] +1) -, and |A| = 0. To achieve this reduction, in each phase we
find a set of paths, I, that joins paths in £ in a suitable manner. (See Figure 1.) More precisely,
let A, and A; denote the sets of, respectively, upper segments and lower segments of the paths in

A. Tl is a maximal set of vertex-disjoint vertex-simple directed paths that go from I'y to A; such

12

Figure 1: II joins I' and A.

SH'

S.f

LJ’

LH

Figure 2: Rearrange two paths.

13

that for each directed path P in II, the first vertex belongs to a path in T'y, the last vertex belongs
to a path in A, and the interior vertices are taken from G — §1. Each directed path in Ty U Ay
contains an end vertex of at most one path of II; of course, there may be directed paths in ', U 4;
that do not contain any end vertices of the paths in II. Below we describe the basic step in using II
to rearrange paths in {1. (See Figure 2.) Suppose that a directed path P € II joins directed paths
L €T, and S € A, and that P has end vertices ¢ and y where L = L'zL” and S = S’yS". In each
phase of REDUCE, L is replaced by L'PS”, and S is replaced by §’. The path L" is either added
to I';, or is discarded from £2; the conditions under which L" is discarded from 2 and those under
which L" is added to I';,, will be discussed later. Irrespective of whether L” is discarded from § or
added to T';,, note that the directed path S has been reduced to half its original length because S’
is only a subpath of the lower segment of the original S. Furthermore, the paths in ', and those in
A do not increase in number; in fact, the number of paths in I’y and A may have decreased if some
paths of IT have been joined to the lowest end vertices in A;. However, the number of paths in I';,
may increase, which may, in turn, lead to an increase in the total number of pathsin I' = ', UT;,.
If the size of A does not decrease, then the increase in |I'| can increase the number of paths in
1 = TUA. We have mentioned above that I is a maximal set, and in the following discussion,
we will specify another property of II that will help in eventually reducing the number of directed
paths in {1 rather than increasing it.

We introduce two kinds of notations to describe a more detailed picture of how II is used to
reduce the cardinality of 0 (see Figure 3): (1) I'q new denotes the set of all paths of the kind L'PS".
I'* denotes the set of all paths of the kind L”. A,., denotes the set of all paths of the kind S’
(2) ', denotes the set of all paths in T, that are not connected by any paths in II to any paths in

A;. A denotes the set of all paths in A whose lower segments are not connected by any paths in

14

s

« Ig Dy A

Figure 3: Notations for the subroutine Reduce.

IT to any paths in I'y. Also A; and A, denote the sets of, respectively, lower segments and upper
segments of paths in A. We can now specify the additional property for II: II is such that there
are no directed paths from Ty UT? to A; using vertices in G — @ — II. Clearly II is a maximal
set and we call it a mazimal joining set from I' to A. Later in this section we will discuss how to
compute such II; here we continue to explain how II is used to reduce the cardinality of {1. Let
sce(D) denote the size of the largest strongly connected component in any directed graph D. The
properties of II and the fact that I U € is a separator of G imply T'* UT, and A; cannot have
vertices in the same strongly connected component of (G — 2 —II) U (T'; U I'.) U A;. This in turn
implies either scc((G — 2 —) U(T5 U T,)) < |n/2], or sce((G — 2 — M) U Ay) < |n/2], or both.
Based on these bounds, we have two cases for updating the sets A, I',, and [';,,; the new version

of these sets will be used in the next phase of Reduce.

15

Case 1: If scc((G — R~ 1)U A)) < |n/2], we add TI to §2 but discard A; from €, and observe
that the new 1 is still a directed multi-path separator. Moreover, we perform the following

replacements:

» A« Anew U Auy

o [y — Fa,new U]:—‘a: and

w Py =T UL
Case 2: If scc((G — Q- U (T2 uUTl,)) < |n/2], we add II to 9 but discard I'* UT,, and
notice that the new § is still a directed multi-path separator. The number of paths in T'y
may drop below a, which is the size of I'; at the very beginning of REDUCE. To restore
this size, we take enough paths from A,., U A and add them to I'y until I', is restored to

its original cardinality or Apew U A is exhausted. Let A, denote the set of paths taken from

Anew UA. Now we employ the following replacements:

o A Dpew U A — A,
o Iy = Fa,new U Aa) and

e I';, remains unchanged.

(See Figure 4 for a brief summary of the routine REDUCE.)

Lemma 5 If we have a directed multi-path separator of m paths with m > 10[log n]| + 20, then

after ezecuting O(log® n) phases of REDUCE, we can obtain a directed multi-path separator with

at most || paths.

Proof. First of all, observe that {1 remains a directed multi-path separator after the replacements

in each phase. Consequently, at the end of the routine, € is still a directed multi-path separator.

16

routine REDUCE(R):
Partition {2 into A and I', and further partition I' into T, and I';,;
while A is not empty do
begin
Find a maximal joining set II from I to A;
If scc((G— 2 —T) U Ay) < |[n/2]
then
begin
A = D U Ay
Fy = Fppeet) T
iy B OB
end
else {comment: sce((G - 2 —~ M) U (TZUTL)) < [n/2]}
begin
A~ Bpew UA = Bg;
Ia = Pawen'U Dgs
I';, remains unchanged
end

end

Figure 4: A brief summary of REDUCE

17

To reduce the size of 2, REDUCE is executed until A becomes empty. In the following discussion,
we will first discuss the situations under which A gets exhausted. We will then estimate |Ty|, |Tsnl,
and |Q| = [Ta| 4 |Tin| + || as at the end of REDUCE.

We divide case 2 given above into two cases: case 2a: |T;| > 1 - a, and case 2b: |T}| < 3oa
Also, let ty, t2q, and top, respectively, denote the numbers of phases in which cases 1, 2a, and 2b
occur. In all three cases, |A| never increases and may sometimes decrease. This decrease happens
when a path of A is taken to replenish I'; in cases 2a and 2b, or when a path of A is cut sufficiently
many times in cases 1, 2a, and 2b. If a path is cut, it is cut by at least one half because it is replaced
either by a subpath of its lower segment or by its upper segment. There are two situations in which
A may become empty. One situation is that the paths of A are primarily cut off. Because a path
has at most n vertices, it can allow at most [logn] + 1 cuts; after these cuts, the path becomes
empty. In case 1, all paths in A are cut; in case 2a, at least -;— - o paths are cut; in case 2b, the
number is insignificant for our analysis. Because originally |A| = m — a, after t; + t24 + t2p phases,
A is left with a reserve of at most Cy cuts where Cy = (m—a)-([log n]+1)—t1 -(m—a)—tz-(3-a).
Some of the paths in A may be taken away to replenish T'; in cases 2a and 2b; the effect of this
happening is canceled out in the estimate. Now, if C is negative or zero, then A must be empty.
Cy can be negative or zero if t; = [logn| + 1 (referred as condition 1) or if ¢; < [logn] + 1 but
taa > 5 - ([logn] + 2) - ([logn] + 1) (referred as condition 2a); these conditions are derived under
the assumption that m > 10[log n] + 20. The other situation is that the paths of A are primarily
taken away to replenish I'y in cases 2a and 2b. Because |I'y;| = a before the replacements in each
phase, at least —é— -« paths are taken away in case 2b; in case 2a, the number is insignificant. After
Ly - t2q + Lop phases, [A] is at most Cy = (m — o) — tap - (% -a). So if Cy is negative or zero, then A

must be empty. (', can be negative or zero if ¢; < [logn] 4+ 1 but ¢tz > 5 ([logn] 4 2) (referred

18

as condition 2b).

Now we estimate |['y|, |Tin|, |T| = |Ta|+|Tinl, and |22] = |T|+]A|. Originally |Tq| = a. |Ts| does
not change in case 1 and does not increase in case 2a and 2b. So || < a throughout the execution
of REDUCE. Because |I';,| may increase by at most |T'y| < a in case 1 and does not change in cases
2a and 2b, after ¢) + t34 + t3p phases, |T'in| < t; - @ and consequently, |I'| < @+ ¢; - a. Furthermore,
IT| < |%] if any one of the conditions 1, 2a, and 2b is true. REDUCE can achieve at least one of
these three conditions within ([logn] + 1) + {5 ([logn] + 2) - ([log n] + 1)} + {5 - ([log n] + 2)}
phases. Hence, within O(log? n) phases, || = || < |Z]. N

To complete the description of REDUCE, we explain how to compute II as follows. Recall that
IT has to be a maximal joining set from I' to A. Here we give a stronger property for II. For the
previously described path P in the set II, we assign a cost equal to the length of the cut-off segment
of I, namely, the number of vertices in L"”. We call IT a minimum-cost mazimum-cardinality joining
set if 1T has the maximum number of paths from I'; to A, and if II also minimizes the total cost
under the maximum-cardinality constraint. Below we prove that if II is a minimum-cost maximum-
cardinality joining set from T’ to A, then II is a maximal joining set from I' to A: Because II is of
the maximum-cardinality, there can be no directed path from I, to A; using vertices in G — Q —1II;
if there were such a path, this path could be added to II and the original IT would not be of the
maximum cardinality. Because II is also of the minimum total cost, there can be no directed path
from I to A; using vertices in G — Q — II; if there were such a path, then a certain path of I could
be replaced by this smaller cost path while Il maintained the same maximum cardinality.

In view of the above discussion, to find a maximal joining set II from I' to A, we only need
to find a minimum-cost maximum-cardinality joining set from I' to A. Aggarwal and Anderson

[AA88] have shown how to reduce an undirected version of the problem of finding a minimum-

19

cost maximum-cardinality joining set to that of finding a minimum-weight perfect matching in a
bipartite graph. Essentially the same reduction can be used to solve our problem of finding II. The
reader is referred to their paper for details; here we simply state the result as follows: Let Pm(n)
and Ty, (n) denote the number of processors and the parallel time to compute a minimum-weight
perfect matching of any n-vertex bipartite graph that has an integer weight of at most n on each of
its arcs. Then a maximal joining set II from I' to A can be found in exactly the same complexity.

We summarize the discussion of this subsection in the following theorem.

Theorem 6 Let Ppm(n) and Trm(n) denote the number of processors and the parallel time to
compute a minimum-weight perfect matching of any n-vertex bipartite graph that has an integer
weight of at most n on each of its arcs. Then the routine REDUCE can be used to obtain a directed
multi-path separator of at most 10[logn] + 20 paths in O(log?n - (Trmm(n) + log?n)) time using

Prm(n) + M M(n) processors.

Proof. Initially we have the directed multi-path separator Q that consists of any [n/2] vertices
in G, each vertex being a directed path of length 0. From Lemma 5, if |Q2] > 10[logn] + 20,
then a call to REDUCE cuts || by at least one half. Therefore, O(logn) calls to REDUCE are
sufficient to obtain a directed multi-path separator of the desired size. Each call has O(log? n)
phases. Each phase does two major computations: (1) computing a maximal joining set II, and
(2) computing the strongly connected components of an n-vertex directed graph in O(log?n) time
using M M (n) processors. So the total complexity is O(log® n-(Trm(n) +log? n)) parallel time and

Prm(n) + M M(n) processors. M

20

4.2 Constructing a Cycle Separator from a Small Set of Separating paths

Given a directed multi-path separator £ with at most 10[logn] + 20 paths, we explain below
how to construct a directed path separator and convert this path separator into a directed cycle
separator. The idea is to repeatedly join two paths of § into a new path while the other paths stay
untouched and, together with the new path, remain a directed multi-path separator. To join two
paths, we first recall that Kao [Kao88] has given an NC algorithm to convert any directed path
separator into a directed cycle separator; in fact, the proof of Observation 1 can also be used to
do the conversion in parallel. The idea of joining two directed paths into one is almost the same
as converting a directed path separator into a directed cycle separator. The only difference is that
in the path-to-cycle conversion, we merge the two ends of the given directed path separator while
in the path-to-path conversion, we merge the ends of two paths, one end from each path. More
precisely, let @ = { Py, ..., P} with k < 10[log n] +20; also let Q' = {Ps, ..., Px}. Below, we describe
how to merge P; and P, into a single path P’ so that P’ and Q' form a multi-path separator; we will
process Py and P, in essentially the same way as the proof of Observation 1. Let P; = =z, ..., 2p,.
Find the largest index & such that Roue(z¢, G — {z1,...,2¢—1} — P — ') has more than n/2 vertices.
If ¢ does not exist, then let P’ = P, and observe that P’ and Q' form a multi-path separator. If
t exists, then let P| = z,,...,z; and notice that P, P, and §)’ form a multi-path separator. Now
let P = y1,...,Yp,- Find the smallest index s such that Rin(ys,9 — {¥st1,--»¥pp } — P — Q') has
more than n/2 vertices. If s does not exist, then let P’ = P/ and observe that P’ and Q' form a
multi-path separator. If s exists, then let P, = y,, ..., yp,, and observe that P{, P;, and Q' form a
multi-path separator. Now find a vertex-simple directed path @ from z; to y, with internal vertices
belonging to G — P{ — P; — §'. Let P’ be the path formed by P/, @, and Pj. It is readily seen that

" and ' form a multi-path separator.

21

After repeating the above process & — 1 times, we can obtain a directed path separator. We
then convert this path separator into a cycle separator. The complexity for merging two paths or
converting a path into a cycle is O(log?n) time and M M (n) processors because the only major
computation in the merge is to find transitive closure of an appropriate directed graph. Moreover,
because {1 has O(logn) paths, the total complexity of merging € into a directed cycle separator
is O(log®n) time and M M(n) processors. This discussion and Theorem 6 immediately yield the

following theorem.

Theorem 7T Let Ppym(n) and Thnm(n) denote the processor and time complezities for computing a
minimum-wetght perfect matching of any n-vertez bipartite graph with an integer weight of most n
on each arc. Then a directed cycle separator of any general n-vertez directed graph can be found

in O(log® n(Tmm(n) + log? n)) time using Ppm(n) + M M(n) processors.

5 Discussions

Using Theorems 4 and 7, we can now state the other main results of this paper:

Theorem 8 Let Tyym(n) and Ppmm(n) denote the parallel time and the number of processors to
compute o minimum-weight perfect matching of any n-vertex bipartite graph with an integer weight
of at most n on each arc. Furthermore, let M M(n) denote the sequential time complezity of
multiplying two n X n integer mairices in Strassen’s model. Then a depth-first search forest of
any general n-vertez directed graph can be computed in O(log® n(Tymm(n) + log?n)) time using

Prm(n) + M M(n) processors.

Mulmuley, Vazirani, and Vazirani [MVV87] provide an RNC minimum-weight perfect matching
algorithin such that Tpm(n) = O(log?n) and Ppm(n) = n - MM(n). Consequently, the above

theorem has the following implication:

22

Theorem 9 For any general n-vertez directed graph, a depth-first search forest can be constructed

probabilistically in O(log’ n) time using n - M M (n) processors.

Finally, we conclude the paper with two challenging open problems. One problem is to devise
a deterministic NC algorithm for general directed depth-first search. For the time being, we can
only show that general directed depth-first search can be conducted deterministically in O(log* n-
v/n) time using O(n?) processors; the result is obtained from modifying an undirected maximal
joining set algorithm by Goldberg, Plotkin, and Vaidya [GPV88]. The other problem is to find
a more efficient RNC algorithm for general directed depth-first search; because depth-first search
is extremely useful in graph theory, an RNC algorithm with almost linear processor-time product

will have significant impacts.

References

[AA88] A. Aggarwal and R.J. Anderson. A random NC algorithm for depth first search. Com-

binatorica, 8:1-12, 1988.

[AHU74] A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Computer Algorithms.

Addison-Wesley, 1974.

[And87] R.J. Anderson. A parallel algorithm for the maximal path problem. Combinatorica,

7:315-326, 1987.

[CW87] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions.
In the Proceedings of the 19" Annual ACM Symposium on Theory of Computing, pages

1-6, 1987.

23

[EATT]

(GB84]

[GPVSS]

[HY88]

[JK88]

[Ka088]

[MVV87]

[Ram87]

D. Eckstein and D. Alton. Parallel graph processing using depth-first search. In the
Proceedings of the Conference on Theoretical Computer Science at the University of

Waterloo, pages 21-29, 1977.

R.K. Ghosh and G.P. Bhattacharjee. A parallel search algorithm for directed acyclic

graphs. BIT, 24:134-150, 1984.

A. Goldberg, 5. Plotkin, and P. Vaidya. Sublinear-time parallel algorithms for matching
and related problems, 1988. To appear in the Proceedings of the 29*® Annual IEEE

Symposium on Foundations of Computer Science.

X. He and Y. Yesha. A nearly optimal parallel algorithm for constructing depth first
spanning trees in planar graphs. SIAM Journal on Computing, 17(3):486-491, June

1988.

J. Ja’Ja and S. Kosaraju. Parallel algorithms for planar graphs and related problems.

IEEE Transactions on Circuits and Systems, March 1988.

M.Y. Kao. All graphs have cycle separators and planar directed depth-first search is
in DNC. In the Proceedings of the 3rd Aegean Workshop on Computing, Corfu, Greece,

pages 53—63, 1988. Springer-Verlag Lecture Notes in Computer Science 319.

K. Mulmuley, U.V. Vazirani, and U.V. Vazirani. Matching is as easy as matrix inversion.

Combinatorica, 7:105-114, 1987.

V. Ramachandran. Fast algorithms for reducible flow graphs. In the Proceedings of the
1987 Princeton Workshop on Algorithm, Architecture, and Technology Issues for Models

of Concurrent Computation, Princeton University, 1987.

24

[RC78]

[Rei85]

[Sha88]

[Smi86]

[SV85]

[Tar72]

[Tiw86]

[Zha86]

E. Reghbati and D. Corneil. Parallel computations in graph theory. SIAM Journal on

Compuiing, 7(2):230-237, 1978.

J.H. Reif. Depth-first search is inherently sequential. Information Processing Letters,

20:229--234, June 1985.

G.E. Shannon. A linear-processor algorithm for depth-first search in planar graphs, 1988.

To appear in Information Processing Letters.

J.R. Smith. Paralle]l algorithms for depth first searchs I. planar graphs. SIAM Journal

of Computing, 15(3):814-830, August 1986.

C.A. Schevon and J.S. Vitter. A parallel algorithm for recognizing unordered depth-first

search. Technical Report 21, Department of Computer Science, Brown University, 1985.

R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing,

1(2):146-160, June 1972.

P. Tiwari. An efficient parallel algorithm for shifting the root of a depth first spanning

tree. Journal of Algorithms, 7(1):105-119, March 1986.

Y. Zhang, 1986. Manuscript.

25

