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Abstract

A collection of axioms and the negation of a theorem expressed
in first-order logic can be transformed into families of Horn clauses,
and executed as a logic program. Each Horn clause family
represents a procedural attribute of a non-Horn clause, such as an
inference rule. The mechanism by which non-Horn clauses are
compiled is described and an example theorem from lattice theory is
presented. Although a logic program can derive proofs faster than
an interpreted theorem proving system, the use of unification as a
clause selection method is a bottleneck.

1. INTRODUCTION

Resolution-based theorem provers are typically implemented as interpreters. They obtain proofs
by manipulating data structures used to represent the axioms and the negation of the theorem
(collectively called the theorem in this paper). Procedures that manipulate the theorem's data
structures include resolution and other inference rules, indexing (clause selection), subsumption,
and integration of generated clauses. The separation of data and procedure leads to limitations in
the performance of interpretive theorem provers: inference rules based on a general purpose unifier
are too complex to be efficient. But if these general procedures are applied to the theorem,
instances of these procedures can be obtained for each clause, i.e., the theorem can be compiled.
Each instance contains clause-specific infomation which can be used to optimize the procedure.
For example, in an inference rule the strength of the underlying unification algorithm can be
reduced. As a result, the time needed by the compiled theorem to find a proof is decreased, and is
overall much less than the time required by an interpretive theorem prover.

Using this approach, each clause in the theorem is treated as a non-procedural statement composed
of procedural attributes which may be subsumption, demodulation, or on¢ or more inference rules.
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These attributes are compiled into Prolog clauses, which may be further compiled into an extended
version of Warren's abstract Prolog machine. The extended Warren machine contains instructions
to perform unification with an occurs check, and matching without binding variables. A proof may
be obtained by combining the compiled theorem with a short control module, and executing the
resulting program. The purpose of the control module is to select any of a variety of search
procedures in the proof specification, rather than defaulting to the depth-first search implicit in
Prolog.

The initial work with indicates that substantial performance improvements can be obtained. Using a
Warren machine emulator running on a VAX 11/780, a compiled theorem proved Sam's Lemma
15 times faster than a resolution-based theorem prover (ITP) running on the same machine.
Further evidence of improvement was provided when ITP was transported to a Cray XMP: the
compiled theorem, still running on a VAX 11/780, obtained the same proof in half the time needed
by ITP running on the Cray XMP. Recent work by McCune (1988) has reduced the disparity
between compiled and interpretive theorem provers, but it will be shown that the bottleneck in
compiled theorem provers is due to the use of unification and backtracking as a general-purpose
indexing mechanism, which is very inefficient. Research is in progress to improve the indexing
mechanism for compiled theorems.

This research was initiated at Argonne National Laboratory in 1985 during a study of Warren's
abstract Prolog machine. A number of implementations and partial implementations were
programmed (Mills 1986). At the same time Ross Overbeek formulated two concepts that led
directly to this fusion of theorem proving and logic programming. The first concept was the
extension of the Warren machine instruction set to include instructions that performed unification
with an occurs check,! and matching without binding. The second concept was the notion of
encoding a hyperresolution inference rule into these Warren machine instructions. From these two
notions I generalized paradigm of compiling a non-Horn clause into multiple procedural attributes.

There are at least two other approaches that associate theorem proving and logic programming.
The first, and most straightforward, is the implementation of a classical theorem prover in Prolog.
This approach has been taken by Bundy (1982), but corresponds to an interpretive rather than a
compiled theorem prover. The second is the extension of Prolog to include an occurs check, a
complete inference system (model elimination), and modification of Prolog's unbounded depth-

1 See (Beer 1988) for a way to add the occurs check in an elegant way. See (Plaisted 1984) for a way to
preprocess Prolog programs to omit occurs checking.
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first search strategy. This approach is taken in the Prolog Technology Theorem Prover (Stickel
1984) and PARTHENON, a parallel theorem prover for non-Horn clauses (Clark 1988).

This approach differs from these two in the following Ways:

1. Clauses corresponding to axioms and the negation of the theorem are compiled,
not retained as data structures,

2. The proof specification is modified dynamically during its execution as clauses
corresponding to resolvents are generated, retained, and possibly subsume
other clauses,

3. Inference rules comprising a complete inference system are treated as attributes
of a clause corresponding to an axiom or the negation of the theorem, and thus
become part of the compiled theorem,

4. Bounded depth-first, breadth-first, A*, or other search strategies are
superimposed on Prolog's unbounded depth-first search strategy.

The sequential implementation has not yet not been compared to either the PTTP or
PARTHENON, but its performance is expected to be competitive even though PARTHENON is
parallel.2

2. ITP: A RESOLUTION-BASED THEOREM PROVER

ITP/LMA is a resolution-based theorem prover [Lusk & Overbeek]. It implements a numerous and
still-growing family of inference and equality reasoning rules, including a wide variety of
resolution rules, demodulation, and paramodulation. Any inference rule may be selected and
combined with others during the proof. ITP/LMA has been used to prove fault-tolerance of
computing systems [Klaijsch], to study synthesis of organic molecules [Erlich], and to solve a
variety of logic puzzles, including those of Carroll and Smullyan [Lusk & Overbeek]. ITP/LMA is
an interpretive theorem prover, retaining clauses as data structures, and implementing procedures
to perform inference and equality reasoning, demodulation, and subsumption. A weighting
mechanism is built in to the control structure that can be used to implement an A*-like search.

2 Overbeek (1988) suggests that this is due to the lack of subsumption in PARTHENON.
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3. PARTITIONING THE CLAUSE SPACE

Clauses corresponding to the axioms of a theorem are typically placed in the axiom list. The
clauses corresponding to the negation of the theorem are placed in the set of support. Clauses that
have participated in an inference cycle are kept in a "have-been-given" list. As the theorem prover
runs, clauses will be removed from the set of support, resolved against other clauses in the axiom
and have-been-given lists, and when no more resolutions are possible, placed on the have-been-
given list. New clauses (i.e., resolvents) that are generated are checked against all clauses in the
axiom, set of support, and have-been-given lists. If the clause is an instance of any other clause it
is discarded (i.e., forward subsumed). If it is not, then all clauses are checked to determine if they
are less general instances of the generated clause. Should any be found that are, they are deleted
(i.e., backward subsumed). Resolvents that are not forward subsumed are placed on the set of
support.

The attempt to find a proof continues until either a null clause is generated, meaning that a proof
was found, or until either no more clauses remain in the set of support, or the limit on the number
of clauses to be selected from the set of support has been reached.

When one of the second pair of alternatives occurs, it is the responsibility of the user of ITP/LMA
to examine the output produced, and from it select a strategy for another proof attempt. The new
strategy is usually implemented either by changing one of the options, adjusting the weighting
mechanism in use, or selecting one or more new inference rules. Occasionally a user may develop
and implement a rule not previously available on the system, but this is not common practice.

4. COMPILING AXIOMS
4.1 CONTEXT-DEPENDENT NEGATION

Negation as failure is an adequate model for Prolog computation. This is so since Prolog is
exploring a "proof tree" or world model in which failure has a direct analogy to the truth of the
supposition being investigated.

However, to impose the same strategy on the theorem prover is to severely limit the design. Terms
that are negated must be represented to perform unification; using negation as failure precludes
manipulation of negated terms. Instead, the concept of negation will be distinguished from the

Mills Compiling and Executing Theorems Efficiently as Logic Programs 4



concept of a negative literal. Having done this, we can then consider the meaning of this negative
literal. The quality of negativeness can be considered as oppositeness. This property can then be
embodied within the predicate whose negation is required. We may represent this property by
prefixing some symbol to predicate. Since we are using Prolog, a prefix of "n" is appropriate,
although we might consider using "not " instead. However, if we use this representation
throughout the theorem prover, we force ourselves to use a clumsy form of resolution. Instead,
since a convention has been established, we may introduce another property, context-dependent
negation, for representing literals of either sign which we wish to resolve against literals of either
sign. A context-dependent negative literal is one whose sign as indicated by the predicate bears the
opposite meaning, e.g., the context-dependent negative literal -p is represented in a program by p.

4.2 RESOLUTION WITH CONTEXT-DEPENDENT PREDICATES

Resolution as defined by Robinson involved finding predicates of opposite sign, then finding a
substitution for each term of each predicate so that they match (i.e., unify). This substitution is
called a most general unifier. If the process of matching could be performed against the predicates
of the clause, as well as against each predicate's terms, then it would be possible to conduct
resolution entirely by unification. This is in fact what is done, but, since the meaning of each
predicate will vary based on its usage, we must be careful to define which predicates are context-
dependent, the interactions between these and other predicates, and adhere to these conventions or
suffer erroneous compiled theorem behavior.

The following example will show how context-dependent negative literals are used to represent
theorems. Let us name three functional areas where we may place clauses in the course of
developing a proof:

1.  The set of support, containing clauses from which we will make a selection for
use in resolution, '

2. The inference rules, containing clauses which meet our definition of an
inference rule, even if they are already in the set of support, and

3. The supporting clauses, containing those clauses that either were not initially
present in the set of support or the inference rules, or which were selected from
the set of support after being used for resolution.
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Clauses from the set of support will be serve as a "baseline” to define context dependency. Within
the set of support, a positive predicate such as "p", and a negative predicate, such as "np", retain
their original meaning.

Clauses in the set of support may resolve (or "clash") against clauses that are inference rules. The
resulting clause or clauses are placed back into the set of support. Thus, for our example where

-we use hyperresolution as an inference rule, context-dependency gives us the following clause
formats:

Set of support: -------===-=--

P qQ r ns nt
Inference rules: ---------=-=mn~
plg|r meaning np|nq|r
q|r|s meaning nq|nr|s

Because the supporting clauses participate only with the inference rules during resolution, they
retain their original signs. Also notice that the consequent term of the hyperresolution inference
rule remains unaffected. This is because we shall place this rule into the set of support if it is
accepted.

4.3 ENCODING HYPERRESOLUTION

Hyperresolution is an efficient refinement of binary resolution (Chang and Lee 1973). It
correseponds to the form of human reasoning most often used in expert systems, where multiple
conditions must be satisfied to cause the consequent condition to be valid.

An example of a hyperresolution inference rule might be:
(p&q&r)-->s

which would be expressed in clause notation as either:
pV-qV-rVs

or:
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pl-qlls

When hyperresolution is used with non-unit clauses, it is possible to produce a consequent
composed of the clause consequent, and "satellite" literals, or those literals in a clause remaining
after a single literal produced a succesful resolution with one of the negative terms of the resolvent.

In the example, we shall treat hyperresolution only with unit clauses. The meaning of the
consequent from a purely procedural framework is, "If we can perform resolutions against the
negative literals, then the consequent should be added to the database”. But, remembering that we
desire inference rules to be "pure", i.., to contain no procedural components, we must restrict the
action that can be taken by the inference rule if it succeeds. We also note that it is possible for the
unit clause which starts the resolution with the inference rule to match any one of the negative
literals. Thus we would like some selection process to lead us quickly to that literal, if it exists.

Given these constraints, a hyperresolution inference rule takes the following general form:

if( p.s ) - SC(q), SC(I')-
ir( g, s) :- sc(p), sc(@).
ir(1, s ) - sc(q), sc(p).

Context dependency gives the meaning of -p, -q and -T to P, q, and T respectively. The inference
rule is denoted by the predicate "ir", thus placing it into 2 distinct subspace of the internal database.
After resolution against the literal extracted from the set of support, the remaining literals must be
resolved against. This is done by the “sc” predicates, which invoke a search of the support clause
space. If the head of the clause succeeded, and the "sc" clauses succeed, then the consequent is
returned to the control section.

Notice that the consequent is returned as a data structure, rather than asserted. We wish to delay
asserting the consequent, since the majority of generated consequents will be discarded by
subsumption. Occurs checking can be immediately limited to variables and terms of the non-
consequent in the head of the inference rule. The invocations of the support clauses from within
the inference rule do not need to perform occurs checking. However, the "sc" clauses themselves
do need to perform occurs checks.

Even where occurs check may be necessary, they can be limited by analysis of the predicates
variables and terms. For example:

p(X,Y,Z)
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needs no occurs check. Each variable is distinct.

However, either of:

pXY.X)

or

p(X, X))

will need an occurs check, but only on the second occurrence of the variable X. Since this can be
determined during compilation, it is possible to keep a compiled theorem logically complete
without burdening the Prolog language with a non-specific occurs check.

5. COMPILING THE NEGATION OF A THEOREM

Test for it in the control loop.

6. CONTROLLING EXECUTION OF THE THEOREM

A significant problem in the design of a compiled theorem prover based on Prolog exists because
Prolog searches for alternative solutions to a problem by backtracking. Thus, a depth-first search
where intermediate solutions are discarded (if not asserted as facts) forces a procedural outlook into
the design. One solution to this problem is to make inference and subsumption operations "pure",
in that satisfying that portion of a clause concerned with inference or subsumption either succeeded
or failed, and possibly returned an instantiated variable. No further control operations were
attempted within these Prolog clauses.

Control operations, such as the search strategy employed by the compiled theorem, manipulation
of the generated and retained clauses, and invocation of inference and subsumption clauses, were
collected into a single module. This module was virtually independent of the rest of the compiled
theorem, and constituted only a small number of the clauses initially forming the theorem.

Mills Compiling and Executing Theorems Efficiently as Logic Programs 8



6.1 THE CONTROL ALGORITHM

The algorithm for a resolution theorem prover similar to ITP/LMA is shown below:

INIT:

LOQP:

END1:
END2:

Read in axiom clauses.

Integrate axioms into formula database.

Read in set of support clauses.

Integrate set of support clauses into formula database.
Develop a list of clauses that can participate in resolution.

Select a clause from the set of support.

Generate all hyper-resolvents between it and the axioms and have been given list.

Forward subsumption (resolvent discarded).

Backward subsumption against set of support, axioms, have been givens (clauses
discarded, resolvent integrated into set of support).

Move selected clause to have been given list.

If null clause generated then END1.

If no more clauses in set of support then END2.

Goto LOOP.

Proof complete.  Stop.

No proof found.  Stop.

6.2 CLAUSE EXECUTION.

The use of Prolog's dcpth-ﬁrst search strategy was limited to the procedural handling of a clause to
be clashed. Each set of Prolog clauses for inference and subsumption were considered as nodes in
the proof tree. The tree was repeatedly traversed, with a final success for each traversal
corresponding to retention of a clause. After each success, a "fail" operation forced backtracking,
which caused another clause to be extracted by retraction from the set of support, followed by

another traversal of the proof tree.

If a clause could not be generated using the inference rules, or if it was discarded by subsumption,

the failure simply caused an early re-traversal.

Figure 1 shows the control structure of the compiled theorem. The components shown as shaded
rectangles are the Prolog clauses corresponding to the clauses of the theorem, which are executed

as parts of the Prolog program.

Mills
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Set of Support

Figure 1. Structure of the compiled theorem prover

7. SAM'S LEMMA: A TEST CASE FOR THIS APPROACH.

The theorem selected, Sam's Lemma, is of additional importance in that it is the only problem in
the McCharen problem set [Mc76] that does not experience a single failure due to an occurs check
during unification, and that further has all generated clauses containing only ground instances of
variables. These two properties allow a proof of Sam's Lemma to be developed using existing
Prolog interpreters, which lack the occurs check.

/*

TITLE: sams lemma
Mills

9 Apr 85

REVISED: 21 Apr 85

Revision implements a further-stripped down version of subsumption, and
renames

what was earlier called "backward subsumption" (incorrectly) to the proper
name

of "forward subsumption”.

History is no longer encoded into the "sc" & "sos" clauses. It may be
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recovered from the logfile if necessary.

ORIGINAL:

This program contains Sam's Lemma encoded in PROMETHEUS.
Sams Lemma may be stated as follows:

Let L be a modular lattice with 0 and 1. Suppose that
A and B are elements of L such that (A v B) and (A © B)
both have not necessarily unique complements.

Then:

vB) Vv ((&"B) “"B)) "

((A
((A v B) v ((R" B) "~ R))

(A v B)

Axioms for Sam's Lemma.

(1 v %)
(X v X)
(0 v X)
(0 © X)
(x * x)
(1~ X)

Wwmwnnn
MM OMK M

1. MAX(cone,x,cone)
2., MAX(%,%,x)

3. MAX(czero,x,x)

4. MIN(czero,X,czero)
5. MIN(x,x%,x)

6. MIN(cone,x,x)

The PROMETHEUS control module.

It is stripped down & takes advantage of knowledge about the problem to
omit certain more general ( & time consuming ) operations.

*/
demo :-

prove( 'sams lemma' ).
prove( 'sams lemma' ) :-

Start is cputime,

repeat,

get_clause( 1, SosID, FirstLiteral ),
clash( SosID, FirstLiteral ),

Mills Compiling and Executing Theorems Efficiently as Logic Programs



exhibit_proof( Start) .

save_log :-

tell( 'logfile.sam' ),
told.

/* fail here backtracks through all ir clauses
then we fall through to next clash clause &
put our "driver" clause into the hbg unless
we found a null clause

*/
clash( SosID, FirstLiteral ) :-

ir( FirstLiteral,
Resolvent,
IriD,
History),

check for null( Resolvent, SosID, IrID, History ).

check_for null( min(b3,e2,22), _ , _ » _ ) 3-

nl,

write( 'min(b3,e2,a2)' ),
nl,

write( '[]1' ),

tell( 'logfile.sam' ),

nl,

write( 'min(b3,e2,a2) []' ).
nl,

write( "[1' ).

tell( user ).

check_for_null( FirstLiteral, SosID, IrID, History ) :-

/* subsumption succeeds only if the resolvent is kept
x/

/* if we fail, then we back up & put original clause into hbg
*/

subsume( FirstLiteral ),

make history( SosID, IrID, History, NewHistory ),

retract( clause_id( Count ) ),
NewCount is Count + 1,

Mills Compiling and Executing Theorems Efficiently as Logic Programs
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*f

assert( clause_id( NewCount ) ),
assert( sos( 1, FirstlLiteral, Count ) ),

assert(( fs( FirstLiteral, Count )
))e

nl,

write( Count ),
tab(l),

write( FirstLiteral ),
tab(1l),

write( NewHistory ).

/* keep a logfile

tell( 'logfile.sam' ),
nl,

write( Count ),
tab(1),

write( FirstLiteral ),
tab(1),

write( NewHistory ),
tell( user ),

Ly
fail.

get_clause( Weight, SosID, FirstlLiteral ) :-

retract( sos( Weight, Firstliteral, SosID ) ),

assert( sc( FirstlLiteral, SosID ) ).,

retract( given( Count ) ),
NewCount is Count + 1,
assert( given( NewCount ) ),

nl,
write( 'Given clause ' ),
write( Count ),

write( is clause '),
write( SosID ),
write( ": '),

write( FirstLiteral ),

/* keep a logfile

*/
tell( 'logfile.sam' ),
nl,
write( 'Given clause ' ),
write( Count ),
Mills Compiling and Executing Theorems Efficiently as Logic Programs 13



write( is clause '),
write( SosID ),

write( ": "),

write( FirstLiteral ),
tell( user ),

get_clause( _ , _ , _ ) =-

nl,

write( 'Weighting excludes remaining clauses' ),
nl,

write( 'No proof found' ),

nl,

halt.

make_history( SosID, IrID, [], [ SesID, IxrID ] ).

make history( SosID, IrID, [ H | T ], [ SosID, IxrID, H | B3 ¥s

subsume( Clause ) :-

fs( Clause, _ )
Ly
fail.

subsume( _ ).

clause_id(32).

given(l).

exhibit proof( Start) :-

End is cputime,

Total is End-Start,

nl, '
write( 'Found proof in ' ), write( Total ), write( 'seconds’' ),
nl, '

write( 'Proof complete, see logfile.sam for history' ).«
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/* close logfile

*/
tell( 'logfile.sam' ),
nl;
write( 'Proof complete' ),
told.
/*

ORIGINAL:26 Mar 85

REVISED: 21 Apr 85

INFERENCE RULE ATTRIBUTES: INTIAL HYPERRESOLUTION SATELLITE CLAUSES
*/

sc( max(1l,%X,1),
sc( max(X,X,X),
sc( max(0,X,X),
sc( min(0,X,0),
sc( min(X,X,X),
sc( min(1,X,X),

s 8 @

b Wk
e e e

/*
ORIGINAL:26 Mar 85

REVISED: 21 Apr 85

INFERENCE RULE ATTRIBUTES: HYPERRESOLUTION NUCLEI

Ko,

/*

(X‘f> = (Y " X)

7. =MIN(xX,Y,2) | MIN(y,x%,2)
*/

ir( min(X,¥,2), min(¥,X,2), 7, [] ).

/*

(X v Y) = (Y v X)
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*/

ir{

ir(
ir(

14.

ir(

ir(

ir(

irg

-MAX(%,Y¥,2)

| MAX(y,x%,2)

max(X,Y¥,%2), max(¥,X,%), 8, [] )-

% ™ 2y =X

(X vy =X

-MIN(X,¥,2) | MAX(x,z,%)

-MAX(X,Y,2) | MIN(x,2,%)

min(X,¥,2), max(X,2,X), 2, [] )-

max(X,Y,2), min(X,%Z,X), 10, [] ).

(T 28y = (R Yy " 2

(Y vZ)=(XvY)vai

-MIN(x,y,xy) | -MIN(y,z,yz) | -MIN(X,¥Z,XyZ)
-MIN(X,¥,Xy) | -MIN(y,z,yz) | -MIN(XY,Z,XyZ)
-MAX(x,y,xy) | -MAX(y,z,yz) | -MAX(X,YZ,XyZ)
-MAX(x%,¥,Xy) | -MAX(y,z,yz) | -MAX(Xy,z,Xyz)

min(X,Y,X¥), min(XY,2,Xyz), 11, [ H1,H2 ] ) :-

sc( min(Y,Z,¥Z), H1),

sc( min(X,YZ,XYZ%), H2).

min(¥,Z,¥Z), min(XY,2%,XY3), 11, [ H1,H2 ] )

sc( min(X,Y,XY), Hl),

sc( min(X,¥Z,X¥Z), H2).

min(X,YZ,XY2), min(XY,Z,XYz), 11, [ H1,H2 ]

sc( min(Y¥,Z,YZ), H1),
sc( min(X,Y,XY), H2).

min(X,Y,XY), min(X,¥Z,X¥Z), 12, [ H1,H2 ] )

‘sc( min(¥,Z,¥Z), H1),

.

MIN(XY,2,XYZ)
MIN(X,¥2,XYZ)
MAX (XY, Z,XYZ)
MAX (X,YZ,XY2)

Mills
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ir(

ir(

ir(

ir(

ir(

ir(

ir(

ir(

/*

sc( min(XY,Z,XY3Z), H2).
min(Y,2,YZ), min(X,¥Z,XYzZ), 12, [

sc( min(X,¥,XY), Hl),
sc( min(XY,Z,X¥Z), H2).

min(XY,%,XY¥2), min(X,¥2,XY¥Z), 12,

sc( min(Y¥,2,YZ), Hl),
sc( min(X,¥,XY), H2).

max(X,Y,XY), max(XY,Z,X¥2), 13, [

sc( max(Y¥,%,Y¥Z), Hl),
sc( max(X,YZ,XY¥Z2), H2).

max(¥,%2,YZ), max(XY¥,Z,XYZ), 13, [

sc( max(X,¥,X¥), H1),
sc( max(X,YZ,XY2), H2).

max(X,Y%,XYZ), max(XY,Z,XY3), 13,

sc( max(Y¥,%,YZ), Hl1),
sc( max(X,Y,XY), H2).

max(X,Y,XY), max(X,YZ,XYz), 14, [

sc( max(¥,Z,¥2), Hl),
sc( max(XY,Z,XYZ), H2).

max(Y¥,%2,¥2), max(X,YZ,XY¥3), 14, [

sc( max(X,¥,XY¥), H1l),
sc( max(XY,Z,XYZ), H2).

max(XY,Z,X¥YZ), max(X,¥Z,XYZ2), 14,

sc( max(Y¥,%,Y¥Z), H1),
sc( max(X,Y,XY), H2).

H1,H2 ]

[ H1,H2

H1,H2 ]

H1,RH2 ]

[ H1,H2

H1,H2 ]

H1,H2 ]

[ H1,H2

(X “Z) =X ==> (Z " (X VY)) = (XV (Y " 2))

1

)

]

)

)

.

Mills
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(x *

15.
16.
17.
18.

*/

ir(

o cif

ir(

ir(

ir(

ir(

ir(

ir(

Z) = 7 =—>
-MIN(x,z,X) | -MAX(x,y,x1) |
-MIN(X,z,%) | -MAX(x,y,x1) |
-MIN(xX,z,2) | -MAX(y¥,z,y1) |
-MIN(X,Z,2) | -MAR(y,z,¥1) |

(R~ (Y v 2Z)) = (2V(X"Y))

~MIN(V,2,¥1)
-MIN(Y,Z,Y1)
-MIN(X,Y,X1)
~MIN(%,¥,%X1)

min(X,Z,X), max(X,¥1,zl1), 15, [ H1,H2,H3 ] )

sc( max(X,¥,X1), H1),
sc( min(¥,2,Y1), H2),
sc{ min(%Z,X1,Z1), H3).

max(X,Y,X1), max(X,Y1,Z1), 15,
sc( min(X,%,X), H1),

sc( min(Y,2Z,¥1l), H2),
se( min(Z%,X1,2z1), H3).

[ H1,H2,H3 ] )

-MIN(2z,X1,2z1)
-MAX(X,y1,21)
-MIN(x,y1l,21)
-MAX(z,x1l,2z1)

min(Y,Z,¥Y1), max(X,¥1,21), 15, [ H1,H2,H3 ] ) :-

sc( max(X,¥,X1), H1l),
sc( min(X,%,X), H2),
sc( min(Z,X1,%l), H3).

min(z,X1,21), max(X,¥l,z1), 15, [ H1,H2,H3 1)

sc( max(X,¥,X1), Hl),
sc( min(¥,%,¥1), H2),
se( min(X,Z,X), H3).

min(X,%,X), min(Z,X1,21), 16, [ H1,H2,H3 ] )

sc( max(X,¥,X1), H1l),
sc( min(Y¥,2,Y1l), H2),
sc( max(X,¥1,z1), H3).

max(X,¥,X1), min(Z,X1,2Z1), 16,
sc( min(X,%,X), H1l),
sc( min(Y,%Z,¥1l), H2),
sc( max(X,¥1,%21), H3).
Iﬂin(Y;z;Yl); min(Z,Xl,ZJ.), 16;
sc( max(X,¥,X1), H1),

sc( min(X,%Z,X), H2),
sc( max(X%X,Yl,21), H3).

max(X,¥1,21), min(Z,X1,21), 16, [ H1,H2,H3 ])

sc( max(X,¥,X1l), H1l),
sc( min(¥,Z,Yl), H2),

[ H1,H2,H3 ] )

[ E1,H2,H3 ] )

2 -
-

-
-

I
I
l
I

MAX(x,v1l,2z1)
MIN(z,x1,zl1)
MAX(z,x1,z1)
MIN(x,yl,21)
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ix(

ir(

ir(

ir(

ir(

ir(

ir(

ir(

sc( min(X,%,X), H3).

min(X,%,2), max(Z,X1,21), 17, [ H1,H2,H3 ] ) :-
sc( max(Y¥,%,Y¥l), H1l),
sc( min(X,¥,X1), H2),
sc( min(X,¥1,21), H3).

max(Y,%,Yl), max(Z,X1,21), 17, [ H1,HB2,H3 ] ) :-
sc( min(X,%Z,%2), H1l),
sc( min(X,Y¥,X1), H2),
sc( min(X,Y¥1,Z1), H3).

min(X,Y,X1), max(Z,X1,21), 17, [ H1,H2,H3 ] ) :-
sc( max(¥,Z,¥l), H1),
sc( min(X,%,%), H2),
sc( min(X,¥1,21), H3).

min(X,¥1,%Z1), max(Z,X1,21), 17, [ H1,H2,H3 ] ) :-
sc( max(Y,Z,Y1l), H1l),

sc( min(X,Y,X1), H2),
sc( min(X,%,3), H3).

min(X,%,%Z), min(X,Y1,%1), 18, [ H1,H2,H3 ] ) :-
sc( max(Y¥,Z,¥1l), H1l),
sc( min(X,Y¥,X1), H2),
sc( max(Z,X1,2Z1), H3).

max(Y,Z,¥l), min(X,¥1,%1), 18, [ H1,H2,H3 ] ) :-
sc( min(X,%,Z), H1l),
sc( min(X,Y¥,X1), H2),
sc( max(Z,X1,2Z1), H3).

min(X,Y¥,X1), min(X,¥1,21), 18, [ H1,H2,H3 ] )

sc( max(¥,%2,¥1l), H1),
sc( min(X,%,2), H2),
sc( max(%,X1,21), H3).

max(Z,X1,%1), min(X,¥1,21), 18, [ H1,H2,H3 ] ) :-
sc( max(Y¥,Z,Yl), H1),

sc( min(X,Y,X1), H2),
sc( min(X,%Z,2), H3).
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/*
Negation of Sams Lemma

19. MIN(a,b,c)

20. MAX(d,c,cone)
21. MIN(b,d,e)

22. MIN(a,e,czero)
23. MAX(b,a2,b2)
24. MAX(a,b2,cone)
25. MAX(a,b,c2)
26. MIN(a2,c2,czero)
27. MIN(d,a,d2)
28. MAX(a2,d2,e2)
29. MIN(d,b,a3)
30. MAX(a2,a3,b3)

NO INFERENCE RULE ATTRIBUTES FOR THE ABOVE POSITIVE UNIT CLAUSES

This negative unit clause has an "ir" clause, but it is not visible at the
start of the run. It is made visible as the run progresses.

Also note that a hyperresolution rule for a unit clause will generate a null
clause automatically if there are no satellite literals.

31. -MIN(b3,e2,a2)

/.

ir( min(b3,e2,a2), 31 ).

/*

ORIGINAL:26 Mar 85

SET OF SUPPORT CLAUSE ATTRIBUTES: NEGATION OF THE THEOREM

19. MIN(a,b,c)
20. MAX(d,c,cone)
21. MIN(b,d,;e)
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22. MIN(a,e,czero)
23. MAX(b,a2,b2)

24, MAX(a,b2,cone)
25. MAX(a,b,c2)

26. MIN(a2,c2,czero)
27. MIN(d,a,d2)

28. MAX(a2,d2,e2)
29. MIN(d,b,a3)

30. MAX(a2,a3,b3)

*/

sos( 1, min( a , b , ¢ ), 19 ).
sos( 1, max(d , ¢, 1), 20 ).
sos( 1, min( b , d , € ), 21 ).
sos( 1, min( a , e , 0 ), 22 ).
sos( 1, max( b , a2, b2), 23 ).
sos( 1, max( a , b2, 1), 24 ).
sos( 1, max( a , b , c2), 25 ).
sos( 1, min( a2, c2, 0 ), 26 ).
sos( 1, min( d , a , d42), 27 ).
sos( 1, max( a2, d2, e2), 28 ).
sos( 1, min( d , b , a3), 29 ).
sos( 1, max( a2, a3, b3), 30 ).

/*

ORIGINAL:13 Apr 85

REVISED: 21 Apr 85

SUBSUMPTION ATTRIBUTES: FORWARD SUBSUMPTION USING AXIOMS

1. MAX(cone,x,cone)
2. MAX(X,X,X)

3. MAX(czero,X,X)

4, MIN(czero,x,czero)
5. MIN(xX,%,X)

6. MIN(cone,X,X)

fs( max(1l,X,1), 1).
fs( max(X,%,X), 2).
fs( max(0,%,%), 3).
fs( min(0,%,0), 4).
fs( min(X,%,X), 5).
fs( min(1,X,X), 6).

Mills Compiling and Executing Theorems Efficiently as Logic Programs



/*

SUBSUMPTION ATTRIBUTES: FORWARD SUBSUMPTION USING NEGATION OF THE THEOREM

19. MIN(a,b,c)

20. MAX(d,c,cone)
21. MIN(b,d,e)

22. MIN(a,e,czero)
23. MAX(b,a2,b2)
24. MAX(a,b2,cone)
25. MAX(a,b,c2)
26. MIN(a2,c2,czero)
27. MIN(d,a,d2)
28. MAX(a2,d2,e2)
29. MIN(d,b,a3)
30. MAX(a2,a3,b3)
31. -MIN(b3,e2,a2)

®y

fs( min(a,b,c), 19).
fs( max(d,c,1l), 20).
fs( min(b,d,e), 21).
fs( min(a,e,0), 22).
fs( max(b,a2,b2), 23).
fs({ max(a,b2,1), 24).
fs( max(a,b,c2), 25).
fs( min(a2,c2,0), 26).
fs( min(d,a,d2), 27).
fs( max(a2,d2,e2), 28).
fs( min(d,b,a3), 29).
fs({ max(a2,a3,b3), 30).
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