TECHNICAL REPORT NO. 260

The Analysis of Hashing
with Lazy Deletions

by
Pedro Celis and John Franco
Revised: November, 1989

COMPUTER SCIENCE DEPARTMENT
INDIANA UNIVERSITY

Bloomington, Indiana 47405-4101

The Analysis of Hashing with Lazy Deletions*

Pedro Celis, John Franco

Department of Computer Science,

Indiana University, Bloomington Indiana 47405

November 8, 1989

(revised)

Abstract

We present new, improved algorithms for performing deletions and subsequent
searches in hash tables. Our method is based on open addressing hashing extended to
allow efficient reclamation of unoccupied space due to deletions which enables dynamic
shortening of probe sequence lengths. We present an analysis on the number of table
probes required to locate an element in the table. Specifically, we present a formula
which bounds the average number of cells visited during searches of a data element
over its lifetime assuming a system in equilibrium. The formula is a function of the
probability that an accessed element is deleted and is exact at the extreme points when
the probability is 0 and 1. In the case that the probability is 0 and the load factor is
@, the number of cell visits per search access is —In(1 — @)/, and in the case that the

probability is 1 the number of cell visits per search access is 1/(1 — a).

"This research was supported in part by the Air Force Office of Scientific Research under grant numbers

AFOSR 84-0372 and AFOSR 89-0186

1 Introduction

Hashing or scatter table storage (5] is an efficient data structure for the dictionary (insert,
delete, member) problem. The load factor a of a table is defined as the ratio of the
number n of records or elements in the table divided by the number m of elements the
table can hold. The advantage of hashing schemes is that if @ < 1, the average cost of
performing any of the dictionary operations is bounded from above by a function of «
only and is independent of the values of n and m. This compares favorably with tree-
like structures and other key comparison based schemes where the average cost of the
dictionary operations is Q(logn).

The idea of hashing is to obtain a memory address or cell where an element is stored
by applying a hash function to the key of the element. The candidate cell provided by
the hash function is not affected by the presence or absence of any other key values in the

table.

When two elements hash to the same cell we say a collision has occurred. Even if the
hash function uniformly distributes all possible key values among all the available cells,

collisions are likely to occur if a is a fixed constant between 0 and 1.

There are two general approaches for resolving collisions, namely chaining and open
addressing. In chaining, cells are part of a data structure (usually a linked list) where
all elements with the same hash value (called synonyms) are stored. There are many
variants and interesting approaches in collision resolution by chaining. Our interest lies in

a technique that requires no additional storage, namely open addressing.

In open addressing, collisions are resolved by rehashing one of the colliding elements.
The hash function must therefore be augmented to give, for each key value, not one but
a probe sequence of cells to be used during queries, insertions, and deletions. The probe

position of an element is the cell where the element is currently stored.

There are several techniques used to generate probe sequences. The most effective is

perhaps Double Hashing where the hash function is
H(K,i) = (hi(K)+ (i — 1) % hy(K)) mod m,

hy and h; are auxiliary hash functions, and the m cells are numbered from 0 to m — 1.
The function h; gives the first choice (probe position 1) for the key K and the function hs,,
usually referred to as the step function, gives the value that must be added to the current
cell address to give the next cell in the probe sequence. As long as ha(K) is relatively
prime to m, then the first m cells of the (arbitrarily long) probe sequence will form a

permutation of the numbers 0 to m — 1.

Analyzing the performance of open addressing with Double Hashing is difficult [2],[4].
A method that closely resembles the performance of Double Hashing but is much simpler
to analyze is Random Probing [3]. In Random Probing each cell of the probe sequence for
a key is simply a random number between 0 and m — 1. Hence an element could be probed

twice before another element is probed for the first time.

Peterson [5] proved that after a large number of insertions and deletions (maintaining
the load factor at constant a) the average number of rehashes of a successful query is
1/(1 — a). This cost can be improved by dynamically shortening probe sequences. This
can be accomplished by moving elements when cells become vacant due to deletions. Un-
fortunately, the overhead of determining which elements to move is prohibitive. However,
probe sequences can be shortened lazily with very little overhead as follows. When an
element is searched, if there exists a cell in its probe sequence that is unoccupied, then the
element is moved to the earliest such cell in the sequence. In this paper we examine the
cost of open addressing hashing using this lazy method of dynamically shortening probe

sequences.

2 Definitions and Notation

A hash table is assumed to consist of m cells. At any moment, a cell may contain a data
item called a record or element. Such a cell is said to be occupied. A cell not containing
an element is said to be unoccupied. The following operations may be applied to the hash

table:

e insert an element into an unoccupied cell (the cell becomes occupied)

o delete an element from an occupied cell (the cell becomes unoccupied)

e query and perhaps relocate an existing element

If an element is either deleted or queried we say that the element is accessed.

When an element E is accessed or inserted, one or more cells may be visited in addition
to the cell containing E. The sequence of cells visited before and including accessing or
inserting E is called the probe sequence of E. The number of cells in the probe sequence
of E is its probe sequence length. The probe sequence of E may change after E is accessed
or inserted because E' may be moved to an unoccupied cell closer to the beginning of its
probe sequence. Hence, we define ps,(E) and psl(E), i > 0, to be the probe sequence
and probe sequence length at the i*" access of element E. Also, we define psy(E) and
psly(E) to be the probe sequence and probe sequence length when E is inserted into the
hash table. In what follows the dependence on E will be dropped since it will be clear

which E is being referred to.

We will be interested in the probabilities of several events associated with the probe

sequence of an element. Let r be a hash table cell in ps,. Denote by X)(E) the event that

r is occupied by some element other than E when E is queried for the i** time. Denote
by Yi(E) the event that the number of accesses of E during its lifetime is at least equal

to s+ 1. After an element E is inserted into the hash table, a number of table operations

4

are performed until E is visited for the first time and accessed. Denote by QES)(E) the
event that the s cell in ps, is occupied when the j** operation after the insertion of E is
performed. Denote by R,(E) the event that the element in cell » is relocated given that
it is queried on the next operation. As before, the dependence on E will be dropped for

simplicity. In the case of R,(E), the dependence on r will also be dropped.

The search cost of an element is the number of cells visited during its lifetime. We
are interested in determining the expected search cost for all elements in the table when
the table reaches equilibrium. It is sufficient to compute the expected search cost of a
random element during its lifetime. Let S be a random variable equal to the search cost
of a random element during its lifetime. Let 1 be a random variable equal to the number
of times a random element is queried during its lifetime. For a particular random element
we can write 5 = .72, psl, where psl, = 0if i > 14 1. Then

§=E[S] = E[ZZ,psl]= Z; E[psl;]

= >-(Elpsl, | YJPr{¥;} + E[psl | ;| Pr{F:})

-
Il
-

I
gk

i Pr{psl; > k | Y;}Pr{Y;}. (1)

=1k

-
Il

Equation (1) gives us a way to compute 5. We are also interested in computing the

average number of visits per access. The expected value we are seeking is then

o0

ZE[pSll +...+psl |1=1]/1 Pifl={}.
i=

ary

However, this is hard to compute. Therefore, we use the simple measure
S/(EQ] +1)

instead. The difference between the two is small and the simple measure is enough to

afford valuable insight into the behavior of our hashing technique.

3 Analysis of the Method

An unbounded sequence of operations shall be applied to the table for the purposes of

analysis. Operations will be modeled by a series of dart throws or hits, as follows:

Randomly choose one of the m cells.

o If the cell is occupied,

— with probability P; delete the element in that cell.
— with probability 1 — P; query and perhaps relocate the element in that cell.

e If the cell is unoccupied,

— with probability P; insert an element there using a random hashing function.

It should be pointed out that, in the model above, we are choosing a cell which either
contains an element that is to be queried or is (possibly) about to contain such an element.
In other words, the cell chosen in the model above is not the beginning of a probe sequence
of the interesting element. When an element is queried or inserted it is understood that
the cells of the probe sequence of that element are visited first, the probe sequence having

been constructed by a uniform hash function.

We must relate P; and P; in a special way in order to maintain equilibrium. If on
a hit the table load factor is a, a delete will occur with probability aP,;, a search with
probability a(1 — P;), an insertion with probability (1 — a)P;, and no operation with
probability (1 — a)(1 — P;). We choose P; and P; such that, over a long sequence of hits,
the table occupancy reaches an equilibrium load factor . The table will be in equilibrium
only if the rate at which deletions occur equals the rate at which insertions occur. Thus,

we have
l -«

Pr= ¢

04

To obtain the results of this section we assume that the following two properties hold.

6

Property 1: No element in the table has a probe sequence that intersects the probe

sequence of designated element E in more than one cell.

Property 2: During the lifetime of element E the load factor is equal to a.

In the appendix we prove that these assumptions hold with probability tending to 1 as
m goes to infinity. Property 1 implies that insertions and deletions in cells in the probe
sequence of F are independent of each other, and property 2 implies that transitions for a
location from occupied to unoccupied and vice versa are essentially constant for a table in

equilibrium.

We wish to find S and E[l]. It is easy to dispense with E[] first.

Theorem 1
Ell] = (1 — Py)/Pa.
Proof: Every time E is accessed it will be queried with probability (1 — P;) and deleted

otherwise. Hence 1 has a geometric distribution. O

Next, we build toward an expression for S.

Lemma 1 Let r be a cell in ps,. Then

Pr{X) | X0, %} = pe{x | X0, i)

Proof: Follows from the independence of insertions and deletions due to property 1 and

the constant transition probabilities due to property 2. O

In other words, the probability that an occupied cell on the it access of Fis unoccupied
on the (i+1) access of E is not affected by the fact that the cell is in the probe sequence of
E, and the number of times E has been accessed. Lemma 1 holds for all cells in the probe

sequence of E and does not depend on r nor on the position of » in the probe sequence of

E.

Lemma 2 Let r1,7;,...,74 be the first k cells in the probe sequence of element E, on its

1" access. Then

P?”Iﬂlqac X | Mi<i<k th}:}’ } P’-"{ﬂ1<:<k X; i | Mk Xs(rlz):}'—}-

Proof: From Lemma 1 we write

IT Pe{x |28 %] = T PofXly | 21,5}
1<I<k 1<i<k
If at least k cells are in ps; then psl; > k so 71,73, ..., 74 are occupied right before and after
the (i — 1) query of element E (otherwise element E would have been placed in the first
unoccupied location among these). The probability that a cell has gone from occupied at
the (2 — 1) query to unoccupied at the i*® query is the same for all cells r in AV hswws FEE
Furthermore because of property 2, the probability that a particular cell 7 in {ri,..., %}

has gone from occupied to unoccupied is independent of the state of the other cells in

{r1,...,7}. Thus

I1 Pe{x™ | x00¥) = T Pe{X, x| v:l/Pe{xEY | v))
1<i<k 1<I<k

= Pl‘{ﬂlgzgk X,E”),X‘-(:‘) | YaI/Pr{ﬂKKkX e | Y}
= Pr{n1gzgk X,;(”) | 01515:: Xi-uyl}-

Similarly,

I PeAxI | X0V %) = Pr{figad) | Miew X0 50

1<i<k

The lemma follows. O

Lemma 3

Pr{psl; > k| Y;} = (Pr{psl, > k| psl, > k})' o*

Proof:

Pr{ps > k| Y;} = Pr{psl;>k,psl_, > k| Y;}
= Pr{psl, > k| psl_, > k,Yi}Pr{psl,_, > k | Y:}
= Pr{psly> k| ¥} [Pr{psl; >k |psl,_, >k,)8

1<5<

From Lemma 2
Pr{psl,; > k | psl; > k,¥i} = Pr{psL; > k | psl,_, > k, v:}.
Thus,

Pr{psl, > k |Y;} = (Pr{psl, >k |psl, > k,Y;})' Pr{psl, > k | ¥;}
= (Pr{psl, > k | psl, > k})' Pr{psl, > k}.

Since psl, has a geometric distribution, its cumulative distribution is Pr{psl, > k} = o*.

Substituting, the lemma follows. O

We now find bounds for Pr{psl, > k | psl, > k}. Let random variable q; be the posi-
tion of the first unoccupied cell in ps, when j operations have been applied to the hash
table since the insertion of E. Let random variable r be the number of operations applied

to the hash table from the insertion of E until E is either searched for the first time, or

deleted. Then

Pr{psl, > k| psl, > k} = Pf{qj >k, r=j|q> k}
1

Fa

= ZPr{qJ->k|q0>k,l‘:j}'P1‘{r=j|%>k}

3=1
The distribution of r is geometric and independent of q, so

Lemma 4

1\ 1
Pr{r:j}:Pr{r:j|q0>k}:(1——) =

Also,

Lemma 5

Pr{qj>k|q0>k,r=j} = (a-l— l—a) 1—

| =3}
- Z())(1'1Iia)

where Poy 15 the transition probability that a cell in ps, goes from occupied to unoccupied

on the next operation.

Proof: Since the change of state between occupied and unoccupied for the cells in the

probe sequence of E are independent between searches of E, we can write

k
Pr{qj >k|qy>k,r :3} = H Pr{QEJ) | Qg’}}.
s=1

The state of the st* cell, between queries of E, alternates between occupied and unoccupied

according to the following Markov process:

where Py, is the probability that on the next hit cell 5 goes from occupied to unoccupied
and P,, is the probability of the opposite transition. The s cell can become unoccupied

if the element in it is deleted or if it is queried and relocated. Then

pd&

m

P, = Pr{R}

(2)

10

Also, since the table is a-full we can write

abP,, =

(1 — a)Py,.

Solving this finite Markov chain [1] we obtain the probability that the st*

sequence of E is again (or still) occupied after j hits.

Pe{@ | Q) =

The lemma follows. O

Lemma 6

fites

a)(l—

(1-pP,)Pr{R}

cell in the probe

Z k—i '(1_ e — P,:]m)a
Pr{psl, > k | psl, > k} = () a1l —-a)
s 1+ 1 Pg+(1- Pd, PT‘{R} ()
Proof:
59 1
Pr(psl, > & |psly > £} = 3 Pr{a, > kg > kr=s}(1-2) =
=t
og‘ k k) -1 1
S (oo o) 1)
j=1i=0 \? m m
LR Y g 5 Pou \¥ 1y d
= ;Zg(;-)a p-afy - () 5
= 1=1
Ry e

Substituting for P,, using (2) we obtain,

(1-

Pr{psl, > k | psl, > k} =

(1— Pd)Pr{R}

Fy

s

(1—a)m T (1—a)m
-p,)Pr{R "
R MY

(-

(1-r)Pr{R}

Py

(1—a)m (1-a)m

y

_ {1-ry)Pr{R}

P

= %i() ey (1!
S

11

(1—a)m

o (1—-a)m

+0()) (1-4)

The lemma follows after rearranging terms. O

We are now ready to state the main result.

Theorem 2

i Pr{psl; > k| Y;} Pr{Y;}

Uy
I
M8

P
I
o
@,
-

o* Pr{psl, > k | psl, > k}
k—o L = (1 — P3)Pr{psl, > k | psl, > k}

where Pr{psl;, > k| psl, > k} is given by Lemma 6.

I
18

Proof: Follows from Lemmas 3 and 6 and the fact that Pe{Vi}=(1=B A

Although the result of Theorem 2 is messy, it can be used to obtain a bound on 5. If
we make Pr{R} = 0 then we only slow the rate at which element E can be moved back in

its probe sequence, therefore increasing the value of §. Thus,

k
Pr{psl, > & | psl, > k} < Z() ‘(1 — a)—1

14 7t
LW . P Pyi \?
< -1 _ ! .
- g(i)a (1-a) (1 1—a+(1—a))
2

Therefore,

Fes <

x=11-—(1-—Pd)(1-—Pd(93—1)+P(x 1(1‘*'(1_0‘)(37_'2)))

- 5 L

=1 Pdw—Pj(m—l)(-liLa+;c) + P}(z — 1) (2“ 14—3,)‘

z—1

-1

Splitting the sum into two intervals, one from z = 1 to z — \J_.-’i] /Py and the other from
1/Pi+1 to co we get

1/ Py am—l
5< . + aVl/Pg
r=1 Pd(‘[- €(Pd))33

12

where €(Py) < \/P;. Extending the upper summation limit to infinity we get

50
” —In(1 — @)
S = — . 3
T a1l — €(Py))Py(1 — avPa) 3
If Py is very small the upper bound of (3) is approximately —In(1 — a)/(aF;). An upper

bound on the number of visits per access (that is S/(E[l] + 1)) is, therefore, —In(1 — @)/a

in this case. If P; = 1 then we have

4 Summary

In this paper we have presented a very simple algorithm for reorganizing a hash table
where deletions have occured during searches of table elements. We have presented an
analysis that proves that if searches are much more frequent than insertions and deletions
the average cost of successful searches is the same as if the deleted elements were never
inserted into the table. We have derived a formula that may be used to bound the average
number of cell visits in an element’s lifetime in a system in equilibrium with any constant

load factor and probability of deletion.

References

(1] Feller, W., An Introduction to Probability Theory and its Applications, Vol. I, John Wiley
& Sons, New York, 1968

[2] Guibas, L.J., “The Analysis of Hashing Techniques that Exhibit K-ary Clustering”, Journal
of the ACM, Vol. 25, No. 4, pp.544-555, October 1978

(3] Knuth, D.E., The Art of Computer Programming, Vol. III: Sorting and Searching, Addison-
Wesley, Reading, Massachusetts, 1973

13

[4] Lueker, G.S. and M. Molodowitch “More Analysis of Double Hashing”, Proc. 20th ACM
Symposium on Theory of Computing, Chicago, Illinois, May, 1988

[5] Peterson, W. W., “Addressing for Random-Access Storage”, IBM Journal of Research and
Development Vol. 1, No. 2, pp.130-146, April 1957

14

5 APPENDIX

In this section we justify assumptions 1 and 2 under the conditions that P;, P;, and

therefore a = n/m are fixed. First we show

Lemma 7 During the lifespan of element E, the fraction of occupied cells is between

a —1/n'* and a 4 1/n'/* with probability tending to 1.

Proof: Let g;(t) be the probability that i cells are occupied at time ¢. We may use a well
known birth and death model to develop recurrence relations for ¢;(t). We represent the

equilibrium probabilities as ¢; and find

Let @ be the event that the number of occupied cells is not between (1 — B)an and
(1 + B)an at any time assuming eqilibrium. By using the Chernoff bound for binomials
we have

Pr(Q1janiis) < 2e~ Ve

Thus, one of every 2eV™/ hits either witnesses fewer than (1 — 1/an!/*)an occupied cells

or greater than (1 + 1/an'/*)an occupied cells.

Consider an interval of n? consecutive hits with start point chosen randomly. The
probability that @, ,mi/¢ occurs in this interval is maximized if all hits which witness

®1/ant/+ are evenly spaced. Then the probability is at most n2e~V™< which tends to zero.

Finally, because the lifespan of E is geometrically distributed, the probability that the
lifespan of E includes more than n? hits is (1 — Pz/n)” which tends to zero. Hence the
probability that the fraction of occupied cells is between a — 1/n'/* and a + 1/n!/* during

the lifespan of F tends to one. O

Next we show

Lemma 8 During the lifespan of E, with probability tending to 1 there is no element in

the hash table which has a probe sequence that intersects two or more cells of Ps,.

Proof: Suppose A percent of the cells of ps, are occupied, ps, has y cells, and 8 percent
of all other cells are occupied. Then B(n — y) = an — Ay. The probability that the
probe sequence, if any, of the next hit has z cells, none of which intersecting pso, is
(B(n —y)/n)**(1 — @ — (1 — A)y/n). The probability that the probe sequence of the
next hit has z cells, the last of which intersects ps,, is (8(n — y)/n)*"*(1 — A)b/n. The
probability that the probe sequence of the next cell has # cells, one of which, but not the
last one, intersecting ps; is (B8(n — y)/n)*"%(zAb/n)(1 — a — (1 — A)b/n). Summing these
three probabilities gives the probability that the probe sequence of the next hit, if any, has
z cells and intersects ps, in at most one cell. Using B(n —y) = an — Ay and simplifying,
this sum is

(5(1 —a)+ % (zAy(l — @) — By(1l — a)) + % (w/\2y2 B myz)) (M)x_z.

n

Summing over all z gives the probability that the probe sequence of the next hit, if any,
intersects ps, in at most one cell. This is
f o om Ay(l-a) Ay(1-2)
+ n T .
- Ay - Ay})2
AR M)

This probability is minimum for A = 1. In this case its value is

y y? y
¥ .o (—) +
n(l — a) ") a(l-a) (14 —M—n(l_m})2

= 5(1%?)*0(&) * e (1_ im0 (y—))

yZ
~1o(2).

Hence, the probability that the probe sequence of the next hit, if any, intersects ps, of size

y more than once is O(y?/n?). Therefore, the probability that the probe sequence of the

16

next hit intersects ps; in more than one cell is less than

n 2 1
TL T
y=0
The probability that all probe sequences intersect ps, in no more than one cell during the

lifespan of E is less than

o) (1-3) 2= (3)

J=0

which tends to zero as n tends to infinity. This proves the Lemma. O

17

