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Abstract

Nested relations provide a better representational model for complex objects than
ordinary (flat) relations. Most query languages for nested relations, however, reformat the
structure of complex objects while accessing and manipulating them. If queries involve
attributes of objects that are nested deep inside the structure of the relation scheme, the
relation has to be flattened before these queries can be performed. A recursive algebra
for nested relations that allows manipulation of complex objects without always having to
flatten them is presented in this paper. Queries written in this algebra are more succinct
and hence easier to formulate.

1. Introduction

The traditional relational model requires that all values in a relation be atomic, i.e.,
non-decomposable. Although this model is sufficient for representing objects that have
simple domains, complex objects cannot be represented easily. A number of database
applications, particularly in the areas of CAD/CAM, office automation, textual data and
engineering designs, involve complex objects and the relational model is unsuitable for such
applications. Normalization in the relational model causes a lot of fragmentation in the
representation of objects. Information about objects and their relationships is scattered
over several different flat tables. This in turn causes queries to be slow and complicated

since excessive joins have to performed among the various relations in the database.

The nested relational model, also sometimes called NF? (non- first normal form), is a
generalization of the traditional relational model without the first normal form assumption.
This means that attributes of a relation can have non-atomic values. They can have

relations as values which can hence be viewed as subrelations of the relation. The nested
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relational model allows users to view the database in a way that is closer to their concept
of the real world since complex objects can be represented as a whole in a single relation

instead of being distributed over several different relations.

Many algebra and calculus based query languages have been proposed for nested
relations. In most cases, however, these languages are merely simple extensions of the
query languages that were developed for the relational model. In algebra based languages,
for example, operators like select and project have similar definitons for both the relational
and the nested relational model, :i.e., they can only operate at the outermost level of a
relation even if it is a nested relation with relations embedded at several different levels. If
a query on a nested relation involves attributes that are nested deep inside the structure
of the relation, the relation has to be “flattened” until the attributes of interest are at the
outermost level. Operations like selection and projection are now performed and the result,
in some cases, is transformed back to the structure of the original nested relation. The
transformation to and from a nested relation is done in the nested relational algebra using
“nest” and “unnest” operators. Hence, although the nested relational model provides a
better way of modeling complex objects, most query languages for this model cause the
structures representing these objects to be restructured while they are being queried thus
defeating the main objective of letting the user operate in an environment that models
the real world as closely as possible. Since values of attributes of relations can themselves
be relations, nested application of the algebraic operators on these subrelations should be
allowed so that a nested relation can be accessed and manipulated at all levels without
always having to be restructured. A query language which enables recursive application
of the algebraic operators from the topmost level down through the relations at different
levels would give us a more natural way of querying the database. The algebra for nested
relations that is introduced in this paper has operators that are recursively defined and can
hence access and manipulate nested relations at all levels without having to flatten them.

In addition, queries written in this algebra are more succinct and hence easier to formulate.

The next section provides a background for the remainder of the paper with a brief
set of definitions for the nested algebra. Section 3 introduces the new recursive algebra
for nested relations. Section 4 establishes the equivalence of the two algebras and finally,

Section 5 gives a summary of the paper.



2. The Nested Relational Model

2.1 Background

In 1970 Codd [3] introduced the relational model for databases which is based on the
first normal form (1NF) assumption. A relation is in INF if all the attributes in the
relation have only atomic (non-decomposable) values. This assumption makes it difficult
to model complex objects in certain applications. Makinouchi [11] suggested that the
1INF assumption be relaxed so that attributes can be set-valued. Jaeschke and Schek [9]
proposed a generalization of the relational model by allowing relations to have non-atomic
or set-valued attributes. Thomas and Fischer [20] generalized the model of Jaeschke and
Schek and since then a number of researchers [22,18,1,17,14,15,16,12,23,8] have extended
the relational database theory to nested relations. Several groups [2,4,5,7,13,19] are at-

tempting to implement the nested relational model, either directly or on top of an existing

DBMS.

The tables in Figure 1 are an example of a database for a stock-brokerage firm
represented in the (flat) relational model. Figure 2 shows the same information in a nested
relational schema. In Figure 2, the attribute INVESTMENTS is a relation-valued attribute
of the relation CLIENTS which in turn has SHARES as a relation-valued attribute. In the
example given here there are only two levels of nesting. In general, relations can be nested
to any arbitrary but finite depth, i.e., relations can have relation-valued attributes, which

can have relation-valued attributes and so on.



CLIENTS

NAME COMPANY | PURCHASE DATE NO.
PRICE
CLIENT INFO.
John Smith XEROX 64.50 02/10/83 | 100
John Smith XEROX 92.50 08/10/87 500 NAME ADDRESS
John Smith | 1BM 89.75 06/20/83 | 200 311 East 2nd. St.
John Smith | Bloomington, IN
John Smith | 1BM 96.50 1110/84 | 100 47401
i 41 North Main St.
Jill Brody EXXON 35.00 01/30/81 100 itBrody | Obertie, Of
44074
Jill Brody EXXON 64.50 01/30/82 | 100
Jill Brody EXXON 59.50 02/10/83 | 200
Jill Brody FORD 35.50 02/10/83 | 200
[ Jill Brody SEARS 35.75 12/25/87 | 100
EXCHANGE DATA
COMPANY | EXCHANGES
XEROX NEW YORK
IBM NEW YORK
STOCK DATA
IBM LONDON
COMPANY | CURRENT | LAST IBM HONG KONG
PRICE DIVIDEND
IBM TOKYO
XEROX 52.25 0.44
EXXON NEW YORK
L 97.50 1.25 EXXON LONDON
ol 90.00 0.82 EXXON TOKYO
FORD 41.75 0.20 FORD NEW YORK
SEARS 77.50 034 SEARS NEW YORK

Fig. 1 An Example of a Flat Relational Model



CLIENTS

STOCK DATA

COMPANY

CURRENT
PRICE

EXCHANGES
TRADED

LAST
DIVIDEND

EXCHANGES

XEROX

52.25

NEW YORK

0.44

IBM

97.50

NEW YORK
LONDON
HONG KONG
TOKYO

1.25

EXXON

90.00

NEW YORK
LONDON
TOKYO

0.82

FORD

41.75

NEW YORK

0.20

SEARS

77.50

NEW YORK

0.34

i ALGRESS INVESTMENTS
SHARES
COMPANY
. PURCHASE DATE NO.
PRICE
John Smith 3|1'| East 2nd. St.
Bloomington, IN 64, 2710/83 | 10
47401 XEROX A5 . 0
92.50 08/10/87 | 500
89.75 06/20/83 | 200
IBM
96.50 11/10/84 | 100
i 41N i i
1 Brody Obeﬁg?g";'“ Y 3500 | 01/30/81 | 100
44074
EXXON 64.50 01/30/82 | 100
59.50 02/10/83 | 200
FORD 35.50 02/10/83 | 200
SEARS 35.75 12/25/87 | 100
Fig. 2

An Example of a Nested Relational Model

2.2 Definitions for the Nested Relational Model

Let A be the universal set of attribute names and relation scheme names. A relation
scheme of a relation is of the form R(S) where R € A is the relation scheme name and S is
a list of the form (A;, Az, ..., An) where each A; is either an atomic attribute or a relation

scheme of a sub-relation. If A; is a relation scheme of the form R;(S;), then R;, the name

of the scheme, is called a relation-valued attribute of R.

Let D be the domain of all the atomic attributes in .A. An instance r of a rela-
tion scheme R(S), where S = (A1, As,...,Axn), is a set of ordered n-tuples of the form
(a1,a2,...,ar) such that
(1) if A; is an atomic attribute, then a; € D.

(2) if A; is a relation scheme, then a; is an instance of A;.

5




An instance of a relation scheme is also referred to as a relation.

Let R(S) be a relation scheme. Attr(R) is the set of all (atomic and relation-valued)
attribute names in S. RAttr(R) is the set of all relation-valued attributes in S. FAttr(R)
is the set of all flat or atomic attributes in S. deg(R) is the number of attributes in S.

Henceforth, when we refer to a relation scheme, we will refer to it by its name alone. e.g.,

R instead of R(S).

Let r be an instance of R and let ¢ € r (a tuple in relation r). If A € Attr(R)
then t[A] is the value of ¢ in the column corresponding to A. If B C Atir(R) then
t[B] = t[A1]t[As]...t[An] where A; € B (1 <7< m).

¢ is a condition on R if

(@) c=¢

(b) ¢ = afb where,(i) a is an atomic attribute of R or an atomic value and b is an atomic
attribute, a and b have compatible domains and 8 € {<,>,<,>,=,#}. (ii) a and b are
relation-valued attributes of R and 6 € {C,C,=,#,2,D}. (iii) b is a relation-valued
attribute of R and a is a tuple in some instance of b and 6 € {€, ¢}.

(c) cl and ¢2 are two conditionson R and c=clAc2or c=clV 2 or ¢ = —cl.

If t is a tuple in some r € R, then

(a) If ¢ = ¢ then c(t) = true

(b) If ¢ = abb then c(t) =(1) t[a]ft[b] if a and b are both attributes (2) at[b] if only b is
an attribute and (3) £[a]6b if only a is an attribute.

(c) e(t) = cl(t)Ac2(t), cl(t)V c2(t) and —cl(t) when c =clAc2, ¢c=¢l1Ve2 and ¢ = —cl

respectively.

2.3 The Nested Relational Algebra

Query languages for the nested relational model were developed by Roth, Korth and Silber-
schatz [17], Thomas and Fischer [20], Schek and Scholl [18], and several others[14,16,10,12].
A brief set of definitions for the algebra developed by Thomas and Fischer is given below.
This will be used as a basis for showing the equivalence of the recursive algebra introduced

in this paper and the non-recursive algebra (the algebra of Thomas and Fischer).
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Unary Operators

Unary operators are defined in the algebra

of Thomas and Fischer as shown below. Figure 3
is an example of a nested relation that is

used to illustrate the results of performing

these operations. The respective result of

each operation is shown in Figures 4 through 7.

(1) Selection o
The select operator retrieves all the tuples

in the relation which satisfy a certain condition.

o(r)y={t|t€r|c(t) = true}

where ¢ is a condition on the attributes of R

(2) Projection m
This operator ‘projects’ out the columns

corresponding to the attributes in the set A.

ma(r)={t|Juer|t=ul[d]}
where A C Atir(R)

mry(z1)
F
G H
gr |
g1 | hz
g2 | hs
Fig. 5

T3

A
D
(3
£ G H
e
<
a - g1 | hy
g1 | h
<
e g1 | hy
az 2
€3 g1 | h2
a3 (<] g2 | h3
Fig. 3
Ol Ameai VW Ammaz) 25
B
A
D
C
- G H
e
=}
af 3 g1 | h
g1 | ha
o
a3 3 g2 | hs
Fig. 4




(3) Nestv

The nest operator, also sometimes called ‘pack’,
groups together tuples which agree on all the
attributes that are not in a given set of

attributes, say B. It forms a single tuple which has
a new attribute-name, say A, in place of

B, whose value is the set of all the B

values of the tuples being grouped together.

vp—a(r)={t|Juer|
(t[Attr(R) — B] = u[Attr(R) — B])A
(#[A] = {s[B] | (s € T)A
(s[Attr(R) — B] = t[Attr(R) — B])})}

where B C Attr(R) and A is a new attribute name

(4) Unnest p
The unnest or ‘unpack’ operator does the inverse
of the nest operator by ‘ungrouping’ or
flattening out the B value of the tuples.

pa(r)={t|Fuer|
(u[Attr(R) — B] = t[Atir(R) — B])A
(t[Attr(B)] € u[B])}

where B C Attr(R)

Binary Operators

V{4,B—A'}(21)

Let ry, 1 € R for operators 5 through 7. These operators take two relations which

have the same relation scheme and return the union, difference and intersection of the

relations. The relations in Figures 8 and 9 are used to illustrate these operators and the

corresponding results are in Figures 10, 11, and 12

A
B
A
C D G | H
E
e
1
a1 €2
() eq | g1 | hi
g1 | h2
e
az 2 &
a3 3 g2 | hs
Fig. 6
pBy(z1)
A @ D
E G | H
€1 g1 | hy
A “ e2 gt | h2
g1 | hy
o | e S
el a1 h1
& €2 es g1 | h2
Fig. 7




o U3

(5)

(6)

(M)

(8)

b))
T3 & B
B C D
A
C B c d
A B e 1 1
¢ ds C D < dz
a
2 dz
at <3 d2 aq < d>
az 2 dq
as a3 dy a2 & &
as c3 dq
Z az d
Fig. 9 = 1
Fig- 8 - e r—- S,
Fig. 10
Union U To — T3
riUrg={t|t€r Vt Ery} o N 23
A B
C D B
A
; [ d C D
Dif ference — ay i :
2 dz
ri—rg={t|teEr At €ra} as o
az 2 di
Intersection N _ Fig. 12
Fig. 11

riNre={t|tEri At €rs}

Cartesian — Product X

The result of this operation is a relation whose relation scheme has the attributes of
both R; and R; (renaming is done to resolve ambiguity when R; and R, have common
attribute names). The tuples are formed by concatenating tuples in r; to those in ;.
Figure 14 shows the result of applying this operator to the relations in Figures 8 and
13.

Let r; € Ry and ry € Ry



riXrg={t|Juer,ver|
(t[Attr(Ry)] = u[Attr(Ry)])A
(t[Atir(Ry)] = v[Attr(R2)))}

g X T4
Ty B B’
A A E'
(e D B D
B
A E C1 d‘|
ai C d a1 e
C D “ - c3 ds ‘
ai < dy ey € d4
a3 (<] dy aj e1
3 ds3
Q3 ds
ER c3 dz az C2 dq eq
az (&) di eq
a3 3 | dy az < dy e1
Fig. 13
Fig. 14

(9) Natural — Join <
This is essentially a cartesian product followed by a selection on the tuples that agree
on the values of their common attributes. Since it can be expressed in terms of

cartesian product, select, and project, the definition is omitted here.

(10) Intersection — Join R
Intersection join is a slight variation of natural join. The selection is done on the
tuples that agree on common flat attributes and whose relation-valued attributes have
at least one element in common. Again since it is expressible in terms of the other
operators defined so far its definition is omitted. In fact «, o, x,U, —,v, and p are the

only essential operators and all the other operators can be expressed in terms of these.

All of the operators defined above act only on the outermost level of a relation. Queries
that involve relations which are embedded within the relation require the relation to be

flattened to be able to access the subrelations.
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Ezample 1

Consider the example database shown in Figure 2. Let us suppose that we want the set of
all the shares purchased on 02/10/83 and we want them listed by their owner’s name and
the company of the share. We would formulate this query in the algebra of Thomas and

Fischer as follows:

YCOMPANY ,SHARES—~INVESTMENTS ( VPURCHASE—PRICE,DATE,NO.—~SHARES
(T™NAME,COMPANY ,PURCHASE~PRICE,DATE,NO.
(opaTE=02/10/83' (4SHARES (4INVESTMENTS(CLIENTS ))))))

The table shown in Figure 15 is the result of performing this query. The unnest
operators, u, transform the relation CLIENTS into a flat relation. Then, after the selection
and projection have been performed on the flat relation, the nest operators, v, restructure
the flat relation back into a nested one. Thus, queries in this algebra cause data to
be restructured while performing operations like select and project. This restructuring
is necessary because the algebraic operators operate only at the outermost level of a
relation. Hence, eventhough the first normal form has been relaxed to include relation
valued attributes, operators like select, project etc. essentially treat all the components of

a tuple as non-decomposable or atomic units.

NAME INVESTMENTS
SHARES
COMPANY
; PURCHASE DATE NO.
PRICE
John Smith XEROX 64.50 02/10/83 | 100
Jill Brody EXXON 59.50 02/10/83 | 200
FORD 35.50 02/10/83 | 200
Fig. 15
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Although the query in the non-recursive algebra shown here works for this example, in
general relations have to be “tagged” first before unnesting and nesting. The above query
will not give us the correct result if the relation were not in hierarchical normal form (a
relation is in hierarchical normal form (HNF) if (1) all or a subset of the atomic attributes
form a key for the relation and (2) each of its relation-valued attributes is in HNF). The
relation shown in Figure 16 is not in HNF. Now, let us suppose that we want to select all
the tuples that have a 0 or a 1 in attribute D. The result that we expect is shown in Figure
17 and the result that we actually get by unnesting on B, selecting tuples that have a 0 or

a 1in D, and then renesting on C and D is shown in Figure 18.

" o(r1(Boep)v(1eD))) ve,p—8(00epyvaen)(#B(r1)))
B
A c D B B
= A e S N =
] : E
a1 <
[} C1
2 [o] . [o]
C 1
a : aj c2 m 2
;
Fig. 16 Fig. 17 Fig. 18

To get the correct result in this case, we would have to first tag or index the tuples of
the relation before unnesting. The Index operator, defined originally by Van Gucht and
Fischer [24], is basically a way of tagging each row of a tuple with a unique value. It adds
a new column with attribute name I, to the relation and the values in this column are just

the tuples in the corresponding rows of the original relation.

Definition
Indez(r) = {t | 3t, € r |(t[Attr(R)] = t.[Attr(R)])
(11 = 1)}

This operator can be expressed in terms of nest, select and join of Thomas and Fischer.
Indez(r) = var—joar—a(r X r), where A is set of attributes of R and A’ is the set of new

attributes in r x r. Tagging the tuples of a relation is required to save information about
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how tuples were grouped together before an unnest was performed. Each of the recursive
operators can be expressed in terms of a combination of the non-recursive ones including
the non-recursive nest and unnest. It has been shown by Van Gucht [22] that unnesting
a relation on a relation-valued attribute and then nesting it back doesn’t always give us

back the original relation; which is why it is necessary to tag the tuples before unnesting.

The correct expression for the query in Example 1 is then

TNAME,INVESTMENTS (VCOMPANY ,SHARES—INVESTMENTS
(TNAME,COMPANY ,SHARES,I, (V/PURCHASE—PRICE,DATE,NO.—~SHARES
(TNAME,COMPANY ,PURCHASE—PRICE,DATE,NO. I I,
(opaTE='02/10/83' (4suARES (Index(pnvEsTMENTS (Indez(CLIENTS ))))))))))

where, I, and I, are the index columns added by the two Index operations.

Queries in the non-recursive algebra for nested relations, like the one in the previous
example, are slow and complicated since accessing the inner levels of a relation requires
unnesting and nesting. The nested relatiorial model is an extension of the traditional
relational model by allowing values in a relation to be relation-valued; but the non-recursive
algebra for nested relations is not an extension of the algebra for flat relations to the same
extent. The operators in the non-recursive algebra have not been extended to operate on
the subrelations of a relation. The only way in which an operation can be performed on
a subrelation is by flattening the relation using the unnest operation repeatedly until the

attributes of the subrelation are at the outermost level.
3. Recursive Algebra
3.1 The Recursive Algebra

The algebra presented in this section has operators that are recursively defined which can
hence apply themselves repeatedly to the subrelations at the different levels of a relation.
This eliminates the need for a special operator to serve as a navigator since each operator

can itself traverse the different levels of a nested relation. It also reduces the number of nest
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and unnest operations in a query. Nest and unnest are, however, still required since queries
may require the structure of relations to be changed; although they are not necessary for
accessing the inner levels of a relation. In the examples given in this section, the relations

%1, T2, T3, x4 refer to the relations shown in Figures 3, 8, 9 and 13 respectively.

(1) Selection o
Performing selection on a nested relation when the selection condition involves at-
tributes that are not at the outermost level, as in Example 1, involves a series of
unnests with indexing and nests. The selection operator introduced here can operate

on attributes at any level without having to flatten the relation first.

Let R be a relation scheme. Then, L is a ‘select list’ of R if

(i) L is empty

(ii) L is of the form (Ric, L1, R2c, L2, ... Rne, Ln) (1 < n <| RAttr(R) |)

where each R; is a relation-valued attribute of R, ¢; is a condition on R;, and L; is a
select list of R;.

Let r be a relation with relation scheme R.

(1) ofre) ={t € r|c(t) = true}
(i8) o(vr(Ricilas Bacs Loy Rne, L))
={t| 3, er|
t[Attr(R) — (R1, Ra, ..., Ry)] = t,[Atir(R) — (R1, Rz, ..., R»)]
A (c(t,) = true)
AR = o ((¢:[B]),, 1) # 6)

A (t[RN] =0 ((tr[RN])cn Ln) # ‘?5)}
where L = (Ry., L1, Racy L2, ...y Rnc, L) is a select list of R and the L;’s are (possibly

empty) select lists of R;’s and c is a condition on R.
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(2) Projection =
Projection in the non-recursive algebra, like selection, operates only at the outermost
level in a nested relation. In the stock-broker database example, if we wanted the
purchase-dates of all the shares, listed by the company and owner’s name, we would
have to perform two unnests before being able to access the attribute PURCHASE-
DATE and then two nests to get the result in the desired form. The recursive definition
of projection given here allows us to perform projection on attributes at all levels

without restructuring,.

Let R be a relation scheme. Then, L is a ‘project list’ of R if

(i) L is empty

(i1) L is of the form (RyLy,...,RnLn)

where R; is an attribute of R and L; is a project list of R; (L; is empty if R; is an

atomic-attribute).

Let r be a relation with relation scheme R.

(@) =(r)=r
(37) w((RiL1y.cey RaLp)r)={t|3t, €7 |

t = n(L1(tr[Ra]))..m(Ln(tr[Ral))}
where (R L, ..., RaLy) is a project list of R.

. =((A, B(D))z1)
O‘(:B1(Bc=cz)) 3
A
A 7 £ &
D
C £ G H : - ey
h =
as Q iR B ;
g1 | hy
&1
e1 g1 | . az
c
az 2 o a his e3
S
Fig. 19

Fig. 20
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With the selection and projection defined as above, the query for Example 1 can be

expressed as follows.

7((NAME,INVESTMENTS)(0(CLIENTS(INVESTMENTS(SHARESpATE=02/10/83')))))

(3) Nest v
The operators nest and unnest restructure or change the way tuples in a relation are
grouped together in a nested relation. In the stock-broker example, if we wanted
to restructure the sub-relation INVESTMENTS, so that shares are grouped by the
PURCHASE-DATE instead of by COMPANY, we would have to perform two unnests

and two nests as shown below.

Ezample 2

VPURCHASE—-DATE,SHARES—INVESTMENTS (VCOMPANY,PURCHASE—PRICE,NO .—SHARES

(usaares (piNvESTMENTS (CLIENTS))))

Thus, eventhough we want to restructure only the subrelation INVESTMENTS, we
have to unnest the entire relation CLIENTS on INVESTMENTS and then nest it
again after restructuring. It would be convenient to be able to restructure only the
subrelation that we are interested in without affecting any of the other attributes in

the relation. The nest and unnest operators defined below enable us to do precisely
this.

Let R be a relation scheme. L is a ‘nest list’ of R if ,

(i) L is of the form (Ry, ..., R,) — A where each R; € Attr(R) and 4 is a new attribute
name s.t. 4 ¢ Attr(R). ’

(i) L is of the form R;(L;) where R; € RAttr(R) and L; is a nest list of R;.

Let r be a relation with relation scheme E.
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@) v(r(Ry,..., Rn) = A) ={t |3, er|
(t[Attr(R) — (R, ..., Rp)] = t.[Attr(R) — (R1,..., Rn)])A
t{Al={s|3pe r|
(p[Attr(R) — (Ry, ..., Ry)] = t[Atir(R) — (Ry, ..., Ra)])

A (3 = P[Rly cery Rﬂ])}}

(i3) v(r(Ri(L:)) — 4) = {t| 3, |
(t{Attr(R) — R;] = t,[Attr(R) — Ry))

A (HRi] = v(t-[Ri])(L:) — A)}

(4) Unnest pu
Let R be a relation scheme. L is an ‘unnest list’ of R if
(i) L is of the form R; where R; € RAttr(R)
(i) L is of the form R;(L;) where R; € RAtir(R) and L; is an unnest list of R;.

Let r be a relation with relation scheme R.

(1) p(r(R)) ={t [ Ftr €|
(t[Attr(R) — Ri] = t-[Attr(R) — Ri])
A (t[Attr(R;)) € t,[Ri])}
(1) p(r(Ri(Ls))) = {t |3t €|
(t[Attr(R) — R;] = t.[Attr(R) — Ri])
At[Ri] = p(t-[Ril(L:))}
The query in Example 2 can be expressed in terms of the nest and unnest that we

have just defined, as follows.

v((1( CLIENTS(INVESTMENTS(SHARES)) )(INVESTMENTS(COMPANY ,PURCHASE-PRICE,NO.)) —

SHARES)

Note: Indexing would be necessary in this example too if the relation were not in

HNF.
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oy (F(H)) — HY)

8 F | p(z1(B(D)))
A o H’ B F
C . G » A
C E G H
e1
~
a1 ez a1 Q e 3
hZ ai <] e? gt !
@ 91 | ha
&) ey
e h
a2 I i 2 5 © €1 g1 | hy
e3 h2 : Q e3 g1 | h2
a3 3 e 9z | hs
Fig. 22

Fig. 21

(5) Union U

Union, difference, and intersection usually involve entire tuples. However, in some
cases, a user may wish to perform one of these operations between two relations such
that the tuples of certain subrelations are also taken into consideration. For example,
if the tuple (John,(x,y)) is added to a relation that contains the tuple (John,(z)),
a union that involves just the entire tuples in the relation would give us a relation
that has the tuples (John,(x,y)) and (John,(z)) in it. It might be more desirable in
this case to have the union operation return (John, (x,y,z)) as the result. Deshpande
and Larson[6] define union, difference and intersection in a way that preserves the
hierarchical normal form of relations. A relation is in hierarchical normal form if the
key contains only atomic valued attributes. This assumption is not made in this paper.
However, since users may wish to use either or both types of unions, intersections and
joins, two different operators are defined for each of these operations.The operators

which consider whole tuples are the same as those of Thomas and Fischer and the ones
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which preserve the functional dependency between the key attributes and the other
attributes of a relation are the same as those introduced by Deshpande and Larson
with a small variation. Deshpande and Larson assume that the atomic attributes of
a relation form a key. Hence, for instance, when a union is performed, two tuples
that agree on all the atomic attributes are merged together at their relation- valued
attributes. Since this assumption is not made here, while performing a union, tuples
that agree on all the atomic attributes and all the key attributes are merged at the
relational-valued attributes that are not in the key. The result of performing this type

of union on the relations in Figures 8 and 9 is shown below.

Ue(i‘g y :2?3) .

B
A
The operators U, —, and N are defined € D
just as they arein the non-recursive algebra. R L
ai
cz dz
For items 5 through 7 let ry and r a | d2

be two relations with relation scheme R. _
Let k(R) = key(R) U FAttr(R) and let =R s
m(R) = RAttr(R) — k(R).

as c3 dq

Ue, —¢ and N® are defined recursively.
Fig. 23

(1) U(ry,r2) ={t[(tem)V(ter)}

(2) US(r1,ma) = {t | ((t € r1) A (Yt € 2, ta[R(R)] # t[k(R)]))
V ((t € r2) A (Vi1 € m1,t1[k(R)]) # t[K(R)]))
V (3t € ry,3t2 €12 |
(t[E(R)] = t1[k(R)] = t2[k(R)])
A (¢{R1] = U*(t1[Ra], ta[ Ra]))

A (HR)] = U*(ta[Rd), 22 [Ra))))
where R; € m(R) (1 <:i < 1)}
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(6) Difference —
(1) =(ri,r2) ={t|(Fer)A(t €r2)}

(2) =%(r1,r2) = {t | ((t € r1) A (VE2 € r2, t2[k(R)] # t[k(R)]))
V (3t € r1,3t2 €72 |
(t[k(R)] = t1[k(R)] = t2[k(R)]) A (t1 # t2)
A (HRa] = —*(ta[Ra], t2[R1]))

A (t[R)] = =°(t1[Ri),t2[R1]))) where R; € m(R) (1 <¢ < k)}

(7) Intersection N
(1) N(ry,r)={t[(ter)A( )}

(2) ﬂ"‘(rl,rg) = ‘[t I (E!tl c Tl,atg € e |
(t[k(R)] = t1[k(R)] = t2[k(R)])
A (t[R1] = N°(t1[Ra], 2[Ra]))

A (t[R)) = N&(t1[Ri), t2[Ri]))) where R; € m(R) (1 <4 < 1)}

(8) Cartesian-Product X

In the algebra of Thomas and Fischer, joins and cartesian-products, like all the other

algebraic operations, are done at the outermost level of the relations being joined.

However, in some cases, it may be convenient to be able to join the tuples of one

relation to tuples of a relation valued attribute nested deep inside the structure of

the relation scheme. For example, consider the relations shown in Figure 2. Let us

suppose that we want the total net value of all the shares that John has. Obviously, a
join must be performed with the relation STOCK-DATA since it has the current price of

each share and we would like to perform this join on the sub-relation INVESTMENTS

without having to unnest and nest. This is not possible in the algebra of Thomas of
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(9)

Fischer where joins are performed only between two relations and not between a sub-
relation and a relation. The definitions for these operations given below allow joins
and cross-products to be performed between a relation or a relation-valued attribute
and another relation. Since it does not make any sense to perform these operations
between two sub-relations, these operations are not symmetric, i.e., one operand can
be a relation or a sub-relation while the other has to be a relation.

Let R be a relation scheme.

L is an ‘access path’ of R if

(i) L is empty.

(ii) L is of the form R;(L;) where R; is a relation-valued attribute of R and L; is an
access path of R;.

Let r and ¢ be two relations with relation schemes R and @) respectively.

@) x(rg) = {t|3#rerteq]
(t[Attr(R)] = t.) A (H{Attr(Q)] =1,)}
(i) X (r(Ri(Li)),q) = {t|3Ftrer|
(t[R:] = x(tr[Ri](Li), 9)
A (t[Attr(R) — R;] = t.[Attr(R) — Ri])}
where (R;(L;)) is an access path of R.

We assume that common attributes in R and @) are renamed in order to resolve

ambiguity.

Equi-Join X

Let R and Q be two relation schemes. L is an equi-join list of R and @ if

(i) L is of the form (R, ..., R,) where each R; € Attr(R) N Attr(Q).

(i) L is of the form R;(L;) where R; is a relation-valued attribute of R and L; is an
equi-join list of R; and Q.

Let r and ¢ be two relations with relation schemes R and ) respectively.
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(3) D= (T(Rla"'a Rn)a Q) =
{t|3trert,€q|
(t"[Rla seey Rﬂ] = tQ[Rl? 5y R“] = t[Rl’ "'Rn])

A (t[Attr(R) — (Ry, ..., Rn)] = t [Attr(R) — (Ry, ..., Bn)])
A (t[Attf‘(Q) i (Rla saey Rn)] = tq[AttT(Q) o (Rla --*:Rn)])}
(#7) b= (r(Ri(Li)), q) =

{t|FHrer|
(t[Ri] =pa= (¢ [Ri)(Li), Q) # &)

A (t[Attr(R) — R;] = t.[Atir(R) — Ry])}

=(z5(S(A4)), z2)

Ts
S
S w B ")
w v T A 3 =
T A
€1 d1
w1 t a V1 Wi 4 a Vi
2 d>
w2 Y az vy
w3 t az cz d; vy
Fig. 24
Fig. 25

Expressions in the recursive algebra are defined as follows. Any expression denoting a
constant relation is an expression. Any combination of the operators defined above applied
to an expression is an expression. Relations can have empty sets as values for set-valued
attributes. In particular, we will denote the relation with a single relation-valued attribute
(the only attribute) in its relation scheme and with only one tuple which contains the

empty set by E(A), where A is the attribute in the relation-scheme.

The following example shows the advantage of having a join operation that allows
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joins to be performed on a subrelation of a relation without any unnesting or nesting.

Ezample 3
Let us suppose that we want the investments that clients have in stock that is traded
in London, listed by the client’s name and address. This query can be expressed in the

non-recursive algebra as follows.

YGOMPANY ,SHARES—INVESTMENTS(ZINVESTMENTS (CLIENTS) b<
TCOMPANY(0LONDON€€EXCHANGES-TRADED (STOCK-DATA)))

The same query can be written in the recursive algebra without any restructuring operators

as follows.

p<d—(CLIENTS (INVESTMENTS (COMPANY)) ,n((COMPANY)

(0(STOCK-DATALONDONEeEXCHANGES-TRADED))))

3.2 Related Work

Deshpande and Larson [6] have an algebra for nested relations in which queries can be
formulated such that relations don’t have to be flattened in order to access and manipulate
data at interior levels of relations. This is done by means of a subrelation constructor.
This constructor allows relations to be accessed and modified at all levels by creating new
subrelations while traversing the different levels of a relation. Although this construct
provides the algebra with more navigational ability, it is not very convenient for the user
to have to introduce new relations and names for these new relations within the query.
Also, since all the other operators operate only at the outermost level, the subrelation

constructor is needed everytime an operation has to be performed at an interior level.

Schek and Scholl [18] introduced a new algebra for nested relations that enables the
user to traverse the database without nesting and unnesting. However, their algebra has
several limitations. Firstly, only one operator, viz. 7, is used as a “navigator”. For instance
if the user wants to unnest a subrelation nested deep inside a relation, he would have to

write the query in terms of a series of projections and an unnest. Secondly, renaming
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is necessary in a number of situations, which is an inconvenience for the user. Thirdly,
union, difference and selection do not involve the subtuples of tuples. Finally, the algebra

is rather complicated.

Roth, Korth and Batory [16] have proposed an extension to SQL for nested relations
which allows nested application of queries. However, no formal semantics for their language

is given.
4. Equivalence of the two algebras

In this section, we show that the recursive and the non-recursive algebras are each express-
ible in terms of the other and hence equivalent to each other in terms of their expressive
powers. We first show that the non-recursive selection can be expressed in terms of the
recursive selection and that the recursive selection can be expressed in terms of a subset
of the basic non-recursive operators. The equivalence proofs for projection, nest, unnest,
and cartesian product are similar and are omitted for brevity. We then give outlines of

proofs for union and difference.

Let us denote the selection operator that has just been introduced by ¢’, to distinguish
it from the o of Thomas and Fischer . Similarly, the new operators for projection, nest,
unnest, etc. will be denoted by #',v', i’ and so on, while 7,v, 4 etc. will denote the
corresponding operators of Thomas and Fischer. To establish the equivalence of the two
algebras we consider only the basic operators (in both the algebras), i.e., we do not have
to show, for example, that i< is expressible in the recursive algebra if we show that o, ,

and X are (since < can be expressed in terms of these operators).

Lemma 1 If r is a relation with relation scheme R, (R;.,L1) a select list on R, and c a

condition on R, then

0'(re(Rie, L1)) = 7 aser(R)(Vater(Ry)— R, (0" (LR, (Index(a'(rc))),, L1)))
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Proof:

o'(re(Ric, Ln)) = {t | 3t, € r | (t{Attr(R) — R1] = t,[Attr(R) — R1])A
(c(tr) = true) A (t{Ri1] = o'((¢-[Ru]),, L1))}
= {t | Itm €' | (t{Attr(R) — R;] = t.[Attr(R) — R{])A
(t[R1] = J'((tr:[Rl])clLl)) where r' = {t, € r | c(t,) = true}}
= {t| Ftx €' | (t{Attr(R) — Ry] = tn[Attr(R) — Ry])A
(t[R1] = o'((t~[R1]),, L1)) where r' = o'(rc)}
=o'(0'(re)(Ric, L1))
= WAttr(R)(a,(Index(a’(rc))ci Ll))

= ?"Attr(R)(VAur(Rl)—rRx (J,(”Rl (Indem(o'(rc)))cl Ly)))

Lemma 2 If r is a relation with relation scheme R, L = (Ri,,L1,...Rn.,Ln) a select list

on R, and ¢ a condition on R, then
o'(re(Ric, L1, -y Ruc, Ln)) = Pp(re, L) where P, is defined as follows.

Folr., L) = aulr)
Pir., L) = TrAttr(R)(VAtir(R.')—rRi(U’(#Ri(Index(P'—l (rC?L)))ciLi)))
Proof: By induction on n.

Basis: n =0
&'lrs) =48 € v | () =trie)= o:dr) = Blrsl)

Induction Hypothesis: Let Lemma 2 be truefor all k <n —1
Let 'rj = U’(rc(R]cl Ll, ...,Rn_]cn_an—l))
Hence, by induction hypothesis, r' = Pp_1(rc, (Ri¢, L1y ey Rn—1,, _

Ln—l)) = Pn—] (T’c., L)

NOW, UF(TC(Rlcl Ll: saey Rncn L‘R)) = J,(TI(R?IC“LR))
= WAttr(R](VAur(Rn)—ar (o' (pr, (Indem(r’))c“ Ly))) by Lemma 1

= T Aver(R) (VAttr(Rn)—Rn (o’(pR“(Indea:(Pn_l(rc, L)))cn L.)))
= flr B
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Definition If L is a select list on a relation scheme R, then the depth of L, denoted d(L) is
defined as follows:

(i) If L is empty, d(L) = 0,

(ii) ¥ L = (Ri¢; Liyeery Rue, In)s d(L) =1+ maz{d(Ly),...,d(Ln)}.

Theorem 1 o can be expressed in terms of ¢’ and ¢’ can be expressed in terms of o, 7, v, u

and X.

Proof: Let r be a relation with relation scheme R
oc(r)={t € r | c(t) = true} = o'(rc)

Hence o can be expressed in terms of o'

Let L = (Ry., L1, ..., Rnc, Ln) be a select list on R.
Case 1 d(L) =0 implies L = ¢

o'(re) = {t € r | ¢(t) = true} = o.(r) by definition.
Case 2d(L) =1

Case 2a n =1 implies L = (Ry,,)
o' (re(Ric, ) = WAttr(R)(VAttr(R1)—PR1(g’(“R1(Ind6x(JI(TC)Dc1 ) by Lemma 1

= T Attr(R)(VAttr(Ry)— Ry (Tcr (BR; (Indez(oc(r)))))) by case 1

Case 2bn > 1imp L = (Ri¢y,-..s Rne,)

Induction hypothesis: Let Theorem 1 be true when length(L) < n
& (P Rigsy5 5 Bne, ) = BalF oy ls) by Lemma 2

= T ater(R)(VAttr(Rn)—Ro (0 (UR, (Index(Pr-1(rc, L)), )))
= T gstr(R)(VAttr(Rp)— R (0cn (KR, (Index(Pr—1(rc, L))))))
NOW? Pn—l(rc-} L) = a,(rc(Rlcl yoreey Rn—lcn_1 ))
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Since length(Ri,,...; Ra—1.,_,) =n—1<n, Py_; is expressible in terms of o, 7, v, u and
Indez, by the induction hypothesis. Hence, o'(re(Ric, .., Rnc,)) is expressible in terms

of these operators and so from this and Case 2a, Theorem 1 follows for Case b.

Case 3d(L)y=k>1

Case 3a n =1 implies L = (R, L1)

Induction Hypothesis Let Theorem 1 be true when d(L) < k

o'(Ric, L1) = 7 attr(R)(VAttr(Ry)— R, (0" (1R, (Index(ac(r))),, L1))) by Lemma 1 and

Case 1

Since d(L;) = k —1 < k, o'(ur,(Indez(o.(r))),, L1) can be expressed in terms of the

non-recursive operators (by the hypothesis). From this result and Case 2a, Theorem 1

follows for Case 3a.

Case $bn > 1imp L = (Ry,, L1, ..., Rnc, Ln)

Induction hypothesis Let Theorem 1 be true for all L s.t. d(L) < k

By Lemma 2,

O (re(Riey Ly ooy Rnoy L)) = T aser(Ry(Vaser(Ray—s 2o (0" (470 (Indez(P—i (e, L)), La)))

By induction hypothesis, o'(ur, (Index(Pp-1(rc,L))),, Ln) can be expressed in terms of
the non-recursive operators and P,_1(r., L). Therefore, if P,,_1(r., L) can be expressed in
terms of the non-recursive operators then so can Py(r¢, L). But Py(re, L) = o'(re) = oc(r).
Hence by induction, P, (7., L) can be expressed in terms of the non-recursive operators and
Theorem 1 follows for Case 3b.

Along similar lines it is possible to show that the recursive operators 7', 7', 4’ and x'
can be expressed as a combination of the basic non-recursive ones. (Note: Index can be
expressed in terms of the basic non-recursive operators o,v and Xx.). The proofs for these
are omitted since they are similar to the previous proof. The only major difference in the
expressions in the non-recursive algebra which express the corresponding operators of the
recursive algebra and the non-recursive expression for selection is that special consideration
must be given for tuples that have empty sets as values corresponding to relation-valued
attributes. Unnesting on such relation-valued attributes causes these tuples to be lost.

Figure 27 shows the result of unnesting the relation in Figure 26 on B (after indexing it),
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nesting on D and then nesting it on C and E which is different from the result of performing

the recursive nest, which is shown in Figure 28.

)
: B(D))— E
- 74,8(ve,p—B(vp_p(pa(Index(rs))))) v(rz(B(D)) — E)
A ; : : - ’ _ .
2 ], B E A c D
% D
di ] di
" ) d o <1 ds
- aj c1 :1
2 -
N [— —
Fig. 26 Fig. 27 Fig. 28

In such cases, at every stage of nesting (corresponding to a previous unnest operation),
tuples that have been lost as a result of unnesting should be added to the relation. For
instance, for the recursive nest operator, the equivalent of Lemma 1 for selection will be
as follows. If 7 is a relation with relation scheme R, R;(L;) a nest list on R, and A a new
attribute name, then v'(r(R;(L;)) — A) = 7' U oRr;=¢(r)
where ™' = T g44r(R) (Vattr( Ry )— Re (V' (R, (Index(r))) Li — A))

The proofs for U® and —¢ are slightly different and outlines of their proofs are given
below. In the case of difference, tuples can be lost not only as a result of unnesting on
empty sets but also in some cases when taking the difference after unnesting. See Figures
29-32. For this we need to be able to create tuples that have empty sets as values and
there is really no way of doing this in the non-recursive algebra of Thomas and Fischer.
However, if we augument their algebra with constant expressions that denote relations over
a single attribute that have only one tuple which has the empty set as the value for that
attribute, as specified in section 3.1 for the recursive algebra, it will be possible to express

the recursive operators in terms of the non-recursive ones.
Lemma J Let r; and rp be two relations with relation scheme R(Ai,..., An). Let m(R),

the set of non-key relation-valued attributes of R, be such that | m(R) |=1. Without loss
of generality we can assume that {4,} = m(R) and {41, ..., An_1} = k(R). Then,
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Us(ry,m2) = (r1 — may,..4,(r") U (r2 —7ay,..4,(r") U (Temyuan(0a,=4,=4(r"))) U
Th(R)UA, (Vattr(an) (U (La, (Tr(r)uILA, (Index(r"))),
P‘-A:,(Wk(R)’quA;(Indw(?"))))))

where r' = ork(R)=k(R):(r1 X T3)

Note: When the cartesian product of two relations r; and ro with the same relation scheme
is taken, we assume that all the attributes A; € R corresponding to 7, are renamed to Al
respectively in the scheme of the result. Similarly, k(R)' is the set of attributes A’ such
that A; € k(R). The attribute I denotes the new attribute that is added to a relation
scheme when the Indez operator is applied to it.

Proof

U(r1,m2) = {t | ((t € r1) A (Wt € ra, t2[k(R)] # t[R(R)]))
V(£ € 1) A (V41 € 1, 1 [R(R))) # tIE(R)]))
e E T by dbiciiSan
(t[k(R)] = t1[k(R)] = t2[k(R)])
A (HR1] = U*(t1[Ra), 22 [Ra])))}
Now, {t |t € r1 | Viy € ra, 1[k(R)] # t2[k(R)]} = r1 — 7a,,...,4.(")

and {t I tErg | th e Tl,t[k(R)] 5‘1: fl[k(R)]} =79 — ?TA'I_,...,A:%(T‘)

Therefore,
Ue(r1,r2) =(r1 — Ta,,..,4.(r") U (r2 =7, a4 (")) U

{t|3t: € r1,3ty €7y |
(t[k(R)] = t1[k(R)] = t2[k(R)])
A (t[R1] = US(t1[Ra], 2[Ra]))}
The expression on the right hand side of the above equation is the union of three different

terms. Let r"” denote the last term.
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' = {t|3t' € (r1 xr2) | (Hk(R)] = ¢'[kK(R)] = '[K(R)'])
A (¢[An] = U(t'[4n], ' [40])}
= {t | 3t' € opm)=r(ry (r1 X r2) | (t[k(R)] = t'[k(R)])
A (t[An] = U(t'[An], t'[A0]))}
= {t | 3t1 € m(ryuIVA, (Indez(or(Ry=k(R) (M1 X T2))),
Jts € mr(ry uruay (Index (o (r)=k(ry (11 X 72))) |
(t[k(R)] = t1[k(R)] = t2[k(R)'])A
(t[An] = U%(t1[4x], t2[45))}
= {t | 3t1 € mi(ryurLA, (Indez(ok(R)=k(R) (T1 X T2)));
3ty € mrryuruar, (Indez(or(ry=k(ry (r1 ¥ r2))) |
(t[k(R)] = t1 [k(R)] = t2[k(R)'DA
(t[An] = t1[An] = t2[An] = ¢)}
U {t| 3t11, ..tip € pa, (Trr)urva, (Indez(ogry=k(r)y (T1 X T2)))),
3ta1, ..., tag € par, (Tr(ryuruar (Index(ok(ry=k(ry (11 X T2)))) |
(t[k(R)] = tua[k(R)] = - - - = 11, [k(R)]
= ty1[k(R)'] = - = tag[K(R)'])A
(tull] = - =typ[l] =t [l] = - - = tyg[I]A
(t[An] = US({t11, s t1p HAL(AR)], {to1, .- t2g HALEr (A7)}
= Ti(R)UAn(TAn=a,=¢(r")) U
Tr(R)UAR (Vartr(an) (U (B4, (Tr(myurua, (Indez(r"))), par, (Tr(ry uruay (Index(r'))))))

where ' = og(ry=k(r) (1 X T2)

Lemma 4 Let r; and r, be relations with relation scheme R(Aj,...A,) and let | m(R) |=
s > 1. Without loss of generality we can assume that {4;,...4;} = k(R), (j =n —s) and
{AJ'+1, ...An} = m(R) Then,

Ue(‘r'] X 7"2) =(’P1 =Wk An(r')) U (?’2 T A;‘(?"f)) U

(Xj+1(?“1,?"2) B eee B Xn(?‘h?"z))
where,
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Xi(r1,7m2) = Tr(ryva: (Vaser(a) (U (4, (Tr(ryurua; (Indez(r'))),

tar(mrcryvrua; (Indez(r')))))) U mrryua; (0a,=ar=¢(r")) (G+1<i<n)

and r' = g (py=k(r)'(T1 X r2) (R being the scheme of r; and r,).

Proof:

The first two terms in the expression on the right hand side of the above equation are the
same as those in the previous Lemma and their proofs are also identical. So we now have

to prove that
Xj+1(?"1,?‘2) Dg .- Xn(‘f‘l,‘lf'g) ={t | Htl € T],afg €Ery |

(t[k(R)] = t1[k(R)] = t2[k(R)])
A (HRj41] = U (ta[Rj1], t2[Rj41]))

A (t[Rn] = U(81[Ra], 2[Ra)))}

Let z denote the expression on the right hand side of the above equation
Induction Hypothesis Let Lemma 4 be true for all R s.t. | m(R) |< s.

Let y ={t |31 €r1,IH2 €72 |
(t[k(R)] = t1[k(R)] = t2[k(R)])
A (t[Rj+1] = U (t1[Rj41], t2[Rj41]))

A (t[Rp-1] = U*(t1[Rn-1], t2[Rn-1]))}
Therefore,
Z=y|><l{i[3f1 €r1,3t26r2|

(t[k(R)] = t1[k(R)] = t2[k(R)])
A (t[An] = US(t1[An], t2[An]))}
= U*(T Attr(R)=An(T1)s TAttr(R)— A4, (T2)) D
U7 attr(R)—{Aigi,sAni} (71 )y TAGtok BY = {4 41 s 4n—11(T2)

Let R' be the scheme corresponding to 7 a¢tr(r)—4,(r1)- | m(R') |< s. Hence, by the

induction hypothesis,
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U(T ater(R)— 4, (T1), TAttr(R)—An (72)) =Xj11(T ater(R) -4, (T1), T Attr(R)— 4, (T2)) D -+ - D4

Xn—-1(T ater(R) =4, (T1), T Attr(R)— 4, (T2))
Now,

Xijt1(m ater(R)— 4, (T1), Tactr(R)— 4, (12)) =Th(R1)0A; 11 (VArtr(a; 1)
(U (1t 2 (Tr(RYYLILA, 4y (Index(r"))),
pas,, (Trrnyoruag,, (Indez(r"))))))

3] Wk(R")UA5+1 (GA5+1=A;-+1=¢(T"))
where, r" = Jk(R'):k(R‘)’(?TAttr(R)—A“(Tl) X T Attr(R)—An(T2))
Now,

Tr(R')UIUA; 41 (Indez(orrry=k(R'y (T Attr(R) =4, (T1) X Tattr(R)—4,(T2))))
= Wk(R)uIUA5+1(ﬂAur(R)UAttr(R)’UI—Aﬂ—A; (Iﬂdex(%(ﬁ)=k(m’(f’1 X r2))))

since A, € m(R), k(R') = k(R) and k(R') = k(R)'
= TMr(R)UIUA; 41 (Index(or(r)y=r(Rr) (11 X T2)))

and e(R1)UA 41 (045 0=45,, =6(T")) = Th(R)LA; 41 (04 1= 45 =6(Th(R)=k(R) ("))

Thus we have XJ‘.|.1(’.«TAﬁT(R)_An (?‘1), ?TA“,,(R)_A“(?'Q)) = Xj.,.l(rl, ?“2).

We get similar results for X;4o(r1,72), ..., Xn—1(r1,72)

Now, U(T attr(R)—{A; 41, s An-1}(T1)s TAttr(R) = {A; 41, An-1}(T2)) = Xn(r1,72)

since, m(R"), where R" is the scheme corresponding to the relations in the union expres-

sion, = {A,}, | m(R") |= 1 and hence by Lemma 3 the above equation is true.

Therefore, 2 = Xj11(r1,72) 14, ..., Xp(r1,72)

Hence, Lemma 4 is true.

Theorem 2 If ry and ry are two relations with relation scheme R, then U®(ry,73) can be

expressed in terms of o, X, 7, v, u,U and —.

QOutline of Proof The proof for this Theorem is by induction on the depth of the relation

scheme R, using Lemma 3 and Lemma 4. (Note that x can be expressed in terms of x

and o .)

In the case of the extended difference operator, —¢, although it may seem that

the equivalent expression in the non-recursive algebra would be almost identical to the
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expression in Lemma 4, with U replaced by —, there is in fact a slight difference. The
following example shows this difference. Figure 31 is the result of applying the extended
difference operator to the relations in Figures 29 and 30 while Figure 32 shows the result
of applying the expression in Lemma 3 with U replaced by — and without the second term

in the expression.

m e
mi 2 - (mlam2)
B B B
A A
C C A c
Cq B
ER a1 ay ai
C2 A C
as Q2 az 4] as 9] a3 [

Fig. 29 Fig. 30 Fig. 31 Fig. 32

When the relations m; and m, are unnested on the attribute B and the difference
is taken, the tuple (a; ¢;) disappears while when the extended difference is applied, the
result contains the tuple (a1 { }).

Lemma 5 Let r; and ro be two relations with relation scheme R(A4y,...,A). Let k(R) =
{A1,...,A;} and let m(R) = {Aj4+1,..., An}. Then,

—¢(r1,m2) = (r1 = Ty, 4. (P U (Trry (11) — ") (Qi1(r1,72))) X E(Aj41)) U Qjsa(ra,m2)) >
o () (1)) — Tr(R)(@41(r1572))) X E(Aj41)) U Qjta(r1,m2))

where,
Qi(r1,72) =Tr(ryua: (Varer(an (= (Ba: (Tr(ryurua;, (Indez(r"))),

pa(teryurva(Indez(r'))))) (+1<:i< n)

r' = orr)=k(r")(r1 X T2), E(A;) is a relation with a single attribute 4; and a single
tuple whose value = ¢

!
and r; = r1 — G attr(R)=Attr(R)’ (r1 x72)

Proof
Case I m(R) = {A,} imp | m(R) |=1
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—*(r1,r2) = {t [ (2 € 71) A (Vi3 € 13, 12[K(R)] # t[k(R)]))
V (3t €ry,3t, €7y |
(t[k(R)] = t1[k(R)] = t2[k(R)]) A (t1 # t2)
A (H[Rn] = —°(t1[Rn], t2[Rn])))}
Now, {t |t € ry | Vty € ra, t[k(R)] # ta[h(R)]}

=71 —T4,,.. A,(r") where r' = Uk(R)=k(R)'(?‘1 X 13)

Therefore,
—*(r1,m2) = (11 — ma,,.,4,(r")) U {t|(3t1 € 1,3t €72 |

(tHE(R)] = t1[k(R)] = t2[R(R)]) A (t1 # t2)
A (¢[Rn] = —°(t1[Rn], t2[Rx])))}
={t|(3t1 € r1,3t2 €72 |

(t[e(R)] = t1[k(R)] = t2[k(R)]) A (t1 # t2)

A ((tH[Rn] = =*(t1[Rn], t2[Rn]) # 6) V (H[An] = t1[An] = ¢))}

U {t|(3t1 € 1,3tz €7z |

(t[k(R)] = t1[k(R)] = t2[k(R)]) A (11 # t2)
A (t{Ra] = —“(t1[Rx], t2[Ra]) = ¢))}

The first term in the last equation’s r.h.s. can be proved to be Qn(r1,7r2) and the second

can be seen to equal to ((mx(r)(r]) — Tr(r)(@n(r1,72))) X E(AL)).

The proof for the case when | m(R) |> 1 is by induction and similar to the proof for
Lemma 4. Finally, it can be proved by induction on the depth of R that the extended

difference operator is expressible in terms of the non-recursive operators.

Claim: Any query expressed in the algebra of Thomas and Fischer can be expressed in the

recursive algebra with either the same number or fewer operators than in the former.

Proof:

We consider only the basic operators o, 7, X, v, u,U, and —, since the other operators

are all expressible in terms of the basic ones.
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Now,

(1) oc(r) =o'(re)

(2) ma(r) = 7(A(r))

(3) r1 xry = x'(r1,7m2)

(4) vama(r)=v'((A— A)r)
(5) pa(r) = p'(A(r))

(6) 1 Ury =U'(r1,72)

(7) n—rp= —'(T‘la ?‘2)

Let @ = aj...ay, be an expression in the algebra of Thomas and Fischer. Each «; is

a basic operator.

we replace each a; by the corresponding a'; given in the equation set above we ge
1y ¥ 1 h a; by th ding a'; given in the equati t ab. get
an equivalent expression a” in the recursive algebra such that a” = a]...a], which has

the same number of operators as a.

(2) If there exists a string of operators £ in a such that & = a;...axf8...an and 8 = P,(r)
where P, is defined in the previous proof, then B, which is of length > 1, can be
replaced by ¢'(r¢(Ric, L1y ..es Rne,Ln)). This gives us an expression that has fewer

operators than the original one.

(3) The other operators can be replaced in a similar fashion as in step 2. Step 2 is thus
applied repeatedly until there are no more strings of the type 8 that can be replaced.
Then we apply step 1 to all the remaining operators in « that have not been replaced

by operators of the recursive algebra.

(4) The result is an expression with the same or fewer operators than a.
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5. Summary and Conclusions

The nested relational model, like the traditional (flat) relational model, is one that is simple
and has a strong theoretical basis, but provides a much better way of representing complex
data than the relational model. Most query languages for nested relations, however, do not
preserve the structure of complex objects while accessing the database. Complex objects
often have to be broken down into their constituent parts while being queried upon and
then rebuilt from these parts. Not only does this cause a lot of inconvenience to the users
but it is also expensive in terms of the time that it takes to perform the restructuring

operations.

In this paper, we have proposed a recursive query language that can navigate through
the complex structure of the nested relations without always restructuring them thus
reducing the number of restructuring operations. We have also given a sketch of a proof
to show that this language is as powerful as one of the earlier query languages for nested
relations that was developed by Thomas and Fischer and that queries in this algebra can
always be expressed using fewer or the same number of operators as an equivalent query

written in the non-recursive algebra.

Further research can be done on this language in several areas including the devel-
opment of query optimization principles. In the relational algebra, query optimization is
based on the commutativity property of operators. These principles could not be extended
to the nested relational algebra since most expressions in this algebra involve the nest
and unnest operators which do not commute either with each other or with the other
operators. In the recursive algebra, nest and unnest are used only when restructuring
is really necessary, i.e., they are not needed for accessing the interior levels in a nested
relation and so most queries can be formulated by expressions that do not involve these
two operators. Hence, queries in the recursive algebra are not only more succinct and
more efficient as compared to those in the non-recursive nested algebra, but may also be

efficiently optimizable using techniques that are similar to those of the relational algebra.
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