Modeling Transistors Applicatively'

by

Steven D. Johnson and C. David Boyer
Computer Science Department
Indiana University
Bloomington, IN 47405

TECHNICAL REPORT NO. 253

Has appeared in IFIP WG10.2 International Workshop on The fusion of Hardware Design
and Verification, Glasgow, Scotland, July 4—6, 1988, (Edited by G.J. Milne) Elsevier
Science Publishers, pages 397—420.

Modeling Transistors Applicatively’

by

Steven D. Johnson and C. David Boyer
Computer Science Department
Indiana University
Bloomington, IN 47405

TECHNICAL REPORT NO. 253

Has appeared in IFIP WGI02 International Workshop on The fusion of Hardware Design
and Verification, Glasgow, Scotland, July 46, 1988, (Edited by G.J. Milne) Elsevier
Science Publishers, pages 397—420.

*

Modeling Transistors Applicatively

Steven D. Johnson and C. David Boyer

Computer Science Department
Indiana University
Bloomington, Indiana, U.S.A

An applicative modeling language is used to explore logical transistor
behavior. An applicative source language is good at describing func-
tional qualities, but relational qualities require a careful treatment.
With this issue in mind, we examine ways to represent bidirectional in-
formation flow in combinational systems. Formal approaches to hard-
ware verification and synthesis enjoy the support of flexible symbolic
processing systems, which readily represent disparate aspects of de-
sign. What we mean here by “modeling” is the ad hoc manipulation
of such representations. Our main purpose is to explore and illus-
trate techniques for this kind of activity. In particular, we show how
the interrelated qualities of lazy semantics and recursive data defini-
tion contribute to the natural description of hardware structures and
behaviors.

1. Introduction

Hardware logics project electronics into simpler formal systems in order to facili-
tate reasoning. Unlike simulators, logics do not fix a ground interpretation; they
adapt to disparate levels of description. Hence, their mechanical support must
provide highly flexible underlying representations. Mechanized logics are also
programming languages for their symbolic processing subsystems. Symbolic
modeling is the construction and manipulation of data structures representing
some aspect of a design. It is analogous to building a scale model to explore
certain properties of a mechanical design. This differs from the task of defining
formal hardware models, say for the purpose of hardware verification. It is an
engineering activity, ad hoc by nature, focusing on arbitrary facets of a design.

*Research reported herein was supported, in part, by the National Science
Foundation under grants numbered MIP 87-07067 and DCR 85-21497

This paper examines techniques for representing low levels of digital hardware in
an applicative modeling language. Modeling methodology has potentially pro-
found implications for engineering practice and design automation. However,
its techniques are influenced by the still evolving semantics of the languages
used. In the case of functional languages, a “lazy” semantics promotes different
representation choices than would an applicative-order dialect. In particular,
the facility for recursive data definition seems fundamental to the natural de-
scription of hardware. Modeling sequential behavior with reflexive stream-like
objects is widely discussed [9, 11, 16, 2, 18]. Representing other aspects of
design are less commonly understood.

We explore frontiers of applicative modeling through various treatments of logi-
cal transistor behavior. It is a good test of how this class of notation fares at its
descriptive boundaries. Applicative notation is inherently directional, making
it difficult to address bidirectional qualities.

We have a theme: exploring symbolic hardware modeling in an applicative sur-
face language; and a plot: representing bidirectional behavior; so perhaps a
moral could be added: Isolated qualities are best dealt with tn their own terms.
Since functionality is a prominent abstraction in digital design, applicative no-
tation will be prominent in digital description. Of course, this does not justify
a purely functional view of hardware. The need for more generality is evident
in electrical engineering and in verification. Hanna and Daeche note that the
“functional subset of [typed higher-order logic]” provides an animated design
notation [8] through evaluation. If this quality is to be fully exploited, a mod-
eling methodology must develop for it.

Bidirectionality alone is not sufficient cause to abandon an applicative modeling
framework. It can be dealt with at modest expense, as measured in syntax. This
fact is illustrated in a series of treatments of a small CMOS circuit. Though
there is a sense of refinement from one example to the next, each treatment
reflects a reasonable engineering view. The level of modeling, based on a four
valued domain of voltage values, extends to the more detailed levels now ad-
dressed in verification research.

1.1. Related Work

Consider the CMOS inverter depicted to the right below. Given terms Pwr and
Gnd for power and ground, functions P and N for transistors, and a binary
join-operation e, an applicative inverter description is

s s . . L
INV (i) = P(i,Pwr)e N(z,Gnd) i 0
T2

In a relational notation, an analogous expression is
INV(i,0) = N(i,Pwr,0)e P(i,Gnd,0)

where the ‘e’ is a meta-operator making the subterms coincide, in some semantic
sense, on the variables z and o.

The inverter’s directionality is implicit in its applicative description. In the
relational notation it is not, and an explicit distinction might be needed to relate
INV (i,0) and INV (0,). An example is Gordon’s predicate formulation [7], also
discussed by Winskel [20] and Musser [15]. Other calculi on relational notation,
such as Milne’s [14] and Gopalakrishnan’s [6], can specify the directionality.

Though most circuit designs are globally directional, this property is not al-
ways inherited by their components. A popular example is a CMOS full adder
presented by Gordon [7, 15]. That circuit inspired the smaller one in Figure 1,
which is used as an example in this paper.

PWR
gl —o[T1
I1 Out
g6
gZ—t T2 B T3 i— g3
2 1B 13
g4A‘ T4 15 }— g5
|
GND

FIGURE 1 — CKT, a CMOS circuit with a bidirectional transistor

This network, called CKT, is easily expressed in relational terms and hard to
express as an applicative combination. Its transistor T6 must be regarded as
bidirectional. In addition, CKT does not work for all configurations of its gates.

Assuming we always want a high or low voltage at the point Out, and with high
voltage interpreted as true we should have

91 = (927 94) V(9296 Ags5)V (93A g6 A ga)V (g5 g3)-

Otherwise, Out is either shorted or not powered. These four conditions, pow-
ered high, powered low, shorted, and unconnected, are natural base values for
reasoning about combinational MOS designs. They arise, or can be instanti-
ated, in all of the recent formal models for VLSI verification (e.g. [20, 15, 4,

2]).

In evaluating CKT, an engineer projects the schematic to logic in a number of
ways for verification purposes. The boolean function of the circuit is deter-
mined as the disjunction/conjunction of the gates along parallel/serial paths
from output points to voltage supplies. Another analysis verifies the electrical
integrity of the circuit, as suggested by the formula above. Once satisfied with
the behavior at this simple level, more elaborate electrical reasoning may come
into play, involving strength, capacitance [20, 15, 5] and temporal abstraction
[13,2].

2. Applicative Modeling

Functions are easier to reason about than relations because they enjoy more
properties. To say that the two-place function f is associative, one writes

T, Flyee)) = FEFlmu) %)

The corresponding assertion about a relation R might be written,
R(y,2,U) & R(z,U,V) iff R(z,y,W) & R(W,z,V)

f’s functionality permits us to refer to its “output” uniquely as f(z,y) and
hence to employ equality in the assertion.

Unfortunately, one cannot freely use equality in applicative modeling. Func-
tional programming is based on solving simultaneous systems of equations by
inductive approximation. The space of values is structured to make this pos-
sible. This matter is explained fully in text books on functional programming
(e.g. [10]). Systems with defined solutions include enough base information to
build them inductively. One kind of example is a system of function definitions,
such as

F(n) where
F(x) = if zero?(x) then O else G(decrement(x))
G{(x) = if zero?(x) then 1 else F(decrement(x))

By induction, F and G both are defined for all integers n > 0. A second kind of
example is a recursive system of data definitions, such as

A where
A= [0 ! B]
B=[1"! Al

The expression [eg ! e;] forms a list, whose head is ep’s value and whose
tail is e1’s value. Again by induction, the nth elements of lists A and B are all
defined. A may be thought of as an infinite list, [0, 1, 0, 1, ---], representing
sequential behavior over time. In a graph processing system, A also denotes a
cyclic graph,

It is natural to represent circuit networks in this way. O’Donnell gives several
examples, using recursive data declarations to build and manipulate descrip-
tions of hardware [16].

It is expected that the reader has some familiarity with applicative program-
ming. The programs in this paper, including those above, have a syntax similar
to that of applicative languages now in use [10, 17]. They were mechanically
translated into a more primitive language, called Daisy; details are given in [3].
Daisy is related to Pure Lisp. It is a general purpose, purely applicative, lazy,
list processing language [12]. There is no specialization for hardware descrip-
tion. Primitive operations, always lower case and prefix, are explained as they
arise.

Daisy’s symbolic basis includes numbers, literal symbols, and binary graph
cells. The list expression [A, B, C1 forms alist [, 3, 7], containing the
respective values of subexpressions A, B, and C. The head of this list is o and
its tail is the list [3, ~ 1. List concatenation is expressed with an exclamation
point; instead of [4A, B, C1, one could write [A!' [B![C!'[1111.

Four symbolic voltage values (Recall Section 1.1) are represented by the literal
symbols H (connected to high voltage), L (connected to low voltage), Z (not
connected), and X (connected to high and low, i.e., shorted). Identifiers PWR
and GND are defined for the power and ground supplies.

def PWR
def GND

IIHII
ll'L!l

Tests H?, L7, and so on, are coded for each value.

|
| H?, L7, Z7?, X7 : Value --> TruthValue

def H?(V) = same? [V, "H"]
def L?(V) = same? [V, "L"]
def 2?7(V) = same? [V, "Z"]
def X?(V) = same? [V, "X"]

The *|’ character starts a comment; the type assertions are not checked. Same?
is a primitive test for equality. The function H? tests whether its argument is
the literal H. '

The ‘@’ function combines two values according to the table on the right. It is
implemented by the program DOT, written to emphasize symmetry.

|
| DOT: [Value, Value] --> Value

[e | ZHLX
def DOT [U, V] = Z|ZHLE X
if OR [Z7(U), X?(V), same?[U, V]] HIHHXX
then V else LT R T X%
then U
else "X"

OR is the disjunction of a list of tests.

|
| OR: [TruthValue ... TruthValue] --> TruthValue
|
def OR [] = FALSE
OR [TV ! Etc] = if TV then TRUE else OR(Etc)

The type declaration [TruthValue ... TruthValue] means a list of zero or
more truth values—again, these are just comments. A simple form of sequential,
pattern oriented binding is used [17]. An equivalent definition of OR is

def OR(TVs) = if nil?(TVs) then FALSE else
if head(TVs) then TRUE
else OR(tail(TVs))

The function DOTs returns the DOT-product of a list of values.

|
| DOTs: [Value ... Value] --> Value

| ACCUMULATE:[Value, [Value ... Value]] --> Value
|

def DOTs (Vs) = ACCUMULATE ["2", Vs]
where
ACCUMULATE [v, []1] =
ACCUMULATE ["X", Vsl mxm
ACCUMULATE [U, [W ! Ws]] = ACCUMULATE [DOT[U, W], Ws]

v

ACCUMULATE’s first argument is the accumulating value, which DOTs initializes
to Z. Values from the list Vs are incorporated until the list is exhausted or an
X is discovered.

Throughout this paper, assume that let-expressions and where-expressions are
recursive, even though not all of them have to be.

In Daisy there is an indeterminate list constructor which specifies content but
not order. Let a and f denote the values of expressions A and B, respectively.
The multiset expression

[a, B8] provided a exists, or

Dol {[8. al provided g exists.

If both and § exist, either list might be returned. Multisets are concurrency
constructs. A and B are evaluated concurrently, and the resulting list is ordered
in a demand driven fashion as the computations terminate. The expression
head{ Ey, --+ , Ep} chooses the cheapest of the n alternatives. Computation
ceases once the head of the list is determined. In particular,

a if a exists and # does not, and

head{ 4, B} returns {ﬂ if B exists and a does not.

The OR function applied to a multiset, OR{ E; --- E, } , returns true should
any one of E;s produce true, even if others diverge.

Multisets are used to implement a guarded choice construct used in Section
4. Below, the function GUARD looks at Test and returns Value or the reserved
symbol QUIT should the test fail. GIF is a variation of OR that skips QUIT rather
than FALSE. The error case will not occur in any of the examples.

|
| GUARD : [TruthValue, Value] --> (Value + "QUIT")

|
def GUARD [Test, Value] = if Test then Value else "QUIT"

|
| GIF: [(Value + QUIT) ... (Value + QUIT)] --> Value
|
def GIF [l = Zerror”
GIF ["QUIT" ! Etc] = GIF(Etc)
GIF [Value ! Etc] = Value

Applied to a multiset of GUARD-expressions, the tests are made concurrently, so
that

GIF { GUARD [Test, Value]

GUARD [Test, Valuel
}

returns some value whose test holds.

3. Directional Modeling

The most immediate applicative treatment of a transistor is as a function from
a source and gate to a drain. Functions for P-type and N-type transistors are
defined below [NOTE 1]. These differ only in their interpretation of the gate.
Depending on the value at the gate g, the drain d of a transistor is either not
connected or takes its value from the source s. A transistor is sometimes drawn
with an arrow to show it’s direction.

def NT [g, s] = d

Ry
where 8 —l
d

d = (if H?(g) then s else "Z")

A
def PT [g, sl =d —cj
where d d
d = (if L?(g) then s else "Z")

A circuit with a direction, such as the inverter discussed earlier, is an applicative
combination of directional transistors [NOTE 2]:

PWR
def INV(i) = o
T1
where i 5
o = DOT [Tid, T2d] iTZ
Tid = PT [i, PWR]
T2d = NT [i, GND] GND

Extra variables are introduced in correspondence with the schematic. Identifiers

T1d and T24d refer to the transistors’ d-outputs. The equation for o joins these
two outputs.

A simple approach to describing CKT (Figure 1) is to code one instance of
transistor T6 for each of its directions [NOTE 3].

where
Out =

I1 =
I2

I3 =

Tid =
T2d
T3d
T4d
T5d
Téd =
Téd? =

]

def CKT [gl, g2, g3, g4, g5, gb6] = Out
i gl —
11 Out
DOT [Tid, DOT [T2d, T3d]l] o6
DOT [T4d, T6d]
DOT [T5d, T6d’] 32""{[: | :]P——83
I2¢|_IF|
PT [gl, PWR] gl e “13
NT [g2, 1I2] oo
I 83 e il o g
NT [g4, GNDI]
NT [g5, GND]
NT [g6, T5d]
NT [g6, T4d] [GND |

The equations
labeled in the

for I1, I2, and I3 define internal junctions in the circuit as
This certainly works; the program computes this
table of values for H and L combinations of gate inputs.

schematic.

Out = I1 g4, g5, g6

g1,92,93 |LLL LLH LHL LHH HLL HLH HHL HHH
LLL H H H H H H H H
LLH H H X X H X X X
LHL H H H X X X X X
LHH H H X X X X X X
HLL Z Z Z Z Z Z yA Z
HLH Z Z L L 7 L L L
HHL Z Z Z L L L I L
HHH Z Z L L IE L L L

However, the two instances of T6 destroy a desired correspondence between the
description and the actual circuit. CKT has six transistors, not seven. Such
redundancy, if used, should at least be uniform. Therefore, let us encapsulate
two directions of information flow in all transistors.

def NT [g, s, dl = [s’, d’]

where
g’ =

if H?(g) then d else
d? = if H?(g) then s else

g——-

'IIZII

'

o —

(=B

1IZN

def PT [g, s, d] = [s’, 4’]

where
s? =

if L?(g) then d else
d’ = if L7?(g) then s else

W e —

Z—=

'IIZII

)

1IZI|

—la.

A convention, used here and later, places primes on out-going information.
Gates are still treated as pure inputs. Returning an output g’ does not con-
tribute anything at this level of modeling, and the notational overhead is already

bad enough. CKT is now described as follows. PWR
def CKT [g1l, g2, g3, g4, gb, g6l = Out d T1
whgre o % Out
o 5 i
I1 = DOTs [T1d, T2d, T134d] T2 T3
I2 = DOT [T4d, Téd]
I3 = DOT [T5d4, Té6sl)
{ T6
[Tis, Tid]l = PT [gi, PWR, "Z"] i = Y =
[T2s, T2d] = NT [g2, 12, "Z"] | |
[T3s, T3d] = NT [g3, 13, "Z"] T4 T5
[T4s, T4d] = NT [g4, GND, "Z"] C D)
[T5s, T6d] = NT [gh, GND, "Z"] ¥
[T6s, T6d] = NT [g6, T5d, T4d] GND

The proliferation of variables could be reduced by replacing the formal pairs
(e.g. [T4s, T4dl) by a single identifier (e.g. T4) and coding selector functions
(e.g. drain(T4)) on the right. However, this is not the only problem with
this treatment. The program is blatantly written to compute only in directions
toward the point Out. For example, the defining equation for transistor T1 does
not connect its d-input. The diagram to the right of the program shows the
directionality imposed on CKT in this way. Only with transistor T6 are both
directions used.

If transistor T1 is open (not conducting), and the rest are closed, then according
to the definitions for NT, PT and DOTs, Out is

CKT [H, H, H, H, H, H] = T1d-T2d-T3d (eqn. for Out)
= Z-T2d - T3d (T1 is open)
— T2d - T3d (Z-v=0)
= (T4d - T6d) - T3d (T2 is closed)
=L-T6d-3d (T4 is closed)
=L-Thd-3d (T6 is closed)
= L-L~T3d (T5 is closed)
= L. T3d (L* L=L)
= L-T5d - Tés (T3 is closed)
=L-L-T6s (T5 is closed)
=1L.T6s (L-L=L)
=L-T4d (T6 is closed)
= L+L (T4 is closed)
=1 (defn. DOTs)

Since these programs are in a lazy language, this derivation is essentially a trace

of the actual computation. Expressing more of the connectivity would lead to
trouble in this programming style. For example, if the equations for T2, T3, and
T6 were changed to

= NT [g2, DOT [T6d, T4dl, DOT [T3d, Tidll]

[T2s, T2d] =
[T3s, T3d] = NT [g3, DOT [T6s, Tbd]l, DOT [T2d, Tidl]
[Tés, T6d] = NT [g6, DOT [T3s, Tb6d]l, DOT [T2s, T4dll]

the derivation would be

CKT [H, H, H, H, H, H] = Tid-T2d-T3d. (eqn. for Out)
=Z-T2d-T3d (T1 is open)
= T2d - T3d (Z-v=0)
= (T6d - T4d) - T3d (T2 is closed)
= (T3s - T5d) - T4d --- (T6 is closed)
= (T2d - T1d) - T64 --- (T3 is closed)
= (T6d - T4d) - T14 --- (T2 is closed)

A leftmost derivation diverges because the values of certain transistor outputs
depend on themselves. In this example, there is a cyclic dependence along the
path (T2,T6,T3,T2,...). The other cycles are shown in the diagram

T1

[N

T2 T3
T

k T6

T4 T5

A global analysis is needed to avoid coding cyclic dependence. It is based on
what points in the circuit are to be regarded as outputs. A different instance
of the CKT program would be needed to compute the voltage at the point I3.
Solutions to this problem are developed in Sections 4 and 5. However, before
looking at these, let us briefly consider a different symbolic interpretation of
CKT.

3.1. Integrating with Verification

The CKT expression can be interpreted as a predicate, and the CKT program
can synthesize a formula for that interpretation. The examples below simply
illustrate the flexibility of symbolic processing, showing how functional modeling
might integrate with other systems for verification or synthesis.

O’Donnell demonstrates with HDRE how redefinitions of the ground type per-
mit a single circuit description to model physical and geometric aspects of an
implementation [16]. In a slightly different approach, Boute parameterizes a
semantics of an applicative metalanguage to accommodate various models of
circuitry [2].

The primitives for building expressions or their representations are not pre-
sented here. Like most Lisp dialects, Daisy has a homogeneous representation
for programs and data, making it easy to build expressions out of expression
fragments. Since Daisy is interpreted, expressions thus built can be directly
evaluated.

Only the functions PWR, GND, DOT, NT, and PT are redefined to build formulas as
indicated below.

Expression builds the formula
PWR P
GND G
DOT [A, B] AANB
NT [G, S] G>S
PT [G, S] -GDS

With these revised definitions, and the original definition of CKT, the expression
CKT [llLu ; wyw : wyw . wgn s HHw : uLn] builds

(=L > P)
ALD((HD>G)A(LD(HDG))
A[HD((HDG)A (LD (H D G))]

Interpreting H as TRUE, L as FALSE; and leaving P and G as free variables; this
expression simplifies to P A G. Extending logical connectives to deal with the
four-valued voltage basis, this formula says that the circuit is shorted.

Similarly, the expression CKT ["gi",6 "g2n,6 "g3n wggn WMghn Hggh] re.
turns the formula

(91 O P)

A lg2 D ((94 D G) A (g6 D (95 0 G))]

A g3 D ((95 > G) A (g6 D (92 D G))]

Call this assertion Q. From Q@ = P & G (& denoting exclusive-or), one could
deduce the electrical validity condition mentioned in Section 1.1:

g1 = (92A94) V(92N g6 N gs)V (g3 geAga)V(g5A g3).

4. Indeterminate Directionality

In the previous section, CKT’s descriptions were valid only in predetermined in-
put/output orientations. The partial solution in this section models a closed
transistor as choosing the value of some neighboring voltage source. Each tran-
sistor dynamically determines a direction for information flow. The guarded-
choice construct, defined and discussed in Section 2, is used to implement this
behavior.

def NT [g, s, d] =
if L7(g) then "2
else
GIF { GUARD[OR[H?(s), L?(s), X7(s)], sl
GUARD[OR[H?(d), L?2(d), X7(d)], 4l
GUARD[Z?(s), d]
GUARD[Z?(d), sl

The definition for PT is identical except for its test on g. A closed transistor
assumes the value of either its “source” input s or its “drain” input d. If s is
not connected, the transistor commits to d’s value and vice versa. If two or
more of the GUARD expressions are satisfied, a choice is made. On the other
hand, if s can’t be determined but d can, NT’s result is based on d’s value.

A weaker version of DOTs, called DOTw, returns the first connected value.

|
| DOTw: [Value ... Value] --> Value
I
def DOTw [] = nZ»
DOTw ["Z" ! Vs] = DOTw(Vs)
DOTw [V ! Vs8] =V

Under these definitions, an expression for CKT can state all the physical connec-
tions. For example, the definition below states that transistor T3 is connected

to T1, T2, T6, T5; and T3.

def CKT [gl, g2, g3, g4, gb, g6l = Out
where
Out = I1

I1 = DOTw {T1, T2, T3}
I2 = DOTw {T2, T6, T4}
I3 = DOTw {T3, T6, T5}

Ti1 = PT [gl, PWR, Ii]
T2 = NT [g2, I1, I2]
T3 = NT [g3, I1, I3]
T4 = NT [g4, I2, GND]
T5 = NT [g5, I3, GND]
T6 = NT [g6, 12, I3]

The description is pleasantly direct, considering that it is in an applicative
source language. Applied to a multiset, DOTw chooses the first voltage it can
determine. If DOTs were used here, or if DOTw were applied to a determinate list,
this program would fail more often. As it stands, this version of CKT correctly
models the circuit’s behavior where the gate inputs satisfy the validity condition,

g1 = (92N ga)V(g2AgeAgs)V(g3AgsAgs)V(gsAgs).

Should the inputs not meet this condition, one of two things happens. When
Out is shorted the result is either H or L, depending on the effort needed to find
a voltage source. In this case, it is easier to find an H because there are fewer
transistors between Out and PWR than between Out and GND.

When Out is unconnected, CKT may diverge because DOTw ignores Zs. This can
reduce the computation to the kind of cyclic dependence discussed in Section
3. The table below shows the values computed for all H/L combinations of the
gates. The question marks show where the program diverges [NOTE 4] and the
{H} entries show where CKT fails to discover Xs. For reasons just discussed, there
happen to be no “{L}” entries.

Out=11 g4.95,86 s
glgle3 | LIL 1LH LHL LHH HLL HLH HHL HHH
LLL H H H H H H H H
LLH H H H H B H H H
LHL H H H H H #H H H
LHH H H H H H H H H
HLL Z Z #Z Z T Z £ Z
HLH ? ? L L ? . L L
HHL ?2 2?2 %2 L L L L L
HHH ? ? E £ E L L L

Despite its problems, this treatment permits us to describe CKT in a composi-
tional fashion, without regard to the surrounding directionality. For example, if
“Out = I1” isreplaced by “Out = I2,” and with no other changes, the program
computes the values below for the junction of transistors T2, T4, and T6.

Out=12
glg2g3

g4.25,86 >
1HH HLL HLH HHL HHH

4

;

rwNNmmNNE

g
wwNNmmNNE
T
B e e
skl sl sl sh i
B
il sl sishs
st si s sl sh s

The curious reader might determine which of these entries are undetected shorts.
The not-so-curious may consult the table at the end of the next section.

5. Bidirectional Modeling

In order to detect shorts and no-connects, each transistor must examine all its
neighbors and avoid self reference while doing so. This is accomplished by giving
each transistor a distinct name. We develop the following data structures. List
representations for and operations on these structures, all quite ordinary, are
shown in Appendix A.

A labeled join is a tree whose leaves are values and whose interior nodes are
labeled. An (unlabeled) join is just like a labeled join, except that its root is
not labeled. The operations on joins (See Appendix A) are

| LABELj : Label --> Join --> LabeledJoin

| JOINj : [LabeledJoin ... LabeledJoin] --> Join
| MERGEj : [Join, Join] --> Join

| NEWj : [Label, Value] --> LabeledJoin

| DOTj : Join --> Value

LABELj places a label at the root of a join and removes all subtrees with that
label. The figure below, on the right, shows the result of applying LABELj (""B")

to the unlabeled join on the left.

L H N H N

NEWj creates a new labeled join from a label and value. MERGEj “connects” two
unlabeled joins by superimposing their roots. JOINj places several joins under
a new root, creating a new unlabeled join. DOTj evaluates a join by forming
the product of its leaves. Like DOTs, DOTj terminates when an X is discovered.
DOTj returns X when applied to the left tree and H when applied to the right
tree.

An N-transistor is modeled as follows. As usual, a P-transistor uses the L7 test
in place of H?. Once again, gates are treated as pure inputs.

|
| NT: Label --> [Join, Join, Join] --> LabeledJoin

I
def NT(Me) = X [g, s, dl.
if H?(DOTj(g))
then (LABELj(Me)) (MERGEj [s, dl)
else NEWj [Me, "Z"].

The parameter Me is this transistor’s unique label. The transistor evaluates the
voltage at its gate. If the gate is true, the result is a labeled join connecting
the transistor’s source and drain inputs with a root labeled Me. If the gate is
false, a labeled join representing no connection is returned.

LABELj recursively cancels self references. To see how this happens, let us look
at a simple combination of transistors [NOTE 5].

def SIMPLE [A, gi, g2, B] = [A?, B’]

where
TL1 = (NT "T1") [gi, A’, B’]
T2 = (NT "T2") [g2, A’, B?]
A’ = JOINj [A, T1, T2]
B’ = JOINj [B, T1i, T2]

The arguments to SIMPLE are labeled joins; for instance, we might evaluate
H H H Z -

SIMPLE produces outputs A’ and B’ for its external ports, A and B. These are
unlabeled joins of the external inputs and the two transistors.

@+——o<% i

In the case that both gates are false, each transistor simultaneously combines
A’ and B’. The resulting graph would have the cyclic structure

However, LABELj(Me) eliminates paths from any transistor to itself. Since this
is done simultaneously by all the transistors, all cycles are cut. The diagram
below shows only T1’s view of the result, a finite acyclic graph representing all

paths through the circuit.
O
o

Hence, evaluation of T1, T2, A’, or B’ always terminates.

The CKT example is expressed as

def CKT [Out, gi, g2, g3, g4, gb, g6l = Out’
where
Out’ = I1

I1 = JOINj [Out, Ti, T2, T3]
I2 = JOINj [T2, T6, T4]
I3 = JOINj [T3, T6, T5]

T1 = (PT "T1")[gl, PWR, I1]
T2 = (NT "T2")[g2, I1, I2]
T3 = (NT "T3")[g3, I1, I3]
T4 = (NT "T4")[g4, GND, I2]
T5 = (NT "T5")[g5, GND, I3]
T6 = (NT "T6")[g6, I2, I3]

This expression is bidirectional. It requires a contributing voltage from the
port Out. With Out unconnected, this program computes the the same table
of values for point Out’ as is shown in Section 3. The value of I2, joining
transistors T2, T4, and T8, is computed by the same expression, replacing Out’
= I1 with Qut’ = I2.

Out’ = I2 |+ 94, 95, 96
g1,92,93 |LLL LLH LHL LHH HLL HLH HHL HHH
it 7 % % L L L E E
LLH Zz & T ¥ L ¥ E X
LHL H @ B ¥ X X ¥ X
LHH i # ¥ ¥ X ¥ x %
HLL 5 ¥ 2 ¥ i L E I
HLH i 2 #£ 1. 1. L L I
HHL g % ZT 1 L L T I
HHH Z 2 L 1 1 L F &

Thus, this program models bidirectional behavior at the intended level of detail.
It solves simultaneous systems of transistor equations over a finite set of voltage
values. Each transistor builds a data representation of the entire circuit, from
its own vantage point. Since these structures are built recursively, they are
cyclic graphs. However, by editing its own join structures a transistor removes
infinite paths involving itself. This is done uniformly by all the transistors,
resulting in a tree of connected voltages for each. Evaluation of these trees by
DOTj delivers values for the junctions. The treatment is compositional in the
sense that the work is done by the programs PT and NT, and not by a global
analysis for directionality.

6. Remarks, Directions, and Conclusions

We have explored various symbolic representations for transistors in a four-
valued domain of behavior. The modeling was done in an applicative surface
language over a general purpose graph processing system. Because the language
is lazy, the structure of the circuit can be expressed directly as a recursive data
dependence.

The examples focus on the treatment of bidirectionality. Being bidirectional
does not necessarily mean being relational. In digital design, most transistors
have a logical orientation. Those that do not often develop a direction from the
circuit’s external environment. That is, every conductor has a direction at any
time, although it may change from time to time.

One can describe bidirection applicatively by naming the two directions of in-
formation flow, as is done in Section 3. At a notational level, the same kind of
thing is done by Musser, Narendan, and Premerlani in BIDS [15]. Doing this
uniformly is a bit cumbersome, and a global orientation was needed anyway to
avoid divergent recursions. Divergence is not a problem for BIDS, which verifies
assertions about behavior.

In Section 3.1, the base functions are altered to synthesize propositional formu-
las directly from a directional version of CKT. This is simply a matter of using
the available symbolic processing facilities. This program could not produce
the quantified formulas used in predicate descriptions of VLSI (e.g. [7]). This
is a programming challenge, involving techniques used in Sections 4 and 5.

In Section 4, the need for a global analysis is eliminated by coding versions of
the transistors which dynamically choose a direction. This is closer to a rela-
tional style of description, but the programs in Section 4 fail to detect shorts
and sometimes diverge. Ambiguous constructs such as Daisy’s multiset expres-
sions raise problems in the semantics of functional languages. They weaken
their very functionality, complicating not only implementation, but also the
rules of reasoning between expressions and their values. In programming, these
constructs are typically used for their operational qualities; Section 4 is an ex-
ample. Daisy’s { --- } constructor is not nondeterministic, which is not to say
that it is deterministic. It is merely concurrent. The GIF conditional avoids
divergence but does not make the best (or worst) choice of evaluation order.
However, because these constructs lend a quasi-relational quality to applicative
notation, they are worth investigating in this context.

The final treatment in Section 5 implements deadlock avoidance by giving each
transistor a name. The CKT program is highly circular but the cycles are sys-
tematically eliminated. It is hard to imagine adopting this representation in an
applicative order modeling language. In the third chapter of their text book,
Abelson and Sussman develop a contrasting approach to electrical modeling [1].

This paper reports experimentation toward a symbolic modeling methodology.
The programs can certainly be improved, through a combination of the tech-
niques illustrated and general program improvement. The following comments
refer to the programs in Section 5.

e Treating gates as pure inputs gains brevity at a cost in generality. It is a
minor refinement to model a transistor as providing an output for its gate as

well as its source and drain. A fully bidirectional inverter description might
then look like

INV [In, Out] = [In’, Out’]
where

[Tig, Tis, Tid]

[T2g, T2s, T2d]

In’

Dut?

"(PT "T1") [In’, Out’, PWR]
(NT "T2") [In’, GND, Out’]
JOINj [In, Tig, T2gl
JOINj [Out, Tid, T2d]

]

It can be demonstrated that, while transistors can be turned around, the in-
verter works in only one direction.

e Each transistor must have a unique reference designation. In Section 5 this
was done in by using literals "T1", "T2", and so on. Hierarchical descriptions
must somehow ensure this uniqueness. It could be done by parameterizing each
level of description; for example, CKT would concatenate its own Me parameter
to the designations within. Of course, Me doesn’t have to be a literal, nor even
printable. In some examples not presented here, we shamelessly exploited the
list allocator by letting each join serve as its own label.

e Though the transistor expressions in Section 5 share a lot of information,
they do not share much structure. Each one builds a distinct representation
for its view of the system. Consequently, these programs do a lot of redundant
computation. The version of CKT in Section 4 does not have this problem;
partial results are shared.

e These modeling techniques apply to circuits with state. As one would
expect, notions of strength and capacitance (or at least delay) are needed.
With these refinements to the base programs of Section 5, the behavior of such
circuits as this D-type flip flop [19, Fig. 5.44a] can be modeled.

PWR PWR
ID Phl
S

—Q

PR

Phl

D GND L
LD

o
=
™

HL I

Further details can be found in [3]. The enhancements bring us closer to the
level of description addressed by Winskel, Musser, and others, cited in Section
1.1.

In summary, there is every prospect that symbolic modeling will play an im-
portant role in VLSI engineering. Hence, part of the effort in formal hardware
research must be to show how sts tools can be used in practice. We are only
beginning to develop methodology for animating hardware descriptions. Our
purpose has been to illustrate how facets of design can be isolated. The models
shown here are useful for limited explorations of VLSI behavior. They are also
disposable because little effort is involved in building them.

Notes

1. The variable d is included for correspondence to the schematic. It names
the output. It could be eliminated from the definitions by writing

def NT [g, s] if H?(g) then s else "Z"

def PT [g, =] if L?(g) then s else "Z"

The d is used later to identify applied occurrences of NT and PT. For example,
the INV program uses Tid for the drain of transistor T1. In later programs
it is more useful to have such names.

2. INV could be defined by a single term,

def INV(i) poT [PT [i, PWR], NT [i, GND]]

3. The expression for I1 could be
DOTs [Tid, T2d, T3d]

It is written this way because this version of CKT is used for a different
purpose in Section 1.1.

4. For this table and the next one, CKT was run for a period of time judged
sufficient to generate an answer if one existed. Of course, this is hardly a
test for divergence; however, by looking at the configuration of gates for
‘?’ entries, divergence can be determined. For example, CKT [H, H, L,
L, L, L] closes just transistor T2. Symbolic evaluation of the equations
shows that in this case, the equation for Out becomes

Out

DOTw {Ti1, T2, T3}
DOTw {"N", Out, "N"}
= Out

Hence, the program does diverge in this case.

5.

Think of T1 and T2 as transmission gates, ignoring the fact that N-type

transistors don’t pass high voltage very well.

References

[1]

2]

[3]

[4]
(5]

[6]

7]

8]

(9]
[10]
[11]

[12]

Abelson, Harold and Sussman, Gerald Jay with Sussman, Julie, Structure
and Interpretation of Computer Programs,, (The MIT Press, Cambridge,
1985).

Boute, Raymond T., System semantics and formal circuit description, IEEE
Transactions on Circuits and Systems CAS-33 (12) (December,. 1986)
1219-1231

Boyer, C. David and Johnson, Steven D., Modeling transistors with Daisy,
Indiana University Computer Science Department Technical Report,. in
progress

Bryant, Randell E., A switch-level model and simulator for MOS circuits,
IEEE Transactions on Computers C-33, No. 2 (February, 1984), 160-177.

Dhingra, I. S., Formal validation of an integrated circuit design style, in
Birtwistle, Graham and Subrahmanyam, P. A. (eds.), VLSI Specification,
Verification and Synthesis, (Kluwer, Boston, 1988).

Gopalakrishnan, Ganesh C., Smith, D. R., and Srivas, M. K., An algebraic
approach to the specification and realization of VLSI designs, Proc. 7th
Symposium on Computer Hardware Descripiton Languages,Tokyo, Japan
(North-Holland, Amsterdam, 1985).

Gordon, M. J. C., Why higher-order logic is a good formalism for specifying
and verifying hardware, , in Subramanyam, P. A. and Milne, G. J. (eds.),
Formal Aspects of VLSI design, (North-Holland, Amsterdam, 1986), 153-
178.

Hanna, F. K. and Daeche, N., Specification and verification using higher-
order logic: a case study, in Subramanyam, P. A. and Milne, G. J. (eds.),
Formal Aspects of VLSI design, (North-Holland, Amsterdam, 1986), 179-
213.

Henderson, Peter, Functional Programming—Application and Implementa-
tion, (Prentice-Hall, Englewood Cliffs, 1980).

Henson, Martin C., Elements of Functional Languages,, (Blackwell Scientific
Publications, Oxford, 1987).

Johnson, Steven D., Synthests of Digital Designs from Recursion Equations,,
(The MIT Press, Cambridge, 1984).

Johnson, Steven D., Daisy Programming Manual, Draft manual, available on
request, Indiana University Computer Science Department, Bloomington,
Indiana.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Mehlam, Thomas F., Abstraction Mechanisms for hardware verification, in
Birtwistle, Graham and Subrahmanyam, P. A. (eds.), VLSI Specification,
Verification and Synthesis, (Kluwer, Boston, 1988) 217-233.

Milne, George J., CIRCAL and the representation of communication, con-
currency, and time, ACM Trans. on Programing Languages and Systems, 7
2 (April, 1985) 270-298.

Musser, David R., Nerendran, Pakiath , and Premerlani, William J., BIDS:
A method for specifying and verifying bidirectional hardware devices, in
Birtwistle, Graham and Subrahmanyam, P. A. (eds.), VLSI Specification,
Verification and Synthesis, (Kluwer, Boston, 1988) 217-233.

O’Donnell, John T., Hardware description with recursion equations, Proc.
8th International Symposium on Computer Hardware Description Languages
and their Applications, Amsterdam, April, 1987..

Peyton-Jones, Simon L., The Implementation of Functional Programming
Languages,, (Prentice Hall, Englewood Cliffs, 1987).

Sheeran, Mary, uFP, a language for VLSI design, Conf. Rec. 1984 Symp.
on LISP and Functional Programming, 104-112.

Weste, Neil and Eshraghian, Kamran, Principles of CMOS VLSI Design, A
Systems Perspective,, (Addison-Wesley, Reading, 1985).

Winskel, Glynn, Models and logic of MOS circuits, in Birtwistle, Graham
and Subrahmanyam, P. A. (eds.), VLSI Specification, Verification and Syn-
thesis, (Kluwer, Boston, 1988).

Appendix A. Representation of Joins

These programs represent the join objects used in Section 5.

I
I LABELj : Label --> Join --> LabeledJoin

| ELIM : [Join ... Join] --> [Join ... Join]
|

def LABELj (Me) = X Js. [Me ! ELIM(Js)]
where
ELIM (Js) =
let [[L ! JO] ! J1] = Js in
if nil?(isLST? Js) then Js else
if same? [Me, L] then ELIM (J1)
else [[L ! ELIM (JO)] ! ELIM(J1)]

ef JOINj(Js) = Js

MERGEj : [Join, Join] --> Join

ef MERGEj = APPEND

I
l
|
d
|

l

l

d
|

| NEWj : [Label, Value] --> LabeledJoin
|

def NEWj [L, Vsl = [[L ! Vs]]

| DOTj : Join --> Value
| FLAT : [Join, [Value ... Valuel]] --> [Value

def DOTj(J) = DOTs(FLAT [J, [1])
where
FLAT [J, Etc] =

let [[L ' V] ! J'] =37

in

let Etc® = FLAT[J’, Etc]

in
if nil?(J) then Etc else
if nil?(V) then Etc’ else
if not?(1list?(V)) then [V ! Etc’]
else FLAT[V, Etc’]

JOINj : [LabeledJoin ... LabeledJoin] --> Join

. Value]

