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Abstract 

Temporal computation in connectionist models is studied through the ap

plication of a mechanism for visual motion to the detection of acoustic motion. 

This mechanism is then used in the recognition of isolated stop consonant- vowel 

(CV) syllables. SYREN is a connectionist model that recognizes 24 CV syllables 

by tracking the movements of formant center frequencies. SYREN is divided 

into three parts: a motion detector network to identify the rate and direction 

of formant transitions, an adaptive network that associates patterns of formant 

transitions with each syllable, and a veto recognition network that uses patterns 

from the adaptive network to actually recognize the syllable. The network is 

dynamic, taking formant center data sequentially in 5 ms time slices. 

A veto network is used in the motion detection phase. This is constructed 

using veto inhibition and characteristics of local dendritic computation from a 

visual motion mechanism in some vertebrate systems. Neural veto inhibition is a 

shunting inhibition that blocks the flow of excitatory activation without affecting 

the membrane potential. A single node in a motion detector performs compu

tations analogous to a small subunit of a dendritic tree of a neuron, allowing 

the implementation of activation flow, decay, and veto inhibition in a subnet-
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work that is analogous to a single nerve cell. Veto inhibition blocks the fl.ow of 

activation through the subnetwork. 

The adaptive network uses a hybrid of the Widrow-Hoff rule with modifi

cations from a mechanism of classical conditioning. It uses formant transition 

information as input, with transition patterns preserved for 5 time slices through 

delay lines similar to temporal sequence detection mechanisms. The data corpus 

consists of formant centers from five repetitions and averaged centers from 24 

CV syllables. The network is trained on five tokens from the data corpus and 

tested on the sixth. A recognition network using veto inhibition is constructed 

after training and uses activation patterns from the adaptive network to recog

nize each syllable. The network achieves 100% recognition on its training data 

and 79% recognition on its testing data, using information from both vowel and 

consonant portions of the speech signal. 
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Programming from Neuroscience 1 

1. Programming from Neuroscience 

Computational methods arise from a number of sources. Mathematics and 

Logic are two of the fields that have influenced Computer Science. The Predi

cate Calculus has led to the logic programming language Prolog [25], while the 

Lambda Calculus [24] has affected the design of a number of other programming 

languages. Functional optimization has been accomplished through a process 

called simulated annealing [56], motivated from Chemistry and Physics. When 

viewed within the scope of Computer Science, Artificial Intelligence (AI) may 

be thought of as the application of techniques gained from the study of intelli

gence to difficult problems, and the actual implementation of intelligent systems. 

Computer Science has benefited from contributions of Artificial Intelligence such 

as symbolic and rule-based problem solving methods. Most of these techniques 

attempt to exhibit intelligence at a rather abstract level, far from its actual 
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implementation details in biological systems. 

The brain is a computational device whose processing mechanisms differ 

from traditional digital sequential computing. Characterized by massive paral

lelism and interconnectivity, the brain is capable of remarkable computational 

feats arising from the cooperation of a large number of neurons, whose basic 

computation is relatively slow compared to conventional digital processors. The 

properties of the brain combine to form a device noted for its ability to store 

and retrieve information in an efficient manner. The brain can use this informa

tion in a wide variety of ways by capturing the complex interrelationships that 

characterize human intelligence, and adapt and apply that knowledge to new sit

uations. Almost all biological neural systems are noted for efficient and effective 

perceptual processes that are unsurpassed by artificial implementations. These 

neural systems display a property of fault tolerance, the ability to function with 

damaged or missing elements, that no conventional computer has been able to 

achieve. 

Artificial Intelligence and Computer Science have seen limited success in a 

few areas of intelligence, but have yet to scratch the surface of the performance of 

even the most primitive biological neural systems. Traditional AI techniques have 

been applied to perceptual problems, such as vision and speech, with relatively 

limited results. 

There is a piece, if not an entire section, missing from the puzzle. N euro

science can provide clues and insights into the nature of the best example of an 

intelligent computational device available, the brain. It is possible that the na

ture of these problems requires the application of analog, parallel computational 
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techniques common to neural devices [64], and that the study of these neural 

systems may give insights into the construction of an artificial implementation. 

Computer Science is, in some sense, the study of computational devices, and it 

is well served by the study of natural systems. Ideas from neurophysiology can 

be applied not only to problems in intelligence but to problems in other domains 

as well. 

Connectionist models are networks of nodes computing in parallel and com

municating information to other nodes through connections. Traditionally a node 

computes a numerical or binary activation value and transmits this on its out

put connections. A node's activation is normally determined by the activation 

values available on input connections. The kind of computation performed by 

these models is motivated by neurophysiological ideas and, traditionally, a node 

in a connectionist model is treated as a very simplified analog of a nerve cell 

or possibly an assembly of several cells. These models offer an alternative to 

traditional AI programming techniques and have seen some successes in vision, 

speech, and associative memory [98, 75, 64]. They have also been applied to tasks 

that do not necessarily fall within the normal domain of Artificial Intelligence 

such as adaptive process control [37], radar imaging [34], and communication 

[128]. Many models are adaptive networks in which only the initial configuration 

need be specified, with the final behavior the result of training. 

Connectionist networks offer another computational method not only to the 

field of Artificial Intelligence but to Computer Science in general. Neuroscience 

has contributed a class of methods along with fields such as Mathematics and 

Logic. Most connectionist models, however, use highly idealized abstractions of 
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neural behavior while leaving out the majority of the rich structure and function 

known to neuroscience. It is possible that implementations of certain behaviors 

may require a closer study and modeling of functional properties of the nervous 

system. 

1.1 Temporal and Dynamic Connectionist Models. 

Connectionist models can be divided into two classes. A static model is given 

input all at once and computes its output for that information before the next 

input is shown. An associative memory is an example of a static model that 

gives an output pattern B when presented with an input pattern A. Some 

connectionist speech recognition models are static, and are presented with an 

entire utterance all at once to compute an output with the entire signal available. 

Dynamic models are given input in steps or time slices and must accumulate 

information spanning over a time frame before producing output. In the strongest 

sense a dynamic model does not preserve the raw input signal or assign parts of its 

structure to particular moments of the input. An example is a visual recognition 

system where input receptors are updated after a very short duration, such as a 

five millisecond refresh cycle. 

Dynamic models are important in systems for temporal sequence detection, 

where several input patterns are presented before an output is expected. The 

detectors are like associative memories except that the input patterns are spread 

over a longer temporal window. It may be impractical to store several input 

frames in full scale applications of vision and speech systems. This requires the 

use of dynamic models and the need to represent temporal effects. These models 



Programming from Neuroscience 5 

also work in the opposite direction, where a single input produces a sequence of 

output patterns. This may arise in motor control problems and planning, which 

require computations in a temporal domain. 

The detection of visual motion requires the separation of moving objects 

from stationary ones and determining the direction and rate that the body is 

moving. In the visual system this is thought to be accomplished through cells 

that are responsive to different types of motion. These motion detector cells are 

believed to exist throughout the visual system from retinal cells whose axons 

travel in the optic nerve [6, 125, 63] to the visual cortex [47]. These cells have 

a receptive field spanning a portion of the retinal receptors corresponding to a 

part of the retinal field. If an object is in that part of the receptive field it will 

affect the corresponding retinal receptors. Objects moving across the receptive 

field affect a cell in a way that depends on the direction and rate of movement. 

Stimuli used in the laboratory in studies of these cells are normally quite simple, 

such as bars, lines, or grids. The motion of an object must subtend a substantial 

portion of the cell's receptive field to have an effect, and a motion detector in 

the retina is not excited until it accumulates information from a number of light 

receptors. This computation spans a time frame and requires some temporal 

integration of input. 

A speech signal is characterized by dynamic changes of spectral properties 

and steady-state periods. A formant in a speech spectrogram is a concentration 

of energy centering on a particular frequency at some point in time. Formants 

exhibit steady-state frequencies as well as periods when the central frequency is 

changing. Many parts of speech are characterized by formant transitions, and 
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research has shown that the nature of these transitions can provide important 

clues to the identity of these constituents (70, 111, 28]. 

Formant motion is analogous to visual motion. The detection of the rate 

and direction of formant transitions requires the temporal integration of spectral 

information much like the computation required for visual motion. If a mecha

nism is found for visual motion, it can be applied to the detection for formant 

transitions, with this process integrated into a speech recognition system. 

Through a detailed study of parts of the mammalian visual system, a model 

has been developed of cells in the retinal ganglion that are sensitive to visual 

motion (6, 125, 63]. The implementation of this mechanism requires some mod

ifications to current connectionist formalisms. Traditionally, a node in a con

nectionist network takes a linear weighted sum of the activation values of its 

input connections. A connection can have an excitatory or inhibitory effect on 

a node. A value on an inhibitory connection reduces the effect of an excitatory 

value of another connection by reducing the node's activation. Real neurons, on 

the other hand, exhibit both spatial and temporal integration of the effects of 

synapses. This means that the location and temporal effects of a synapse play 

an important role in the behavior of the nerve cell. If these nodes are to be 

analogous to nerve cells, input summation must take into account the structural 

characteristics of the cells and the location of the input synapses. Furthermore, 

there exist non- linearities in the excitatory and inhibitory results of synapses. 

The mechanism for visual motion is a combination of veto or shunting in

hibition with the integration of effects of spatial subunits on the dendritic tree 

of motion detector cells (63]. The effects of veto inhibition differ from the linear 
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integration of inhibitory connections in traditional connectionist models. With a 

veto synapse a small amount of inhibition can veto a large amount of excitation. 

Furthermore, the location of a shunting synapse has an important role in its ef

fect. Excitation flows from synapses on the dendritic tree of a nerve cell to the 

cell body much as the tributaries of a river fl.ow to its mouth. Veto inhibition 

can selectively block excitation from specific synapses depending on where the 

inhibitory synapse is located with respect to the source of the excitation and the 

body of the cell. If the veto inhibition is located at the confluence of several 

dendritic branches, the excitatory effect of all the synapses behind that portion 

of the cell can be vetoed by a single inhibitory synapse. 

1.2 Application of the Mechanism to Acoustic Motion 

This research explores the effects of temporal computation in connectionist mod

els through the implementation of spatial and temporal synaptic integration in 

the form of a veto network. Speech recognition serves as the test bed for the 

application of mechanism of visual motion outlined by Koch, et al [63], and this 

mechanism is applied to the detection of formant center transitions. Formant 

transition information is then used in the recognition of voiced stop consonant 

vowel (CV) syllables. Veto networks are used both in the detection of acoustic 

transitions and in final syllable recognition. An adaptive network serves as an 

intermediate level of processing, integrating transition information and passing 

it on to the veto recognition network. 

The system, named SYREN for SYllable REcognition Network, is a 

connectionist-style model consisting of three subnetworks. The first detects the 
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rates and directions of formant transitions and steady-state frequencies from 

formant center input. The second subnetwork is a learning model that takes 

the output of the motion detectors, spreads them out slightly over time, and 

through an adaptive process associates patterns of acoustic motion with each 

syllable. This process is not perfect, and another veto network takes the output 

of the adaptive network and fine tunes the process by eliminating the majority 

of the errors. This network provides the final output of SYREN. 

The data corpus consists of formant centers taken from five repetitions and 

averaged centers from each of twenty-four naturally produced CV stop consonant 

syllables [52, 55]. Formant center information is converted to a bit matrix where 

each row represents the frequency of the formant and each column a 5 ms time 

slice. The matrix is presented to input nodes of the network one slice at a time. 

Information from previous presentations is not retained by the input nodes. 

There are nineteen different types of motion detectors which preferentially 

respond to twelve specific rates of transitions, six rates in each direction, and to 

a steady-state condition. Three faster transition rates are assigned two types of 

detectors. Each detector is itself a subnetwork whose architecture is analogous to 

the dendritic tree of a nerve cell. A node in a subnetwork corresponds to a patch 

of cell membrane whose connections are analogous to exterior synapses and also 

serve to connect the patch to others in an artificial dendritic tree. Exterior con

nections are either excitatory or provide shunting inhibition. The activation of a 

node is computed using equations incorporating saturation and decay properties 

for nodes on branches. A sigmoid squashing function is used for the node that 

serves as output for a detector. Veto inhibition is used for both direction selec-
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tivity and rate sensitivity. The detectors are copied over the frequency spectrum 

from 0 to 4000 Hz. 

The adaptive network is a single layer of nodes with each node assigned to 

a particular syllable. The weights of the input connections of the nodes are set 

by an adaptive method so that the node will respond to transitions associated 

with its assigned syllable. The adaptive algorithm incorporates ideas from self 

organizing temporal sequence detection systems as well as classical conditioning 

methods. The nodes are connected to a delay matrix which preserves transition 

information for a few time slices. 

Detector nodes occasionally fire on the wrong syllable, and the veto recogni

tion network uses patterns of errors to ensure accurate recognition performance. 

The final output of the network is through twenty-four recognizer nodes , each 

assigned to a syllable. Although not as complex as the motion detectors , the 

network uses veto inhibition to prevent a node from firing on the wrong syllable. 

It is constructed after the performance of the learning phase is evaluated. 

1.3 Aim and Focus of the Project 

This research primarily focuses on the implementation of a connectionist model 

which uses temporal properties of input in its computation. Time is not explicitly 

represented, but is incorporated in many ways. This is accomplished through 

the construction of a computational tool, the veto network, that is used in a 

dynamic model that must respond to temporal and sequential characteristics of 

its input. This tool is developed from a neurophysiological mechanism of visual 

motion detection, itself a temporal process. The contribution of this method 
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and its usefulness as a general computational tool is demonstrated through its 

application to a problem in speech recognition. The use of veto networks at two 

levels in SYREN indicates that veto inhibition may be useful in many problems 

requiring the use of temporal and sequential information. 

This research also explores the treatment of speech recognition in a dynamic 

manner. This system takes its input in a left-to-right fashion, a way that is 

more closely related to human perceptual processing systems. The input signal is 

divided into short time slices 5 ms in length. The system explores the usefulness 

of transition information coupled with steady-state properties in recognition, 

including information that exists at phonemic boundaries. Recognition focuses 

on the syllable level rather than on phonemes, and incorporates consonant-vowel 

contextual information. 

To understand the goals of the research it is important to understand what 

it is not attempting to address. From the standpoint of neurophysiology, no 

claim is made about the mechanism of acoustic motion detection in the auditory 

nervous system. Evidence is cited supporting the existence of cells sensitive to 

spectral change. Although veto inhibition is used to implement acoustic motion 

detectors, this research does not suggest that this is the mechanism used in the 

auditory system. Any such claim must be made within the results of detailed 

laboratory experiments which are outside the scope of this research. 

The only linguistic claim made is that formant transitions can be useful 

in the recognition of stop-vowel syllables. They are by no means purported to 

be the only information that is useful, nor the most important. Furthermore, 

the syllable serves as the basis for recognition, not the phoneme. Thus the 
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network is not being trained to search for context-invariant cues for the identity 

of phonemes, a point of contention in speech research. Syllable recognition, by 

its very nature, must rely on the interaction of the constituent phonemes of the 

syllable. 

Although learning methods are a popular field of study, this work does not 

focus on adaptive methods in dynamic connectionist networks. That topic itself 

is worthy of a separate project. Here, learning is used as a programming tool to 

aid in the development of the recognition network. The method used is a hybrid 

of several other methods, and gives acceptable performance in the context of this 

research. Errors and limitations arise from the fact that the detection network 

consists of a single layer of nodes, but a multi-layer network was rejected due to 

the increase in computational requirements of several orders of magnitude. 

The bulk of SYREN is constructed by hand rather than appealing to learn

ing techniques. The reason for this is illustrated by examining the continuum 

between tabula rasa learning networks and fully hand-built models. Most learn

ing research concentrates on fully and uniformly interconnected feed-forward 

networks. These have few initial architectural specifications to guide the early 

learning process, other than the number of nodes. This is the tabula rasa ap

proach, where the final structure and behavior of the network arises from very 

little initial structure. It is clear from the study of nervous systems that the 

brain is amenable to a considerable amount of adaptation, but it is also clear 

that this behavior arises from a very rich initial structure, with a considerable 

number of features and processes already "pre-wired". By providing more initial 

structure, an attempt is made to give the learning process a head start, result-
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ing in a more powerful learning process. This head start is gained from the 

study of neural mechanisms, and illustrates the underlying philosophy guiding 

this research: that the study of neurophysiology provides ideas for more powerful 

computational tools in Artificial Intelligence and Computer Science. 

1.4 Plan of the Thesis 

This thesis describes the ideas, motivation, and implementation of SYREN. The 

next chapter provides a brief overview of neurophysiology, acoustics, and con

nectionist models. The mechanism of visual motion detection is described, along 

with its implications. The role of formant transitions is discussed to provide a 

motivation for the application of the mechanism of visual motion. 

Chapter 3 describes the implementation in detail, including the data used, 

the motion detector network, the adaptive process, and the veto recognition 

network. It describes how the input is presented and what constitutes the output 

of the system. 

Chapter 4 shows the results of the experiments, describes how the veto 

recognition network is actually prepared, and discusses the effects of various 

parameters on the system's performance. The results are analyzed in an attempt 

to discover what information the network is using in the detection process. 

Chapter 5 discusses the results of the experiments and the implications of 

the research to connectionist models and speech recognition. The motion detec

tors are evaluated from standpoints of neurophysiology and psychophysics. The 

performance of the syllable recognition network is discussed in light of similar 



Programming from Neuroscience 13 

connectionist models as well as some linguistic work. The weaknesses of the sys

tem are critiqued, and are related to future research problems. The chapter ends 

with a discussion of the contributions made by this research to computer science 

and other fields of study. 

Finally, Chapter 6 provides a summary and an outline of future directions 

suggested by this research. 
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2. Motivation 

The implementation of models from neuroscience can serve different pur

poses. One may propose a neurophysiological or psychological model and use a 

computer simulation to test whether that model actually produces or predicts 

a certain behavior. In this case the implementation serves to test a hypothesis 

and contribute to knowledge of human information processing mechanisms. This 

research explores another possibility, where the knowledge from neuroscience 

is used in the development of problem solving methods. These computational 

metaphors derived from the nervous system may be applied to problems in Arti

ficial Intelligence as well as other fields such as adaptive process control [37] and 

radar imaging [34]. 

This chapter describes the neurophysiological ideas and evidence used in 

SYREN. Traditional connectionist models are discussed as well as how and why 
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traditional notions are extended in this implementation. This is not intended to 

be a complete introduction to neurophysiology. It is instead an attempt to show 

how specific knowledge of the nervous system is used to construct a computa

tional tool, and how evidence from the mechanisms of the auditory system and 

speech research suggest that it be applied to a problem in speech recognition. 

The chapter begins with a discussion of connectionist models, along with 

the necessary neurophysiology to show their motivation. The Koch, Poggio, and 

Torre mechanism for motion detector cells is described, and extensions to tradi

tional connectionist models are presented to deal with this mechanism. Acoustic 

motion is discussed including its importance to speech recognition. 

2.1 Connectionist Models 

Connectionist Models [35, 43, 98] are neurally inspired information processing 

methods. Known also as Neural Networks and Parallel Distributed Process

ing models (98, 75], they have been applied to many problems including vision, 

speech, and associative memory. Their primary characteristic is that a large 

number of units or nodes exhibit complex behavior by performing simple compu

tations in parallel. The nodes of a connectionist model are highly interconnected, 

communicating simple numerical information between nodes. This is similar to 

the architecture of the brain, which consists of a large number of interconnected 

cells, also computing on a massively parallel scale. Even though our knowledge 

of the brain and its constituent nerve cells is in its infancy, we can be sure that 

current connectionist implementations are highly simplified analogs of the type 

of computation believed to be performed by neurons. Nevertheless, a brief de-
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scription of the brain can serve to show the motivation for these computational 

models. 

2.1.1 Some Neurophysiology 

The brain is composed of information processing cells called neurons, and sup

port cells called glia. Functions such as autonomic activity and coordination are 

handled in the lower regions of the brain. These regions also act as switching sta

tions for perceptual stimuli. Complex tasks normally associated with intelligence 

are believed to take place at a higher level in the cerebral cortex. The cortex 

generates the most interest in the study of intelligence, but the processes and 

mechanisms in the lower sections, such as early visual processing, are important 

to study as well. 

The cortex is divided into various cytoarchitectural regions [91, 133]. The 

cells of many regions perform some specific function or respond to a particular 

sensory modality. For example, cells in the visual cortex respond to visual stimuli, 

and cells in the motor cortex can cause movement. Recordings of the activity 

of single cells show that many areas in the cortex are arranged topographically. 

For example, Hubel and Weisel [48, 47] have shown that the representation in 

the visual cortex is retinotopic, meaning that a neuron responds to stimuli in 

a specific region of the retina, called the receptive field. Adjacent cells have 

receptive fields in neighboring retinal regions. Similarly, both somatosensory 

and motor cortex have been shown to have a somatotopic representation, with 

neighboring cells responding to stimuli from adjoining regions of the body, or in 

the case of motor cortex, causing movements in neighboring regions. With careful 
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recording techniques, something resembling a homunculus may be projected on 

the somatosensory and motor cortex, although the hands and face receive a 

disproportionate amount of space. The auditory cortex shows a different sort 

of topography: a tonotopic representation. Cells in this area are sensitive to 

stimuli in specific frequency ranges. Adjacent cells have receptive fields of similar 

frequencies in a sort of frequency map. Some form of spatial map has also been 

found in the auditory cortex of the bat [89] and the cat [124], with cells responding 

to stimuli from different regions in space. 

Neurons in the cortex and throughout the brain show a functional and mor

phological diversity. A typical cell may contain arboreal or branching processes, 

known as dendrites, a cell body or soma, and a longer process with occasional 

branching known as the axon. These processes come in contact with other cells 

and allow communication of neural information. One neuron connects to another 

through a structure called a synapse. In the classical sense, the dendrites serve 

as the input receptors for the cell and the axons transmit the output, although 

there are many variations on this type of synapse throughout the nervous system. 

A neuron, like other cells in the body, is encased in a cell membrane that 

forms a barrier between the cell's interior and its environment. A characteristic 

of this barrier is a membrane potential that is a charge difference across the mem

brane. This is caused by different concentrations of specific ionic species in the 

interior of the cell with respect to the exterior, maintained by chemical processes 

in the cell membrane. When the cell is not active there is a greater concentration 

of negative ions in the interior of the membrane, causing the membrane to be 

polarized. The resting potential can be disturbed by applying an electric current 
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to the membrane. Small negative currents depolarize the membrane, temporar

ily reducing the membrane potential. If the magnitude of this depolarization 

exceeds the cell's threshold of excitation, an action potential results and the cell 

is said to fire. Called a spike from its appearance on an oscilloscope, the action 

potential is a sudden reversal of the membrane potential that travels from the 

soma down through the axon. This is believed to be the message transmitted by 

the nerve cell. 

The distal regions of the axon show some branching, and these branches 

contain structures called axonal or terminal buttons. If the terminal button is 

in close proximity to another cell's dendrite it forms an axo-dendritic synapse. 

Synapses may also occur on a cell's soma and axon. The terminal button con

tains packets called synaptic vesicles, which store neurotransmitter substances. 

An action potential, upon reaching a terminal button, causes the release of some 

of this transmitter substance into the synaptic cleft, which affects the postsy

naptic membrane in some way. The effect is primarily of an excitatory or in

hibitory nature. In the excitatory case, the membrane is depolarized, bringing 

the cell closer to its threshold of excitation. In the inhibitory case, the mem

brane may be hyperpolarized, making it more difficult for the cell to generate an 

action potential. These effects, referred to as excitatory postsynaptic potentials 

and inhibitory postsynaptic potentials are believed to be the primary means of 

intercellular communication. 

There are many synapses in a cell's dendritic tree. The interaction between 

excitatory and inhibitory synapses affects the firing behavior of the cell. The 

combined effects of each synapse is termed neural integration. This integration 
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has both spatial and temporal characteristics. The interaction of synapses is 

sometimes viewed as resembling an additive process. The effect of one excitatory 

synapse is strengthened by the activation of another at close proximity. This 

combined effect is normally greater than that for synapses located farther apart. 

This is spatial summation. Temporal summation refers to a stronger reinforce

ment of synapses if they are activated within the same time frame. The effects 

on a postsynaptic membrane can decay over time. 

From an information processing standpoint, an idealized neuron computes 

a value representing its current level of activation. This activation is sometimes 

thought to represent spike frequency when using real activation value, or the 

presence of a spike when using binary output. This value is transmitted in some 

way across the synapses by spiking behavior. The activation is computed by 

combining the effects of the synapses through neural integration. It is generally 

assumed that the activation value and the information transmitted across the 

synapse is of a simple nature. More complex behavior is obtained by a large 

assembly of neurons acting in concert. This idealized notion ignores much of the 

richness of structure and function found in the nervous system. Nevertheless, it 

serves as a metaphor for many connectionist models. 

2.1.2 Structure and Function of Connectionist Models 

A connectionist model is a network of interconnected computing elements called 

nodes or neurons, computing numerical values that are transmitted to other 

nodes through connections. A threshold logic unit (77] is a node with a binary 

activation value. The computation performed by a node is called its transfer 
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function. One example is the function 

ai(t) = { O, 
1, 

if 'Ej Wijaj(t) < B 
otherwise, 
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where ai(t) is the activation value of node i at time t, B is a threshold, aj(t) is 

the activation value of a node j connected to node i, and Wij is the synaptic 

weight of that connection. The term ~'j Wijaj is the weighted sum of the values 

on the node's connections. The synaptic weight is a real value representing that 

connection's influence on the state of the node. The computational behavior 

of a node, and hence the entire network, given a specific transfer function, is 

determined by the network topology and the values of the synaptic weights. 

In many models input is presented to the network which repeatedly computes 

activation values until it settles into a stable state where the activations are no 

longer changing (46, 56, 107). 

There are a variety of transfer functions seen in different models. Almost all 

are based on the linear weighted sum of the connections. In the simplest case, 

the node's new activation value is the weighted sum. Other models (97, 42, 107] 

use a sigmoid squashing function 

1 
ai(t)=---l + e-(net;-8)/T 

where neti is the net input to the node i (usually the weighted sum), () is a 

threshold, and T is a parameter called temperature that determines the shape 

of the sigmoid curve. This function can also serve as a probability function for 

stochastic connectionist models [1, 8]. 

Even more complex transfer functions allow activation to decay to a resting 

value in the absence of input. Grossberg (40] separates excitatory and inhibitory 
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input in the equation 

ai(t + 1) = ai(t)(l - a)+ netf (M - ai(t)) - net{ (ai(t) + m) 

where a is a decay constant, Mis a maximum activation value, mis a minimum, 

netE is the net excitatory input, and net1 is inhibitory input. This equation 

allows the activation to decay to 0 in the absence of input. McClelland and 

Rumelhart (76, 99] use the equation 

if neti(t) > 0, 
otherwise, 

in their letter activation model. In these equations, the effect of the input is to 

push the activation towards a maximum or minimum value, the rate of which is 

determined by the magnitude of the input. In each of these functions, the input 

effect is determined by a linear sum. In the case of this research, non-linear 

effects of excitation and inhibition are needed to capture direction selectivity. 

This is developed in the next chapter. 

An important feature of many connectionist models is the ability to learn. 

Adaptive network models modify their synaptic weights and in some cases change 

the network topology to produce a desired behavior. Although growth in the 

nervous system is of considerable interest in neuroscience, connectionist models 

have only recently addressed the issue of topology learning. The foci of topolog

ical learning efforts have been on a study of dynamic links (36], programmable 

networks (73, 93], and stochastic search based on genetic algorithms [44, 80]. 

Adaptive networks based on weight modification are much more common. Most 

of these models are based on what is know as the Hebb Rule (41] which has been 
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paraphrased to say that: "If A and B are simultaneously excited, then increase 

the weight of the connection between A and B [98]." An extension of this rule 

which pertains to forms of supervised learning is that: "If A is active, and it 

is known that B should be active, then increase the strength of the connection 

between A and B." These rules have also been applied in the case of learning 

inhibition. A more thorough discussion of learning algorithms appears in Chap-

ter 3. 

2.1.3 Temporal Pattern Recognition 

One feature common to many connectionist models is the static nature of their 

input. In these models input is presented to the network all at once, with the 

network performing computations and presenting its output. An intelligent or

ganism, on the other hand, is faced with environmental input that is constantly 

changing. The visual world is an example where the input to the eyes is in a 

constant state of flux. Auditory stimuli are processed by organs whose output 

represents a state at one precise instant. In a few milliseconds the sounds can 

change drastically. The ability to recognize temporal patterns seems innate to 

intelligent and even non-intelligent organisms. 

Most networks that attempt to recognize speech present the speech utter

ance all at once, with different parts of the network representing specific times, 

such as the 200th millisecond vs. the 220th millisecond of the utterance. Yet the 

speech signal is an inherently left-to-right phenomenon, and it would seem infor

mative, if not essential, to approach speech recognition in a stream- like fashion 
' 

processing the signal one short time slice at a time. Information is not spread 
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uniformly in the signal, however, and some recognition can be performed using 

short portions of the signal. In this case, it boils down to the recognition of a 

sequential pattern, albeit a complex one. 

Imagine a robot attempting to catch a ball. Its visual system records the 

position of objects at one particular instant. To catch a ball the robot must 

calculate its velocity and trajectory. This may be accomplished by storing several 

of the past images in memory and comparing the position of the ball in each. 

This is an extremely expensive process from a standpoint of both space and time. 

In practice the robot can only maintain one visual snapshot at a time, and must 

gather whatever information it needs before the next snapshot wipes out the 

first. 

The image of the ball in the visual field at a particular instant may be 

thought of as a static pattern, and in many cases it is represented as a matrix 

representing relative brightness. Successive images of the ball are stored with 

different matrices. A succession of these matrices is a sequential or temporal 

pattern. A temporal pattern recognizer is presented with these matrices one 

at a time, and can recognize or reproduce this pattern. This sort of complex 

visual interaction, in the case of our robot, has yet to be implemented in neural 

networks even though some work has been done for simpler tasks. 

This section describes some of the work done in temporal pattern recognition 

by neural networks. The patterns recognized are rather simple, such as the 

numerical sequence "1 , 2, 1, 3, 1, 4" or the letter sequence "A, B, C" presented as 

a sequence of binary matrices. The mechanisms reviewed provide a background 

and motivation for some of the ideas used in this research. 
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A pattern associator is a network that, given a static pattern, produces an

other as output. Input is presented by switching specific input units on, and 

specific output units will turn on in response to this input, normally by com

puting a weighted sum of the input unit values. This is a form of associative 

memory, with the output pattern being associated with the input pattern. The 

association is stored in the pattern associator by adjusting the weights on the 

connections between the input and the output nodes. Many of these networks 

are self-organizing or adaptive networks and the weights are set automatically. 

One common way to store a particular pattern is to have the pattern associa

tor reproduce the input pattern as its output. A common feature of this type 

of pattern associator is that a particular pattern can be reproduced as output 

even if the input is only partially presented or if there is spurious input in the 

signal. This is referred to as pattern reconstruction. The books by Kohonen 

[65] and Hinton and Anderson [43] provide a good outline of pattern associators, 

associative memories, and their relation to content addressable memories. 

A temporal pattern recognizer is much like a pattern associator in that it is 

presented with a sequence of input to produce an output. This output is delayed 

with respect to the presentation of the input, since the associator must wait to 

accumulate information about the particular temporal pattern. It is this waiting 

period, or more specifically, what the recognizer does with its previous input, and 

whether it stores input in delay lines or activation patterns, that is of interest 

here. 

Kohonen [65, 66] presents a simple neural network model for the storage 

and reproduction of temporal sequences. It resembles a pattern associator with 
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Figure 2.1. Kohonen 's sequential pattern recognizing automaton [6.5] 
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Output 

the addition of a delayed feedback loop (see figure 2.1) in which the output of 

a pattern associator is delayed and presented as input or context along with 

the external input. This provides an environment for use in predicting the next 

item in a sequence. For example, to store the sequence "A, B, C" , the "A" is 

presented and the pattern associator stores it by adapting its internal weights 

to produce "A" as output, feeding this output back as input. The feedback is 

presented along with "B" in the next cycle, the weights are set to store "B", and 

"B" is produced as output. The process is repeated for "C". To reconstruct the 

pattern, "A" is fed to the network, which produces "A" as output that is fed 
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back as input. Through pattern reconstruction, "B" is produced and fed back as 

input , producing "C" and reconstructing the pattern. 

Fukushima (38] developed a network that incorporates feedback through de

lay lines. These delay lines (shown in figure 2.2) are constructed as long chains 

of nodes. An output unit of the network feeds into its own delay line that prop

agates the output one cycle at a time through each delay unit. The output units 

are connected to the delay units and a particular set of input units. Patterns are 

stored by adjusting the weights from the delay units. By setting these weights 

the output units can choose for themselves the proper delay necessary for recog

nition. One feature of the delay units is that the output signal is reduced at each 

unit, causing recent signals to have more effect than those more distant in time. 

Willwacher (129] uses a single feedback loop instead of delay lines for pattern 

generation and reconstruction. A delay function gates the output of a unit, 

increasing it to a saturation value and then reducing it to zero. The effect of a 

particular input is the greatest when the delay function is giving its maximum 

amplification, with a reduced effect prior to and after the saturation point. 

Tank and Hopfield [123] use an idea similar to this delay function to allow 

time warping, i.e. , to recognize sequences that are somehow distorted in the 

duration between items. Instead of one delay function they use several. Each 

input detector is gated through several delay functions. The delay functions 

increase the output of the input detector from zero to a maximum and then back 

to zero. The functions differ in the amount of time to reach the maximum and 

decay, varying in a continuous fashion from sharp amplifications to more gradual 

changes. The recognizer units are connected to the output of each delay function 
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Figure 2.2. Delay lines in Fukushima's sequence detecting model [38] 

27 

as well as a simple feedback loop. The effect of this arrangement is to provide 

a firm anchor at one end of the pattern, allowing more variation in time in the 

earlier portions of the pattern. 

Most of the models above concentrate on classical artificial neural network 
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behavior. The architectures are regular and the units perform simple computa

tions. Although Willwacher's model [129] has rather complex node dynamics, 

input was still treated through simple weighted connections. There are other 

models of sequence detection based on more complex neural behavior. 

Dehaene, et al. [26] proposed a model that learns temporal sequences by 

selection. It is based on the notion of synaptic triads. A triad is composed of 

a presynaptic neuron A, a postsynaptic neuron B, and a modulator neuron C. 

For A to have an effect on B, the synapse must be facilitated by recent activity 

of cell C. This is analogous to heterosynaptic facilitation found in the nervous 

system. Temporal summation plays an explicit role in this model. Initially, the 

network is highly connected. It learns by strengthening synapses that contribute 

to activity, and turns off those that have a deleterious or no effect at all, thus 

selecting the proper set of synapses. This method is similar to programmable 

networks by McClelland [73] and Pollack [93]. 

Chun [23] has a model similar to Dehaene's which uses link interactions 

for gating flow of activation between nodes. Sequence detection is accomplished 

through link enhancement that primes for the next item in the sequence, and link 

inhibition that prevents excitation of items not in the sequence. Link interactions 

also serve to capture durational information of a fixed length. 

The methods above concentrate on computer implementations for temporal 

sequence detection. Neurophysiological studies focus on how the nervous system 

responds to temporal features or sequences, and provide some support for the 

direction of the implementations. 



Motivation 29 

Kurogi [67] attempted to describe the behavior of units called P-cells to ac

count for properties of spatio-temporal pattern recognition. The P-cell models 

the membrane potential and electrodynamics of a cortical pyramidal cell, and 

although it is too complex for a computational model (and was not intended to 

be so), it demonstrates some interesting neurodynamic behavior that can be used 

for temporal pattern recognition. The work shows that proper synchronization 

of neural signals is required for the cell to fire. This is due to spatial and tem

poral summation characteristics of the dendritic tree. The excitatory effects of a 

postsynaptic membrane propagate along the tree, with the rate of propagation 

determined by the strength of the stimulus. If an excitatory synapse is activated 

when other excitation reaches that synapse through propagation, its effect is in

tensified. Strong inhibitory signals can reset the membrane potential of certain 

regions, canceling the effects of previous excitatory input. Attempts to use the 

cell in pattern recognition showed that heterosynaptic facilitation may also play 

a part. 

Shepard, et al. [103], modeled the behavior of dendritic spines, structures 

associated with synapses on certain neurons including the pyramidal cell. These 

findings indicate that synapses on dendritic spines can be facilitated by excitatory 

synaptic activity on nearby spines, increasing the postsynaptic effect. There is 

a time course to this facilitation, with the effect decaying over time. In another 

study, Strehler [116] found evidence of monkey cortical cells that fired only upon 

receiving a precise, time-coded pattern of synaptic input. They hypothesize that 

these cells react to precise patterns by the spatial topologies and electrodynamic 

properties of their dendritic trees. 
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These studies indicate the important role that non-linear synaptic effects 

play in sequence detection in neural systems. The spatial and temporal char

acteristics can be exploited in computational models of sequence detection, and 

suggest possible extensions and modifications to traditional connectionist ideas 

to cope with this behavior. 

2.2 Visual Motion 

One example of temporal sequence detection in biological systems is the detec

tion of motion in a visual field. Cells have been found throughout many visual 

systems that respond when objects are moved across a receptive field in a specific 

direction and at a particular speed [47, 48, 132]. These cells detect a series of 

patterns originating from the receptor cells of the retina, responding with a burst 

of activity if a pattern is presented in a specific order and within a certain time 

frame. The presence of direction sensitive cells throughout the visual pathways 

indicate that this may be one of the representations used for visual information 

in the cortex [5]. The mechanisms for the detection of visual motion give insights 

into information processing in the brain and suggest computational methods that 

can be applied to other problems. This section describes one such mechanism. 

2.2.1 A Neural Mechanism for Visual Motion 

The lower visual system of vertebrates is composed of cells that translate retinal 

images into a neural representation that is transmitted from the optic nerve to 

higher brain regions. Light entering the eyes is focused and projected on the 

retina. The retina is composed of a layer of receptor cells, the rods and cones, 

which are activated by photons of light. Horizontal and bipolar cells synapse 
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with these receptors and send output synapses to the dendritic trees of cells in 

the retinal ganglion. The axons of the ganglion cells travel along the optic nerve 

that exits the eye to the rest of the brain. Each cell has an associated receptive 

field responding to stimuli from roughly circular regions of the retina. One of the 

reasons these cells have been extensively studied is because their dendritic trees 

are roughly two dimensional and their receptive fields correspond well with their 

dendritic arbor. 

Barlow and Levick [6] studied retinal ganglion cells in the rabbit that re

spond to stimuli moving across their receptive fields in a preferred direction, and 

show no response to motion in the opposite or null direction. They proposed a 

mechanism based on delayed inhibition, that can veto excitation passing through 

an AND-NOT gate. Figure 2.3 illustrates this mechanism. Activation of recep

tor A sends a signal that is passed through veto gate Vi. Activating B sends 

activation which passes through Vi and is summed with Vi, and similarly for C, 

giving the preferred sequence A-B-C. For the sequence C-B-A however, C is 

activated and sends a delayed inhibitory signal to gate Vi. Receptor B is acti

vated, but veto inhibition blocks it at Vi. Receptor B also sends an inhibitory 

stimulus to Vi, vetoing the signal from A. The delay is necessary so that inhi

bition from B arrives at Vi at the same time as the excitation from A. Delayed 

inhibition is also believed to be part of mechanisms for directional selectivity in 

cortex [131] and in the lateral geniculate nucleus [96]. 

Torre and Poggio [125] attempted to specify the neurophysiology of Bar

low and Levick's veto-gates. Their hypothesis involves the electrical circuitry 

of patches of dendritic membrane. Using circuit equations based on the ionic 
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Figure 2.3. Diagram of Barlow and Levick's veto-gate mechanism for motion detec
tion. Nodes Vi and Vi will block excitation if the inhibitory path is active. 

characteristic of the membrane, they proposed that this veto operation is a post

synaptic phenomenon carried out by closely adjacent synapses. They showed 

that the veto operation can be implemented by an inhibitory mechanism that 

prevents excitatory input from having an effect on the membrane potential of the 

dendritic patch. In this case a small amount of inhibition can cancel a great deal 

of excitation. The shunting behavior loses effectiveness if the synapses are far

ther apart. This is an example of non-linear spatial summation, which eventually 

becomes linear at greater distances. 

Koch, Poggio, and Torre [63, 60] refined this model based on detailed circuit 

analyses of certain cells, called b cells, of cat retinal ganglion. They defined the 
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notion of a subunit on the dendritic tree that divides the tree into electrically 

homogeneous zones. The combined effect of synapses in the same subunit can 

be stronger than those in different subunits. The interaction of subunits is de

termined by the morphology of a particular cell. In the example in figure 2.4, 

the effects of excitatory synapses e1 and e2 sum at the branch point. It was 

found that veto inhibition is effective if the inhibitory synapse is on a direct path 

between the source of excitation and the soma, with no effect if the inhibition 

is more distal than the source of excitation. In figure 2.4, veto synapse v2 can 

veto excitation from e 1 and e 2 . Veto synapse V1 can only veto e 1 . If the source 

of inhibition is located very close to the soma the effect of large portions of the 

dendritic arbor may be vetoed by a single synapse. Koch, et al. [63] proposed 

that direction selectivity is implemented by the interaction of dendritic subunits 

and direct-path inhibition. 

Figure 2.5 shows a simplified example of a direction selective cell. In the 

preferred direction excitation from the rightmost input unit depolarizes the mem

brane, sending a wave of depolarization flowing downwards towards the soma, 

which passes the veto synapse before it is activated. Excitation from the next 

input unit flows and is added to the effect of the first. This continues until 

sufficient depolarization arrives at the soma to trigger spiking behavior. In the 

null direction depolarization flows from the excitatory effect of the leftmost in

put unit, but excitation from the next input unit is blocked by the veto synapse 

activated by the previous unit, preventing sufficient depolarization from reaching 

the soma. 

The temporal properties of the synapses are important as well. Koch, et 
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Figure 2.4. Diagram showing spatial integration of excitatory and veto connections. 

Veto synapse Vi can only block excitation from excitatory synapse E 1 , while V2 can 

block both excitatory synapses. 

al. [62], have shown that veto inhibition is most effective if it arrives slightly 

before the wave of depolarization. If it arrives much before the excitation it may 

have decayed too much to have an effect. If it arrives after the excitation has 

passed it cannot block the depolarization. 

2.2.2 Implications 

In the case of a bar moving through the visual field the number of active synaptic 

inputs to the retinal ganglion cell will be quite large. Direction selectivity in 

this case requires a highly branched, passive dendritic morphology [63, 62]. The 

presence of this type of structure has been confirmed to be the case in the retinal 

________________ ._.. 
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Figure 2.5. Diagram of a one degree motion detector that responds to input moving 

right to left. Solid lines are excitatory paths and dashed lines are inhibitory. 

ganglion through detailed neuroanatomical studies [3]. The spatial and temporal 

characteristics of this synaptic integration make it impossible for a single node of 

a connectionist model to capture this behavior through a simple linear weighted 
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sum of its input. A full simulation of a single retinal ganglion cell has been 

accomplished by Koch, et al. (61]. Since it is designed to be faithful to the known 

neurophysiological properties it is highly complex, modeling elaborate electrical 

and chemical properties. This research addresses whether it is possible to use 

the tools of connectionist models to simplify the neurodynamic properties and 

yet still capture the desired behavior. 

The computations performed in a single dendritic subunit are, by definition, 

homogeneous. The complications that arise through morphological constraints 

stem from the interaction of subunits. Veto inhibition can be implemented quite 

easily as a veto network (108], although its all or none nature is somewhat non

traditional. It is possible to implement a dendritic subunit as a node of a connec

tionist model, with several nodes connected together to form what is analogous 

to a single cell. A node now more closely represents a sub-cellular structure, 

instead of the traditional sense where a node represents a single neuron or a 

group of cells. In many connectionist models nodes have a rich interconnectiv

ity. In some cases every node is connected to every other with enormous fan-in 

and fan-out properties. In the veto network, the fan-in is small since subunits 

normally have few synapses, and there is a single output to the next node on the 

branch. Further implementational details are discussed in Chapter 3. 

The incorporation of veto inhibition and subunits in dendritic integration 

may be useful as a general mechanism for neural-like computation. It has been 

proposed as the mechanism for directional selectivity in higher brain areas such 

as the lateral geniculate nucleus of the cat (60]. The veto inhibitory synapses in 

retinal ganglion cells are thought to be bicuculline sensitive 1-amino butyric acid 
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receptors, called G ABAa synapses. These synapses appear to exist in certain 

directionally sensitive visual cortex cells [112]. Thus veto-type inhibition may 

be used in other parts of the brain. 

Even if it is not found to be used throughout the brain, this type of dendritic 

computation might be applied to other problems. It has already been suggested 

as a possible mechanism for binocular disparity [61]. The question remains as to 

whether it can be useful in other tasks not directly related to vision. 

2.3 Auditory Processing and Acoustic Motion 

The speech signal contains both dynamic and steady-state events. The dynamic 

and static nature of the speech signal is seen in figure 2.6, where the phrase "the 

bad scope" is shown in a wide-band spectrogram with time on the x axis and 

frequency on the y axis. If this dynamic behavior is useful in speech perception, 

one would expect to find parts of the auditory nervous system that are sensitive 

to spectral changes in the speech signal. Research has shown that this may be 

the case. The question thus is whether units sensitive to spectral change can be 

constructed, and if they can be useful in speech understanding systems. Before 

addressing this it is necessary to discuss the ways in which the ear processes 

acoustic signals. 

2.3.1 The Auditory System 

The speech signal is transmitted by pressure waves traveling through the air. 

The acoustic pressure wave is transmitted by mechanical motion of the bones of 

the middle ear to the oval window of the cochlea which comprises the inner ear. 

The basilar membrane in the cochlea converts vibrations into neuronal events 
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Figure 2.6. Wide band spectrograph of the phrase "The bad scope," showing dyn am ic 
and steady-state regions. The horizontal axis is time and the vertical axis is frequency. 

by mechanical stimulation of hair cells on the membrane. Stimulation of specific 

hair cells excites corresponding fibers of the auditory nerve. Transmission of this 

excita tion is sharpened by the effects of lateral inhibition from interneurons at 

the hair cells and by mechanical filtering on the basilar membrane (106 , 100] . The 

auditory nerve transmits acoustic information to the rest of the central nervous 

system. 



Motivation 39 

A pure tone excites hair cells in a particular region of the basilar membrane 

that stimulate specific fibers of the auditory nerve. Studies of auditory nerve 

fibers show that many respond maximally to tones of a specific frequency, called 

the characteristic frequency (CF) of the fiber. Output is reduced for frequen

cies greater or less than the CF due partly to lateral inhibition. This behavior 

is reflected in the tonotopic representations found in the auditory cortex. The 

recordings of evoked potentials in the auditory cortex show a type of frequency 

map with adjacent cells having similar CF's. This tonotopic representation re

sembles the retinotopic representation in the visual cortex. The auditory system 

performs something similar to a Fourier separation of complex sounds into their 

respective pure frequencies. A complex tone consisting of 200, 600, and 1800 

Hz will excite nerve cells whose CF's are near those particular frequencies. It is 

unclear whether all frequency separation takes place in the ear itself. Although it 

has been believed since Helmholz to occur in the basilar membrane, it is possible 

that some frequency selectivity may occur higher in the auditory nervous system 

before the level of the cortex [106]. 

The representation of complex sounds in the lower auditory system seems to 

be more complicated than that for pure tones. One property commonly found in 

the responses to complex tones is the notion of critical bands (100). Component 

pure tones normally interact one way when they are within the critical band, 

and show different properties when they are separated on the frequency scale 

by at least one critical bandwidth. For example, if the frequency separation of 

two pure tones is increased, there is no perceived increase in loudness until the 

frequency separation or bandwidth exceeds the critical band. After this point 
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loudness increases· with bandwidth. 

Critical bands affect a wide variety of observations of the auditory system. 

Difference limens, the just noticeable difference between pure tones presented 

one after another, are about 0.1 Hz in the frequency range of speech. If the 

pitch of the sound is determined by two simultaneous tones close in frequency, 

the difference limens are much larger and are related to the width of the critical 

band. This implies that the frequency resolution of the auditory system may be 

limited by the width of the critical bands. 

The effect of changes of an acoustic signal is not clear. For example, changes 

in intensity can be coded by changes in firing rates, the number of fibers excited, 

or some other mechanism. In addition, many cells in the auditory nervous system 

show phase-locked spiking behavior. This means that the cell will emit a spike 

at a particular point on the wave of a signal. For example, a cell may spike only 

when the sinusoidal wave of a pure tone signal begins its descent. It is not known 

how this information is used as a representation in the auditory system, although 

it can provide precise timing information for acoustic events. 

Some cells in the auditory nervous system show sensitivity to signals of 

changing frequencies, analogous to the behavior of visual motion detectors. In 

a study of the effects of changing frequencies, Whitfield and Evans [127] investi

gated the response properties of neurons in cat auditory cortex. After mapping 

the characteristic frequencies of a population of cells by their response to pure 

tones, they found that most of these cells responded stronger to signals of chang

ing frequency. Many cells that were not affected by steady tones responded to 

changing frequencies instead. Those cells responding to frequency changes would 
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often show a preferred direction, either to rising or falling frequencies. Mendelson 

and Cyander [79), also looking at cat auditory cortex, found that cells showed a 

sensitivity to the rate of change as well as direction of FM sweeps. These cells 

are tuned to frequency changes of particular slopes in particular directions. 

The lower auditory structures show sensitivity to frequency changes in the 

signal as well. M!llller [84] reviewed results of recording studies of various parts 

of the lower auditory nervous system. In the auditory nerve, fibers respond to 

frequency changes near their characteristic frequency, but show no direction or 

rate preference [84, 105]. In the cochlear nucleus it was also found that cells show 

a preference for particular rates of change near the characteristic frequency, but 

show no direction selectivity [85, 84]. Britt and Starr [18], on the other hand, 

found that up to fifty percent of cochlear nucleus cells responded to changing 

frequencies, with some showing direction selectivity. Direction as well as rate 

selective cells were also found in the inferior colliculus [84). 

The above discussion shows that as a first a approximation the ear is a good 

microphone and spectrum analyzer. The cells of the auditory nerve exhibit min

imum sensitivity to changes in frequency, and cells higher in the auditory path

way begin to show more response specificity to rates and directions of frequency 

changes. 

2.3.2 Speech Sounds 

According to the acoustic theory of speech production [33), the spectral qualities 

of the speech signal are determined by sound generation techniques and the shape 

of the vocal tract. Different sounds are made by affecting the airflow through the 
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oral cavity and upper respiratory tract during the rapid motor gestures of the 

tongue, lips, soft palate, and larynx that are characteristic of human speech. For 

example, the "sss" sound of the fricative [s] is caused by by directing a jet of air 

at the teeth at high speeds, and a [p] sound is made by the temporary blocking 

of the airflow at the lips. Voiced sounds, including the vowels, are composed of 

a fundamental frequency produced by the vocal chords, and various harmonics 

whose intensity is affected by the positions of structures including the tongue 

and the lips. By humming a single note and changing the position of the tongue 

and lips, a speaker can hear the effects on the amplitude of harmonic or resonant 

frequencies. 

A sound spectrogram separates frequency regions of a complex sound using 

a wide-band analysis filter and displays their intensities for a short time window, 

typically 3 ms (see figs. 2.6 and 2. 7 for examples). In such a display a formant can 

be seen as a peak in a frequency vs. intensity graph, or a dark band of energy in a 

wide-band spectrogram consisting of a series of such spectral slices. These dark 

bands are concentrations of energy produced by several neighboring harmonics of 

the fundamental that lie near the resonant frequency of the cavity. As the shape 

of the vocal tract changes, formants rise and fall across the spectrograph. The 

formants are often referred to by number, with Fl being the lowest frequency, 

F2, next highest, and so on. Normally little attention is paid to formants higher 

than F3, since they represent idiosyncratic, not linguistic variables. 

Figure 2. 7 is an example wide-band spectrogram of the utterance "the bad 

scope." Formants are seen during periods of voicing for vowels. Formant transi

tions are best seen just before or just after the closure for [b], which is seen as a 
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Figure 2.7. Wide band spectrograph of the phrase "The bad scope." Formant center 

frequencies are shown by straight lines. 

silent portion before the vowel. Transitions of formants F2 and F3 can provide 

some information for phonemes with the same place of articulation. For example, 

the F2 and F3 transitions for the stop [d] are similar to those for the fricative 

[s], since both are alveolar consonants with the same place of articulation. The 

fricative [s] is indicated by the dark patch of high frequency noise. Both the 

[k] and the [p] show distinctive noise bursts at their release. Only if one holds 
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an isolated vowel for a long period would one observe steady formant tracks. 

Semivowels such as a [w] and [y] are characterized by formant transitions that 

make large sweeps as in "scope." 

2.3.3 Formant 'Iransitions 

As has been explained, the rate and direction of formant transitions are charac

teristic of some phonetic units and hence might be important for the recognition 

of both vowels and consonants. Research in speech perception has shown these 

transitions affect the identification of parts of speech. Experiments in identifi

cation of natural and synthetic speech signals show that formant transitions are 

used by listeners to recognize consonants and vowels. 

Lindblom and Studdert-Kennedy (70] studied the effects of the consonant 

context in vowel recognition in CVC syllables. They synthesized CVC syllables by 

varying the target frequency of a vowel in two different consonant environments. 

Listeners were to identify which vowel was in the syllable. Their results showed 

that the same vowel frequency was not perceived as the same in different contexts. 

Subjects would identify the same target frequency as different vowels depending 

on their surrounding consonants. It was suggested that perceptual information 

for the vowel was contained in the formant transitions. 

Strange, et al. (115] used natural speech in CVC vowel identification exper

iments. They found that subjects showed up to three times better performance 

in identifying a vowel in a CVC syllable than one produced in isolation. Another 

study found that more contextual information led to better vowel recognition. 

Vowel recognition was highest in CVC syllables, followed by CV and VC syllables, 



followed by isolated vowels (113]. They proposed that there was considerable in

formation for vowel identification in the formant transitions and the length of the 

vowel segment. To confirm this, they performed masking studies on naturally 

produced syllables (114]. eve syllables were divided into three segments and 

parts of the signal were masked. In one case the middle of the signal containing 

the vowel was attenuated to silence, corresponding to a "vowel-less" syllable. 

The duration of the silence was also varied. In a -V- syllable the initial and 

final consonant segments were masked and the length of the vowel was varied. 

Vowel identification scores were not significantly different in the C-C condition 

compared to the CVC control. Listeners correctly identified the vowel despite 

the fact that the vowel was "missing" from the signal. The duration information 

showed no significant effects, except in the -V- case where listeners seemed to 

use accurate duration information to disambiguate the vowels. This shows that 

information contained in the formant transitions is sufficient for vowel identifi-

cation. 

The spectra of the voiced stop consonants [b], (d], and [g] in a CV environ

ment are characterized by a burst of noise followed by formant transitions to the 

steady-state vowel. The consonants differ in their place of articulation, that is, 

where the airflow is stopped in the vocal tract, with a (b] being bilabial, a [d] 

alveolar (the ridge just behind the upper teeth), and a [g] velar (the soft palate). 

Formant transitions can be used to identify stop consonants. 

Delattre, et al. [28], in an identification study of synthetically produced CV 

stop consonants, claimed that the F2 transitions would determine the place of 

articulation with the transition pointing to a locus specific for each consonant. 
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In the case of [d] this locus was the same no matter what the vowel is. The 

phonemes [b] and [g] showed less reliable loci, in some cases more than one. 

Nevertheless they claimed that the F2 transition, preceded by an appropriate 

silent interval, points back to a locus determining the place of articulation, and 

hence can determine the identity of the stop consonant. 

Stevens and Klatt (111] have shown that a rapid Fl transition is present in 

voiced stops and absent in voiceless stops (i.e., [p], [t], or [k]). They claim that 

detection of the Fl transition is the key to the voiced-voiceless distinction, and 

that detection of this rapid spectral change is an innate property of the auditory 

system. Evidence for this comes from a study of infants that were shown to 

be able to distinguish between voiced and voiceless categories, but could not 

distinguish stops within a category (31]. 

The role of formant transitions in the perception of stop consonants is some

what controversial. The argument centers on two notions: whether there are 

static vs. dynamic detectors and whether there must be a dedicated unit that 

fires everytime a particular phoneme occurs. Stevens assumes that there should 

be certain cues that can be used to distinguish place of articulation no matter 

what the vocalic context is. Blumstein and Stevens have argued in studies of 

synthetic and natural stop consonants that while formant transitions are not an 

invariant cue to place of articulation, the simple spectrum shape averaged over 

about 20 ms after the release of the consonant is a good determinant of place of 

articulation in many contexts [110, 15, 14]. Thus when spectral properties of a 

noisy burst are added to the synthetic formant signal, recognition is significantly 

improved over transition-only stimuli. They claimed that formant transitions 
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are useful only as secondary cues in a vowel environment [110, 15] and are less 

useful to distinguish place of articulation, since burst information from the first 

40 ms of the signal almost always leads to correct recognition [14]. 

More recent research, while supporting a role for spectral shape, has em

phasized that dynamic information is still essential for stop place identification. 

For example, Kewley-Port [52] measured the formant transitions from 3 voiced 

stop consonants ([b], [d], [g]) paired with eight vowels. Only weak evidence was 

found for context invariant cues for place of articulation of stop consonants. The 

formant measurements did support the claim that F2 transitions are distincitive 

sources of place information in the contexts of most of the vowels studied. If 

F2 and F3 onset frequencies were tracked into a F2 x F3 space for each vowel, 

context-dependent place of articulation could be achieved statistically. 

Further evidence of the usefulness of transitions in CV recognition is pro

vided by Pols and Schouten, in a study of Dutch stop consonants, who showed 

that the information in CV onsets claimed to be invariant across vowels by 

Stevens is often masked by the following environment and that formant tran

sitions are necessary. They claim that formant transitions are primary cues to 

the identity of stop consonants [94]. Suomi found that many context-invariant 

cues are, in fact, context dependent, and that this context dependence does not 

necessarily imply that a coarticulated segment cannot be identified until the en

tire context is heard; there is sufficient information contained at the onset of the 

signal [117]. This is similar to the CVC phenomenon described above. Further

more, if one treats the syllable as the basic unit of speech perception, formant 

transitions can serve to specify place-of-articulation [52]. 
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Formant transitions can be useful in identification of stop consonants. Lis

teners can identify both consonants and vowels with only transition information 

present in the signal. Formant transitions form a bridge between the consonant 

and vowel of the syllable, and must be context dependent by their very nature. 

They are, of course, not the only information available, and alone may not allow 

perfect recognition. Nevertheless, they can be useful in recognition of certain 

parts of speech. In light of the above discussion, it becomes clear that while 

spectral shape of the burst may be useful place-of-articulation information, for

mant transitions are also clearly useful in this task. No doubt a combination of 

features best serves the perception and identification of the segmental units of 

speech [110, 15, 14]. What emerges is the importance of treating the signal as a 

series of dynamic events [53, 51, 54]. 

2.4 Summary 

The neurophysiological evidence discussed above shows that the nervous system 

is predisposed to detect frequency transitions. Gardner [39] has shown psy

chophysical evidence that there are, in fact, specific channels in the auditory 

system for detection of the direction of frequency transitions. It seems useful to 

try to detect formant transitions as they might be used in speech perception. 

This may also be useful in understanding the nature of dynamic computations 

in the nervous system. 

Formant transitions are analogous to one degree visual motion. The method 

for detecting them depends on the way the speech signal is processed. Many 

classical speech recognition systems receive an utterance all at once and begin 
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processing after the end of the utterance is stored (32, 71, 27, 21}. In these 

systems the speech signal is treated as a static phenomenon with a long duration 

window. Many connectionist models of speech recognition also treat the speech 

signal in a static fashion (45, 30], with the Tank and Hopfield [122] and the 

Watrous and Shastri (126] models being some of the exceptions. The TRACE 

model [74J appears at first to be a dynamic model, since the signal is presented 

one time cycle at a time. Each time cycle is preserved, however, and at the 

end of the presentation the system can proceed with the entire utterance at its 

disposal. This is accomplished by allowing each input feature node, currently 

twenty-seven per segment, to span six time slices. The nodes are copied for 

the entire length of the utterance, overlapping each other's temporal window. 

Static and dynamic models for speech recognition can be distinguished by the 

length of the temporal window available for processing. In the Tank and Hopfield 

model and the Watrous and Shastri model the temporal window is short, on the 

order of 3-10 ms. These can be called dynamic models. In the TRACE model, 

the temporal window covers the entire length of the utterance, and thus is an 

example of a static model. 

It is unlikely that the auditory system can afford to reproduce its structure 

for each temporal segment of the signal. The output of the cochlea and auditory 

nerve represents the state of the system at one precise instant. As time progresses 

the state changes. The auditory system must process the signal dynamically or 

as a pipeline, much as an assembly line operates, with raw input at one end, and 

a Processed signal appearing at the other. Speech sounds must be represented in 

various ways and at different levels depending on where they are in the pipeline. 
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Speech recognition then becomes a problem of temporal sequence detection, with 

the speech signal comprising a dynamic sequence of tokens at various levels of 

representation. 

Formant transition information may be one such representation. The evi

dence presented above indicates that the rate and direction of formant transitions 

are useful in speech perception and suggest that the auditory system is equipped 

to capture this data. If the speech signal is treated statically the detection of 

the slopes of formant transitions is rather easy. A more realistic scenario is that 

the signal is to be treated as a stream, with input to a perceptual system repre

senting the state of affairs at only one particular instant, disappearing when the 

next time cycle is presented. The detection of formant transitions then becomes 

complicated, since the effects of previous input must be evaluated. Fortunately 

a method is available which can accomplish this task: the veto network from 

visual motion detection. The next chapter describes how a veto network is used 

in the detection of formant transitions as well as in higher processing levels in 

the identification of CV syllables. 
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3. Project Description 

The previous chapter showed that the auditory nervous system is sensitive 

to stimuli of changing frequency and that formant transitions can provide useful 

information for the perception of coarticulated speech. To use this transition 

information, it is necessary to recognize both the direction and rate of the acoustic 

motion. The mechanism demonstrated for visual motion detection can be applied 

to auditory stimuli using veto inhibition to tune acoustic motion detectors to a 

specific direction and rate of formant motion. 

It was shown in Chapter 2 that formant transitions can provide clues to iden

tification in a consonant-vowel environment. Information about these transitions 

may be combined with other properties from the speech signal to provide reliable 

recognition of these consonants and the syllables that contain them. There is no 

doubt that it is useful for a high performance speech recognition system to detect 
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properties of formant transitions. 

This chapter describes a connectionist model for the detection of formant 

transitions and shows how the system uses this transition information in the 

recognition of CV stop consonant syllables. The first section gives an introduction 

and overview of the system followed by a section on the data used and how it 

is prepared for input. The next section shows how the mechanism for visual 

motion is implemented in the construction of formant transition detectors. The 

final section describes how the information from these motion detectors is used 

for syllable recognition, including a discussion of the adaptive learning method 

used as well as how another veto network is used to fine tune the recognition 

process. 

3.1 System Overview 

SYREN is designed to recognize CV stop consonant syllables using formant tran

sition data from an experiment by Kewley-Port [52]. There are twenty-four syl

lables in all, with three voiced stop consonants /b, d, g/ paired with each of 

eight vowels /ii, ey, ih, eh, ae, ah, ou, uu/ (as in beat, bait, bit, bet, bat, bottle, 

boat, boot, respectively). For reasons of clarity and typesetting the phonemes are 

presented in this notation rather than using a phonetic alphabet. The syllables 

were produced by a single male speaker. 

Input to the system consists of formant centers constructed from average 

formant data [52] and the raw data, provided by Kewley-Port [55], that were 

used to compute the averages. The input is presented to a three-phased network 

for the recognition of the syllables. As seen in figure 3.1, the first phase is 
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a subnetwork that detects the direction and rate of change of the first three 

formants. Veto inhibition and characteristics of local dendritic computation are 

used to construct detectors for various slopes and directions of spectral change. 

The detectors are constructed by hand and are tuned to six different rates of 

change in rising and falling directions as well as for formants remaining in a 

steady-state condition for a period of time [108]. 

The output of the detectors is used as input for an adaptive network. This is 

a single layer network containing twenty-four nodes, one for each syllable in the 

data corpus. Since there are a large number of input connections it is impossible 

to set the weights of the nodes by hand, so a learning algorithm is used to allow 

the nodes to set their own weights. The nature of this algorithm is discussed 

below. 

The nodes of the adaptive recognition network does not do a perfect job 

of setting the weights and their output must be further processed to achieve 

good identification. Output from the adaptive network is used as input to a veto 

network for the final recognition process. It too contains twenty-four output 

nodes, each for a particular syllable, that serve as the output of the entire system. 

These nodes are connected to the adaptive network through delay lines and veto 

connections. 

In its current implementation the system consists of three separate com

puter programs due to computational requirements. A fourth program is used 

to prepare the data for execution. Each subnetwork is itself a separate program. 

Implementational details and the source code of SYREN may be found elsewhere 

[109]. 
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Input is presented to the motion detector network sequentially in a stream

like manner, one time slice at a time. Formant centers are received by the network 

through input nodes, with each node having a non-overlapping receptive field of 

a particular frequency. An input node is activated if there is a formant center 

at its characteristic frequency at that time slice. If there is no track at that 

frequency at the next time slice, as is the case of a rapid formant transition, the 

node will be deactivated. No record of previous time slices is kept by the input 

nodes. 

Before explaining the operation of the network, the stimuli will be described 

in greater detail. Two experiments were performed that differed in the training 

and the testing data. In the first experiment the average formant transition data 

[52] are used for both training and testin~. The network is trained and tested 

on a single repetition of each syllable. In the second experiment combinations 

of the raw repetitions of each syllable and the average data are used for training 

and testing. 

3.2 Data Preparation and Presentation 

The formant tracks used in the network are derived from formant trajectories and 

steady-state vowel frequencies provided by Kewley-Port (55]. This information 

was used in an analysis of formant transitions of stop consonants (52]. Five 

repetitions of each of 24 test syllables consisting of the voiced stops /b, d, g/ 

paired with each of eight vowels /ii, ey, ih, eh, ae, ah, ou, uu/ were analyzed. 

The syllables were embedded in a test sentence "Teddy said CV" recorded by one 

male speaker. The first 95 ms of the CV portion of the utterance was analyzed. 
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Onset Onset Transition Target 95 ms. 

Formant of Voicing Frequency Duration Frequency Frequency 

(ms.) (Hz.) ( r.lS.) (Hz.) (Hz.) 

Fl 9 392 38 669 710 
F2 9 1661 65 1166 1154 
F3 9 2628 30 2523 2522 

Table 3.1. Data used to construct the input matrix for the syllable "dah". 

Formant frequencies were measured by eye from sound spectrograms and formant 

trajectories were calculated. Transitions were defined as starting from the onset 

of voicing to a steady-state vowel region. Each formant trajectory was simulated 

with two to four straight lines from the voicing onset [52]. 

Five sets of raw syllable trajectory daia as well as one set of average data 

from Kewley-Port [52] are used as input to the system. The formant tracks 

of each of the first three formants in the syllable are specified by a starting 

frequency, time to end of transition, frequency at the end of the transition, and 

a frequency at 95 ms, as seen in table 3.1. From these data tables the formant 

tracks are reconstructed by interpolation fo: presentation to the network. These 

tracks are stored in a 200 x 50 bit matrix as shown in figure 3.2. Each row of 

the matrix represents a small frequency range and each column a time slice. The 

to.tal frequency range is from 0 to 4000 Hz, with each row representing 20 Hz of 

the signal. Each column represents a 5 ms time slice. The formant positions at 

any time slice are represented by an "on" value in the row corresponding to that 

formant's frequency. The position of the formants at any particular time slice is 

determined by interpolating from the traje~tory data. The 95 ms steady- state 

frequency was assumed to be the final target of the transition. 
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---

Figure 3.2. Input matrix for syllable "dah". Horizontal axis is time in 5 ms slices. 

Vertical axis is frequency in 20 Hz units. 

The matrix containing the formant centers is presented to the 200 input 

nodes of the syllable detection network, with each node corresponding to a row 

of the formant track matrix. Each input node has a receptive field of 20 Hz, 

and is assigned a value of "1" if there is a formant track within its receptive 

field at the current time slice, and is assigned a "O" otherwise. The columns of 

the matrix are presented one at a time, from left to right, with the input nodes 
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Updated at every time slice. These nodes provide excitatory input to the motion 

detecto t k r ne wor and the veto nodes. 

There are 200 veto nodes that provide veto inhibition to the motion detector 

network. Each node is connected to a single input node and is activated when its 

corresponding input node is active. Its activation is determined by the transfer 

function 

Where a~ is the activation of veto node i at time t, 8 is a decay constant, and n! is 
the value of input node i. Time steps in the motion detector network correspond 

to Update cycles rather than the 5 ms time slices. Computational behavior of 

the detector network was found to be optimal if there are seven update cycles 

Per time slice. The activation value quickly rises to its maximum when the input 

node is on and decreases exponentially to zero when input is turned off. This 

decay provides a limited memory trace of input node activity for a few time 

slices, permitting veto inhibition to be used during a few time slices following 

activation. These nodes provide the delayed veto inhibition required by Barlow 

and Levick's model [6]. 

3
·3 The Motion Detectors 

There a · · · d t 0 t t d t t f re nmeteen d1fferent mot10n etec ors. ne cap ures s ea y-s a e re-

quencies while the rest are tuned to particular transitions. A detector's preferred 

trans·t· · d t al E 1 ion ls determined by its architecture an parame er v ues. ach of the 

nine different detectors is tuned to a transition of a specific rate with a mirror 

i:rnage detecting the same transition in the opposite direction. The transitions in 
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figure 3.3( a-c) have one type of detector assigned while the transitions in figure 

3.3( d-f) have two detectors that respond differently depending on how close a 

transition is to its preferred slope. The reason for this is explained later. The 

detectors have small receptive fields in the frequency domain corresponding to 

the number of rows of the transitions in figure 3.3. These receptive fields vary 

in size depending on the detector's preferred slope, with faster rates requiring 

larger receptive fields. 

3.3.1 Motion Detector Mechanisms 

A detector unit is a small network of nodes tuned to a transition of a particular 

slope and direction. The nodes form a branched architecture analogous to a 

dendritic tree of a nerve cell. These branches meet at a single output node 

called an S- node. Some nodes on the branches have excitatory connections to 

input nodes that make up that detector's receptive field. Each receptive field 

is determined experimentally and is the minimum size necessary to elicit the 

desired response from the unit. Branch nodes may also be connected to veto 

nodes. Veto inhibition completely deactivates a node and is used for direction 

selectivity as well as for tuning some units to faster slopes. 

Two such detectors are shown in figure 3.4. They are tuned to transitions 

of the same rate but in opposite directions. Their architectures differ only in 

the pattern of veto connections that determine the direction preference. In the 

absence of veto connections the detectors would respond to transitions of their 

preferred rate in either direction, since direction selectivity is accomplished by 

veto connections. Rate sensitivity is achieved through parametric adjustments. 
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Figure 3.3. These are the transitions identified by the motion detectors. Each column 
is a 5 ms time slice. A lightly shaded square indicates the presence of a formant center 
at the frequency corresponding to that row at that time slice. A motion detector is 
tuned to identify one of these transitions. 

Branch nodes may have both excitatory and veto inputs. Excitatory activa

tion is computed using a transfer function similar to those used by McClelland 

and Rumelhart [76 , 99] and Grossberg [40] . The equation for excitatory act iva-

tion ei, 

is the sam e as that used in the veto nodes with the exception of net! term, which 
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Figure 3.4. Two motion detectors for a rising or falling transition of the same rate. 
The detector on the right is tuned to the falling transition and the detector on the left 
is tuned to the rising transition. 

is the weighted sum of the excitatory connections from input nodes and other 

branch nodes. The decay constant, o, varyies among different types of detectors. 

Time, t, is again an update cycle rather than a time slice, with an update cycle 
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corresponding 1/7 of a 5 ms time slice or 5/7 ms. Excitatory input drives the 

activation value to its maximum (1.0). The rate at which it approaches the 

maximum is determined by the strength of the input signals. Input strength can 

be controlled by the weights of the connections. In the absence of input or if neti 

is decreasing, the activation value exponentially decays towards 0, at a rate rate 

that is determined by the magnitude of the decay constant. 

After excitatory activation is computed at a branch node, the effect of veto 

inhibition is calculated to produce the final activation value of the node. This 

activation value is determined by the equation 

a~+1 = { e;+ 1 
- vetof, if vetof < (} 

1 O otherwise, 

where veto! is the weighted sum of the veto connections at time t, and B is the 

veto threshold. The effect of this equation is to eliminate excitatory activation 

in the presence of strong veto inhibition received by the veto nodes. If the veto 

node's activation is above threshold, the effect of inhibition is a sudden drop 

in the branch node's activation, regardless of decay times and excitatory input. 

This is analogous to the shunting inhibition seen in Chapter 2. 

The S-node is connected to each of the proximal branch nodes. Its activation 

is determined by the sigmoid squashing function 

where net! is the weighted sum of the activation of the proximal branch nodes, 8 

is a threshold, and Tis the temperature. When the S-node is activated it means 

that the unit has detected its preferred transition. The squashing function allows 
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a unit to respond in a reduced manner to transitions close to its preferred rate, 

but the units were designed not to respond to a transition preferred by another 

detector. Thus a unit tuned to respond to the transition in figure 3.3(c) will 

not respond to an event like those in figure 3.3(b) or ( d), but may show a slight 

response to intermediate rates. 

3.3.2 Motion Detector Operation 

A demonstration of the operation of a detector with a transition of its preferred 

slope is shown in figures 3.5(a) - 3.5(c). In the figures, nodes with higher activa

tions are shaded lighter. Figure 3.5(a) is during the seventh update cycle of the 

first time slice. The input node has activated the distal branch node Bl on the 

topmost branch, and its activation is beginning to spread to the more proximal 

branch node B2. The S-node is not receiving sufficient excitation to activate at 

this time. The strip charts show that the onset of the rise of activation of node 

B2 trails Bl by one update cycle, and the time that B2 reaches its maximum 

lags behind Bl by about two update cycles. The synchronous nature of the 

computation of each node's activation results in such transmission delays on the 

branches. 

The behavior of the unit during the twenty-first update cycle is shown in 

figure 3.5(b ). The third branch behaves just like the top branch in the previ

ous figure, while veto inhibition has deactivated the top two distal branch nodes. 

Residual activation is present in the proximal branch nodes although those values 

are beginning to decay. These activations provide another kind of trace of previ

ous activity. If the decay constants are set properly there will still be sufficient 
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Figure 3.5. Sample run of a motion detector unit on its preferred t ra nsit ion. Part a 

is the top detector at update cycle 7, part b is the middle at cycle 21, a nd part c is the 

bottom at cycle 35. Nodes shaded lighter have a higher activation. 
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activation to trigger the S-node when the series is complete. In figure 3.5( c) the 

S-node has fired at the thirty-fifth update cycle, activated by residual excitation 

in the proximal branches. Transmission delays cause it to fire after the sequence 

has completed in the fifth time slice. 

Although veto inhibition deactivates distal branch nodes for signals in the 

preferred direction, it occurs after sufficient activation has already propagated 

beyond the connection and hence has a reduced effect. If the transition is in the 

opposite direction, however, veto inhibition from the bottom veto node prevents 

the distal branch node from ever activating. This continues throughout the 

sequence, and since activation never spreads past the distal branches, the S-node 

never fires. This is how direction selectivity is implemented. 

3.3.3 Designing the Motion Detectors for Specific 'fransitions 

Veto inhibition is used to tune detectors to faster transitions as well as to specific 

directions. A partially constructed detector for a more rapid transition is shown 

in figure 3.6. Veto connections for direction selectivity are not shown to illustrate 

how inhibition is used in rate sensitivity. Veto nodes connect to the next branch 

in the sequence, ensuring a preference for patterns that skip a frequency or an 

input node, so as to prevent activation for patterns of contiguous frequencies. 

The receptive field of this unit is slightly larger than the previous unit, but not 

large enough to allow activation from even steeper slopes like the one in figure 

3.3( e). 

The construction of a detector for a faster slope such as that in figure 3.3( e) 

is accomplished by increasing the receptive field and adding veto connections 
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Figure 3.6. Motion detector for a faster transition showing only the veto connections 

for rate sensitivity. Veto connections for direction selectivity are not shown. 

for a preferred pattern that skips two frequency units, or three units as in the 

case of figure 3.3(f). This can be extended for as fast a transition as needed. 

To complete the detector it is necessary to add additional veto connections for 

direction selectivity as seen in figure 3. 7. 

The identification of slower slopes is accomplished more by architectural 

and parameter manipulation than by veto inhibition. The architecture used to 
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Figure 3.7. Detector for a faster trans ition with v 0f n connections for both rate and 

direction sensi tivity 

detect the slower transitions in figure 3.3( a) and ( L) is seen in figure 3.8. It is 

characterized by longer branches and addi tional excitatory connections. Veto 

inhibition is still used for direction selectivity. Discrimination of the two transi-
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Preferred Transition 

Figure 3.8. Motion detector for a slower transition 

ti on rates is done by parameters regulating the strength and rate of excitatory 

propagation along the branches, the strength of reinforcement of excitation at 

the proximal connections, and the rate of decay of excitation which determines 

how long residual activation is available to fire the S- node. 

As discussed above, the activation function of the branch nodes is driven 

to a maximum value, the rate of which is determined by the magnitude of the 

input. A node cannot regulate the value on an input connection since that is set 

by the other node, but it can still affect the strength of an input connection by 

regulating its weight. Excitation on a connection with a low weight slowly raises 
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the node's activation and may never reach the maximum value if the connection 

is deactivated too soon. The same excitatory value on a connection with a high 

weight rapidly raises the node's activation to its maximum. 

A branch node can have two types of excitatory connections: exterior con

nections from an input node and interior connections from other branch nodes. 

Excitation from an input unit on a distal branch node (whose weight is high) 

causes that node to reach a value near its maximum in seven update cycles. This 

value is transmitted to the next node in the branch, but since the value is lower 

than the value of the original input connection the second node activates at a 

slower rate, and may reach its maximum a few update cycles after the previous 

node, as demonstrated in the strip charts in figure 3.5( c ). This delay lengthens 

as activation propagates along the branch. Varying the weight on interior con

nections affects the rate of propagation. Lower weights cause longer delays and 

vice versa . 

To detect the transition shown in figure 3.8, the weights on the interior 

connections are set low enough that activation does not reach the most proximal 

branch node until well after the first time cycle. That node also contains an 

exterior connection to the same input unit as the distal end of the branch. The 

weight of that connection and the decay constant are set so that the node never 

reaches a high activation from exterior input alone. This can be thought of 

as a primer that decays if it is not reinforced. For this proximal node to be 

activated the exterior input must be reinforced by excitation arriving from an 

interior connection through the branches. In the case of the transition in figure 

3.8, the presence of the same frequency for two consecutive time slices causes 
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reinforcement at the proximal branch node. For a faster slope such as the one 

in figure 3.3( c ), by the time activation from the first time slice propagates to the 

proximal node the effect from its exterior connection has decayed, and insufficient 

reinforcement is present to contribute to firing the detector. 

Identification of the transition in figure 3.3( a) requires further reduction of 

the propagation time and a reduction in the decay constant to slow activation 

decay. Otherwise the architecture is the same. The event required to fire a detec

tor of this type has a duration three time cycles longer than that of the previous 

slope. If the decay constant on the proximal branch nodes is too high, infor

mation from earlier time slices decays too quickly before the final time slice and 

does not fire the detector. A lower decay constant provides a trace of information 

over a longer period and allows the detection of slower transitions. Increasing 

the decay constant tunes the detector to faster transitions. 

Detectors have been designed to respond preferentially to each of the tran

sitions in figure 3.3. There are symmetric detectors for transitions in opposite 

directions. A detector tuned to one of the six transitions will not respond to any 

of the other five, or to any transition in the opposite direction. There are other 

types of transitions between the detector's preferred transitions like those shown 

in figure 3.9. It is desirable for the motion detectors to identify these transitions 

as well. This is done by allowing detectors to respond to slopes close to their 

preferred rates. Suppose detectors P and Qare tuned to the transitions in figure 

3.3(b) and ( c ), respectively. One detector will not respond to the other's pre

ferred transition, but both will respond to the transitions of figure 3.9(a). The 

transition in figure 3.3(b) is signaled by the firing of detector P, the transition 
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in figure 3.3(c) is signaled by detector Q, and the transition in figure 3.9(a) is 

signaled by the combined output of P and Q. 

Faster intermediate transitions, where a detector's rate sensitivity is deter-

mined by veto connections such as those in figure 3.9(b ), pose a different sort of 

problem. A detector R, like the one in figure 3. 7, will not respond to this transi

tion because its receptive field allows only two branch nodes to be act1.vated. A 

detector S that is tuned to the next higher transition will not respond since veto 

inhibition allows only two branch nodes to fire. To gain some response, the re-

ceptive field of detector R (and all of the faster transit ion detectors) is increased 

by one frequency unit. The problem with this is that this detector now responds 

to three different events, two transitions in figure 3.3( d), each displaced from 

the other by one frequency unit, and the transition in figure 3.9(b ), without any 

way to distinguish between them. Because of this another type of detector for 
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precise transitions is constructed and is seen in figure 3.10. This detector, Rp, 

referred to as a precise detector, responds only to a transition in figure 3.3( d). 

This transition is signaled by the combined firing of Rand Rp. If the transition 

is shifted by one frequency unit, it is signaled by the combined firing of detec

tors R and R~, if R~ 's receptive field is shifted by one frequency unit from Rp 's. 

Only detector R fires in the case of the intermediate transition. A set of precise 

detectors is created for each of the transitions requiring veto inhibition for rate 

discrimination. 

A final type of detector is used for the steady-state frequencies. This one 

fires when a particular frequency unit is on for four consecutive time slices, and 

continues to fire until that input unit deactivates. These detectors consist of a 

single node connected to only one input unit. They update once per time slice 

and are assigned a value of "1" if the steady-state condition is present at that 

frequency, and a "O" otherwise. 

Detectors for each transition are reproduced throughout the entire frequency 

range for all of the 200 input nodes. Suppose detectors are tuned to the transition 

in figure 3.3(b) (their design is in figure 3.8). If {i1 , ... ,i200 } are the input nodes 

for the 200 frequency units, detector d30 would detect the transition from i3o

i32 (corresponding to the frequencies 600-640Hz), d31 for i 31 -i33, and so on. 

The branch nodes of the two detectors are isomorphic, with the same pattern of 

interior and exterior connections and the same parameters (this is not entirely 

true at the ends of the frequency scale, but since the data in this project never 

fall in those ranges the problem is ignored). The middle branch of detector d3o 

and the bottom branch of d31 have exactly the same exterior connections, with 
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excitatory connections to input node i31 and veto connections to veto nodes V29 

and v3 o. Because the nodes of these branches have the same exterior connections, 

isomorphic interior connections, and the same decay constants and connection 

weights, the activation values for corresponding nodes in each branch is exactly 

the same at any time slice. Thus it is possible to combine branch nodes of the 

detector, as in figure 3.11, for the sake of computational efficiency. The detector 

uni ts differ only in the connections of the S- nodes. If { B 1 , . .. , B200} are branches 
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Figure 3.11. This shows four motion detector S-nodes and how they sha re branch 

nodes and connections. 

connected to input nodes { i 1 , .. . , i 200 }, the output of d30 is determined by the 

fact that its S-node is connected to the proximal branches B30-B32. 

This architecture results in an array of detector S-nodes, each node respond-
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ing to a transition beginning at a particular frequency or input node. There are 

nineteen such arrays. In figure 3.3 there are two arrays for each transition (a)-( c), 

one for rising and another for falling slopes, four arrays for each of the transitions 

( d)-(f), a regular and precise detector for each direction. There is one array of 

steady-state detectors. These arrays represent the output of the motion detector 

network. 

3.4 Syllable Detection and Recognition 

The output of the motion detectors is used in the detection and recognition of 

syllables. In this thesis the term syllable detection refers to the detection of a 

pattern of formant transitions associated with a syllable, with the possibility that 

a pattern is shared among different syllables. A syllable detector unit may be 

trained to respond to one particular syllable, but may also respond to others if 

they have patterns in common. A recognizer unit, on the other hand, is designed 

to respond only to one syllable and be silent for all the others. 

The operation of the recognition network is divided into several phases, as 

shown in figure 3.12. Output from the motion detectors is captured and fed into 

a delay matrix which functions as a brief memory for transition events. Syllable 

detector nodes are connected to the delay matrix and are trained to respond to a 

specific syllable by a connection weight updating method. There are twenty-four 

nodes, one for each of the syllables used in the experiments. The detector nodes 

feed into another type of veto network for syllable recognition. Here the output 

of the detector nodes is normalized and, through the use of veto inhibition, the 

detection of shared or ambiguous patterns is resolved. The activity levels of the 
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Nodes in the motion detector network are updated seven times per 5 ms 

time slice. Output of the S- node of a motion detector is highly transient and 

may last for only a few update cycles. The nodes of the recognition network , on 

the other hand, are updated once every time slice. Because of this, every S- node 

is connected to its own capture node which captures and holds the S- noclc's 

maximum activation for each time cycle. This ensures that an S- nocle's output 
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will be seen even if it fires for an interval shorter than a time slice. 

Syllable detection involves the recognition of temporal patterns of formant 

transitions. Many of the temporal pattern recognition systems discussed in Chap

ter 2 share a common feature of a delay line, used to preserve the input sequences 

or output behavior of the network over a few time slices. This allows the network 

to accumulate parts of the sequence before making a decision. If the length of 

the delay line corresponds to the entire duration of the input, the problem of 

temporal recognition is reduced to spatial recognition. Patterns of a long dura

tion or those composed of a large number of input features make long delay lines 

computationally impractical. Reducing the length of the delay line causes the 

recognition unit to focus on the parts of the sequence containing the most useful 

information for discrimination. This has motivated the construction of a delay 

matrix to serve as input to the syllable detector units. 

The output of each capture node is fed into a delay line, seen in figure 3.13, 

which propagates the signal across each node one time slice at a time. This 

allows the transition events to be preserved for five time slices as it passes along 

the delay nodes. These delay lines form a 200 x 5 matrix for specific transition 

events over the entire frequency range. Each row corresponds to the output of 

one S-node. The first column of the matrix is made up of the capture nodes, 

and the delay nodes comprise the rest of the columns. There are nineteen such 

matrices, one for each type of transition detector. The delay lines preserve the 

sequence of transition events without reference to the specific time of occurrence. 
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Figure 3.13. Diagram of a row of the delay line matrix at two different time sli ces . 
The lighter nodes are activated. 

3.4.1 Syllable Detection Phase and Adaptation Method 

Each of the twenty-four detector nodes is trained to fire when the patterns of a 

specific syllable are present. The nodes are connected to every node of the delay 

matrices, forming 200 x 5 x 19 input connections for each detector node. The 

activation of the detector i is computed by the sigmoid squashing function 

1 
1 + e-(netl-9)/T' 
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where net! = 2:1 Wijaj is the weighted sum of the input connections to node i, 

() is the threshold, and T is the temperature. The weights on the input connec-

tions determine whether or not a node is activated by a particular input pat

tern. Setting these weights by hand is an impractical task, and thus an adaptive 

mechanism for weight modification is needed. 

Algorithms for determining the weights of a node, so-called connectionist 

learning methods, have been widely studied. The methods for temporal sequence 

detection discussed in Chapter 2 are some examples. For the most part these 

methods may be classified as self-organizing, meaning that their output nodes get 

no form of performance feedback from the environment. In supervised learning a 

"teacher" specifies the output behavior of the network and can provide feedback 

used in training. In the strongest form of supervised learning the teacher provides 

the correct output for each node, and training involves having the node learn to 

achieve its specified behavior. In other cases the network learns by receiving a 

performance measure from the environment. This is sometimes referred to as 

unsupervised learning since the a priori behavior is not specified by a teacher, 

but instead the environment provides some sort of global performance measure. 

The term is somewhat misleading since the environment itself can actually be 

thought to be supervising the learning process, taking the place of an omniscient 

teacher. 

Widrow and Hoff [128] presented what has become the classic supervised 

learning method. Weights are updated by the equation 

w~tl = wt . + at(zt - yt)xt. 
I) I) I I ) l 
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where w~j is the weight for node i's connection to node j at time cycle t, a 

is a small real valued learning constant, Yi is the output value of node i, Zi is 

the expected output of the node provided by the teacher, and Xj is the value 

on connection j. This equation, sometimes referred to as the Widrow-Hoff rule 

(120], updates a node's weights based on how close that node's actual output 

is compared to its expected output provided by the teacher at each time step. 

Weight modification can be viewed as a gradient descent search through weight 

space in an attempt to reduce the error term 8, where 

If a is constant, the rate of weight change is greatest when Yi is far from Zi, 

giving a large 8 value, and decreases as Yi approaches Zi. This rule is sometimes 

referred to as the delta rule. It can be shown that this rule will converge to a 

unique set of weights if the input is linearly independent (65, 97]. The learning 

constant a must be sufficiently small for this convergence to occur. 

Classical conditioning is a type of animal learning behavior. This is the 

familiar Pavlovian conditioning where an unconditioned stimulus (US) such as 

the sight of food is paired with a conditioned stimulus (CS) such as the ringing of 

a bell to elicit salivation, a conditioned response. A common characteristic of this 

behavior is that the US may be delayed with respect to the CS, a duration called 

the inter-stimulus interval (ISI). Sutton and Barto (120, 119] have developed a 

real-time neural network model from the Rescorla and Wagner model [95] which 

incorporates ISI effects. Their weight update rule [119] 

t+ 1 t ( t t-1) t W· · =W ··+ay . -y . e .. 
IJ IJ I I IJ l 
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involves a temporal difference [118] error term, yt -yt-1 , and an eligibility trace 

e~j, which gives the eligibility of that weight for modification, also called the 

canonical eligibility [130]. 

The eligibility trace provides a limited memory so that input behavior can 

be spread out somewhat over time. The eligibility of input pathway j is given 

by the recurrence 

t /3 t-1 + (1 (3) t-1 e .. = e .. - Y · 
I) 1) J l 

where 0 :::; f3 :::; 1 is a decay constant. This trace shows exponential decay behav-

ior. The ISI phenomenon is similar to the delayed input common to temporal 

pattern recognition. The notion of canonical eligibility has also been applied to 

a pole balancing task where the effect of certain control decisions may not be 

realized until some time has elapsed [11]. 

There is a striking similarity between the Rescorla-Wagner model of classical 

conditioning and the Widrow-Hoff method for solving linear equations. Sutton 

and Barto [120] have stated that the similarity between these two methods may 

be illustrative in the study of associative learning, even though they were designed 

for completely different tasks. These methods could be applied to other domains 

as well. 

Multi-layer learning networks are able to learn more complex behaviors (83]. 

These networks are characterized by a number of hidden nodes between an input 

and an output layer. The use of the Widrow-Hoff rule is problematic since 

it is normally not possible to provide an expected value for any of the hidden 

nodes. This is similar to the credit assignment problem in classical Artificial 
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Intelligence literature [82]. One attempt to address the credit assignment problem 

has been with adaptive critic elements that allow a network to predict its optimal 

output behavior based on a single feedback signal from the environment [12, 118] 

which can be used to provide reinforcement or training signals to multi- layer 

networks [11, 9, 4]. During the learning process the network must determine 

the preferred output of the network and use this information to provide explicit 

training information to each node. Based on this information the network then 

tries to adjust its weights to achieve the predicted behavior. 

The back-propagation method (97, 69, 90] that is seeing wide use in PDP 

models computes an error gradient in feed forward nets and sends this error mea

sure back along its input connections. For each time step the value computed 

by each output node is compared to an expected value and the node adjusts 

its weights based on this value. The error term is back propagated along the 

node's input connections to the hidden nodes, which compute their own error 

term based on their output value and the error measures received from their 

output connections. The process of computing an error term, updating weights, 

and back propagating the error term is repeated for each layer of nodes in the 

network. Barto and Jordan [10] have claimed that computing an exact error 

gradient by hidden nodes may be unnecessary and have combined a supervised 

learning procedure for output nodes with the Associative Reward-Penalty algo

rithm AR- P [8, 7] to estimate the error gradient in supervised learning tasks. 

One problem associated with multilayer learning methods is the large 

amount of time needed to converge to a solution, caused by the computations 

of error gradients. Although suggestions have been made to improve efficiency 
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[130, 10) the computation time can still be prohibitive in networks with a large 

number of nodes and connections. 

3.4.2 Implementation of the Learning Mechanism 

The detector network is limited to a single layer of nodes partially because of 

the large number of input connections. The behavior of each of the twenty

four nodes can be exactly specified allowing the use of a single-layer supervised 

learning method, so a method similar to the Widrow-Hoff rule is applied. The 

weight update equation used is 

w~T 1 = w~ . + a(z~ - st)et. 
I) I) I I J l 

where Si is the weighted sum, I:j WijXj, of the values of the input connections 

J. Eligibility is computed by 

The use of an eligibility trace allows some temporal flexibility to the learning 

process. Functioning similar to the variable delay lines of Tank and Hopfield 

[123, 122), the delay lines coupled with the eligibility trace allow the duration 

and separation of events to vary somewhat between training and testing. The use 

of the connection sum rather than the actual activation value in the error term 

provides more control over the learning rate and final weight values. The output 

of the activation function of the recognizer nodes falls within the range 0 < ai < 1 

and asymptotically approaches the extreme values. Consequently, if the expected 

value, Zi, is 1, excitatory weights will grow unbounded, since the actual output 

never reaches the expected value, and conversely for Zi = 0. By using the sum, 
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the expected value can actually reflect the values of the connection weights, 

keeping them from growing (or shrinking) unbounded and allowing variability in 

the onset of excitatory and inhibitory influences in the learning process. This 

greatly improves learning efficiency. 

The actual operation of the network involves a training phase using certain 

tokens of input data followed by a testing phase on other tokens. During training, 

an input matrix for one syllable is presented to the motion detector network, 

which passes its output to the recognition layer. At each time cycle the detector 

units compute their activation and then update their weights. The expected 

value is set for each node depending on the identity of the syllable, with a high 

value for the node being trained for that syllable and a low value for all others. 

After the training phase the network is tested on different utterances of the same 

syllables. Network operation is the same in the training phase with the exclusion 

of the weight update operation. 

3.4.3 Final Recognition with a Veto Network 

The testing phase gives an idea of the accuracy of the training. A node can 

make two types of errors, one where it fails to fire for its trained syllable, called 

a miss, and another when it fires on the wrong syllable, called a false alarm. As 

will be described in the next chapter, these errors arise in experiments where 

the network is tested on utterances that it has never seen before. Similarities 

in the patterns of various syllables can cause a node to mistakenly identify one 

syllable for another. A final part of the system, the veto recognition network, is 

used to eliminate some of the latter types of errors. Consider two nodes , dbah 
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trained to detect a "bah", and dbae trained to detect a "bae". Suppose both 

nodes fire correctly when presented with their trained syllable, but dbah also fires 

on a "bae" by mistake. Is there any way to eliminate this error? 

The veto recognition network seen in figure 3.14 takes input from the detec-
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tor nodes and uses it to compute the output of a set of twenty-four recognizer 

nodes. Each node is connected to a delay line which takes input from a single 

detector node, with each recognizer node corresponding to a particular detector 

node. Recognizer nodes also have veto connections from certain syllable detec

tors. The node rbah can correctly discriminate a "bah" from a "bae" based on 

the output of dbah and dbae· When "bah" is presented only dbah fires, activating 

rbah · In the case of a "bae" dbah fires mistakenly while dbae fires correctly. A veto 

connection from dbae to rbah prevents it from firing on the wrong syllable, elim

inating the error. Detector nodes fire at different times during the presentation 

of the testing stimulus. A veto connection, once activated, will inhibit firing of a 

node for the entire presentation of the stimulus. If dbae fires first it will prevent 

the firing of rbah· If it fires after dbah the veto inhibition will arrive too late 

to prevent the firing of rbah unless activation from dbah is delayed. This is the 

function of the delay lines. They allow some time to elapse before the excitation 

from a detector node reaches a recognizer node. This allows the inhibition to 

block the firing of a node at the proper time. 

A recognizer node has a single excitatory input connection at the end of its 

delay line. The weight is set according to the strength of the signal received from 

a detector node firing on the correct syllable. Excitatory activation is computed 

by the familiar sigmoid squashing function, and is then subject to veto inhibition. 

Each recognizer node may have some of its veto connections enabled with a 

particular threshold. If the value on an enabled veto connection is greater than 

its threshold, activation is compl~tely shunted and the node's output is set to 0, 

otherwise the excitatory activation is the output value. 
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3.5 Summary 

The mechanism of visual motion detection [63] is used to construct detectors 

sensitive to specific types of formant transitions. This is a dynamic form of neu

ral network computation and provides the first layer of processing for syllable 

recognition. Formant transition information is provided to the second layer for 

syllable detection. This process involves a learning method which combines ideas 

from temporal sequence detection, supervised learning, and classical condition

ing. Since the detection level has many false alarms, a final level of processing 

is used to actually recognize the syllable. Veto inhibition is used to fine tune 

the output of the detectors, and delay lines allow for the time-varying nature of 

the network's behavior and the task itself. The entire system must detect events 

that may take some time to develop or are separated by some delay. 

Veto inhibition has played two roles, both at the lowest level of motion 

detection and at the recognition level. Coupled with a set of adaptive units 

the system detects the movement of formants and then decides how to use this 

movement data in the recognition of syllables. How well it performs is described 

in the next chapter. 
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4. Results 

The performance of SYREN and the usefulness of formant transition in

formation was evaluated through syllable recognition experiments. The data 

corpus contains samples of twenty-four syllables. Each syllable's corpus consists 

of formant centers from five "raw" repetitions from a single speaker and one set 

of averaged centers from the five raw syllables. Experiments differed in which 

tokens were used in training and testing. 

In the first experiment the network was trained and tested on the aver

age data. This was a preliminary experiment to study the performance of the 

transition detectors and the learning algorithm, and it provided a set of initial 

parameters for use in the other studies. In the next task the network was trained 

on the five raw repetitions and then tested on the average data. This tests the 

network's ability to detect common features of a syllable and use those features 
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to recognize another token from samples that it has never seen before. The final 

experiments gathered more performance data by testing the network on each 

raw repetition in the data corpus while using the others for training. This makes 

up for the fact that the averaged data could be considered an idealized sample 

of the syllable. Testing on the raw repetitions as well may give a more reliable 

performance measure. In many samples, however, the average formant centers 

did not closely resemble any of its raw data for some syllable types. 

In each experiment, the performance of the network is analyzed by looking 

at both the percent correct recognition performance and the behavior of the 

detector nodes during the recognition process. This yields an overall recognition 

score and provides clues to what information the network is using in recognition. 

In any task where input is spread out over time, an adaptive system must decide 

what information is important for recognition. In analyzing the behavior of the 

syllable detection network it is possible to determine what information it is using 

in its operation. 

The first section of this chapter gives the result of the average only experi

ment. The next section discusses the results of the raw- average experiment and 

shows in detail how the veto recognition network is used to tidy up the learn

ing process. Following that, the experiments that tested on the raw data are 

presented. Finally, the effect of various parameters on the learning process is 

discussed. 

4.1 Average-Only Experiment 

For the average-only experiment, the network was presented with the averaged 
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formant centers for both training and testing. Twenty-four detector nodes were 

trained to respond to one of the twenty-four syllables. Due to computational 

requirements each detector was trained separately. Detectors were trained by 

presenting each syllable of the averaged data as input. If the input is the syllable 

that the node is supposed to detect, its preferred syllable, the expected value 

of the node was set to a reward value, otherwise it was set to a penalty value. 

The number of time slices presented as input is called the exposure window of a 

trial. It reflects the duration of the presentation. In this experiment the exposure 

window was twenty-five time cycles, meaning that the first 125 ms of each input 

syllable was used. This is sufficient to allow all formants of each syllable to reach 

a steady- state condition. Steady-state is defined as a formant center at one 

frequency for four time cycles (20 ms). A training cycle is the presentation of 

each syllable of the training corpus one time. Each node was trained for four 

training cycles. 

After training was completed the network was tested on the average data 

(the same as the training corpus). Each syllable was presented and the nodes 

calculated their activation at each time slice, using the weights determined during 

the training phase. Each node's activation value, a, falls within the range of 

O < a $ 1. In this experiment detection was successful if the node achieved an 

a 2:: .9 at some point during the input presentation and no other nodes responded 

to that syllable with an a ~ .1. 

Correct detection was accomplished 100% of the time with each detector 

node responding to its correct syllable and to no others in the corpus. All nodes 

signaled their correct syllable with an activation value greater than 0.97. Because 
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recognition was perfect there was no need to construct a veto recognition network. 

Table 4.1 shows how each detector node responded to its preferred syllable, 

displaying the time of the onset of activation and, in some cases, where the node 

begins to deactivate. The temporal characteristics of the activation behavior can 

shed some light on the information that the node is using for recognition. By 

comparing activation values with the formant input it is possible to tell what is 

actually firing the node and what may be preventing its firing. 

A good example is provided by the detector for the syllable "heh". The 

formant tracks are shown in figure 4.2, and the performance of the detector 

of the syllable with that input is shown in figure 4.1. The onset of activation 

begins at the seventh time cycle (35 ms). At this point on the spectrum no 

formant has reached a steady-state condition. The first formant has reached its 

final frequency but the steady-state detector will not fire for three more time 

slices. The detector is firing on transition data alone. The formants do not 

appear until after the second time slice, corresponding to the onset of voicing 

of the stop consonant. Transition events are not signaled until the fifth time 

slice for Fl, and the sixth time slice for F2 and F3. These initial transitions 

are not sufficient to fire the node, but the delay matrix preserves a record of 

these events for five time slices. As more transition data arrive in the delay 

matrix, the node fires. This node is characterized by a deactivation beginning at 

the sixteenth time slice. In figure 4.2, steady-state frequencies are reached for 

formants Fl, F2, and F3 at the seventh, tenth, and ninth time cycle, respectively. 

This leads to the firing of steady-state detectors at the eleventh, fourteenth, and 

thirteenth time cycle. When a steady-state detector fires, no more transitions 
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Average-Only Results 
Syllable A-onset A-decline 
Detector (time-cycle) (time-cycle) 

bae 7 19 
dae 11 22 
gae 9 24 
bah 7 19 
dah 7 22 
gah 10 -

bee 7 21 
dee 9 -

gee 11 -

heh 7 16 
deh 11 -
geh 10 24 
bei 8 21 
<lei 9 -

ge1 11 -

bih 7 15 
dih 9 -
gih 10 24 
bou 7 16 
dou 11 24 
gou 11 -

buu 7 17 
duu 9 -

guu 11 -

Table 4.1. Performance of the twenty-four syllable detectors when presented with 
their preferred syllable, showing the time cycle of activation onset and decline. Dashes 

mean the activation does not decline. 

are signaled for that formant and previous transitions are at the end of their 

delay lines. Both transition and final vowel target information is available. As 

time passes, transition information is lost and is no longer available to fire the 

node. In figure 4.1, the activation of the node begins to decline at the sixteenth 

time cycle. At this time the delay matrix is filling with information from the 
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steady-state detectors and is losing the last of the transition data. Activation is 

reduced completely when only the vowel target information is present. There are 

two possible causes for this: either the weights on those particular connections 

are excitatory, but not enough to fire the node, or the connections have been 

inhibited during the learning process, telling the node to ignore this information. 

Most of the nodes that exhibit a decline in activation show some combination of 

these conditions. 
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0 . 6 

A 
c 
t 

0. 4 
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0 10 20 3 0 

Time Cycle 

Figure 4.1. Activation curve for detector node trained for syllable "beh" when pre

sented with that syllable in the Average-Only experiment. 
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Figure 4.2. Input matrix for syllable "beh". Horizontal axis is 5 ms time slices and 

the vertical axis is frequency. 

Performance of the detector for the syllable "deh", when presented with 

that syllable, is shown in figure 4.3. This detector was characterized by no 

reduction in activation, meaning that it was using steady- state information in 

the later part of the presentation and transition information earlier. The onset of 

activation was three time cycles later than in "beh", caused by a longer onset of 

voicing (beginning at the fourth cycle) and a slower F3 transition. Correlation of 
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p· 
~gure 4.3. Activation curve for the detector trained for syllable "deh" when presented 

W1th th t . . a syllable m the Average-Only expenment. 

activati . d . . . on onset with voicing onset an trans1t10n type is a common property in 

the average-only experiment. Onset of activation depends on the onset of voicing 

and the nature of the initial transitions. This means that syllables beginning with 

a /b/ , which has a small delay in the onset of voicing, .should cause activation 

sooner than a / d/ or a / g/. 

The detector nodes use formant transition information in the recognition 

of the syllables. Twelve of the twenty-four detectors depend primarily on the 

tra · · .. nsitions, while the others can use both trans1t10n and steady- state data. The 

95 
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perfect performance of the detectors is not surprising, since the units were tested 

on the same samples as they were trained. A more realistic experiment, where 

the uni ts are tested on previously unseen data, is discussed in the next section. 

4.2 Raw-Average Experiment 

The raw-average experiment involves two phases: the training and testing of the 

detector nodes and the construction of the veto network for recognition. The five 

raw repetitions of each syllable were used for training and the averaged data were 

used for testing. A single learning cycle consisted of the presentation of all five 

repetitions of each syllable. Parameters for the detectors differed in the number 

of training cycles before testing, as well as in the length of the exposure window 

used for training and testing. After training was completed the performance of 

the network was analyzed and a veto recognition network was constructed to 

clean up the deficiencies from training. 

The performance of the twenty- four detector nodes on the averaged data 

after training is seen in table 4.2. This table gives the output of each detector 

node when the network is presented with that detector's preferred syllable. As 

in the average-only experiment, the onset of activation of the node can occur at 

any time during firing, and the table gives the activation onset and the maximum 

value reached by the node. The training process is not perfect and the table also 

shows the other detectors that fire mistakenly on a given syllable. For example, 

when a "bae" is shown to the network the detector for a "dah" also fired. 

The shapes of the activation curves are markedly different from the average

only experiment. Many show a spike shape as in figure 4.4, or multiple spikes 
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Syllable Preferred Detection Shape Others 
Presented Onset Maximum Firing 

bae 7 0.49 spike dah 
dae 12 1.00 plateau 
gae 17 0.12 I spike gah 
bah 10 0.26 spike bae bou 
dah 7 1.00 cliff deh 
gah 12 0.81 spike dah 
bee 14 0.09 cliff buu 
dee 16 0.34 spike gee 
gee 14 1.00 spike dee 
heh 10 0.70 spike 
deh 17 1.00 cliff dei dou 
geh 12 0.17 spike dou 
bei 16 1.00 plateau dei 
dei 12 0.90 cliff 
ge1 17 1.00 cliff geh 
bih 9 0.73 plateau bee 
dih 15 0.48 spike dei 
gih 12 1.00 plateau geh 
bou 8 0.40 spike heh 
dou 12 1.00 cliff 
gou 16 0.68 spike 
buu 9 1.00 cliff 
duu - - -

guu - - - duu 

Table 4.2. Network performance when presented w:th each syllable. Preferred detector 

response is shown along with other detectors that misfire on each syllable. Italicized 
syllables are false alarms with a value greater than the detector's maximum activation 

on its preferred syllable. Dashes indicate no respome to the preferred syllable. 

as m figure 4.5. Other shapes can be classified as plateaus, shown in figure 

4.6, or cliffs which extend to the end of the exposure in figure 4. 7. The shapes 

of the activation curves can shed some light on the detection process just as 

in the average-only experiment. An examination of these curves reveals what 
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Figure 4.4. Activation curve for detector node train ed on syllable "beh" wi t h th at 

syllable as input in the Raw-Average experim ent . 

information is being used by the node during the dett'Ction process . 

Table 4.3 shows what information is available when a node fired on its pre-

ferred syllable. Eight nodes fired during the period whm only formant transit ions 

are present in the da ta. Of t hose eight , three nodes fired only on transit ion in-

formation. These three nodes fired early, reached a comparatively low activat ion 

value, and deactiva ted before steady- state information is present. Of more inter-

est is that sixteen of the twenty- two nodes that fired on their correct syllable did 

so while both transition and steady- state events were present in the delay lines . 

-- - - - - --- -- -- -------------- -------
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Figure 4.5. Activation curve for detector node trained on syllable "gou" with that 

syllable as input in the Raw-Average experiment. 

Of those sixteen, eight fired exclusively with this combined information. Due to 

the four cycle delay in signaling a steady-state frequency, these two events were 

present together in the delay matrix for only about two time cycles. This can 

result in a sharp spike shape of a node's activation curve. This is most clearly 

illustrated in figure 4.5. The three spikes in the curve correspond to the activa

tion of steady-state detectors for F3, Fl, and F2 at time cycle sixteen, twenty, 

and twenty-five, respectively. Plateau-shaped curves normally represent the use 

of combined information spanning two or three formants. 
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Figure 4.6. Activation curve for detector node trained on syllable "dae" with that 

syllable as input in the Raw-Average experim ent. 

Eight nodes showed strong activation in the presence of steady-state infor

mation alone and are characterized by cliff- like activation curves. Of these, three 

fired only in the absence of transition information. Three other nodes showed a 

slight activation in the presence of the vowel alone. 

The majority of the nodes fired with combined consonant and vowel events , 

and one third of the nodes fired exclusively with this information. For syllable 

detection, at leas t, a combina tion of the transitions from the consonant to the 

vowel and the vowel t arget itself is needed. This shows that CV syllable detection 
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Figure 4. 7. Activation curve for detector node trained on syllable "buu" with that 

syllable as input in Raw-Average experiment. 

relied on properties from both the consonant and the vowel. Nineteen of the 

twenty- four detectors, roughly 86%, used formant transition information at some 

point when they fired on their preferred syllable. 

A detector can make two types of errors: a miss error, where the detector 

fails to fire on its preferred syllable, and a false alarm, where a detector fires on an 

incorrect syllable. Table 4.4 shows the performance of each detector node on its 

preferred syllable and the incorrect syllable, if any, that caused it to misfire. The 

failure of the detectors for "duu" and "guu" to fire on their preferred syllable 
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Syllable Transition Transition & Steady- State 
Detector Only Steady-State Only 

bae • 
dae • 
gae • 
bah • 
dah • • • 
gah • • 
bee • 
dee • 
gee • 
heh • 
deh • 
geh • 
bei • 
dei • 
ge1 • • 
bih • 
dih • • 
gih • • 
bou • • 
dou • • • 
gou • 
buu • • 
duu 
guu 

Table 4.3. Table shows what information is available when a detector fires on its 

preferred syllable. 

is caused by the lack of common transitions between the training corpus and 

the averaged data. These samples share common steady-state frequencies, but 

apparently that information was inhibited during training due to other syllables 

with the same target frequencies. The lack of common transitions in the training 

and testing corpus seems to be a feature of detectors that fire only on the vowel 
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Syllable Preferred Detection Others Firing 
Detector Onset Maximum 

bae 7 0.49 bah 
dae 12 1.00 
gae 17 0.12 
bah 10 0.26 
dah 7 1.00 bae gah 
gah 12 0.81 gae 
bee 14 0.09 bih 
dee 16 0.34 gee 
gee 14 1.00 dee 
heh 10 0.70 bou 
deh 17 1.00 dah 
geh 12 0.17 gei gih 
bei 16 1.00 
dei 12 0.90 bei deh dih 
ge1 17 1.00 
bih 9 0.73 
dih 15 0.48 
gih 12 1.00 
bou 8 0.40 bah 
dou 12 1.00 deh geh 
gou 16 0.68 
buu 9 1.00 bee 
duu - - guu 
guu - -

Table 4.4. Figure shows the performance of each detector node. Activation values 
and onset are given for the preferred syllable, and false alarms are shown. False alarms 

with an activation greater than the preferred syllable are in italics. 

information from their preferred syllable. 

A false alarm occurs when a detector fires with an activation value within an 

order of magnitude of its maximum activation on its preferred syllable, or with 

an a > 0.1 if it does not fire at all. Nineteen false alarms occurred. Of these, 

twelve were the result of firing on a syllable with the same stop consonant as the 
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preferred syllable, five shared a common vowel, and two showed no relationship. 

This would seem to indicate that the detectors were primarily confusing the stop 

consonant part of the utterance. These results should be viewed with caution 

since the number of both detection events and errors is small. 

Analysis of the performance of the training and testing phase suggested 

that the majority of the false alarms could be corrected by the veto recognition 

network. As mentioned in Chapter 3, the recognition network consists of twenty

four recognizer nodes, each assigned a preferred syllable. A node contains an 

excitatory connection to the end of the delay line originating from its detector 

node, and a set of veto connections to the other detector nodes. The weights for 

the excitatory connections are set by looking at the maximum activation value 

of the corresponding detector node. The excitatory activation of a recognizer 

node is computed by a sigmoid squashing function that approaches a value of 

a = 1 if the excitatory input is above a threshold set to() = 1. The weight of the 

excitatory connection for a recognizer node is normally set to 1 / (max - 8), where 

max is the maximum activation of the detector node on its preferred syllable and 

8 is a value that ensures the excitatory input will exceed the threshold, giving a 

value of a > 0.9 for a recognizer node. For example, the excitatory weight for 

the recognizer node for "bae" is set to 1/0.4. 

The thresholding effect of the recognizer nodes effectively cancels out any 

false alarms whose activation values are less than max - 8. For example, the 

detector for "bae" misfires on the syllable "bah" with a maximum value of 0.3. 

The recognizer for "bae" correctly fires on its preferred syllable, and will not fire 

on a "bah" even though the detector is firing because the excitatory input never 
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exceeds the threshold. The weights for the nodes "duu" and "guu" are set low 

enough so that the recognizers never fire. 

The syllables in italics in table 4.4 are false alarms whose maximum acti

vations are greater than that detector's maximum activation for its preferred 

syllable. These false alarms are not eliminated by thresholding and must be ve

toed. For example, the detector for "gah" fires on that syllable with a value of 

O.Sl, but also misfires on "gae" with a value of 0.9. This error can be corrected 

if the re · d · d f fi · h " " · · S cogmzer no e is prevente rom rmg w en a gae is mput. ince the 

detector for "gae" fires on that syllable with a value of 0.12, it can prevent the 

recognizer for "gah" from firing and the error can be eliminated. This is done 

by enabling the veto connection between the detector node for "gae" and the 

recognizer node for "gah". A veto connection is enabled with a threshold value, 

in this case 0.1, corresponding to the activation of the vetoing detector. If the 

value on that veto connection exceeds the threshold the recognizer is vetoed and 

cannot fire. It is essential that the node be vetoed before it receives its excitatory 

input. This is accomplished by the delay lines between a detector node and its 

corresponding recognizer, which gives the detector on the veto connection time 

to reach its maximum before the excitation arrives. 

False alarms are eliminated by enabling a veto connection for each of the 

italicized false alarms in table 4.4, and the network correctly recognized twenty

two of the twenty- four syllables from the testing corpus for a score of 91. 7%. 

When the network was tested on the training corpus it achieved 100% detection 

With no errors (no veto network waJl constructed). There are situations where 

the veto network will not be able to eliminate some false alarms, and these will 
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Test Correct False False Alarms After Recognition 

" Repetition Detections Alarms Veto Network Score 

~ 
Avg 22 91.7% 19 0 91.7% 

1 22 91.7% 21 1 87.5% 

2 17 70.8% 25 2 62.5% 

3 20 83.3% 27 0 83.3% 

4 20 83.3% 25 0 83.3% 

~ 
5 15 62.5% 35 0 62.5% 

Overall 19.3 80.6% 25.5 0.5 78.5% 

• • e ec ion, recogmt10n, an mis re scores or average-only and raw-test Table 4 5 D t t' . . d . fi £ 
rmiments, as well as mean scores for all six runs . Recognition score is (correct -expe · 

errors) / 24. 

be discussed in the following section. 

4•3 Raw-Test Experiments 

The five raw-test experiments tested the network on each of the raw repetitions. 

In each experiment one of the raw repetition samples was selected for testing and 

the network was trained on the remainder of the data corpus. All parameters 

Were the same as the raw-average experiment. The results of the raw-test and 

raw-average experiments are summarized in table 4.5. Detector nodes fired on 

their preferred syllable in all six experiments with a mean of 80.6%. Recognition 

scores after the construction of the veto recognition network had a mean of 78.5%. 

It is clear from the results that the veto recognition network cannot eliminate 

all err f th th' h ors rom the detection phase. There are two ways at is can appen, 

and both arise in tests on repetitions one and two. The first type occurs when 

two detectors misfire on each others' preferred syllable. In testing on repetition 

one th' "b " fi "d " d · If ' is occurs when the detector for ey res on a ey an vice versa. 
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the false alarm cannot be eliminated by thresholding, as is the case here since the 

maximum activation for the errors is greater than that for the correct syllable, 

the recognizer nodes cannot enable veto connections for either detector. If both 

veto connections are enabled the detectors would prevent each other's recognizer 

from firing on the correct syllable. There occasionally is a way out, however, 

when another detector misfires on one of the syllab les. In this experiment the 

detector for "bou" misfires on a "bey", and by enab ling the veto connection 

between the "bou" detector and the "dey" recognizer the error is eliminated. No 

other detector misfires on a "dey", and this error remains. 

A second way that the veto network can fail to block an error occurs in the 

experiment testing the second repetition. In this experiment, the detector for 

"deh" misfires on a "bih". The problem is that the detector for "bih" does not 

fire at all on that syllable, and the recognizer for "deh" has no way of vetoing 

the error. No other node misfires on a "bib" , and the error is left uncorrected. 

This is the cause of the two remaining errors in the experiment. 

The types of detector errors for all experiments are shown in table 4.6. A 

detector can misfire on a syllable that has the same consonant, vowel, or shows 

nothing in common with a preferred syllable. These are shown in their respective 

columns. This table shows that the identity of the phonemes can have a slight 

influence on whether a detector will make an error. Both the number of false 

alarms related to consonants and those related to vowels were slightly greater 

than random chance for each type of error (chance beirig 33.3% for consonants 

and 12.53 for vowels) . This shows that the network is able to extract features 

from both phonemes in a syllable and that syllables showing one or another of 
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-
Repetition Total Errors Consonants Vowels Unrelated 

Avg ~ 19 12 63.2% 5 26.3% 2 10.5% 
1 21 7 33.3% 7 33.3% 7 33.3% 
2 25 12 48.0% 6 24.0% 7 28.0% 
3 27 11 40.7% 6 22.2% 10 37.0% 
4 25 9 36.0% 4 16.0% 12 48.0% 

- 5 35 14 40.0% 9 25.7% 12 34.3% 
- Overall 43.5% 24.6% 31.8% 

Table 4 6 T . . • • ypes of errors from all six experiments 

these ph . onemic features were more likely to cause a detection error. 

4 ·4 Parametric Effects 

The effects of the parameters of the learning method were studied to give some 

idea of th b . e ro ustness of the procedure. The exposure wmdow and the number of 

trai · ning cycles can vary within an experiment. The reward and penalty constants 

that serve as expected values remain constant in an experiment but are different 

for th e average-only experiment. Their effects will be discussed as well. 

The exposure window varies the most within an experiment, depending on 

the length of time required to reach a steady-state value. The particular values 

for both the exposure window and the number of training cycles for all but 

the average-only experiment are seen in table 4. 7. The length of the exposure 

Wind d d ' . . ow can have an effect on the strength of a etector no e s activation and, 

in some cases, the errors that it makes. The length of the window also affects 

the amount of time needed for the learning process, and an attempt was made 

toke · f ffi · ep it as short as possible for the sake o e c1ency. 

An example of the effects of the exposure window can be seen with the 

1 
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Table 4 7 . . . det : · Exposure wmdow length and number of trammg cycles used to train each 

ector l 11 . n a six experiments 

Syllable Exposure Training 

Detector Window Cycles 

bae 20 4 

dae 20 4 

gae 20 4 

bah 20 4 

dah 20 4 

gah 25 4 

bee 15 10 

dee 25 4 

gee 30 4 

beh 20 4 

deh 20 8 

geh 20 10 

bei 25 4 

dei 20 8 

gei 30 4 

bih 18 4 

dih 18 4 

gih 25 4 

bou 18 4 

dou 32 4 

gou 32 4 

buu 20 4 

duu 25 4 

guu 30 4 

detector £or "gae" 
With the exposure window set to twenty time cycles, this 

detector reaches a maximum activation of 0.12 at the eighteenth time cycle. 

Wh 
en the exposure window is increased to twenty-five, the maximum activation 

b ecomes 0.8 at time cycle twenty, with no errors in either case. The cause 

of this lie · h h · · th 1 · 1 · h s wit the eligibility trace mec an1sm m e earrung a gont m. A 

Particula · 1. 'bl .1: • ht d.fi · r connection, when activated, is e ig1 e ,or we1g mo i cat10n as the 
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eligibility trace decays for a few time cycles after its deactivation. Increasing 

the exposure window allows the weights of the connections to be enhanced for a 

few more time cycles within a training cycle, increasing that connection's effect. 

The length of time required to reach steady-state is longer for syllables beginning 

with /d/ or /g/, and for those detectors that use both transition and steady-state 

information, the extra few time cycles can make a difference. 

Increasing the exposure window can either reduce or increase the number of 

errors. In some cases the window must be lengthened for a detector to fire at 

all, eliminating the miss error. The effect on false alarms can vary. The detector 

for "dah" fires with a maximum value of one, and it misfires on "gah" and "bae" 

with an exposure window of twenty time cycles. Increasing the exposure window 

to twenty-five does nothing to the maximum activation for "dah", increases the 

false alarm activation for "gah", and eliminates the false alarm for "bae". 

The number of training cycles affects the strength of activation of a detector 

node. A few nodes show a barely measurable activation after four training cycles, 

but this value may be increased with more presentations of the input data. The 

length of the learning process normally enhances both excitatory and inhibitory 

effects, and seems to amplify the behavior of the node. After about twelve to 

fifteen training cycles, further presentations of the training corpus have little 

effect, as the weights are changing much more slowly, if at all. The learning 

process normally was continued until either acceptable behavior or quiescence 

was achieved. 

The reward and penalty constants that serve as the expected value to the 

learning method have some effect on the learning process, although they remain 

... 
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urmg an experiment. Increasmg t e reward value enhances excita-unchanged d · · · h 

tory effects and can cause the node to activate earlier in the learning process. 

The reward value is smaller in the average-only experiment, and is increased 

in the other experiments to enhance the detectors' activation values. Since in 

these e · xpenments the network has never seen the test data, the larger reward 

value allows the detector to fire on a smaller number of common features than 

IS a "l b vai a le when it is trained and tested on the same data. The effect of the 

reward is tied to the threshold of the node, and if it is too low the node will never 

fire. If the reward is too high inhibitory connections will have little effect, and 

the node will fire on almost every input. A similar argument can be made for 

the penalty value. If it penalizes the node too much, it will wash out excitatory 

connections and the node will never fire. Since the node is exposed in training 

to more penalty situations than rewards, the magnitude of the penalty constant 

is less than that of the reward. Acceptable values for the constants were found 

after two to three experimental trials. 

In summary, SYREN was able to recognize JOO% of the testing corpus in 

the average-only experiment. Each of the detector nodes was using transition 

infor · · R "t " mation, and about half used only this information. ecogm ion was accom-

plished 91. 7% of the time in the raw-average experiment, and the majority of 

the detector nodes were concentrating on information that contained both tran

sition and steady- state information. The veto recognition network was able to 

elim1·n t · t Th all og "t " t a e all 19 false alarms in this expenmen . e over rec m ion ra e 

from both the raw-test and the raw-a-age experiments was 78.5%, and the 

veto recognition network was able to eliminate !13 of the !16 false alarms in all 
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experiments. An analysis of the types of false alarms shows that similarities in 

either a vowel or consonant increased the probability that a detector would make 

an error. 
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5. Discussion and Implications 

The · 
prev10us chapter discussed the performance of SYREN on the syllable 

recogn't' 1 
ton experiments. To understand the implications of the system's behavior 

it . 
is nece 

SSaI)' to com pare it to other work of this nature. Unfortunately, there are 

fewm d 0 
els for comparison due to the manY different ideas that make up SYREN. 

It is . possible, however, to divide the system into a few parts and evaluate those 

Parts fr . om computational, neurophysiological, and psychophysical standpoints. 

The eval · · uation wiil look at two parts of SYREN. One mvolves the performance 

of the . . . . motion detector mechanism, mcluding how the veto network mechalllsm 

Perform · f SY N · 
8 

In detecting acoustic motion. The performance o RE m syllable 

identific t · · · ·11 th · a ton and its relation to speech recogn1t10n wt serve as ano er pomt 

for analysis. 

The first section of the chapter deals with the implications of the motion de-
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ec amsm. The next discusses the performance of the syllable detection tector m h . 

apparatus in relation to both connectionist and linguistic models, followed by a 

ussion of the importance of the ideas of this project to speech recognition. disc · 

mi ations of the system and the weaknesses of some of the initial assump-The li ·t · 

re iscussed in light of possible improvements to SYREN. The final section tions a d" 

s e implications of this work to other problems in computer science and discusse th . . 

neuroscience. 

5.1 Discussion of the Motion Detectors 

The motion detectors effectively determine the direction of the change of for

mant center frequencies and discriminate specific rates of change through the 

use of veto inhibition and characteristics of dendritic computation. Detectors 

discri · d H / mmate transition rates of 1.33, 2.0, 4.0, 8.0, 12.0 an 16.0 z ms, corre-

spondi t I f t. d · Ch ng o the transitions slopes in figure 3.3. n act, as men 1one m apter 

3• cooperative firing patterns of detectors for different slopes allow detection of 

intermediate rates between the transitions assigned to different detectors. The 

fine fr · d 11 .i: • • equency and temporal selectivity of the mput ata a ows 1or very sens1t1ve 

detecti on of transition rates. 

Computationally this appears to be a highly effective mechanism. The ques

tion remains whether this is sufficient for the task of syllable detection. There 

are a few ways to answer this question. One involves psychophysical studies 

of listeners' ab·l·t · t d" . . te the rate and direction of frequency change, 
I I ies o iscnmma 

and another looks at neurophysiological studies of the auditory nervous system 

to see if neu d t ·niilar transitions. Both types of studies in
rons can respon o s1 
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volve the . . presentation of steady-state and frequency modulated tones to subjects 

in most cases. In psychophysical experiments, subjects' responses to the tones 

are measured, while the behavior of neurons in (animal) subjects is the focus of 

neuroph . 1 . ysio ogical studies. 

5 .1.1 p sy h h . I . c op ys1ca Studies 

Psychophysical studies center around subjects' abilities to detect if a stimulus 

gmg in frequency, to detect if it is rising or falling, and in a few cases, is chan . 

ec t e rate-of-change of the frequency. Responses indicate whether they 
to det t h 

Y iuerences in the frequency tranSitions as we as n mg ranges of can identif d" a · · · 11 fi d' 

w ere detection is optimal. stimuli h 

Brady and House (17] tested whether subjects were merely averaging initial 

requencies or were using some strategy mvo vmg rac mg movement and final f · 1 · t k' 

When r · d · h · I' espondmg to transition events. Subjects were presente wit stimu I con-

sisting of upward and downward frequency glides of rates of 10 and 25 Hz/ms, 

and were asked to adjust a steady-state tone to match the pitch of a transition. 

They found that subjects tended to adjust the matching frequency to the termi-

nal po r d. t th• r ion of the transition, indicating that they were respon mg 
0 

some mg 

other than the average of the initial and final frequencies. They mentioned that 

this 1 d t' f · cou d be significant to speech, emphasizing the better etec ion o tranSI-

tions i·n c 1 · t b d d "th V compared to VC syllables. This cone usion mus e regar e w1 

caut· . Ion since a · l t b ly a superficial resemblance to a speech-like 
smg e one ears on 

sound. What is significant is that a subject's response is affected by frequency 

tran . . s1tions. 
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f Sergeant and Harris [101] examined listeners ' abilities to detect a variety of 
requency glid 

f es, from slow transitions on the order of several seconds for a small 
requency cha 

fi nge, to fast transitions with durations of less than 30 ms. They 

ound that subjects could detect a transition and identify its direction over a wide 
range of glide 

rates. They show that the auditory system can detect transitions 
of rates and d . 
l urabons common to formant transitions of stop consonants. This 
ed them t 

th 0 conclude that there exists a mechanism in the auditory system for 
e dete t' 

( c ion of frequency transitions, and that it is most effective for high rates 
> lIIz/ms) f 0 short duration. 

Further s . . £ h d . upport of the notion of specific mechamsms lOr t e etection of 
acousf 

le Illot· 'd ~ lon comes from Gardner and Wilson {39] who found strong ev1 ence 
ror th . 

e exlstence of direction-specific channels in the auditory system. Their 
e)Cn • 

t'er1men t 
d s concentrated on the effects of repeated presentations of upward or 
own ward 

FM sweeps on the ability to detect sweeps in the same or opposite 
direct· 

Ion. Th 
ey argued that if direction-specific channels did not exist, the adap-

tatio 
n result· · · · uld ir h a . mg from presentation of sweeps m one dJTect10n wo auect t e 

bllity to 
. detect sweeps in both directions. They found that repeated presenta-

t1on f 0 as l · th Weep in one direction makes it more difficult to detect a sweep on y m 
at d' 

lrection d . d' t' ' an has no effect in the opposite JTec ion. 

'l'here h ' ·1· · t d' t' · h 
b ave been relatively few studies on listeners ab1 ities 0 is mgms 
eb .. vveen d'a- . . . 

llrerent rat ft 't' 'th the sensitivity exh1b1ted by the mot10n det es o rans1 10ns w1 
ectors · · l · th m SYREN Th' · t' ll esult of a confound m eva uatmg e re . JS JS par Ja y a r 

sults of stJ· . t d th 
lll Illuh of different rates. If two transition rates are presen e ' ey 

llst differ ' th . eJ er m the duration of the transition or in the frequency range 
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swept. This makes it more difficult to assess the effects relative to the length 

of the frequency window or the duration of the stimuli, both of which affect a 

subject's ability to discriminate the transitions. 

Pollack [92] raised this point and attempted to study the combination of the 

two factors. He found that for short transition times, those corresponding to the 

formant transitions in SYREN, rate sensitivity was primarily a function of the 

differences in frequency, or the range of the frequency window. This correlates 

well with the motion detection mechanism in SYREN, which measures frequency 

differences over a fixed time frame for each detector. 

Nabelek and Hirsh [87] studied listeners' abilities to discriminate transitions 

of different rates by determining if a test stimulus is the same as a reference stim

ulus . They found that optimum discrimination scores depended on the duration 

of the stimulus , with smaller transitions requiring longer durations. Rates simi

lar to those for the CV syllable experiments had optimum durations of between 

20- 30 ms. This is close to the time frames of the transitions required to fire 

SYREN's motion detectors. These durations were relatively insensitive to where 

in the frequency range the transitions took place. 

5.1.2 Neurophysiological Studies 

In the discussion in the previous section, no study was found relating a lis

tener's ability to discriminate the rates of frequency change with the sensitivity 

of SYREN's motion detectors. Neurophysiological studies also do not provide 

enough information to compare the overall performance. This is due to a lack 

of neurons available for any one project. Quantitative studies using intracellular 
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recordings are hard to reproduce, since the sample size, the number of neurons 

recorded, is too small to yield reliable results. Nevertheless, it is possible to make 

a few statements on the performance of the motion detectors and the mechanism 

of veto inhibition. 

Most cells that show selectivity to rates and directions of frequency changes 

are not as sharply tuned to their preferred transitions as the detectors of SYREN, 

when responses are measured in firing rates. These studies are with animals, 

however, and comparisons to speech processing should be made with caution 

since the speech signal is a distinctly human phenomenon. In cat auditory cortex, 

cells were found that preferentially responded to frequency glides of pure tones of 

0.05, 0.1, 0.2, 0.4, and 0.8 kHz/ms [79]. Many cells showed a limited response to 

transitions for the entire range, and responses to preferred rates could differ by as 

little as 30% to the next rate measured. The rates of these transitions are roughly 

two orders of magnitude faster than those found in speech, however. Studies of 

cells in the auditory nerve and cochlear nucleus were done with rates more closely 

resembling those of speech sounds [84, 105, 104, 18] and found similar effects. 

Mechanisms for frequency transition detection are still under investigation. 

Many proposals require some form of inhibitory process for direction and rate 

sensitivity, especially for transition rates found in speech (18, 68]. This seems 

to fit a pattern of increased asymmetry and specificity of cell responses to di

rection and rate of movement as one moves higher in the auditory pathway [18]. 

Interneurons are required to deliver inhibition, and the cochlear nucleus is the 

first major structure where synapses occur. As one moves higher in the pathway, 

there is a greater chance to be affected by inhibition and a greater probability of 
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response asymmetry and selectivity [18]. 

5.1.3 Discussion of the Mechanisms in SYREN 

Although none of the evidence above indicates that veto inhibition is the mech

anism for motion detection in the auditory system, there is no reason not to use 

it in the construction of the acoustic motion detectors. It may be that the de

tectors used in SYREN are much more sensitive and selective to acoustic motion 

than those found in natural systems. This is not necessarily something to avoid 

since the goal of this research is not to faithfully model the nervous system but 

to use ideas from it in the implementation of artificial systems. The extra power 

available may lead to better recognition. 

One result from of psychophysical studies of the detection of frequency tran

sitions is that responses are relatively insensitive to variations in intensity [86]. 

In SYREN the intensity of the formant centers could be varied by using continu

ous rather than binary input values. Small changes in intensity should have little 

effect on the motion detectors since only the time course of the rise of activation 

is affected by variations in the input level. As long as the variations are within, 

say, 80% of the normal values, a node will still reach a maximum value in time 

to activate the next node in the branch. 

An interesting property arises when looking at the time course of activation 

of nodes in the motion detectors. Strong excitation causes a node to reach a value 

near its maximum in four to seven update cycles, corresponding to a time course 

of from 2.8 to 5 ms of time (there are 7 update cycles for each 5 ms time slice). 

Nodes decay to a value near their resting activation in about 24 update cycles 
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or 1 7 ms. Koch has calculated timings for membrane potentials for patches of 

dendritic membrane in cat lateral geniculate nucleus [58]. He found that the rise 

time for the effect of excitatory synaptic potentials, that is, the time required for 

the membrane to react to the synapse, was on the order of 1.6 to 3. 7 ms, and the 

decay times were about 9 to 25 ms. This corresponds fairly well to the behavior 

of the nodes in the motion detectors. Although these nodes are meant to be 

analogous to patches of dendritic membrane, whether or not this is coincidental, 

or a form of convergent evolution, is open to speculation. 

5.2 Discussion of Syllable Recognition Performance 

As with the motion detector analysis, there are few systems similar to SYREN 

to use to compare syllable detector performance. Dynamic connectionist models 

for speech recognition are only now becoming a popular research topic. There 

are, however , a few systems which bear discussion. Linguistics and psychology 

offer another area of comparison, although it is hard to relate results of studies 

of human subjects to results from artificial implementations. Nevertheless, the 

performance of SYREN will be compared to results from both areas. 

5.2.1 Connectionist Models for Speech 

The only model found in the literature that is applied to a problem similar to this 

research is the temporal flow model of Watrous and Shastri [126]. Their model is 

adaptive, using the back propagation method generalized to feedback connections 

on the hidden units and the output nodes. In one of their experiments, the 

data consisted of five repetitions of eighteen voiced stop consonant CV syllables 

produced by a single (presumably male) speaker. These use the same consonants 
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and six of the vowels tested with SYREN. Syllables were presented in a left-to

right fashion with input nodes updated once per time slice. Input consisted of 

fast Fourier transform coefficients, with the region of formant transitions for the 

stop consonants apparently segmented by hand from the vowel. The network is 

trained to recognize the consonants and vowels rather than the entire syllable. 

For consonant identification, the network achieved an error rate of 0.11 errors 

per output unit per token for each time slice. For vowels, it achieved an error rate 

of 0.004 after 290 learning trials (126]. The average error rate for all experiments 

in SYREN was 0.008, with the lowest error rate of 0.004 for the Raw-Average 

experiment. This is after a maximum of only 12 learning trials. The error rate 

in SYREN may be skewed higher from the method of scoring a miss error. If a 

unit fails to fire on its syllable for an exposure window of 25 time slices, it scores 

25 errors. It is unclear how Watrous and Shastri scored errors in this situation. 

They also segmented formant transitions by hand "to decrease the computational 

load of the optimization algorithm, [126]" whereas SYREN concentrated on the 

formant transitions by design. 

A system by Homma, et al. [45], presented thirty synthetic phonemes as a 

temporal pattern to an adaptive network consisting of what they call dynamic 

formal neurons. This dynamic neuron differs from the formal neuron of McCul

loch and Pitts [77] in the use of transfer functions in the place of connection 

weights and the use of correlation in the place of multiplication. The synthetic 

phonemes were combined into strings representing the first ten digits, and pre

sented as input to the network one time slice at a time, in the same manner as 

SYREN. The network was trained and tested on this input matrix. It was also 
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tested on a noisy matrix which was made by subjecting the original matrix to 

random noise. One variant of their model failed to recognize three phonemes and 

misfired once on the noisy matrix and failed to recognize one phoneme with one 

additional false alarm on the training matrix. A second model achieved perfect 

recognition on the training matrix and had one false alarm on the noisy data. It is 

hard to compare this performance to SYREN, however, since Homma's network 

is trained and tested on the same data. 

The TRACE model by Elman and McClelland [74, 29] is a combination 

of the blackboard architecture of HEARSAY [32] and ideas from connectionist 

processing. Its input consists of acoustic features sampled at 5 ms intervals 

of an utterance. In some senses it can be considered a dynamic model, since 

input is presented one time slice at a time, and previous time slices affect the 

processing of future input. Unfortunately the input feature nodes are copied for 

each time slice, and higher features, such as phonemes or syllables, are copied to 

span a slightly larger temporal window. These separate input nodes as well as 

phoneme and word level nodes stand for a particular moment in the utterance. 

Comparisons of the performance of TRACE are not appropriate since TRACE is 

designed to model psychological and linguistic behavior, not to serve as a general 

speech recognition system. 

A final system to consider was designed by Elman and Zipser (30]. Although 

not a dynamic model, it can serve as a baseline for performance of static models 

in CV syllable recognition. Their model is a feed-forward adaptive network 

trained using back-propagation. Stimuli consisted of 505 input tokens of nine 

CV syllables from a single male speaker. The nine syllables were composed of the 
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consonants /b, d, g/ paired with the vowels /ii, ah, uu/. The entire utterance 

was presented at one time as input to the network. Training consisted of 100,000 

learning cycles. The model, when trained for syllable recognition, achieved a 

score of 84% for clean data and 90% for data with added noise. It achieved 100% 

recognition on the training data. This is a static model, however, with the entire 

input signal available for the duration of the learning cycle. 

5.2.2 Speech Perception Experiments 

Speech Perception experiments measure a listener's ability to identify linguistic 

sound units in test stimuli. Although few conclusions can be drawn between 

artificial and human recognition systems, linguistic data can give a reference point 

for evaluating an artificial recognition system's performance as well as comparing 

the qualitative effects of different types of stimuli. The experiments discussed 

here tested recognition of consonants and vowels in real and synthetic CV stop 

consonant syllables. These experiments manipulated the availability of transition 

information in isolation and in conjunction with other acoustic properties. 

Pols and Schouten (94] originally attempted to determine whether listeners 

could identify certain synthetic frequency changes similar to formant transitions. 

Pilot results convinced them that evaluation of listeners' performance on this 

task is difficult, so they instead proceeded to investigate how well subjects could 

use formant transitions excised from natural syllables in a speech recognition 

task. In one experiment, they studied Dutch listeners' performance in initial 

stop- consonant recognition by presenting the stimuli consisting of burst infor

mation only, transitions only, or a combination of both. They found that listeners 
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correctly identified approximately 70% of the initial stop consonants with transi

tion information alone, 85% with only the burst, and 98% with both cues. They 

concluded that transition information can be used alone to a limited extent, and 

that it greatly augments performance with burst cues. 

Formant transitions seem to help in the identification of vowels. Strange, 

et al., tested listeners' abilities to recognize vowels in a variety of environments 

including b V syllables (syllables beginning with a "b") [113]. Vowel recognition 

scores averaged 85% in b V syllables compared with 75% for vowels that were 

pronounced in isolation. In another study [114] vowels were correctly recognized 

94% of the time even when the vowel portions were masked by replacement with 

noise in ab Vb syllable. This further supports the view that dynamic properties 

of the rapid transitions carry useful information about the entire syllable. 

The above studies demonstrate the difficulty experienced by the most profi

cient speech recognition systems, humans, in isolated syllable recognition tasks. 

They also demonstrate how performance is improved with the presence of addi

tional information compared with the presentation of only one type of cue. In 

the experiments with SYREN, recognition is achieved with only minimal acous

tic information for each spectral slice. No information is available from formant 

bandwidths and intensities, and no cues are available as to burst onset and the 

onset of voicing. Instead, dynamic information is provided that is known to be 

useful in speech perception. 

5.3 Limitations of the Research 

As with any research, there are some points in the design of SYREN that are 
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open to question. Two major problems are apparent. The first involves the 

nature of the input, and the availability of smooth formant centers in a real

time speech processing system, as well as the appropriateness of formant-based 

representations at all. This is mostly a linguistic issue. The second problem 

centers on the structure of the syllable detection network, the learning algorithm, 

and the ad hoc nature of the veto recognition network. Each of these problems 

is discussed and possible solutions are suggested. These problems are not major 

setbacks, however, but provide starting points for future research that further 

addresses the nature of temporal processing in dynamic connectionist models as 

well as computational methods used in speech recognition. 

5.3.1 Linguistic Issues 

One assumption made in this project is that formant center data could be reliably 

obtained from an analysis of the speech signal. The formant data used in this 

project were visually measured from sound spectrograms [52]. There are at least 

two reasons why this might not hold. The first is the difficulty in extracting 

the formant centers. The second is whether formants are appropriate at all 

for speech recognition. Fortunately, there are alternative input representations 

available that still allow the use of the veto network in the detection of spectral 

transitions. 

The importance of formants in a phonetic analysis arises from their appear

ance in wide band spectrograms and their effectiveness as control parameters in 

speech synthesis. They are prominent features in wide-band spectrograms for 

vowel and sonorant stretches, but are usually absent during fricatives and stops. 
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When they are present, their measurement and detection can be extremely dif

ficult, both visually in spectrograms, as well as automatically. If two formants 

are close together, they may appear as a single wide band. The resolution of 

both spectrograms and the frequency sensitivity in the nervous system make it 

difficult to track and identify formants in this case [13]. Furthermore, their de

tection is affected by low intensity and high noise level. Even visual extraction 

of formant centers is difficult in cases of recordings of low signal to noise ratio. 

If a speech signal at a particular instant is plotted in a frequency vs. intensity 

graph, formants can be seen as mountain ranges or wide bands of high signal 

intensity. Spectral peaks emerge as dominant frequencies possessing the highest 

intensity in a given region. Many times they can be seen near the formant centers, 

but they are also present at frequencies that do not contain formants. Several 

methods exist for the identification of spectral peaks. An interesting method that 

could be convenient for SYREN is the dominant frequency technique. Carlson 

and Grandstrom [20] have devised a method to identify prominent spectral peaks 

and sharpen the representation into what appears to be tight dark bands in the 

spectrogram. There are normally more peaks than formants in a signal, and 

during periods of voicing the transitions and steady-state portions produced by 

this method appear much like the formant centers used in SYREN. This is a 

useful input representation for study. 

Klatt has observed that "changes of formant frequencies are the most im

portant characteristic that causes subjects to report changes in phonetic quality 

[57]." Frequency changes are even more important then changes in intensity or 

bandwidth of frequency regions. Spectral peak measurement gives a represen-
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tation that is relatively insensitive to bandwidth but may depend on intensity. 

The effect of intensity can be reduced in the Carlson and Grandstrom method 

through proper thresholding techniques, forming a binary representation of the 

presence of peaks at a particular frequency band. 

Connectionist methods exist as well for the extraction of certain features of 

the acoustic signal. Shamma [102] has devised a mechanism based on cochlear 

mechanics. Dominant frequencies can be identified through a hand-constructed 

connectionist model using lateral inhibition and feedback connections, with a fine 

resolution in both space and time. Output of this type of network could serve as 

input to the motion detector network. The motion detector network would then 

detect the changes of dominant frequencies rather than formant centers. The 

veto network is relatively insensitive to small variations in intensity, and adaptive 

thresholding techniques can eliminate the effect of large changes in intensity. 

5.3.2 Issues in Representation and Learning 

Decisions were made concerning the target representation for the syllable de

tectors, the learning algorithm, and the use of a veto network to recover from 

deficiencies in the learning process. These decisions were made based on con

straints of the problem, computational resources, and the focus of the project. 

The rationale behind some of these decisions is discussed below to provide a 

motivation for future projects to improve performance. 

SYREN uses a single-layered adaptive network for the first level of syllable 

detection. This was chosen primarily to reduce the computational demands of 

the training phase. Single-layer networks have inherent limitations in processing 
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abilities [83] and although the network gave adequate performance in the task 

it certainly can be improved. One obvious modification is to use a multi-layer 

network for improved computational capacity. This would require a learning 

method different from the one currently used. 

The back propagation method [97] has seen some success m multi-layer 

feed-forward networks . The temporal nature of the recognition process imposes 

certain problems on a totally feed-forward network, however. Hidden units, 

those nodes in the middle layers of a multi-layer network, form an intermediate 

representation of the pattern of activation of input nodes. The output nodes 

use this information to decide whether or not to activate. The characteristics 

of speech imply that the hidden nodes may need to respond to intermediate 

features of the input signal at different times. These responses must be preserved 

somehow for simultaneous use in the output nodes. 

Delay lines and feedback from recurrent connections are two methods used 

to address the problem, but they impose additional computational complexity 

to the learning method in both space and time. These solutions are common 

in temporal sequence detection methods, but most are only single layer, self

organizing systems. Work is being done to extend these methods to multi-layer 

recurrent nets in supervised systems [2, 50] and merit further study. 

A question can be raised as to whether any form of supervised learning is 

appropriate for speech recognition problems. In supervised learning algorithms, 

the behavior of each output node must be known in advance, and is given to the 

n etwork at each time slice of the learning cycle. This was possible in SYREN's 

t ask since the identity of each syllable in the data corpus was known. In a 
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less limited task where an utterance is composed of several syllables, supervised 

learning requires that the signal be pre-segmented so that the identity of con

stituent parts is available during the training process. This is unreasonable in 

complex tasks with large training sets. Self-organizing methods do not suffer 

from this problem, but designers of a recognition system may still want to im

pose a particular output representation. Still, this is impossible without external 

interaction during the learning process. Algorithms do exist to allow a network 

to learn its appropriate output behavior [11, 118] , but these methods need to be 

incorporated in feedback network architectures. 

A localized representation for syllables was used here for both the adaptive 

network and the veto recognition network, where each node stands for one syl

lable. This was chosen to simplify the determination of the expected value for 

the learning method. In a distributed representation the identity of a syllable 

is determined by patterns of activity of output nodes. In such a case a single 

output node may be active for more than one syllable. Even though SYREN was 

trained to use a local representation, the results of the training process showed 

many characteristics of a distributed representation. Each syllable resulted in a 

firing pattern composed of nodes that fire both correctly and incorrectly. Since 

the nodes did not fire at the same time, these patterns exhibited temporal varia

tion. Thus , the patterns show signs of a distributed representation for a syllable, 

even though the network was trained to use a local representation. 

The veto recognition network in SYREN exploits many of the distributed 

properties of the output of the adaptive network. Firing patterns over time of 

various detector nodes determine whether or not a recognizer node will activate. 
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This representation takes on a spatial dimension, determined by which node is 

firing, as well as a temporal dimension, determined by the onset of activation. A 

recognizer node can be vetoed by other detector nodes in the adaptive network. 

Normally, if a recognizer's detector node is firing on an incorrect syllable, it is 

vetoed by the activation of the detector node assigned to that syllable. In the 

case where the correct detector is not firing and cannot veto a node, another node 

that may be firing incorrectly can supply the veto inhibition. In this case detector 

errors are not necessarily detrimental, but may be useful and informative. This 

behavior may also be used to eliminate miss errors. A recognizer could be set 

up to fire when other detectors are firing incorrectly on a syllable and when the 

correct detector is silent. This is not currently implemented. 

The temporal dimension of the output of the syllable detectors motivates 

the use of veto inhibition. In the nervous system this type of inhibition can 

veto excitation that arrives after the inhibitory synapse is activated. In syllable 

detection the node supplying the inhibition may activate before the excitation 

arrives. The veto mechanism allows for this behavior. 

5.4 Contributions of the Project 

Insights from neurophysiological mechanisms led to development of a computa

tional tool for use in dynamic connectionist models. Neural veto inhibition and 

related characteristics of local dendritic computation have led to a novel sort of 

connectionist implementation that has been shown to be effective in the detection 

and identification of acoustic motion. This project has been useful in the study 

of temporal computation in connectionist models, and should promise insights 
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hardware implementation could be modified and applied to the task of acous

tic motion detection as well. This could facilitate the development of real-time 

speech recognition systems. 

This project has explored the use of veto inhibition primarily in perceptual 

processing, but this is not the only area of application. Inhibitory mechanisms 

similar to shunting inhibition may be useful in fine control of motor behavior 

in the cerebellum [72]. Higher cognitive functions can benefit as well. Minsky 

has illustrated the use of censors in controlling the flow of information between 

cognitive agents in the mind [81]. Essentially a censor blocks the transmission 

of information from one agent to another. This is an ideal task for the on-path, 

shunting characteristics of veto inhibition. The mechanism might also be used 

for blocking the execution of inappropriate alternatives in planning tasks. 

The implementation of the veto mechanism has led to some ideas in the 

neurological study of aphasia. Some language-impaired children have difficulty 

recognizing syllables with rapidly varying dynamic cues such as CV syllables 

[121]. This implies separate mechanisms for the detection of fast and slow tran

sitions. The veto network has been applied to rapidly changing stimuli, but may 

not be appropriate for small frequency changes over a period of seconds. Impair

ment of neurological structures that provide veto inhibition may be the cause of 

some types of aphasia if this is, in fact, a mechanism for the detection of rapidly 

varying acoustic stimuli. The veto network may provide a basis for neurophys

iological experiments that can yi~ld information both on language impairment 

and the detection of spectral change [22]. 
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5.4.2 Temporal Processing and Speech Recognition 

The processing mechanisms of SYREN are clearly useful in the recognition of 

stop consonant CV syllables. This project additionally provides insights that are 

necessary for full scale speech recognition systems. 

A connectionist model for general speech recognition will need to deal with 

the speech signal in short temporal windows. The TRACE model [74, 29] ac

complishes this by copying the network for each time slice of the signal. This is 

unreasonable on a t least two fronts . The detection of input features and higher 

level features requires complex processing mechanisms. Replication of this mech

anism throughout the network places a burden on computer architects who must 

fit these copies on VLSI hardware. Furthermore, this sort of method limits the 

system to processing utterances of a fixed length. In running speech a signal 

must be chopped into fixed-size pieces for digestion in the system, yet informa

tion can be lost across the boundaries of the pieces. Clearly a system must store 

information from previous time slices, but to do so requires the exploration of 

alternative mechanisms. 

Continuous processing of stream input seems to be the best solution, where 

the input interface to the system is updated at each time slice. The storage of 

previous time slices and the representation of their temporal effects is a diffi

cult problem in connectionist models. The issue is whether or not to explicitly 

represent t ime, or to incorporate some of its effects in the network architecture. 

A key principle of this project is not to explicitly represent time in any 

single manner, but instead to place its effects at many levels. There is an explicit 

temporal representation in the delay lines used in several parts of the system, 
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bu t in each case these are used to preserve the sequence of abstract events, not 

simply to relate the events to particular point in real time. Since information in 

the delay lines has been subjected to various kinds of processing, it is not simply 

a buffer for t he input signal. The two levels of delay lines store different kinds of 

information in order to support different kinds of decisions. 

Temporal effects are also represented in the activation of nodes in the mo

tion detector network. The effects of time are realized in the dynamics of the 

onset and decay of activation as well as in the communication throughout nodes 

in the network. Veto inhibition plays an important role in this by providing 

inhibitory effects that can begin and end at specific points in time. This allows 

flexib ili ty in the temporal onset of informative events, both at the first level of the 

motion detectors and at the last level of syllable recognition. Simple inhibitory 

mechanisms from tradit ional models do not give this power and flexibility. 

The effects of t ime in SYREN are found throughout the network in many 

different forms. The knowledge gained from these different temporal representa

t ions may be applied to connectionist implementations requiring dynamic inter

action of components and information. This is useful in speech recognition, which 

requires the processing of many dynamic events. In the most general case the 

study of these processing mechanisms should lead to the development of a num

ber of connectionist tools that can be applied to problems requiring computation 

in t ime. 
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6. Conclusions and Future Directions 

This research has shown some of the methods that can be used in a con

nectionist model that must deal with temporal properties of its input. Speech 

recognition is a problem that requires temporal processing, and the mechanisms 

implemented have proven useful in the problem of syllable recognition. Neu

roscience has contributed the principal mechanism that provides for the imple

mentation of dynamic behavior. The contributions of this project need not be 

limited to speech . The ideas used here can be applied to other problems in per

ception and higher levels of cognition, and can provide a starting point for further 

resear ch into the na ture of temporal computation in connectionist models. 

This chapter summarizes the achievements of the project and outlines pos

sibili ties for future research. 

135 
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6 .1 Achievements 

A possible mechanism for visual motion sensitivity in the retina has been im

plemented for the detection of the rate and direction of transitions of formant 

centers. This mechanism incorporates a veto inhibitory mechanism coupled with 

properties found in small areas of dendritic membrane in cells of the nervous 

system. It is implemented as a veto network. 

This implementation changes the neurological analogy of nodes and links in 

a connectionist model. Previously a node has been thought of as a simplified 

analog of a single neuron or even an assembly of cells. Links between nodes form 

connections between cells or assemblies. In this model a node in the motion de

tector network corresponds to a portion of a dendritic tree. Connections between 

nodes represent synapses from other cells and provide communication pathways 

along the branches of the dendrites. This change in neurological focus allows the 

implementation of more complex behaviors of a single cell, while still appealing 

to the computational guidelines of connectionist models, where nodes perform 

simple computations of activation levels and transmit this to other nodes in the 

network. 

The structure of the network and the computations performed by the nodes 

permits the implementation of these mechanisms in VLSI architectures. This 

could lead to applications of the motion detector mechanism to real time speech 

recognition systems. 

The formant motion detectors were used in the recognition of stop-vowel syl

lables. The system identifies the rates and directions of formant transitions from 
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formant cen ter data from repetitions of twenty-four CV syllables. Transition in

formation is fed to a single layer adaptive network which learns to associate this 

inform ation with the identities of different syllables. Output from the adaptive 

network forms a sort of intermediate representation that is used by a final net

work for syllable recognit ion. This recognition network also uses veto inhibition 

that is similar to the mechanism used for acoustic motion detection. 

Formant center tracks are divided into 200 frequency regions of 20 Hz each, 

and presented to the network in 5 ms time slices. Input nodes of the network see 

only one time slice at a time, and do not retain any information from previous 

t ime slices . This forces the network to maintain traces of previous information by 

properties of activation onset and decay, and through the dynamics of activation 

along delay lines. The network sees only short durations of the signal at any one 

time and must concentrate on those parts most useful for recognition. This is 

part of the temporal computation performed by the network. 

Veto inhibition and delay lines are used in the final stages of processing 

for syllable recognition. The system uses patterns of activation from nodes in 

the adaptive network to determine the identity of particular syllables. These 

pat t erns have a temporal character, since nodes activate at different times during 

the presentation of the input. Veto inhibition permits the temporal integration 

of these patterns for effective syllable identification. 

The network achieved perfect recognition when tested on its training corpus. 

W hen tested on previously unseen repetitions, it recognized an average of 79% 

of the syllables ranging from 92% to 63% in different experiments. The veto 

recognition network eliminated all but three of the 116 false alarms from the 
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adaptive network. This performance comes after a small number of training 

cycles . The m ajority of the detector units concentrate on a brief, early portion 

of the signal that contained both vowel and consonant information. 

The number of training cycles used in each experiment depends on which 

syllable is being trained, but ranges from only four to ten presentations of the 

training corpus. Although the adaptive method used in the system is simple, it 

accomplishes its task quickly. 

6.2 Where Do We Go From Here? 

The initial successes of this project imply other avenues for exploration. These 

range from the development of better methods for representation and learning of 

temporal properties in connectionist models, to hardware implementations of the 

mechanisms of motion detection, and even to neurophysiological experiments. 

Clearly the representation and architecture of the adaptive network needs to 

be explored. A multi-layer network is most certainly the answer, and sequence 

detection research indicates that feedback methods must be implemented as well. 

This will require more sophisticated learning algorithms to deal with this type of 

architecture. The previous chapter mentioned some of the possible methods, and 

there is much active research in this type of learning. Some of these methods, 

or possibly hybrids, are worth exploring to see if recognition behavior can be 

improved. 

The representation of syllables in the adaptive network is another topic for 

study. Currently, a local representation is used for simplicity, while the final 

behavior of the subnetwork after training shows that it is developing a more 
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complex, distributed scheme. It may be fruitful to impose fewer initial con

st r aints an d allow the network more freedom to develop its own representations. 

This places a greater burden on the learning mechanism since supervised learning 

methods require the behavior of each output node to be known in advance. Meth

ods which allow t he network to predict its behavior are mentioned in Chapter 3, 

an d provide a p romising starting point. 

The nature of the input to the network must be must be modified if appli

cation of t he veto network to general speech recognition systems is envisioned. 

Methods discussed in Chapter 5 for isolating spectral peaks seem to be a promis

ing starting point. Connectionist models outlined for the extraction of spectral 

qu alities of the speech signal seem to be the best method for accomplishing this 

task. Availability of this type of information means that few modifications need 

to be m ade to the motion detector network. 

The hardware implementation of the motion detector network and signal 

processing methods seems to be a promising line of research. These will allow 

real t ime processing of the speech signal in larger applications. The architecture 

of the motion detector network is fairly regular and simple and can be specified 

without t he need for adaptive methods. This allows the implementation of the 

motion detector network in the same manner as the motion detection mecha

nisms for vision. These vision networks use many of the same mechanisms used 

in the formant motion detectors, and need only be implemented to detect one di

mensional motion characteristic of acoustic motion. Hardware implementations 

of early acoustic signal processing methods, including motion detection, might 

provide a powerful tool for speech processing. 
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The ideas from the motion detectors can be applied to other areas as well. 

Tasks such as planning and motor control can benefit from notions of veto in

hibition and more complex, neurally inspired processing methods. Here tools 

developed for vision and speech might be applied to tasks in different domains 

including those requiring higher-level cognitive processing. 

Finally, ideas from this project can lead to experiments in neuroscience and 

speech science. The mechanisms studied have a few implications in the neural 

representation of the acoustic signal and the processes used in human speech 

understanding. The goal of this research is to use neurophysiological mecha

nisms to give insights for computational solutions. It is not intended to suggest 

that these specific mechanisms are used in the auditory system. Nevertheless, if 

similar mechanisms are used, it would imply the existence of certain structures 

and functional properties in the auditory nervous system. Thus, these results 

suggest experiments that look for this behavior in the areas of neurophysiology, 

and as mentioned, the study of language impairment. Experimental confirma

tion of these mechanisms would be rewarding, but even disconfirmation will yield 

insights into the complexities of the nervous system. 

This project shows the promise m the application of neurophysiological 

mechanisms as computational techniques. Connectionist models are already 

reaping the benefits from the use of rather simple analogs of neural behavior, 

and a deeper understanding of the nervous system can yield rewards in com

puter science. This project shows the benefits of just one mechanism and reveals 

the potential available from the study of the mechanisms of intelligence. 

-
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