Parallel Depth—First Search in Directed Graphs

Alok Aggarwal Richard J. Anderson
IBM Research Division Dept. of Computer Science
T. J. Watson Center, Box 218 University of Washington
Yorktown Heights, NY 10598 Seattle, WA 98195
and
Ming Y. Kao

Dept. of Computer Science
Indiana University
Bloomington, IN 47405

TECHNICAL REPORT NO. 250

Parallel Depth—First Search in Directed Graphs
By
Alok Aggarwal, Richard J. Anderson & Ming Y. Kao

May, 1988

Parallel Depth—First Search In Directed Graphs

Alok Aggarwal Richard J. Anderson
IBM Research Division Dept. of Computer Science
T.J. Watson Center, Box 218 University of Washington
Yorktown Heights, NY 10598 Seattle, WA 98195
Ming Y. Kao

Dept. of Computer Science
Indiana University
Bloomington, IN 47405

(Extended Abstract)

Abstract

In this paper we show that a directed depth first search tree can be constructed by a random
NC algorithm. Previous results on parallel depth first search had only applied to undirected
graphs. The algorithm relies on finding directed cycle separators. A cycle separator of an
n vertex directed graph, is a directed simple cycle such that if the vertices of the cycle are
deleted from the graph then the size of the largest strongly connected component in the resulting
digraph is at most |n/2].

1 Introduction

The directed depth-first search problem is: given a digraph G = (V, A) and a vertex z, construct
a directed forest I that corresponds to conducting a depth-first search of the graph starting from
the vertex z. In this paper we present a fast parallel algorithm for constructing a depth-first
search tree of a directed graph. The problem of performing depth-first search in parallel has been
considered by a number of authors [RC78, EA77, Re83, GB84, An85, AA87, Sm83, Ka88, HY87].
Reif [Re83] showed that computing the lexicographic depth-first search forest is P-complete; Ghosh
and Bhattacharjee [GB84] provided an NC algorithm for directed acyclic graph; Smith [Sm83]
provided an NC algorithm for undirected planar graphs; Aggarwal and Anderson [AA87] gave an
RNC algorithm for general undirected graphs; and Kao [Ka88] recently provided an NC algorithm
for directed planar graphs. Although, Aggarwal and Anderson [AA87] provided an RNC algorithm
for general undirected graphs, they could not settle whether a depth-first search forest of a directed
graph could be found in RNC. In this paper, we settle the question by providing an RNC algorithm
for this problem.

This algorithm uses a similar divide and conquer strategy as was used for undirected graphs
[AA8T]. At the very highest level, the algorithm is to find a portion of the depth first search tree
and then perform recursive searches of independent components of the graph. The key idea in
dividing the problem is to use a directed cycle separator. Although this algorithm uses a similar

approach to that of the undirected algorithm, there are some substantial differences. First of all,
directed graphs introduce many subtleties. The distinction between strong and weak components
plays a major role in a portion of the algorithm. The graph theory is quite a bit more involved than
in the previous algorithm. The second major difference arises in the construction of the separator.
Both the directed and undirected algorithms construct separators by repeatedly joining paths until
only a small number of paths remain. However, a key idea in the undirected case is to traverse a
path in one of two possible directions to minimize the size of segments that cannot be joined. In
the directed case, it is not possible to choose the direction of traversal, so a different approach is
necessary. The third major difference is in the application of the separator that allows the problem
decomposition. In the undirected case, the decomposition of the graph was almost immediate,
given the appropriate separator. However, with directed graphs, there is a fair amount of work
that is necessary to successfully reduce the size of the graph for the recursive calls.

In the next section we introduce the directed cycle separator and discuss a number of preliminary
concepts. Section 3 gives the first major result of the paper, establishing an NC-equivalence between
finding separating cycles and solving depth first search in directed graphs. Section 4 shows how
to reduce the problem of finding a cycle separator for a given directed graph to a collection of
matching problems. The matching problems can be solved in RNC. Section 5 puts the results
together, discusses run time and processor bounds, and discusses open problems and extensions.

2 Cycle Separators

Most of the work on parallel depth first search and related problems has relied on some form of
graph separator. A graph separator is a subgraph whose removal disconnects the graph in some
manner. The maximal path algorithm [An85] and undirected depth first search algorithm [AA87]
used path separators. The algorithms for depth first search of planar graphs have used various
forms of cycle separators [Sm83, HY87, Ka88]. Our definition of a separator of an n vertex directed
graph G = (V, E) is a set of vertices V', such that G(V — V') has no strongly connected component
containing more than |n/2| vertices. A directed path separator is a set of vertices V' that forms a
directed simple path in G. Similarly, a directed cycle separator is a set of vertices V' that form a
simple directed cycle in G. We consider a single vertex to be a cycle of length zero. Thus, if the
removal of a vertex separates the graph, we will considerate it a cycle separator.

The natural sequential algorithms for constructing path separators relies on depth first search.
The algorithm can be modified to construct a separating cycle, so we have:

Observation 2.1 Every directed graph has a cycle separator. Furthermore, this separator can be
found in linear sequential time.

Proof: Omitted. 1l

In our algorithm, we will use directed paths (dipaths) and vertices extensively. We often use a
set of vertices to denote an induced digraph wherein the arcs are inherited from the given digraph
G = (V, A). A dipath is an ordered set of vertices p = py, ..., pr with arcs (p;, ps41) € Afor1 <i< k
(where p; points to p;41 in the arc (p;, piy1)). A lower segment of p is the dipath p;, -y P|k/2) and
the upper segment of p is the dipath pg/3|41, ..., Pk. For a set of dipaths @ = {q1,...,gm}, We use
m = m to denote the number of dipaths in @. In unambiguous cases, we will often refer to a dipath
when, in fact, we imply the vertices of that dipath. For example, if p is a dipath and @ a set of

dipaths, then G(V — p) will denote the induced subgraph where all the vertices of p have been
removed, and G(V — @) will denote the induced subgraph where all the vertices contained in the
paths of () have been removed. The observation given below demonstrates the existence of a cycle
separator in any digraph; a similar observation also holds for undirected graphs but is omitted for
the sake of brevity.

3 Using a Cycle Separator to Find a DFS Tree

From the point of view of parallel computation, observe that given a depth-first search tree of
G = (V, A), we can use the proof of Observation 1 to obtain a directed cycle separator (or a dipath
separator) in O(log? n) parallel time by using n® processors on a PRAM. Consequently, in this
section, we show that if a cycle separator can be found in NC then so can a depth-first search
tree. More precisely, we give a procedure that finds a depth-first search tree of G = (V, A4) in
O(log? n(T.(n) +log® n)) time using [P.(n) + n®] processors where T.(n) and P.(n) denote the time
and the processor complexity of finding a cycle separator of G. In the next section, we will show
how to find a cycle separator efficiently on a PRAM.

Given a cycle separator of G and a vertex r € G, it can be readily seen that a dipath separator,
P,, that begins at at r, can be found in O(log®n) time by using n® processors. (These processor
and time bounds can be achieved, for example, by computing the transitive closure of a suitable
digraph.) However, if we remove this path separator from G, then although the largest strongly
connected component has at most |n/2| vertices, the largest weakly connected component may
have almost n vertices. Consequently, by removing P, we have reduced the size of the strongly
connected components in G by a half but the sizes of the weakly connected components in (G — P,)
may still be quite large. In view of this, we discuss below a subroutine that removes a set of
dipaths from G (which, in fact, will form the paths in the final depth-first search tree) such that
the remaining digraph has no weakly connected component of size greater than |n/2].

We call a digraph, G, rooted at a vertex if this vertex can reach all other vertices of G using
directed paths. A partial DFS tree in a rooted digraph is a subtree of a DFS tree such that the
digraph and both on trees are rooted at the same vertex. Let T be any partial DFS tree of G; let
T1,T3,...,T; be the vertices of T listed in the DFS last visit order (i.e., if this partial DFS tree is
traversed sequentially then z; ; and its descendants would be visited before we backtrack to z;).
Furthermore, let ¥; 1, ..., ¥ix; be all the end vertices not in T of the arcs whose starting vertex is
x;, but not on z; for 1 < < i—1; the order of y;1,...,¥ik, being arbitrary. For any two integer
pairs, (i,7) and (7', 7), we say (¢/,7') < (3,7) if either ¢’ < ¢ or ¢ = ¢ and 7' < 7. For any digraph
D and a vertex z € D, let R(z, D) denote the set of vertices that can be reached from z using the
directed paths in D. We call a subgraph of G, a dangling subgraph DSG((¢,7),T) with respect to
(7,7) and T if it is formed by vertices in G — T that are reachable from y; ; but not from yy ;# for
any (¢,7') < (¢,7). That is, DSG((%,7),T) = R(v:;,G - T) _ti',j')qi,j) R(yirj7,G — T). Observe
that a depth-first search tree of G is simply the union the arcs in a partial depth-first search tree,
T, of G, the set of arcs (z;,¥; ;) for which DSG((%,7),T) is non-empty, and an arbitrary depth-first
search tree rooted at y; ; for each non-empty DSG((3,7),T).

Consider a partial depth-first search tree, T, such that z1, ..., z¢ are its vertices in the last visit
order and every strongly connected component of any dangling subgraph G — T has at most |n/2|
vertices. Now, for a dangling subgraph in G —T', it is possible that although the strongly connected
components are appropriately small, there may be a weakly connected component with almost

n vertices. Consequently, we call a dangling subgraph heavy if it has more than |n/2| vertices,
otherwise, we call it light. Now, if there is no heavy dangling subgraph then we can compute
a depth-first search tree by recursively computing the depth-first search trees in the non-empty
dangling sub-graphs of G — T that are rooted at y; ; for 1 < i< k and 1 < j < k;, and by adding
the remaining appropriate edges. Consequently, assume that there is at least one heavy dangling
subgraph. Because all such subgraphs are vertex disjoint, there is exactly one heavy subgraph, call
this DSG((%,J0),T). Let H denote the weighted subgraph induced by contracting the strongly
connected components of DSG(4,,j,) where a vertex in H has weight w if there are w vertices
in the corresponding strongly connected component of DSG((%,J,),T). Since DSG((%0,70),T")
is heavy, there exists a vertex in H such that the weight of this vertex and its descendants is
greater than [n/2| each of its child and its descendant has weight at most |n/2|. Call such
a vertex, s,, € H, a splitling vertez; call the corresponding strongly connected component in
DSG((i0,70), T) a, splitting component, and denote this splitting component by G,,. Now, using
the subroutine for finding a cycle separator, find a cycle separator in G, and let this be C,,. Also,
find a path P, in DSG((40,J0),T) that goes from y;, . to any vertex of Cy, and let the new tree
be Ty = T U (®i,, Yio,jo) U Po U Cy. Observe that T is a partial depth-first search tree of G with
the largest strongly connected component of G — T; having at most [n/2| vertices. Also, if there
is a heavy dangling subgraph in G — T} then the splitting component in this subgraph is, indeed,
a subgraph of G, and this subgraph has at most |w/2]| vertices. Consequently, after [log w] such
phases of updating the partial depth-first search tree, we are left with a single vertex in the splitting
component. Consequently, if we now extend the partial depth-first search tree to include this vertex
and obtain another depth-first search tree 7" such that there is no splitting component in G — T,
then the largest weakly connected component in G — T" has at most [n/2] vertices. Hence, using
this discussion, we obtain the following theorem:

Theorem 1: Suppose a cycle separator of an n—vertex strongly connected digraph can be
computed in T¢(n) parallel time using P.(n) processors. Then, a depth-first search tree of G can
be computed in O(log? n(T.(n) + log?n)) time using P.(n) + n® processors.

Proof: The above procedure uses a cycle-separator subroutine to compute a depth-first search
tree, and its correctness can be seen easily. The analysis of the processor and time complexity of
this procedure will be provided in the final version of the paper. |

4 Constructing A Directed Cycle Separator

For obtaining a directed cycle separator, we first show (cf. section 4.1) how to obtain a set of vertex
disjoint directed paths Q¢ = {1, ..., gx} where k < 24log n such that the largest strongly connected
component of G(V — Q) has size at most [n/2], i.e., @7 has the separating property. In section
4.2, we construct the directed path separator from Qs and use this to obtain a cycle separator.

To obtain @ ¢, suppose that at any step, we have a set of directed paths @ (where |Q| = m) that
obey the separating property. Then, we execute a routine REDUCE (@) that reduces the number
of paths in Q by a factor of (1 — m}og_n)’ while retaining the separating property.

Initially @ consists of all vertices of V', each being a dipath of length 0; thus, the separating
property holds initially. Since the size of Q is reduced by a (1 — (12logn)~!) factor by each call to

REDUCE, it is readily seen that O(log?n) calls to REDUCE are sufficient in order to reduce the
size of Q to at most 24logn. Consequently, after O(log® n) such calls, we have the desired Qy; we
use this to obtain the desired directed cycle separator. The conversion from Qs to a directed cycle
separator is explained in section 4.2.

4.1 Reducing the Number of Paths While Maintaining the Separator Prop-
erty

We now describe the main routine REDUCE. As pointed in the Introduction, the basic idea
used in this subroutine is similar to that used by Aggarwal and Anderson [AA87]; they used it to
obtain a depth-first search tree of an undirected graph. However, since this subroutine differs in
some very crucial aspects, we describe it in detail below.

The general situation in REDUCE is having a set of vertex disjoint dipaths, @, that obey
the separating property. @ is divided into two sets of paths, L and S (where |L| = Ty and

S = @ — L), and the subroutine operates for O(log® m) phases. In any phase, only some of the
paths of L are active and a set of vertex disjoint dipaths P = {py, ..., po}that begins from the active
paths of L and the lower segments of S. For each dipath, p;,the starting vertex is a vertex belonging
to an active path in L, the last vertex is a vertex that belongs to a lower segment of some dipath
in S, and the interior vertices are taken from G(V — Q). At the beginning of the subroutine, all
paths in L are active. Each dipath in @ contains the endpoint of at most one path of P and, of
course, there may be dipaths in) that do not contain any endpoints of the paths in P. Let Lactive
(abbreviated as L,) be the set of active paths in L, and let S, (and S;) denote the set of upper
segments (lower segments, resp.) of the paths in §. Furthermore, let a dipath, p, join dipaths
l € Ly and s € Sy, and let p have endpoints z and y where | = I'zl” and s = s'ys". Then, during
the execution of REDUCE, [is replaced by I'ps”, s is replaced by s’, and either {" is added to the
inactive paths in L, Lingctive (abbreviated as L,), or I” is discarded. (The conditions under which
I" is discarded and those under which [is added to L;, will be discussed later). Irrespective of
whether {" is discarded or added to L;,, note that the dipath, s, has been reduced to half its original
length (since ys” has at least as many vertices as s’). Furthermore, the paths in L, and those in
S did not increase in number; in fact, the number of paths in L, and S might have decreased if
some paths of P were joined to the lowest endpoints in S;. However, the number of paths in L;,
may increase which may, in turn, lead to an increase in the total number of paths in L = L, U L.
If the cardinality of .S does not decrease then the increase in |L| can increase the number of paths
in @ = LUS. Consequently, below, we explain the mechanism of actually reducing the number of
dipaths in @ rather than increasing it.

For a directed path p from [to s, we assign a cost equal to the length of the segment of [
that is cut off, i.e., if { = I’zl"” where « is an end point of p, then we assign it a cost equal to the
number of vertices in {”. The set, P, of vertex disjoint dipaths that subroutine REDUCE finds is
the one that minimizes the total cost and has the property that there are no dipaths from L, to
Sin G(V — (LU S U P)). In other words, REDUCE finds a minimum cost, maximal set of vertex
disjoint dipaths, P = {pi, ..., pa} Where the cost is assigned as given above. Let L? be the set of all
segments of the kind 1", i.e., let L% be the set of all paths of L, such that " € L, if | = l'zl" € L
and [is joined by some path in P to a path in S;. Let Lgne be the set of all paths of the kind
U'ps" and let I, be the set of all dipaths that were in L, but that could not be connected to any

dipath in S; using the vertices and arcs of G(V — @ — P). Similarly, let 5; be the lower segments
of the dipaths in S; that could not be connected to any path in L, using the vertices and arcs of
G(V-Q-P),let S, be the set of the corresponding upper segments of S, and, let Spe. be the
set of all dipaths in S such that s’ belongs to Spey if some path s = s'ys” € S was connected to
I=¥Uzl"€e L.

Claim 1: If W = V — @ — P then either the number of nodes in the strongly connected
components of G(W U L} U L,) or that in the strongly connected component of G(W U §;) is at
most I_n/QJ
Proof: Since P is the set of minimum cost maximal set of vertex disjoint dipaths, no path in L
could be joined to $; using the vertices of G(W). For if there were such a path then a set of dipaths
with the same size as P could have been found that went from L, to S; and that had strictly less
cost. Similarly, if a dipath in L, could be joined to S using the vertices of G(W) then P would
no longer be maximal which implies that no path in L, could be joined to §; using the vertices of
G(W). Consequently, L% U L, and §; fall into different strongly connected components of W when
they are added to W. This implies that if the largest strongly connected component of G(W U §;)
has at least [n/2] + 1 nodes then the largest strongly connected component of G(W U L U L,) has
at most [n/2]| vertices, and vice versa.

In view of Claim 1, observe that if the size of the strongly connected component of G(W U S'g)
is at most |n/2| then we can discard S (ie., add §; to W), add LU L4 to Lin so that L =
Lo BN L, and in the next phase work with L, = Lgnew aid § = Spey U S,. We will call this
situation case 1, and we note that all the paths in S have been reduced to half their original size:
a path in Spey is half the size of its original path because it is a subpath of the lower segment of
some path in S, and the paths in 5, are simply the upper segments whose lower segments have
been discarded. Furthermore, the number of paths in L, have not increased and those in L;, have
increased by at most |Lg|.

On the other hand, if the size of the largest strongly connected component in G(W U §;) is at
least |n/2] + 1 then using Claim 1 we discard L%U L, (i-e., add LU L, to W) and for the execution
of the next phase, we take § = Spew US where s € Sif s = 5 U Sy, s € S;and s, € Sy,. That is, we
take Ly = Lanew U Linq where L, o is a subset of any paths from L;, such that L q = Lin, when
e | Lanew| = Lin and |Ling| = Shes = | Lanew|, otherwise. Now, if |L%| > |L,|/3 then we will
refer to this situation as case 2; otherwise, |L}| < |Lq|/3 and we will refer to this situation as case
3. Recall that to the beginning of REDUCE, |La| = |L| = 37%. Consequently, after the execution
of every phase if the number of paths in L, drops below Thans then we take enough paths from
Lin to restore L, to its original cardinality of 3‘16%5'

Claim 2: After executing O(log? m) phases in REDUCE, we obtain a set of dipaths Q' that
obeys the separating property and for which |Q’] < m(1 — (12logn)~1).

Proof: At the beginning of REDUCE (Q), |L| = |La| = 37567 and § = @ — L. Let j,k, and [be
respectively the number of phases in which cases 1, 2, and 3 occur. It can be readily seen that all
the paths in S are halved with respect to their length in every phase of REDUCE for which case 1
occurs. Furthermore, for this case, the paths in L;, and, therefore, in I increase in number by at
most %. Consequently, if case 1 occurs in j phases and if j > |logn]| 4 1 then after these phases
the number of paths in S is at most half the original cardinality of S at the beginning of REDUCE.

That is, after j > |log m| +1 such phases, |S| < (1/2)x{mx*(1—315==)}. Also, since the cardinality

ogn

of L at the beginning of REDUCE was (370 n), after [logn| + 1 such phases, the cardinality of L
is at most (|[logn| + 1) *1/3% &2 < 2 4 Hence, after |logn| + 1 phases for which case 1

logn — 310gn
occurs, the total number of paths in Q < - T—;g—ﬂ- + 34+ —IQ— < 5”"" + 61’:;]“ <m-— T'ﬂ??a when

m > 8.

In cases 2 and 3, the numbers of paths in L and in S never increase. So, if there k phases for
which case 2 occurs, then at least (1/3) % (5:2—) paths in S are reduced to half their size for each

3logn
occurrence of phase 2. Now, if k > 9|log® n| +1 then it can readily be seen that after k such phases,
the cardinality of S is at most Z(1 — "'lg_) Also, because j < |log m| (otherw1se claim 2 holds
from the above argument), the cardinality of L is at most |[logn]| x (1/3) * Consequently, the

total number of paths is again reduced to m * (1 — (12logn)~1).

Now, in every phase when case 3 occurs, the cardinality of S does not increase but that of
L = LaU L;y, decreases by at least (1/3) % (m/3logn). Since j < |log m|, the maximum cardinality
of L during the execution of the algorithm is at most [logm| *w, i.e., at most . Consequently,
ifm > Llog n_| + 1, then the maximum number of paths in L < —([log @) *(2/3)*x(m/3logn) <
(2/9) x Soan paths and the number of paths S
never 1ncrease dunng the execution of REDUCE. So the total number of paths have been reduced
by at m/9logn.

Thus after j+k + [phases, i.e., after 9|log® m| 4 2|log n| phases, the cardinality of m is reduced
by at least m/12logn paths.]

Since every call to subroutine REDUCE reduces the number of paths in @ by a factor of
1—(12logn)~!, clearly, O(log® n) calls to REDUCE are sufficient to obtain Q; = {g1, ..., gx} where
k < 24logn and where ¢ obeys the separating property. Now, to obtain the desired @, only
need to show how to find a maximal set of disjoint paths that have the minimum cost and that go
from L, to § (where Ly U L;n = L and LU S = Q). Depending on whether we use the result of
Aggarwal and Anderson [AA87] or that of Goldberg, Plotkin, and Vaidya [GPV88], we obtain two
different parallel algorithms; the time and processor complexities are given in Theorems 2 and 3,
respectively.

ng "

Claim 3: The problem of finding a maximal set of minimum cost dipaths from L, to S can be

reduced to the problem of finding a minimum weight perfect matching in an O(n)-vertex digraph
in which every arc has a weight at most n.
Proof: Idea: the proof of claim 3 is obtained in two parts. First we find the maximum number
of vertex disjoint dipaths from L, to S. Using Proposition 1 of [AA87], it can be shown that the
problem of finding a maximum set of vertex disjoint dipaths can be reduced to that of finding the
minimum weight perfect matching in some digraph G" (with O(n) nodes) in which every arc has
a weight zero or one only. Next, we note that by using Proposition 2 of [AA87], the problem of
finding a set of disjoint dipaths that has a given size abd the minimum cost, can be reduced to
that of finding a minimum weight perfect matching in an O(n)-vertex graph in which every edge
has a weight at most n. The only subtlety is that unlike [AA87], the graph is directed. However,
this does not create any major problem and the corresponding modification will be provided in the
final version of the paper. |

Theorem 2: Let Pp;n(n) and Tinm(n) denote the number of processors and the parallel time

required to compute a minimum weight maximum matching of any n—node graph that has an
integer weight of at most n on each of its edges. Then, subroutine REDUCE can be used to obtain
a set of at most 24logn paths that obeys the separating property using Ppm(n) 4+ n® processors
and O(log* n * (Trnm(n) + log® n)) time.

Proof: Recall that O(log? n) calls to REDUCE are sufficient in order to obtain the required set
of separating dipaths. Furthermore, REDUCE has O(log? n) phases and each phase requires two
major computations — (1)computing the strong and weak components of a digraph with at most
n vertices and (2)computing a maximal set of disjoint dipaths from L, to S such that the set has
minimum cost. Since the strong and weak components of an n—node digraph can be computed in
O(log® n) time using n® processors, Theorem 1 follows after incorporating claim 3. |

Theorem 3: The problem of finding a maximal set of vertex disjoint paths (that have the
minimum cost) from L, to S in a directed graph, can be solved in O(4/m * log*n) time using n>
ProCessors.

Proof: Follows easily from the corresponding result of [GPV88] for undirected graphs. [

4.2 Constructing a Cycle Separator from a Small Set of Separating Dipaths

Given a set of vertex disjoint dipaths Q¢ = {q1,...,9x} where k& < 24logn, we show below
how to construct a dipath separator. Later in this subsection, we will use this dipath separator
to construct a cycle separator. The subroutine for constructing a dipath separator is essentially a
sequential algorithm; the only use of parallelism is in low level routines such as determining strongly
and weakly connected components of a digraph and in finding a directed path that connects one
dipath to another. The subroutine consists of k — 1 stages. During the entire execution of the
subroutine, we keep a dipath, ¢; in the beginning ¢ = ¢;, after the execution of the subroutine g
is the required separating dipath and, in the i—th stage ¢ is “combined” with g;;1 such that the
resulting ¢ along with {g;42, ..., g} obeys the separating property. To complete our description of
the subroutine, we explain below the “combination process” between ¢ and g;41 that occurs in the
i-th stage; this combination process is essentially the same as that provided in section 4.1.

Let ¢; 41, and g;41,, denote the lower and the upper segments of g, 11, respectively. If the size of
the largest strongly connected component in G(V — {q, ¢i+1,1, ¢i+2,---,4f}) is at most |n/2] then we
discard ¢; 41, (i.e., add ¢iy1; to V - {q, ¢i+1, Git2, .-, qx}) and refer to this situation as case (a). In
this case, ¢ will be unchanged but g; 41, will become the new g;;;. Otherwise, we find the topmost
vertex of g that has a dipath to ¢;41, using the vertices and arcs of G' = G(V —{q, ¢it+1, Gis2, --» Gk})-
If there is no dipath from any vertex of ¢ to a vertex of g; 41, then using ideas similar to Claim 1, it
can be seen that the largest strongly connected component in G(V — {¢i41, ¢it2,...gx}) has at most
|n/2| vertices. Consequently, in this case, we discard g (i.e., add it to (V — {g, ¢i41,---,qx})), and
call this situation case (b). Otherwise, let = be the topmost vertex of ¢ that has a dipath to g;41,,
and let ¢* be the dipath of the vertices of ¢ above z. Then, again using ideas similar to Claim 1,
it can be seen that the largest strongly connected component in G(V U ¢* — {q, ¢i+1,---, qx}) is at
most |n/2]. Consequently, we discard ¢*, and if p denotes dipath that connects q to ¢;41 (and if

p has endpoints z and y) then we let the new g be ¢'pg;’,; (where ¢’ and ¢;/,; are the segments of

T 1
the paths of ¢ and g¢;4; that are below z and above y respectively), and we let the new ¢;,; equal

Gi+1 — Qi 1- We refer to this situation as case (c).

Now, if case (b) occurs then ¢ is eliminated and g;1; becomes the new g. On the other hand,
gi+1 is reduced to at least half its previous size if either case (a) or case (c) occurs. Consequently,
if we execute the process |log|g;41|] + 1 times, i.e., O(logn) times, then g;;1 ceases to exist in
Q- Thus, k — 1 stages are sufficient (where each stage consists of repeating the above process at
most O(logn) times) to yield a directed separator, which, in turn, yields the required algorithm for
finding a directed separator in a given directed graph.

Theorem 4: Let Pp,(n) and Tpnm(n) denote the processor and time complexity for computing
a minimum weight maximum matching of any n—vertex digraph. Then, a cycle separator of an n—
digraph G = (V, A) can be found in O(log® n(Tmm(n)+log? n)) time and using P.(n)+n® processors.
Proof: From Theorem 2, we know that O(log* n(Tmm(n)+log? n)) time and P.(n)+ n® processors
are sufficient for obtaining a set Q7 = {q1, ..., qx} of dipaths where k < 24logn and @ obeys the
separating property. Also, using the above procedure, we can obtain a dipath separator from @ in
O(log® n) phases where, in each phase we find a dipath from the highest possible vertex of one dipath
to another dipath in a suitable digraph. Now, since we can find such a dipath by using transitive
closure, we can obtain a directed path separator from @y in O(log? n) time using n® processors.
Consequently, a directed path separator can be obtained in a total of O((Tmm(n) + log? n)log* n)
time by using P.(n) + n® processes.

Now, let P = {v1,...,v;} denote the directed path separator in the digraph G. Then, it is easy
to obtain v, such that {v;,...,v.} forms a directed path separator but {vi,...,v,41} does not, by
computing the transitive closure of a suitable O(n)—vertex digraph. Finally, we can also find the
smallest index ¢ such that v, can reach v in O(log?n) time by using n® processors; this yields the
desired processor and time bounds. |

5 Discussion

Using Theorems 1, 2, 3, and 4, we can now state the main results of this paper:

Theorem 5: Let Ty (n) and Prypm(n) denote the time and the number of processors to compute
a minimum weight maximum matching of any n—vertex directed graph where arcs have weights that
are integers between 1 and n. Then, a depth-first search tree of an n-vertex digraph, G = (V, 4),
can be computed in O(log® n(Tmm(n) + log? n)) time by using (Pmm + n°) processors.
Proof: Follows from Theorems 1 and 4. |

Theorems through 5 and their proofs have several implications, two of which are listed below:

Corollary: (a) If M(n) denotes the sequential time to multiply two n x n matrices then there
is a randomized parallel algorithm that computes a depth-first search tree of an n-vertex graph
in O(log®n) time and uses nM(n) + n® processors. (b) A depth-first search tree of an n-vertex
directed graph can be found deterministically in O(log!?n * /n) time by using n® processors.
Proof: Mulmuley, Vazirani, and Vazirani [MVV87] have provided a randomized parallel algorithm
such that Tpum(n) = O(log® n) and Pmm(n) = nM(n). This yields Corollary (a). Also, in Theo-
rem 4, in order to compute a path separator or a cycle separator, we only needed to compute a

minimum weight maximal set of paths where arcs have weights that are integers between 0 and n.
Consequently, we can use Theorem 3 to obtain Corollary (b). M

Finally, this paper leaves the following problems unresolved:

(1) Can a depth-first search tree of an undirected graph be computed in NC?

(2) Is there a deterministic algorithm for finding the minimum weight maximal set of vertex
disjoint paths (as defined in section 3) in o(4/n) parallel time? Such an algorithm would improve
Corollary (b) and may also help in providing insight into the depth-first search problem.

(3) Does there exist a random or deterministic algorithm that has optimal or near optimal
processor-time complexity and that computes a depth-first search tree in sublinear time?

6 References

[AA87] A. Aggarwal and R. Anderson, “A Random NC Algorithm for Depth-First Search,”
Proc. 19t* ACM Symposium on Theory of Computing, pp. 325-334, 1987.

[An85] R. Anderson, “A Parallel Algorithm for the Maximal Path Problem,” Proc. 17t ACM
Symposium on Theory of Computing, pp. 37-47, 1985.

(GB84] R. K. Ghosh and G. P. Bhattacharjee, “A Parallel Search Algorithm for Directed Cyclic
Graphs,” BIT, Vol. 24, pp. 134-150, 1984.

[Sm86] J. R. Smith, “Parallel Algorithms for Depth-First Search, I. Planar Graphs,” SIAM J.
of Computing, Vol. 15, No. 3, pp. 814-830, Aug. 1986.

[EAT7] D. Eckstein and D. Alton, “Parallel Graph Processing Using Depth First Search,” Proc.
of the Conference on Theoretical Computer Science at the University of Waterloo, pp. 21-29, 1977.

[HY87] X. He, and Y. Yesha, “A Nearly Optimal Parallel Algorithm for Constructing Depth
First Spanning Trees in Planar Graphs,” 19877

[MVV87] K. Mulmuley, U. V. Vazirani, and U. V. Vazirani, “Matching as Easy as Matrix
Diversion,” Combinatorica, Vol. ?7, pp. 77, 1987.

[RC78] E. Reglibati and D. Corneil, “Parallel Algorithms in Graph Theory,” SIAM J. of Com-
puting, Vol. 7, pp. 230-237, 1978.

[Re83] J. Reif, Depth-First Search is Inherently Sequential,” Aiken Computation Lab., Tech.
Report, TR-27-83, Nov. 1983.

[GPV88] A. Goldberg, S. Plotkin, and P. Vaidya, “Sublinear-Time Paralle]l Algorithms for
Matching and Related Problems,” Manuscript, 1988.

[Ka88] M. Y. Kao, “Planar Directed Depth-First Search is in DNC,” To be presented at Aegean
Workshop on Computing, Greece, 1988.

10

