A REVIEW OF DESIGN TECHNIQUES

FOR PROGRAMS AND DATA

Ben Shneiderman

Computer Science Department
Indiana University

Bloomington, Indiana 47401

TecHNIcAL ReporT No. 25

A REViEw oF DESIGN TECHNIQUES
For ProGrRAMS AND DATA

BEN SHNEIDERMAN

ApriL, 1975



A Review of Design Technigues

For Programs and Data

Ben Shneiderman
Computer Science Department
Indiana University
Bloomington, Indiana 47401

I. INTRODUCTION

The strong advocacy position assumed by several authors of
program development papers has been interpreted, by some, as dog-
matic and narrowly doctrinaire. In particular, critics have sug-
gested that the top-down programming [1] and stepwise refinement
[2] techniques were limited in their applicablility to certaln types
of problems. Gries [3] defends Wirth and acknowledges that there
are a variety of program development strategies which can be applied.
One of the goals of this paper is to distinguish the development
process from the resulting program product and to present a cata-
log of program designs with examples of their applications.

Wirth is especially careful to point out that "the program and
the data must be refined in parallel" as the development proceeds
from an abstract problem oriented description to a more machine-
oriented, concrete, implementation specification. This discrete
stepwise transition along a continuum of data structure possibili-
ties 1s an extremely difficult process to teach and to learn. Var-
ious authors have found anywhere between two and six steps along
the path to implementation, but as yet, no clear-cut pattern has

emerged [4,5,6,7,8]. A second goal of this paper is to provide a



=B

catalog of possible data structure way stations on the path from
the problem definition to the implementation.

Finally the relationship between the data and the program must
be defined. The nested block structure of many popular languages
provides only one possibility for handling local and global vari-
ables. FORTRAN COMMON areas, the COBOL data division and data-
base schema descriptions are other useful constructs for certain
problems. Kieburtz [9] proposes a new strategy for sharing data
among subprograms and Parnas [10] supports the modular design no-
tion of "information hiding". The third goal of this paper is to
catalog alternatives for sharing data among the modules of a program.

None of these catalogs is intended to be complete. Programming
is an art [11l] and like painting, sculpture, prose or poetry, no
complete specification of techniques 1s possible or even advisable.
Still the basic methods need to be learned as a basis for dlscovery
of new techniques. The creative programmer carefully selects the
right combination of standard design patterns but is ready to devise

new technigues if these fail.

Variety of Programming Situations

It 1s the wide variety of programming situations that compels
us to think about alternate design strategiles. First the structure
of the problem may have a serious influence on the design of the
program. Of course, the structure that we perceive is strongly a
function of our experience, but the procblem itself has a structure.
This structure is partially determined by the presentation or defi-
nition of the problem. Some problems have clear, well-understood

descriptions, for example, find all the integers in the range 1 to



10,000 which are the sum of their divisors or given an employee
number find the employee name. Other problems have a more vague
description, for example, write a program to understand spoken En-
glish or to produce a weekly payroll. In these cases a great deal
of design and specification work must be done before program devel-
opment can begin. Even if the problem has been stated clearly, the
program which solves the problem will still have to be created.
Although some work has been done on Problem Specification Languages
[12], we are a long way from having a useful general facility. In
summary , the problem, as perceived by the programmer, will have a
direct influence on the design strategy.

A second factor which influences the program design is the
size of the problem. Although it is difficult to provide a good
metric of problem or program size or complexity we will use the
number of program statements as a rough guide. A small program
(less than 100 statements) often yields to a simple straightforward
method. If the underlying problem is complex more involved proce-
dures can be applied. For medium sized programs (100 to 1000 state-
ments) careful planning and study of the problem are necessary to
select a useful strategy. For large programs (1000 to 10,000 state-
ments) greater care and effort are required. Incorrect designs can
destroy the usefulness of the resultant program or make completion
impossible. An evolutionary development strategy which allows for
a phased or staged implementation may be required. Failure at any
one polint should not jeopardize the completion since sufficient
time for backtracking and re-design should be included in the sche-

dule. In the case of very large programs (more than 10,000 state-



L=

ments) several levels of design work are necessary. The problem
must be divided into distinct components that multiple design teams
work on independently. Each component can then be designed and
developed separately. Here it seems inconceivable that anything

but an evolutionary process would allow for partial development,
testing, redesign, and improvement. The first versions should solve
a useful subset of the problem specifications with modest attention
to efficiency. When this initial version works, the remalning speci-
fications should be handled and the efficiency issues dealt with.
Finally, improvements and modifications of the original specifica-
tions should be implemented.

The third key factor in the program development process 1s the
experience of the programmer/designer. Familiarity with similar
problems is most helpful since the new problem can be analyzed and
related to previous successful experiences. A useful set of abstrac-
tions, such as graph theory, matrix manipulation, queueing models,
set theory, or decision tables, can greatly assist in the analysis.
Knowledge of programming concepts such as hash coding for symbol
tables, bit maps, linked list strategies or string manipulation
techniques can be applied where required.

Previous programming experience also has an influence. Novice
programmers who have dealt with simple small programs often find
the extra details of subroutine argument passing confusing and use-
less since they can perceive a linear organization for programs.
More experienced programmers recognize the usefulness of modularity
and design their programs with independent functionally defined

modules. Past experience with particular programming languages



will influence the designer. The kind of modularity afforded by
COBOL paragraphing is very different from that offered by ALGOL 60.
The shallow subprogram specification permitted in BASIC is worlds
apart from the complex and rich facility of LISP. Operating systems
also influence program design since they permit a range of features
within the job control language, program and data libraries,

linkage editing, and independent compilation of subprograms.

The issue of past experience is reviewed in Weinberg's text [13]
which provides a broad insightful discussion of "programming as a
human activity". He reviews individual personality issues, discusses
the group interaction difficulties and describes the effect of var-

ious programming tools and aids.



il

II. PROGRAM DESIGN METHODOLOGIES AND PROGRAM DESIGNS

The first reading of the papers by Mills [1] and Wirth [2] pro-
duces a sense of enthusiasm and the feeling that these authors have
lucidly explained themselves. They are both proposing a process
for developing programs from a problem statement which differs from
the classic idea of bottom-up development. This latter process
starts with the construction of low-level routines and through a
series of integration steps arrives at a complete tree-structured
program. The top-down and stepwise refinement approaches start
with a high-level description of the program, possibly in English
or some "notation which is natural to the problem in hand" [Wirth]
and through a series of refinement steps produces a complete program.
In both cases the lower levels contain an increasing amount of imple-
mentation detail which reflect efficiency issues. Mills suggests
that the result is a tree-structured program where the root segment
contains a broad general description of the program and the lower
levels contaln ever more implementation detaill:

OQur end result is a program, of any original
size whatsoever, which has been organized into
a set of named member segments, each of which can
be read from top to bottom without any side
effects in control logic, other than what is on
that particular page. A programmer can access
any level of information about the program, from
highly summarized data at the upper level seg-
ments to complete details at the lower levels.

During the development process the unwritten segments are replaced

"with program stubs standing in for functional specifications".

Wirth is never so clear that the resultant program structure

will be a tree. He writes:



Program construction consists of a sequence
of refinement steps. In each step a given task
is broken up into a number of subtasks.

The reader is left with the impression that a tree-structured pro-
gram will result but this point is never clarified. The small ele-
gant example he presents does result in a tree-structured program,
but we are not given any guidelines for other examples.

Although the top-down and bottom-up processes seemingly produce
tree-structured programs, stepwise refinement as defined by Wirth
apparently may result in other program structures. Ledgard [14]
in a meta-stepwise refinement has taken Mills' top-down notions,
Wirth's stepwise refinement, and Dijkstra's [15] level structuring
and has proposed a combined program development methodology which
produces a level-structured tree-structured program as its product.

Unfortunately, the pursuit of the universal program development
methodology is just as empty as the pursuit of the universal pro-
gramming language or natural language. FEach individual or group
of individuals will select the methodology which 1is natural to them
and to the problem at hand. Machines deal with precise, uniform
and unvarying situations, but humans are much more complex, variable,
and resentful of narrow doctrinaire constraints.

Having attempted to separate the program development process
from the program product, we now review a variety of program struc-
tures. Programmers may select, according to theilr expertise, from
this brief catalog or combine these structures to create new design

possibilities.



-8~

Single Module Programs

A single module may consist simply of the input of two values.
followed by the computation and printing of their average (Figure
1). In other situations a module may be an entire sort routine or
even a compiler. The point is that programmers can often understand
the solution of their problem as a single step: find the average
of two numbers, sort an array of numbers or compile a program.
The situations which manifest themselves as one step solutions depend

on the programmer's experience and the programming tools available.

Linear Program Structures

An obvious program structure is a linear sequence of modules
(Figure 2). To the novice, a simple program might be composed of
three modules which mimic the read-process-print sequence,; read a
pair of data wvalues, compute the average and print the result. A
more sophisticated application might be the classic design for a
compiler: lexical analysis, syntactic analysis, code generation,
code optimization. A still higher level situation is the usual com-
pile, link-edit and execute sequence. In each of these situations
the execution sequence is linearly through the modules; once a module
is exited control never returns to 1t. Hopefully the modular design
is on functional separation enabling independent modification. A
bad choice of modules can result in a program which is difficult
to comprehend, debug, and modify.

A generalization of linear programs would be the repetition of
the program until some termination condition 1s reached. Thus, the
compille-load-execute sequence may be repeated for several input pro-
grams of the read-process-print sequence may be repeated for several

sets of data.



Tree-Structured Programs

This commonly used structure is the result of a classic top-down
or bottom-up development or of a stepwise refinement process (Figure
3). The root module contains an outline or general image of the
function of the program, while the lower levels contain increasing
amounts of implementation details. The root module might contain
instructions which merely invoke read, process, print, and termina-
tion modules. The read module may invoke modules to process initiali-
zation information, raw data and summary data and to print the input
data. The print module may invoke heading modules, column print
modules and footing modules. Wirth's [2] solution of the eight
gqueens problem is an example of a simple tree-structured program.

We distinguish linear program structures from unary trees. In
linear program structures the execution of each module proceeds in
sequential manner to termination while in a unary tree program struc-
ture control passes from the root module to the other modules and

can oscillate between modules by a series of invocations and returns.

Level-Structured Programs

A number of authors have recognized that by the proper organi-
zation of a program it 1s possible to functionally separate indepen-
dent levels or layers (Figure 4). Typically the higher levels are
close to the problem description while the lower levels have increas-
ing amounts of implementation detail. In such a design strategy it
should be possible to develop or modify each level independently [16].
The basic restriction is that modules at a specific level 1nvoke
modules only at the next lower level. Lower level modules can never

invoke higher level modules. The program structure was elegantly



-10-

applied and described by Dijkstra [17] in the T.H.E. operating
system. His six-level approach was: level 0, real time clock and
processor allocation; level 1, segment controller; level 2, message
interpreter; level 3, buffering of data; level 4, independent user
programs; and level 5, the operator. Standish [18] describes a
generalized five-level structure with specific application to or-
bital mechanics: level 0, knowledge of machine representations (ma-
chine words); level 1, programming language implementation techniques
(list structures); level 2, knowledge of representation techniques
in programming languages (polynomials); level 3, mathematical know-
ledge (Taylor series); and level 4, problem domain knowledge (orbital
mechanics). The Data Independent Accessing Model (DIAM) [19] con-
tains four levels: level 0, physical device model; level 1, encoding
model; level 2, string model; and level 3, entity set model. Finally,
Parnas [10] gives a short example and suggests that the level sepa-
rations should be made on the basis of "information hiding" [10].
Details of the implementation within a module should have no effect
on other modules. Each module performs a well defined function, but
the method of performance is hidden from other modules.

There is some conflict over the development process for level-
structured programs. In his description of the implementation of
the T.H.E. operating system, Dijkstra [17] clearly states that the
lowest numbered levels having the closest ties to the machlne hard-
ware were developed and tested first. In his elegant description
of a line printing control program, Dijkstra [15] presents level-
structured programs as a "necklace of pearls" where each pearl is a

module at a specific level. 1In this description the higher levels,



L

which are closer to the user's perception of the problem, are deve-
loped first. Both strategies seem viable. In the former case the
definition of the lowest was strongly influenced by the hardware,
and the higher levels could easily be altered to meet changing de-
mands and desires. In the latter case the highest level routine
was most clear in the programmer's mind, while the lower levels
could be more easily modified to fit a particular environment. A
third alternative of developing all levels in parallel is possible
(and advisable for large systems) if the levels are functionally
well defined and the interfaces rigidly determined. Of course,

level-structured programs can be tree structured as well.

Network Program Structures

Often the complex interrelationships among the components of a
problem do not permit a simple tree or level-structured decomposi-
tion. In this case, a network of functionally defined modules may
be the most obvious program structure (Figure 5). If done poorly
this method may result in a complex and confusing program since any
module may invoke any other module with potentially chaotic results.

The co-routine structures described by Dahl and Hoare [21] are
excellent examples of SIMULA 67 network program structures. His
program for reading 80-column data cards and printing 125 character
lines required incard, outcard, dis-assembler, squasher, assembler,
and main program modules. In a simple SNOBOL SCRABBLE playing pro-
gram [22] there was a network interaction among the game manager,
referee, and player who had access to the dictionary module while the
scorer could be invoked by the game manager and the player. As a
final example, network program structures have been efficiently

employed in human speech understanding systems [23].



=] B

I1II. DATA STRUCTURE DESIGN

While Wirth [2] repeats the admonition to define the data struc-
ture in parallel with the program structure he does not provide
guidelines for the refinement of data. In a later paper [24] he
suggests that a language like PASCAL, which provides extensive facil-
ities for structuring data, would be useful. Excellent extensive
discussions of data structures are found in Knuth [25,26] and Hoare
L2773

The multi-level structures proposed by Shneiderman and Scheur-
mann [28] can be useful in a stepwise refinement situation when com-
binations of linear and tree structures are required. The general
problem of the refinement of data structures is more complex. A
number of authors distinguish between abstract and concrete repre-
sentations [8] or modelling and implementation domains [29]. There
is, in fact, a continuum from the abstraction to the implementation
and, to complicate matters, there is no agreement about where a par-
ticular data structure belongs on this continuum. This disagreement
is a result of the confusion over the distinction between logical
and physical structures; data structures, and storage structures.
References to stacks, queues, binary trees, etc. often mix logical
and physical aspects. Even the logical description of a simple
structure such as a stack may be incomplete since the permissible
operations are not fully described. While stacks are usually char-
acterized by the operations push and pop, some descriptions permit
the examination of the top element without the necessity of a pop
operation. Still other descriptions permit examination of the inter-

nal nodes. The automata theorists have long ago made the distinction



5] B

between stack and pushdown-list automata, but data structure research-
ers rarely make this distinction explicit. At the implementation
level a stack may be constructed by the use of contiguous storage
locations and a top pointer or by a linked list strategy. In either
case, the issue of actual or relative storage addressing is often
treated thinly.

While we await the development of more precise logical and physi-
cal description facilities [5,30,31] and the mappings between them,
the practical problems of data structure refinement persist. To a
assist the programmer we provide a classification of data structures

and examples at the logical and physical levels.

Single Node Data Structures

The number of bits in a simple single node data structure depends
on the operation that is applied. In the simplest case a single
bit, representing a Boolean value, may be considered as the entire
single node data structure.(Figure 6). More commonly, a single byte
or word which stores the value of a single variable is a node. If
array operations are permitted, then the entire one, two, or n-dimen-
sional array 1is treated as asingle unit. For certain operations a
COBOL structure, PL/I structure, or PASCAL record are a single node.
At a still higher level, operating system utilities deal with entire
files as a single node. Since the operations at this single node
level are relatively simple, careful checking at compile and execu-

tion time can be made to guarantee the correctness of the operations.

Linear Data Structures

Examples in this category include strings of bits or characters,



s

subscripted arrays, COBOL or PL/I structures (although there may

be a tree structure of names, the data is in a linear form), linear
linked lists and sequential files (Figure 7). A number of special
purpose structures fit into this category as well: stacks, queues,
diques and rings. In each of these cases the permissible opera-
tions of insertions, deletions, copy, update, and searching can be
carefully and clearly defined so that accurate checking can be done
to ensure the correctness of the operations and the well-formedness

of the results [27,29,32].

Tree-Structured Data Structures

The most popular tree structure is the binary search tree and
its variations: height balanced, weight balanced, minimum path length
(internal, external or total) [26,33] (Figure 1). Multiway trees,
digital trees, digital tries and B-trees are important variations.
Tree structures appear in more obviously problem oriented situations
such as family trees, organization charts, multilevel indexes (or
tables of contents) and product distribution trees.

Insertions or deletions of subtrees or leaf nodes are usually
straightforward, but insertions and deletions in the interior of
the tree often require complex algorithms. Few systems contain de-
clarative facilities for tree structures which permit the user to
specify the attributes of the tree and thereby enable compile and
execution time wvalidity checks. The most advanced work in this area
can be seen in various database management systems which contain
data definition languages permitting tree-structured data structures,

for example, System 2000, IMS, or DBTG-like systems.



T

Acyclic Network Data Structures

This class of structures is characterized by the existence of
at least one node for which there is more than one search path and
no cyclic search paths (Figure 9). The standard PERT chart, flow
graphs and legal precedent citations are classic examples of these
structures. Indexed sequential access methods which permit direct
access of keyed records through an index or sequential search through
the records are avallable on many computer systems. Sparse array
techniques and Iliffe vectors are implementation level network
data structures designed to save unused space or eliminate redun-
dancy.

Although the search paths in these structures are all finite,
insertion and deletion can be problematic. In the special case of
indexed sequential access methods the insertions and deletions are
hopefully performed correctly by the manufacturer supplied software,
but no generalized facility provides a data structure declaration
which permits the user to specify his/her intentions.

These acyclic network data structures may exhibit a level struc-
tured nature as well; the levels of an indexed sequential file or
certain tree-structured indexes (level 0, index to countries; level
1, index to provinces; level 2, index to cities) are but two examples.

These complex structures have only the limited restriction that
each node of the data structure must be accessible along at least
one search path (Figure 10). Generalized communication or transpor-
tation networks and scilentific Journal citation search paths can con-
tain cyclic structures. Semantic networks for representing knowledge
and natural language comprehension systems display cyclic structures

as well [34,35,36].



~16-

Cyclic networks are difficult to deal with since not‘only are
insertion and deletion difficult, but search paths can have infinite
length.

This crude classification of data structures is based on the
topological configuration and the operations that are applied.
Unfortunately no algorithm exists to guide the programmer in the
proper selection of a data structure. The impression that the pro-
grammer has concerning the problem statement will lead to the selec-
tion of a particular abstract structure. This in itself can be a
complex decision, but it should be independent of implementation
considerations. Then the abstract structure is refined and converted
into an Implementation structure based on various efficiency consid-
erations. If efficlency is an overriding concern, then the hardware
details will have to be examined carefully and an implementation
facility which permits precise low-level control is necessary. DMore
commonly, the abstract structure can be molded to fit the structures
commonly available in high-level programming languages: arrays, PL/T
or COBOL structures, sequential files and the various data types.

If complex network structures are to be used, a graph oriented lan-
guage such as GROPE [37] may be used to simplify implementation.

For very large volumes of data the facilities of a database manage-
ment system may similarly simplify the task. Once again the exper-
ience of the programmer and the availability of the right software

aids will substantially affect the decision.



o

IV. SHARING DATA AMONG MODULES

Having selected a program design and a data structure design,
the programmer must decide how the data is shared by the different
modules. Assembly language provides the most powerful and flexible
facilities, but the least protection from error. The high level
languages and database management systems provide less flexibility
but in some cases greater protection. In this section we examine

some of the alternatives to sharing data among modules.

Restricted Access

Using this technique, the data is tightly controlled and access
is limited to precisely those modules which require access. This
technique can be accomplished in FORTRAN if there is no auxiliary
storage, no COMMON areas, and if array overruns are not permitted.
Stated positively, all data is transferred as arguments to subpro-
grams. Of course a subprogram may maintain its own data in local
arrays or variables. Parnas' notion of "informatioﬁ hiding" can
be successfully implemented under such a discipline [10]. The higher
level modules do not have access or knowledge of how the low level
modules store their data. The low level modules are defined by
their function; the implementation technique may be changed without
affecting the high level modules. Similarly, the high level modules
may alsc be modified independently. Furthermore, the low level
modules cannot access the data in the high level modules. Kieburtsz
[9] discussed an extended version of this idea which further refines
the passed arguments as having READ-WRITE, READ-ONLY, and NO-ACCESS
attributes. A WRITE-ONLY attribute might be a worthwhile addition

to permit low level modules to only set values.



~-18-

Block-Structured Data Sharing

This technique 1s available in PL/I, ALGOL, and other block-
structured languages which permit low level procedures to have
access to all declared variables of the procedures in which they
are nested. This results in low level modules having access to
not only their own data, but the data of modules at higher levels.
Kieburtz [9] characterizes this process as asking the janitor to
empty your office garbage pail and them giving him/her the keys
to your desk, office, car and home. Such broad powers can lead
to unpleasant results in either case. On the other hand, the rela-
tive ease of implementation, the simplicity of use, and the power

of such a mechanism is tempting.

Global Access

Farly FORTRAN programmers accomplished this technique by declar-
ing a large COMMON area and then provided each subprogram with a
copy of the COMMON declaration. COBOL programmers were led to this
method by the existence of the DATA DIVISION for declaring all var-
iables. Contemporary database management systems carry this process
one step further by having an independent compilation of the "data
schema". As Bachman [38] has remarked, this doctrine fundamentally
changes the perspective of the programmer. No longer is the program
seen as a processor of data which absorbs input and produces output.
The program and the programmer are but a small mechanism navigating
through a vast sea of data. The data has a life of its own and
exists independently of any particular program or application.

This is the idea of data independence. Any number of programs may

add, delete, update, or retrieve from the data structure, and none



LG

need be aware of the implementation details. The data itself is
a model of its real world counterpart: corporation, geographic area,

molecular structure, ete.



— 2 —

V. CLASSIFICATION OF PROGRAM AND DATA STRUCTURE

The obvious parallel classification of program structures and
data structures is not coincidental. Using graph theoretic abstrac-
tions enables us to perceive the close relationship between these
fundamental constructs. The notion of an unlabeled, well formed
list structure developed earlier [32] 1s matched by the notion of
a well formed program structure (WFPS). 1In a WFPS there are no
"unsatisfied externals" (referenced subprogram names which have
not been provided), and all subprograms are "invokable" from the
initially invoked unique main program. In a data structure these
restrictions can be interpreted as the absence of invalid pcinters
and the reachability of every node from the unique entry node (square
nodes in figures).

For simplicity of discussion let us establish the following
classification of the well formed structures:

Class I: Linear structures

Class II: Tree structures

Class III: Acyclic network structures

Class IV: Cyclic networks
Notice that each class contains the lower numbered classes and that
Class IV includes all of the well formed structures.

Each of the four classes of structures is recursively enumerable
and recursive. This can be demonstrated since we can generate all
of the possible directed graphs. For a given number of nodes, n,
we generate all the 2n*n Boolean adjacency matrices. For each matrix
the transitive closure matrix can be generated and the reachability

of every node from the entry node can be tested. Graphs satisfying



D]

this test constitute Class IV. If the transitive closure matrix
contains no ones along the diagonal the graph is free from cycles
and belongs to Class III. If every node in the adjacency matrix

has in-degree one, then the graph is a Class II structure. Finally,
if every node in the adjacency matrix has in-degree one and out-
degree one, it is a Class I structure. Performing this procedure
for n=1,2,... we can generate every member of every class of
structures. Given a graph with a finlite number of nodes n¥* we can
similarly test it for membership in any of the four classes.

In some instances the parallels between classes of data and pro-
gram structures are obvious. If the examination of each node of a
linear data structure takes finite time, then the examination of
the entire structure tfakes finite time. Similarly, if the execu-
tion of each module of a linear program structure takes finite time,
then the execution of the entire program takes finite time. In
fact, the examination (execution) time of a linear data (program)
structure is simply the sum of the examination (execution) times
of the nodes (modules).

Further parallels exist between classes of data and program
structures. To examine each path of an acyclic network data struc-
ture a stack of node addresses 1s necessary. Similarly, to perform
all execution sequences of an acyclic network program structure,

a stack of module addresses is necessary.



o T

VI. CONCLUSION

Programmers must have more than a program development methodo-
logy in mind when developing programs. They must consider the pos-
sible resulting program structures. A wide variety of data struc-
tures, abstractions, and implementations, each having their advan-
tages and disadvantages, are available. Finally, the designer must
select a method for sharing data structures among the program mod-
ules.

On a more theoretical level, the parallel classification of pro-

gram and data structures gives new insight to the programming process.

Summary

The proliferation of papers on programming methodology focus
on the program development process but only hint at the form of
the final program. This paper distinguishes between the develop-
ment process and the program product and presents a catalog of possible
program organizations and data structures with examples drawn from
the published literature. The methods for sharing data among modules
and a classification scheme for programs and data structures is

presented.



bl

REFERENCES

1. Mills, H. Top down programming in large systems. Debugging
Technigues in Large Systems, R. Rustin (Ed.), Prentice-Hall,
Inc. (1971), 41~-55.

2. Wirth, Niklaus. Program development by stepwise refinement.
Comm. ACM 14, 4 (April, 1971).

3. Gries, D. On structured programming. Letter to the ACM Forum,
Comm. ACM 17, 11 (Nov., 1974), 655-657.

4. Earley, J. Toward an understanding of data structures. Comm.
ACM 14 (1971), 617-626.

5. Earley, J. Relational level data structures for programming
languages. Acta Informatica 2 (1973), 293-309.

6. Childs, D.I. Feasibility of a set-theoretical data structure--
a general structure based on a reconstituted definition of rela-

tion proceedings. IFIP Congress, North Holland Pub. Co.

T. ——————————— . Extended set theory: a formalism for the design
implementation and operation of information systems. Unpublished

manuscript.

8. Schwartz, J.T. Abstract and concrete problems in the theory
of files. Data Base Systems, R. Rustin (Ed.), Prentice-Hall
(1972), 1=22.

9. Kieburtz, Richard B. Steps toward verifiable programs. Tech-
nical Report No. 12, Department of Computer Science, State Uni-
versity of New York at Stony Brook (Nov., 1972).

10. Parnas, D.L. A technique for software module specification with
examples. Comm. ACM 15, 5 (May, 1972).




Sl

i 7

12,

13

14.

15

16:

L¥s

19,

28,

2l

Knuth, D. Computer programming as an art. Comm. ACM 17, 12
(Dec., 1974), 667-673.

Teichroew, D. A survey of languages for stating requirements
for computer based information systems. Proc. AFIPS 41, AFIPS
Press, Montvale, NJ (1972)

Weinberg, G. The Psychology of Computer Programming, Van Nos-
trand Rheinhold Co. (1971).

Ledgard, Henry F. The case for structured programming. BIT 13
(1973), 45-57.

Dijkstra, Edsger W. Notes on structured programming. Structured

Programming, Academic Press (1972).

Woedger, M. On semantic levels in programming. Information
Processing 71, North-Holland Publishing Co. (1972).

Dijkstra, Edsger W. The structure of the "THE"-Multiprogramming
System. Comm. ACM 11, 5 (May, 1968).

Standish, Thomas A. Representation cascades, heterarchy and
knowledge structures in automatic programming. Bolt Beranek
and Newman (Oct., 1973).

Senko, M.E.; Altman, E.B.; Astrahan, M.M.; and Fehder, P.L.
Data structures and accessing in data-base systems (three parts).
IBM Systems Journal 12, 1 (1973), 30-93.

Parnas, D.L. On the criteria to be used in decomposing systems
into modules. Comm. ACM 15, 12 (Dec., 1972).

Dahl, O0.J., and Hoare, C.A.R. Hierarchical program structures.
Structured Programming, Academic Press (1972).




225

23k

24,

26.

27

28

29.

30.

Sl

F2:

i

Ambrose, Margaret, and Rasche, Barbara. A computerized scrabble
player. Unpublished report, Computer Science Department, Indi-
ana University (1974).

Erman, L.D.; Fennell, R.D.; Lesser, V.R.; and Reddy, D.R. System
organization for speech understanding. Proc. of the Third Inter-
national Joint Conference on Artificial Intelligence (1973).

Wirth, Niklaus. On the composition of well-structured programs.
Computing Surveys 6, 4 (Dec., 1974).

Knuth, D. The Art of Computer Programming, Vol. 1, Fundamental
Algorithms, Addison-Wesley, Reading, MA (1968).

———————— . The Art of Computer Programming, Vol. 3, Sorting and
Searching, Addison-Wesley, Reading, MA (1973).

Hoare, C.A.R. Notes on data structuring. Structured Programming,
Academic Press (1972).

Shneiderman, Ben, and Scheuermann, Peter. Structured data struc-
tures. Comm. ACM 17, 10 (Oect., 1974).

Rowe, Lawrence A. Modelling structures formalism. Technical
Report No. 52, Department of Computer Science, University of
California, Irvine, CA 92664 (1974).

Stored Data Definition and Translation Task Group Report (to be
published 1975).

Sibley, Edgar H., and Taylor, Robert W. A data definition and
mapping lanauage. Comm. ACM 16, 12 (Dec., 1973), 750-759.

Shneiderman, Ben. Data structures: description, manipulation,
and evaluation. Ph.D. Thesls, Department of Computer Science,
SUNY at Stony Brook, NY (1973).



D

33.

34.

35

36.

3T

38.

Nievergelt, J. Binary search trees and file organization. Com-
puting Surveys 6, 3 (Sept., 1974).

Shapiro, S.C. A net structure for semantic information storage
deduction, and retrieval. Second International Joint Confer-
ence on Artificial Intelligence (Sept. 1-3, 1971).

Quillian, M.R. Semantic memory. Semantic Information Proces-
sing, M. Minsky (Ed.), MIT Press, Cambridge, MA (1968), 227-270.

Simmons, R.F. Semantic networks: their computation and use for
understanding English sentences. Computer Models of Thought

and Language:, Schank & Colby (Eds.), W.H. Freeman and Co., San
Francisco (1973).

Friedman, D.P. GROPE: a graph processing language and its formal
definition. Ph.D. Dissertation, University of Texas at Austin

(1873

Bachman, Charles. The programmer as navigator. Comm. ACM 16,
11 (Wewv.s 1973}

Typed by Christopher Charles



P

Figure 2:

Figure 1: Single Module Program

Linear Program

£

\
N\

Figure 3: Tree Structure Program




-28~

level 0

Figure 4: Level Structured Program

‘

/7

N /N

Figure 5: Network Program



3

-O-0~0-0

Figure 7: Linear Data Structure

Figure 6: Single Node Data Structure

Figure 8: Tree Structured Data
Structure

Figure §: Acyclic Network Data Structure

Figure 10: Network Data Structure



