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Abstract

Continuation semantics is the traditional mathemati-
cal formalism for specifying the semantics of non-local
control operations. Modern Lisp-style languages,
however, contain advanced control structures like full
functional jumps and control delimiters for which
continuation semantics is insufficient. We solve this
problem by introducing an abstract domain of rests of
computations with appropriate operations. Beyond
being useful for the problem at hand, these abstract
continuations turn out to have applications in a much
broader context, e.g., the explication of parallelism,
the modeling of control facilities in parallel languages,
and the design of new control structures.
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1 Continuation Semantics and
Functional Jumps

Continuation semantics is the accepted mathemati-
cal formalism for specifying languages with non-local
control operations. The key idea of the formalism was
introduced by Strachey and Wadsworth [17]. In addi-
tion to the environment function for assigning mean-
ing to free variables, continuation semantics works
with yet another piece of context information: the
continuation function for representing the rest of the
computation relative to a syntactic phrase.

With continuation semantics, it is possible to spec-
ify the denotational semantics of a broad variety
of control facilities. Examples are expression ex-
its, gotos with label variables, Scheme’s call/cc and
continuation objects, Reynolds’s escape, coroutines,
and backtracking [11, 15, 17]. Recently, however, a
new class of control operations has emerged in Lisp-
style programming languages for which traditional
continuation semantics is insufficient [1, 3, 5, 12].
These operations roughly correspond to functional
Jjumps and consirained labels. Unlike a traditional la-
bel, a constrained label only represents a part of the
rest of a program, namely, that from its occurrence
to some control delimiter; similarly, a functional jump
does not abandon the current thread of activity, but,
instead, invokes the activity associated with the label
as if it were an ordinary program function.



(From an abstract point of view, functional jumps
and control delimiters integrate linguistic facilities
from operating systems and programming environ-
ments into programming languages. For example,
running a program as a process totally constrains con-
trol actions by the program. Stoy and Strachey [16]
were the first to incorporate this kind of action into
programming languages in a systematic manner; their
exposition of OS6 amply demonstrates the benefits
of such a language-based approach to the design of
operating systems. In the same vein, the possibil-
ity of re-starting partial programs in different stores
has the flavor of using these programs as functions.
Johnson and Duggan [5] have recently shown how the
integration of such programming environment oper-
ations into a language simultaneously enhances the
language and its environment. Finally, Smith [12] has
explored a single-language approach to programming
with nested layers of evaluator loops: an integration
of the programming environment, operating system,
and machine level of a rather different kind.

The difficulty of understanding functional jumps in
terms of continuation semantics is due to the choice
of representing the rest of a computation as a simple
function from intermediate values to final answers.
Thus, for example, it is easy to model a traditional la-
bel as a continuation and to let a jump denote the re-
placement of the current continuation with the label-
continuation. However, this model does not extend
to functional jumps. According to the description
of the label-semantics, a functional jump would have
to merge the two respective continuations, yet, there
is no such operation for the domain of continuation
functions. The crucial point is that the representa-
tion of rests of computations as simple functions is
insufficient to model all possible operations on rests
of computations.

Motivated by the above and in keeping with the
motto, “if a language can specify something, how-
ever odd, the method used to give its formal seman-
tics must be powerful enough to describe it” [17:20],
we have generalized continuation semantics to sup-
port functional jumps and control delimiters. The
result is a new, more abstract view of the domain of
continuations and, even more importantly, a general-
ized method for modeling complex control operations
in advanced programming languages, e.g., gotos in
data-parallel languages like C* [10]. Conversely, the
design of abstract continuations also points out that
programming language designers have yet to explore
a full range of undiscovered control constructs.

In the next section we develop an operational term
rewriting semantics for a simple functional language
with control operations that directly corresponds to a

machine semantics. The third section provides an in-
formal introduction to programming with functional
jumps and control delimiters. In the fourth section,
after discussing the problems of continuation seman-
tics in more detail, we present our generalization of
continuation semantics: an algebra of contexts. In
order to show the range of possible implementations
and to analyze the relationship to traditional con-
tinuation semantics, we explore the initial and final
algebra representations in Section 5. The conclud-
ing section is a discussion of the potential of abstract
continuations for language analysis and design.

2 A Term Rewriting Seman-
tics for Control Operations

The core of our programming language is the proto-
typical functional language: the untyped A-value-cal-
culus [8]. Its term set A is defined inductively over a
set of constants, Const, and a set of variables, Var:

L:—al|z|Xz.M|MN,

where o ranges over constants, z over variables, and
L, M, and N over A-terms. The four classes of expres-
sions have the usual, intuitive semantics: constants
stand for basic values and functional primitives, vari-
ables are placeholders, A-abstractions represent call-
by-value procedures, and combinations denote func-
tion applications.

As usual, the variable = in the abstraction Az.M is
called the bound variable; a variable is free if it does
not occur bound. An expression with no free variables
is called closed. Programs in this language are closed
expressions. The substitution of a free variable z by
N in a term M is denoted by M|z := N].

We specify the semantics of A with a term rewriting
semantics that evaluates a program to a value. The
set of values in our system contains constants, vari-
ables, and abstractions. This reflects the fact that an
ordinary interpreter performs no further evaluation
on these entities. For the evaluation of a combination,
we first evaluate the function part and then the argu-
ment part. Once the two values are available, we per-
form either a §-value- or a B-value-rewriting step. As
shown by Plotkin [8], this leftmost-outermost rewrit-
ing strategy produces a wvalue if the program is equiv-
alent to a value in the A-value-calculus.

Our formalization of a leftmost-outermost rewrit-
ing semantics is based on the notion of evaluation
contexts. An evaluation context is a term with one
hole. The path from the root of an evaluation con-
text to the hole may only pass through applications



and, furthermore, all terms to the immediate left of
the path must be values:

Cl]==[]lvel ]ICl 1M.

The symbol [ | represents the empty context, V'
ranges over values, M over arbitrary A-terms. C[M]
represents the term that results from filling the hole
in C[ ] with M.

iFrom the above definition it follows that a pro-
gram is either a value or is uniquely decomposable
into an evaluation context and a redex. Further-
more, the redex in the hole of an evaluation context is
the leftmost-outermost redex. Hence, we can define
rewriting steps for applications by axiom schemata.
For constant applications, we have

Clfd] = C[5(f, )],
where § is an interpretation on the set of constants
6: FuncConst x BasicConst — Consi.
For A-applications, we use the 8-value schema:
Cl(Az.M)V] = C[M[z := V]].

That is, a rewriting step transforms a program into
another program by replacing the leftmost-outermost
6- or (-value-redex in the evaluation context with its
contractum. The evaluation function rewrites a pro-
gram to a value if there is a chain of rewriting steps
from the program to the value:

eval(M) =V if M =* V.

In a recent report [2] we have shown that this kind
of rewriting semantics is well-suited for specifying
and reasoning with non-local control operations. The
evaluation context directly represents the rest of the
computation relative to the current redex, and thus, it
is easy to specify control operations as operations on
the evaluation context. Consider an abort-operation:

L:u=...|(abort M)...

The task of this operation is to terminate a program
evaluation and to return the value of M as the fi-
nal program answer. Within the framework of the
rewriting semantics, this is easily specifiable as:

Clabort M] = M,

t.e., abort discards the current evaluation context
and continues with M.

With a similar rule we can also specify the effect of
Reynolds’s [9] escape-construct

L:u=...|(escape z M)...

and escape-procedures. An escape-facility labels
the current point in an evaluation by binding = to an
escape-procedure in M. When invoked, an escape-
procedure discards its current context and re-installs
the encoded context, filling the hole with the argu-
ment value. The corresponding rewriting step is:

Clescape z M| = C[M|[z := Au.(abort C[u])]].

It is easy to check that the invocation of an escape-
procedure has the intended behavior:

C'(Au.(abort C[u]))V = C’(abort C[V])
= C[V],

that is, the abstraction indeed terminates the current
thread of control and returns to the one marked by
the corresponding escape-construct.

An interesting property of the escape-facility is
that the new syntactic form almost acts like a null
operation, but that it also generates objects, escape-
procedures, which behave like jumps. This analysis
led us to the investigation of a new construct:

L :==...|(controlz M)...

A control-expression transforms the current rest of
the computation into a A-abstraction and binds this
abstraction to its variable during the evaluation of
the sub-expression:

Clcontrol z M| = M(z := (Au.C[u])].

Thus, control provides total power over the rest of
the computation without introducing another class of
objects. If z does not occur free in M, the operation
corresponds to an abort; on the other hand, if M im-
mediately invokes z, the default continuation for the
result of M is the current evaluation context. Hence,
control is as expressive as abort and escape.

The interesting point about control is that it cre-
ates an abstraction from the current control state.
When this abstraction is invoked, it can eventually
return to the point of invocation. Thus, in

1*(control f (f(£0)))
= ((Az.1*z)((Az.1t2)0))
= ((A=.17z)1)
= 2

the composition of f simply effects the duplication of
1*. This is a concrete example of what we mean by
a functional jump: control is transferred to the point
of the control-construct, but upon reaching the end



of the evaluation context, control returns to the point
of invocation.

A problem of all three forms is their unrestricted
power over the entire evaluation context. For many
applications, it is advantageous to restrict the extent
to which abort, escape, and control affect their
context. This is one of the motivations for the in-
troduction of a new linguistic facility [1]: the prompt
form:

Lu=...|(d85).

Intuitively, the closest #-marker determines the end
of the visible evaluation context with respect to a
control operation. In order to capture the semantics
of #, we must redefine the rewriting rule for abort:

Cil(# - - (# Cnlabort M])---)]
= Cil(#---(F# M)-- )

the rule for escape:

Ci[(#+--(# Cnlescape I M])---)]

= Cil(#---
(# CulM[l:= (Aa.(abort Culz]))])

);

and the rule for control:

Ci[(# - - - (# Chn[control f M])---)]
= Cu(#---(# M[f := (Az.(Cn[2]))]) - - )]

The notation Cy[(# - - (# Cn[--7])---)] indicates the
multiple nesting structure of control delimiters and
evaluation contexts. Furthermore, we need a rule to
return the final value of a #-form:

Gil(# - (# V)= = Calla -V )

An example of a simple use of # is:

(# (control f f)(control g (g(g0))))1+
= (# (Az.z(control g (g(g0)))))1*
= (Az.z(control g (g(g0))))1+
=  1%(control g (g(g0)))
=+ 2

This illustrates the dynamic character of the #-
marker. Even though the control-g-expression is lex-
ically inside of the prompt-form, it is unaffected since
it is exported from the prompt’s scope. More inter-
esting uses of functional jumps and control delimiters
are the topic of the next section.

3 Programming with Func-
tional Jumps and Control
Delimiters

When embedded in a full-fledged Scheme-like [14, 18]
programming language, functional jumps, or func-
tional continualions, and control delimiters provide
the correct programming paradigm for many situa-
tions. For example, many artificial intelligence pro-
grams use the so-called agenda-oriented style. The
underlying assumption is that a program is a mod-
ifiable collection of tasks to which new ones can
be added on the fly. In its simplest version, an
agenda is a queue with an enqueue-like operation
add-last-action for appending yet another task to the
program. With functional continuations, this is ex-
pressed as:

(define add-last-action
(lambda (task)
(control I (task (I ’any))))).

Debugging is another area where functional con-
tinuations are useful [5, 12]. It is often desirable to
define a break in a program and to explore the out-
come of various resumption-values. With control, a
break is a syntactic abbreviation:

(break res) g (control k (set! res k)),

where res is some globally declared identifier. This
break-construct terminates the program evaluation,
saves the control state in an accessible place, and re-
turns to the read-eval-print loop of the interactive
system. Given this, it is possible to apply the con-
tinuation res to several intermediate values. In an
expression like

...(let [indez (break rl1)]...)...

we can bind indez to a variety of values and observe
the effects. Indeed, since rl is a functional continua-
tion, we can simply map rl over a list of values:

(maprl’(13579)).

Depending on whether or not an abort should affect
the application of r1 or the entire map-expression, we
may choose to write

(map (lambda (z) (# (rl z)))
(13 579)).

The preceding example can be generalized in a nat-
ural way for the intelligent backtracking paradigm.
Traditional, Scheme-like continuation objects provide



(define print-2-fringes
(lambda (tree! tree2)

(let ([f1 (fringe treel)] [f2 (fringe iree2)])
(iterate more ([I; (f1 'resume)] [I2 (f2 ’resume)])

(cond

[(and (eof? I;) (eof? I3)) *done]

[(eof? ;) (writeln “empty” I3) (f2 ‘all)]

[(eof? I3) (writeln I3 “empty”) (f1 'all)]

[else (if (eq? Iy I2) (writeln “” I; “”) (writeln I; “” I3))
(more (f1 'resume) (f2 'resume))])))))

define fringe
( g
(lambda (tree)
(letrec

([deliver (lambda (node) (control I (set! LCS I) (contents node)))]

[LCS (lambda (dummy)

(iterate L ([tree tree])

(if (node? tree) (deliver tree) (for-each [ tree)))

‘eof)])
(lambda (msg)

(case msg

[resume (# (LCS any))]

[all (set! deliver writeln) (LCS any) ])))))

Figure 1: Print and compare two fringes

a basis for implementing such a programming style.
We argue, however, that functional continuations are
even better suited for this task since it is often nec-
essary to send an intermediate result to a whole list
of backtrack continuations. In our framework this
becornes:

...(map (Ak.(k result)) backirack-conis). ..

With Scheme-continuations, on the other hand, this
is much harder to realize since the invocation of a
continuation eliminates the current thread of control.
Finally, functional continuations offer a better rep-
resentation for time-sharing processes. Traditionally
such processes are represented as continuation ob-
jects [19], but this makes it rather difficult to con-
vert a process back into a function. For a concrete,
vet simple, example we consider a variant of Same-
fringe, a well-known problem in the Lisp-community.
The original problem is to compare the fringes of two
S-expressions without creating intermediate lists. In-
stead of just comparing two fringes, our variant prints
the two fringes such that if the corresponding ele-
ments are the same, the element is centered, if they
differ, they are separated by a space, and if one of the
fringes ends, the other one is printed to the end.

In an extended Scheme, the program has an ele-
gant solution: see Figure 1. The procedure fringe
generates a coroutine-like object that returns a node
at a time. In addition, the object can convert itself
into a function for printing the rest of the fringe by
a simple assignment. If one of the fringes ends pre-
maturely, print-2-fringes sends the message ’all to the
other coroutine to invoke the printing function. This
will finish the printing without further interruptions.

4 Abstract Continuations: An
Algebra of Contexts

The continuation semantics of a simple, by-value
functional language requires three domains: the do-



main of values, environments, and continuations:

pE Env = Var — Val
(Environments)
m,n,v € Val = BasicConst+
[Val — Cont — Val]
(Values)
K,K',...€ Cont = Val— Val

(Continuations)

Values are the results of expressions: basic constants
represent themselves, functional constants and ab-
stractions (in A) yield higher-order functions. En-
vironments map variables to their values. Continua-
tions are functions from values to values that map an
intermediate result to a final answer.

The semantic function £ maps A-expressions rela-
tive to an environment and a continuation to a value:

&:A— Env— Cont — Val
The defining clauses are:

E[B] = Apr.xb
for b € BasicConst
Ll = Apr.c(Avr’.£'(6(f,v)))
for f € FuncConst
lz] = Apr.s(pz])
E[Az.M] Apk.e( vk E[M]plz — v]k')
E[MN] = MApe.l[M]p(Am.E[N]p(An.mnk)).

The result of a program M, 1.e., a closed expression,
is

E[M]pinit(Az.z)

where p;ni; is an arbitrary environment and (Az.z)
is the initial continuation that maps every value to
itself.

Equipped with this continuation semantics for the
core language, it is straightforward to add defining
clauses for abort:

Elabort M] = Apk.E[M]p(Az.z)
and escape:
Elescape z M| = Ap.E[M]plz «— Avk'.kv]k.

Both clauses reflect the above rewriting steps: abort
ignores its continuation, escape binds its label-
variable to an escape-procedure. An escape-pro-
cedure has the functionality of an ordinary value,
but upon application it ignores its continuation and

passes its argument to the continuation function of
the escape-construct.

For the semantic equation of the control-construct
we would like to use a clause similar to the one for
escape. First, control should replace the current
continuation with the initial continuation. Second,
the corresponding control-procedure should not ig-
nore, but should compose its continuation with the
continuation of the control-point:

E[[control =z M]
= Apr.E[M]
plz «— Avk'. “compose k' and k” v]

(Az.z).

Unfortunately, as mentioned in the introduction,
there is no operation on functions for composing two
continuations. The “natural” candidate for this com-
bination operation is functional composition: ' o k.
However, this is not sound with respect to the in-
tended operational semantics. Consider the program

(Az.(control d z))(control I (17(10))).

According to eval, the expression rewrites to 0; its
denotational value according to this proposal would
be 1.1

The difficulty is that a continuation function maps
an intermediate value to a final result, that is, a con-
tinuation function models the entire rest of a com-
putation. On the other hand, the requirement to
compose two continuations means that at least one of
them is not representing the entire rest of the compu-
tation, but a partial rest. Since there is no operation
for extracting this partial rest of a computation from
a simple function representation, we must conclude
that traditional continuation semantics is insufficient
for modeling functional jumps.

The solution is a more abstract view of the domain
of continuations. What we need is an abstract algebra
for modeling the rest of a computation and its oper-
ations. Indeed, given the operational understanding
of rests of computations as evaluation contexts, it is
natural to derive a continuation algebra that mod-
els contexts and operations on contexts, in short, an
algebra of contexts.

For the specification of the algebra of contexts, we
follow the traditional approach and define construc-
tors, accessors, and their equational semantics. Let
us first recall the definition of a (textual) evaluation

1 This point is even more obvious when stores are introduced
into the semantics and the domain of final answers becomes
distinct from the domain of intermediate values.



context:
cl 1==[ 1lvel 11l 1M.

An evaluation context is either empty or it is a con-
text in the left or right part of an application. Al-
ternatively, and this view is better for the following
semantic analysis, we can perceive a context as being
either empty or as being filled with a partial context
like V[ ] (V applied to hole) or [ ]M (hole applied
to M ):

Cl l1==[]lcvl Nlell 1m].

i From this, it is clear that we need at least two
constructors: a 0-ary constructor for the initial con-
text:

I'g : — Context;

and a 2-ary constructor for filling a context with a
partial context:

Addframe : Contezl x Partial-contezt — Coniezl.

As we shall see below, the latter constructor indeed
covers both actions of filling a context with partial
contexts. But, what do partial contexts denote? In
the operational semantics, V[ ], for example, repre-
sents the situation when a function is about to be
applied to its argument value v in some context «. If
V denotes f, then this means that the partial context
denotes the function

(Avk. fuk),

or, by extensionality, just f. In the traditional con-
tinuation semantics this corresponds to the second
continuation for an application

(Av. fuk),

- where & is the continuation of the entire application.
By a similar argument, we can derive that the repre-
sentation for the partial evaluation context [ |M is
the function:

(Afx.E[M]po(Addframe(x, f))).

Putting all of this together means that partial con-
texts are functions jfrom values and contexts to val-
ues:

Partial-contezt = Val — Contezt — Val.

Since contexts replace continuations in the domain
equations, this also implies that values have the same
structure as partial contexts:

Val = Val — Contezt — Val.

Following the above analysis of the failure of classi-
cal continuation semantics, this is all quite appropri-
ate. Our conclusion was that a context must be an
object from which we can extract a partial continua-
tion. That is, contexts should consist of intermediate
pieces that take a value and a continuation, advance
the computation, and, eventually, send off their in-
termediate result to their continuation.

In order to use contexts, we need an accessor for
sending a value to a context. This corresponds to the
filling of a context hole with a value. If the context is
empty, the evaluation is finished. Otherwise, the par-
tial context around the hole determines the next step.
Accordingly, the algebra needs an accessor function

Send : Contest x Val — Val.

As usual, we define the semantics of an accessor func-
tion with equations that determine the meaning of an
access relative to a constructor:

Send(Ty,v) = w
Send(Addframe(y, f),v) = foy.

The two equations precisely formalize the above ex-
planation.

Equipped with this machinery, we can now recast
the semantic equations for the core language A:

E[b] = Apy.Send(vy,b)
Elfl = Apy-Send(y, Avy'.Send(v',8(f,v)))
=] Apy.Send(, pl=])

EPz.M] = MApy.Send(y, Avy' .E[M]plz — v]y')
E[MN] = Apy.£[M]p
(Addframe(~,
(Amy.E[N]p

(Addframe(y, m))))).

Next, we may incorporate a clause for control. This
quuires a nNew accessor

Compose : Contezt x Contezt — Contezt

for combining two contexts. In the operational se-
mantics, this corresponds to the invocation of a
control-procedure where a context C’[ ] is put into
the hole of a context C[ |

Cl(Au.C'[u]))V] = C[C'[V]].

;From this, we learn that an empty context adds no
information. Thus, the first equation is:

Compose(y,I'o) = 7.



Furthermore, when C[ ] and C'[ ] are combined, the
frames of C'| | become the innermost partial contexts
of the resulting context:

Compose(y, Addframe(y’, f))
= Addframe(Compose(v,7’), f)

i.e., the frames of the second rest of the computation
are used before the frames of the first one. With this,
the semantic equation for control becomes:

E[control = M] (*)
plz — Avy’.Send(Compose(v',v), v)]
L.

The addition of control illustrates how to deal
with a new control facility. For another example, let
us consider the #-form, which constrains the visible
part of a context. This is easily achieved with a new
constructor for marking the context

Mark : Contexi — Coniezi,
such that the meaning of a prompt becomes
E[#M] = Apy.E[M]p(Mark(y)).

Two new accessor functions accomplish the separa-
tion of the two parts of a context:

Front : Context — Contezt
Tail : Contezt — Contezt.

The defining equations are:

Front(I'y) = Ty
Front(Addframe(y, f)) =

Addframe(Front(y), f)

Front(Mark(y)) = T9
and

Tail(Tp) = Ty
Tail(Addframe(, f)) Tail(7y)
Tail(Mark(y)) = Mark(y).

Il

The additional equation for Send is:
Send(Mark(y), v) = Send(, v).

The accessor Compose is unaffected since its second
argument is always an unmarked context.

Given the additional functions for the algebra, we
can easily specify the new meaning of abort, con-
trol, and escape. An abort removes the visible
part of the context and determines the meaning of
its phrase in the hidden part:

Elabort M] = Apy.E[M]p(Tail(y)).

The escape-construct captures the visible front-end
and, as before, encodes it as a value:

E[escape z M]
= Apy.E[M]
plz «— Avy'.Send(Front(y), v)]
7.

A control-expression also captures the front-end
of the context, but simultaneously removes this part,
leaving it to the program whether to invoke or not to
invoke the functional continuation:

E[control = M]
= Apy.E[M]
olz — Avy'.
Send(Compose(v', Front(y)), v)]
Tail(y).

The relationship between the operational and deno-
tational semantics can be expressed with an ordinary
adequacy theorem. For A with control and prompts,
we have:

Theorem. Let M be a program over A + control +
#, b a basic constant, and p an arbitrary environ-
ment. Then

E[M]pLo = b iff eval(M) = b.

Proof Sketch. The proof follows the usual line of
an adequacy proof. The relationship between evalua-
tion contexts and their denotational counterparts was
explained above. From there it follows that if C[ ]
corresponds to y (relative to p), then

E[C[M]]pr = E[M]p(Compose(x, 7))
and, hence,

E[Az.Clz]]px
= Send(k, Avy'.Send(Compose(y’,v), v)).

This is essential for the validation of the equation (*).
The rest is routine. O



5 Initial and Final Representa-
tions of the Context Algebra

The equational specification of an algebra admits two
distinct interpretations and, hence, representations:
the initial and the final algebra. The former identifies
all algebra elements that must be equal according to
the equations, the latter identifies all elements that
can be equal without identifying distinct observables.
The initial representation of an algebra is isomor-
phic to the term algebra [4].2 For the context al-
gebra with the functions I'y, Addframe, Send, and
Compose, this leads to a stack-like context structure.
More precisely, a context is either empty or a context
plus a value. The appropriate domain equation is:

Context = {To} + [Partial-context x Contezt].

If we use - as an infix notation for Addframe, the
elements of context typically have the shape

T

Addframe-operations add an extra element to the left,

and Send-operations remove a fran 2 from the left.
Formally, the element I'g is simply a unique data

point. The function Addframe is the pairing function:

Addframe = Myf.(f,7).

A Send-operation extracts the appropriate pieces:

Send = Ayw.
if isTo?(y) then v
else First(y)vSecond(v)

Compose, in this framework, becomes an append-
operation:

Compose = Ayy'.
if isTo7(y') then v
else (First(y'),
Compose(y, Second(v'))).

The initial interpretation of contexts supports the
intuition that contexts are stacks. This comes as
no surprise to implementors, yet this perception is
easier to derive from the abstract algebra point of
view. Furthermore, this view reveals that functional
jumps carry an implementation cost: when Compose
is added, we also need an append operation on stacks,
which may involve the copying of many stack frames.

2This assumes a fixed signature of constructors for partial
contexts.

In a Kamin-Wand-style [6, 20] final algebra, ele-
ments are represented by tuples whose components
are the values of the various accessor functions. Since
the two accessor functions of the context algebra,
Send and Compose, are parameterized over addi-
tional values and contexts, the tuples are pairs of
functions:

Contezt = [Val — Val] x [Contezi — Contezt].

The first component represents Send, the second
Compose:

v = (Av.Send(, v), Ay’ .Compose(y’, v)).
Hence, the accessors are:

Send = Ayv.First(y)v,
Compose = Ay'y.Second(vy)y'.

iFrom the definitional clauses it follows that I'g is a
pair of two identity functions:

I'o = (Av.v,Acc).

This guarantees that Send returns the argument
value, and that Compose returns the first context.

The definition of Addframe is slightly more com-
plicated:

Addframe

= A‘Yf‘p‘”’f’”%
Av'.Addframe((Second(y)y'), f))-

When Send operates on a non-empty context, this
definition causes the value to be channeled to the
right place. The definition of the Compose compo-
nent reflects the recursive nature of the equational
specification. Put abstractly, the decision making
is shifted into the tuple-building process, and the
components are abstractions of the appropriate right-
hand sides of the definitional equations.

The final algebra interpretation closely represents
the above view that a context should be an object
with components for various tasks. One task is the
completion of a computation, another is the partial
advancement of a computation. It therefore follows
that a restriction to the traditional Send-component
vields ordinary continuation functions.

6 The Analysis and Design of
Control Structures with Ab-
stract Continuations

One result of our development is a denotational se-
mantics for functional jumps and control delimiters.



The more important aspect, however, is a new, widely

applicable method for defining the semantics of con-

trol facilities. A particularly interesting application

concerns the use of parallelism and the inclusion of

control facilities in parallel programming languages

as in Connection Machine Lisp [13] and C* [10].
Consider the form

(parallel-or M N),

which returns true if one of its sub-expressions de-
notes true, regardless of whether the other expres-
sion diverges or not. On one hand, the semantics of
this form is directly expressible with the continuous
function parallel-or in the value domain of A [7]. On
the other hand, the use of such a direct semantics
as an operational interpreter requires the existence of
parallelism on the meta-level. This situation roughly
corresponds to the specification of a calling mecha-
nism in a defined language by relying on the calling
mechanism on the defining language [9].

An abstract continuation semantics can explicate
meta-parallelism. A simple solution is the introduc-
tion of two additional context operators: Branch and
Switch. Branch combines a context with a thunk—a
function waiting for a continuation in order to com-
plete a computation. It indicates that the thunk is
an alternative computation with status equal to the
current one. This provides the means for specifying
the parallel-or clause:

E[parallel-or M N
= Apy.E[M]p(Branch(y, E[N]p)).

When a branch eventually yields a result, and if
the value is true, the continuation is resumed; if the
result is false, the alternative branch determines the
result of the construct:

Send(Branch(y, ), v)
= if True?(v) then Send(v,v) else 6.

When a branch sends off an intermediate value, it is
necessary to switch to the alternative computation:

Send(Addframe(y, f), v) = Switch(y, (fv)).

The accessor Switch extracts the waiting thunk by
searching for the closest Branch-frame:

Switch(Addframe(y, f), 8)
= Switch(y, (Ay'.0Addframe(v’, f)))

and then applies it to an appropriate continuation:®

Switch(Branch(y, 6o), 8) = 6o Branch(v, 6).

3This definition, although “natural” in some sense, is unfair

If there is no Branch, Switch is equivalent to Send:
SWiﬁCh(Po, B) =6 Fo.

Given an abstract continuation semantics, it is
straightforward to add control operations. Indeed,
the introduction of the additional Branch-constructor
is entirely orthogonal to the definition of abort. Yet,
we can also imagine the desirability of a partial abort
that cuts a parallel-or:

Efcut M] = Apy.E[M]p(Cut(y)).

The specification of Cut is similar to Tail, i.e., it pops
all frames up to and including the first Branch-frame.
In short, we believe that the abstract continuation
semantics can specify the meaning of any arbitrary
control operation in a deterministic parallel setting.

The second result of our analysis concerns the de-
sign of programming languages. Thus far, the con-
trol structure of existing languages (and machines)
has driven the development of context algebras. The
question is whether it makes sense to follow the in-
verse direction, in other words, whether it is possible
to pick an arbitrary continuation domain with some
operations and to design a control structure for a lan-
guage around this domain. Currently, we perceive
two different approaches to this question.

First, a programming language could provide
atomic instead of global context operations. That is,
instead of offering control operations that affect the
entire (visible) context, the programming language
could incorporate control facilities that access small
parts of a context, e.g., Push, Pop, Top, isT'z? for
the typical stack algebra. This has been investigated
to some extent in the programming language GL [5].
Other examples remain to be explored.

Second, programming language control structures
could be built on top of entirely different alge-
bras. One possible algebra could be a queue, which
would support the above mentioned agenda control
paradigm; another one could be a bag (multi-set),
which would more closely correspond to a distributed
control system. In short, the context domain could
really be an abstraction of the real world system that
is to be modeled.

In summary, we believe that there is an entire
world of unexplored control paradigms between the
well-known sequential and the (deterministic) paral-
lel structures. Abstract continuation algebras provide
a means for their exploration.

since branches of nested parallel-ors can be starved. The
following, minor change can fix this problem:

Switch(Branch(v, 8y ),8) = Switch(-y, \y'.8, Branch(+', 8)).

in
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