External Robin Hood Hashing

by
Pedro Celis
Computer Science Department

Indiana University
Bloomington, Indiana 47405

TECHNICAL REPORT NO. 246

External Robin Hood Hashing
By
Pedro Celis
March, 1988

External Robin Hood Hashing*

Pedro Celis
Computer Science Department,
Indiana University,
Bloomington, Indiana 47405

March 28, 1988

Abstract

We present some new and practical algorithms based on hashing with open addressing for
implementing the operations of insert, delete and search in a file. Our method uses a small
amount of internal storage to significantly reduce the number of disk operations required to
maintain and search the file. The amount of memory used depends on several factors but is
typically very small; about 4 bits per bucket or less than a bit per record are sufficient in most
practical situations. We also present a detailed analysis on the behavior of our scheme and
the results of some rather extensive simulations. The method requires only a constant number
of external probes to perform successful and unsuccessful searches regardless of the size of the

table, even if the table is completely full. The algorithms are very simple to code.

*Part of this work done while the author was at the University of Waterloo.

1 Introduction

Hashing is a well known and effective technique for organizing large tables in main memory or files
in external storage. Numerous methods for handling overflow records have been proposed, which
can be divided into three categories: perfect hashing, chaining and open addressing. The later
alternative is the basic topic of this paper.

In open addressing the record key is used to generate a probe sequence : alist of bucket numbers
to be tried in a search. In this technique the usual approach to insert a record is a “first come first
serve” arrangement: when a record is to be inserted, the buckets specified by its probe sequence
are examined until a nonfull bucket is found and the record is inserted there. This means that once
inserted, a record is never moved. Robin Hood Hashing [5] is a reorganization scheme in the sense
that records previously inserted into the file may be moved when a new insertion occurs. A number
of reorganization schemes have been proposed for internally stored tables (i.e. bucket size equal to
1) [3,5,8,13,14,16]; all of which achieve a constant average search time for successful searches even
for a full table. In what follows we briefly discuss some previously suggested methods.

Optimal, Binary Tree and Minmax Hashing [8,13,14,16] are schemes that have been proposed for
internal tables. The tables they create are very good even if full; successful searches require constant
time (between 1.82 and 2.13 probes) and unsuccessful searches require O(ln n) time. However, these
methods are mainly of theoretical interest since the cost of creating the tables is very high both
in time and memory. Brent’s scheme [3] is a more practical method that requires 2.49 probes for
successful search but O(,/n) for unsuccessful searches. While this method could be extended for
external files, it is not obvious how to use internal memory to reduce the number of external probes.

Since access to external storage is a fairly expensive operation, an important goal in external

hashing schemes is to reduce the number of external probes required to insert and retrieve a record.
To achieve this goal a reasonable approach is to use a small amount of internal memory.

Some Perfect Hashing schemes (see [12] and the references that appear there) have been pro-
posed for external files. They guarantee retrievals with one external probe. However, they need
a considerable amount of internal memory to implement the hashing function, and a considerable
amount of time to achieve high load factors. Also, subsequent insertions may require a complete
reorganization of the file.

Signature Hashing with fixed length separators [9] is an efficient technique that also guarantees
retrievals in one external probe. The amount of internal memory required by this technique is
comparable to that used by the method proposed in this paper. A disadvantage of signature
hashing is that an insertion into the file may fail even if there is space available. The probability of
this occurring is significant when the load factor is high or when a large number of deletions and
insertions have been performed (regardless of the load factor).

In this paper we introduce a new hashing scheme for files called External Robin Hood Hashing.
Our method uses a small amount of internal memory (about 4 bits per bucket in most practical
cases) to reduce the number of external probes required during insertion and retrieval of records.
The cost of retrieval depends on the load factor and the bucket size. Typical numbers are between
1.3 and 1.6 external accesses. Insertions are rejected only when the table is completely full. If the
content of internal memory is lost (due to hardware failure for example), it can easily be recovered
in one pass over the file. Most other methods require an amount of work proportional to recreating
the file. Furthermore, our approach uses a very simple mechanism for supporting deletions and

subsequent insertions that does not appear to cause significant performance degradation.

2 The Robin Hood Approach to Hashing

We already mentioned that the traditional hashing scheme works on a “first come first serve”
arrangement: if b is the number of records per bucket, the first b records to hit a bucket are
inserted there and the rest must be rehashed. The Robin Hood insertion heuristic consists of
leaving in the bucket not the first b records to hash there but the b records that are in the largest
probe positions. Hence the method gives preference to those records that have traveled the longest.
The name of the scheme comes from the fact that we are taking from the more fortunate (those
that have probed few buckets) to give to the less fortunate. This modification does not reduce
the average wealth (probe position) of an individual but has the effect of dramatically reducing its
variance.

The application of this heuristic to the insertion algorithm was first proposed in [5,6] for the
case bucket size 1. There are several differences between the work presented there and in this
paper:

— Our analysis is for an arbitrary but fix bucket size.

— Qur main concern here is external probes and not running time; an analysis of the number
of external probes required to search and insert is presented.

— The search algorithms presented in [5,6] are completely different from the one we present
here: they require either ©(Inn) or no additional memory, perform successful searches
in less than 2.6 internal probes, and unsuccessful searches in ©(lnn) probes. The search
algorithm presented here requires O(n) additional memory and less than two external
probes for both successful and unsuccessful searches.

To reduce the number of external probes required to insert and search a record, we propose to

have a table in main memory that contains for each bucket, the value of the smallest probe position
among the records stored in that bucket. Let this table be called bmin[l..n]. Initially this array
contains only zeros and all buckets in the file are filled with empty indicators.
When inserting, if a record probes bucket j on its i*1 choice then:
— if ¢ < bnin[j], the record goes to its next choice without attempting an external probe;
— if 4 > bmin[j], the bucket is retrieved. If there is an entry marked either empty or deleted
the record is inserted there and the insertion procedure stops. Otherwise the record with
the smallest probe position is replaced by the incoming record, the displaced record goes
to its next choice (probe position bmin[j] + 1) and the value of bmin[j] is adjusted if
necessary.

th

When searching, if a record probes bucket j on its "~ choice then:
——if ¢ < bmin[j], the record is not stored in this bucket. The search continues at probe
position % + 1 without attempting an external probe.
—if i = bmain[j], the bucket is retrieved. If the record is not in the bucket the search
continues at probe position 7 4 1.
— if ¢ > bmin[j] the bucket is retrieved. If the record is not in this bucket then the record
is not in the file.
If the bucket size is 1, the search can be declared unsuccessful if ¢ > bmin[j] without retrieving
the bucket. Hence exactly one external probe will be saved. Tf besides storing in main memory
the minimum probe position we also store the maximum, a fraction of a probe will be saved for

unsuccessful searches if b > 1. Successful searches and insertions would not benefit from this extra

information.

To delete an element, the record is searched and marked as deleted but left in the bucket, and
the entry of bmin corresponding to the bucket is left untouched. The only reason for marking the
record as deleted and leaving it in the bucket instead of marking its entry as empty, is to be able
to recover the contents of the array bmin in case they are lost.

From this description of the algorithms, it is clear that for each bucket the corresponding value
of bmin can only increase. Therefore, if a large number of deletions and subsequent insertions are
performed, the values stored in the table bmin can grow without bound requiring an arbitrarily large
number of bits for their representation. This also implies that the number of internal operations
that must be performed to insert or retrieve a record increase without bound.

These two problems can be overcome due to the fact that the gap between the smallest and the
largest value in the array bmin is bounded. In section 4 we prove that for a full Robin Hood hash
table where no deletions have occurred, the expected value of the largest entry in the array bmin
(and hence the difference between the smallest and the largest) is O (ln (ﬁﬁ) Unfortunately, we
have not been able to analyze the effect that deletions and subsequent insertions have on the size of
the gap between the smallest and largest values in the array bmin. However extensive simulations
strongly indicate that the size of the gap remains bounded and is never greater than that of a full
table in which no deletions have occurred.

What we suggest is to make each entry in the array bmin, d = O (Inln (n/(b— 1)!)) bits long
(where d is 4 in most practical cases); and if the smallest probe position among the records stored
in the bucket j is k, make bmin[j] = k mod 2¢. In order to reconstruct the value of k from the
information stored in bmin[j] we need to keep track of the smallest entry in the array bmin. Let

the variable smallest denote the value of the smallest entry in the array bmin. Then k satisfies the

expression k = smallest + (bmin — smallest) mod 2.

The second problem we mentioned was that the number of internal probes required to insert
and retrieve increase without bound. The use of the variable smallest also solves this problem.
When searching we should start the search at probe position smallest instead of 1 since the record
cannot be stored before that probe position. Similarly we should start the insertion procedure at
probe position smallest + 1.

A new problem that arises is that the value of the variable smallest can increase without a limit
requiring therefore an arbitrarily large number of bits. To solve this problem we will assume that
our hash function is such that for every key, the bucket probed at probe position k is the same as
the one probed at position k + n. That is the case for double hashing. Then the variable smallest
will contain the value of the smallest probe position among the records in the file mod 2%n (mod
any common multiple would do). The minimum is taken among all records, including the ones
marked as deleted.

The only remaining problem is how to keep track of the value of the variable smallest. The
most efficient way is to have counters of how many bucket minimums are at each probe position.
Only 2¢ different counters are required. Figure 6 presents the pseudocode for the insertion and
search algorithms we have just described. The function fiz(t) simply returns smallest + (t —

smallest) mod 29.

3 Analysis of Insertions and Retrievals

In this section we present the analysis of some of the performance measures of External Robin Hood

Hashing. The analysis in this section studies the performance of our scheme when no deletions have

been made. We already mentioned that our simulations indicate that the performance of an nonfull
table with load factor 8 where deletions have been made is similar to the performance of an nonfull
table with load factor a (§ < a < 1) with no deletions. The analysis is asymptotic in nature,
meaning that to study the performance of a file with m records in n buckets of capacity b we let
n,m — oo keeping a = 73 constant and then analyze the performance of this infinite file. For
the analysis we will assume that the model for the hashing function is Random Probing. Random
Probing is equivalent to Uniform Hashing for infinite nonfull tables [11]. In practice, double hashing
is a very convenient choice for our scheme and its performance is indistinguishable from the other
two models. The simulations presented throughout this section use double hashing. To study the
performance of our scheme we will introduce a probability model based on balls and urns. Throught

this section we will compare the results of our analysis to results obtained through simulations.

3.1 The urn model

Consider the following urn model that corresponds to inserting all m records into a file with n
buckets simultaneously: m balls are to be dropped among n urns. Each of these balls is given a
label of 1. After the balls have been dropped, for each urn that contains more than b balls, b of
them are selected according to some criterion and the rest are marked. All balls are left in the urn.
For each marked ball with label 1, we create a new unmarked ball with label 2 and drop it into a
random urn. After all the new balls have been distributed, we check the urns and for each urn that
contains more than b unmarked balls, we select b balls among those with the highest labels and
mark the rest. We then create an additional unmarked ball with label 7 4 | for each newly marked

ball with label 7 and drop it into a random urn. We continue in this fashion until no new ball is

marked.

In this model, urns represent buckets, balls represent probes into the file, ball labels represent
probe positions or try numbers, and marking a ball represents rejecting a record from the bucket.
An unmarked ball with label 7 represents a record placed in its i-th probe position.

Notice that the total number of unmarked balls with a label greater than or equal to ¢ (number

th

of records at or after their " probe position) is equal to the total number of balls, either marked

th

or unmarked, with label i (number of records that probed tjlheir i' position).
We define the following random variables:
— Let N represent the total number of balls dropped when the final assignment was reached.
— Let X; be the total number of balls with label 7.
— Let N; be the total number of balls labeled i or less. Hence N; 11 = N; + X;41.
— Let Z; be the total number of unmarked balls with label 7 or less. Then X;1; = m — Z;,
and we know that N; = X1 = Zo, = m.
Each ball is labeled before it is dropped. Therefore the urn selected by a ball with label 3, is

independent of the urn selected by any other ball. However, the total number of balls with label ¢

is not independent of the urns selected by other balls.

3.2 Probability distribution of psl

Let psl be the random variable that denotes the probe position where a randomly chosen record
is stored in a Robin Hood hash table. In this subsection we derive the asymptotic probability
distribution of the random variable psl. We do this by establishing a recurrence relation for

E[N;/m].

Larson [11] has proved for a-full tables (a < 1), that if we let m and n go to infinity, keeping
a = & constant, then the distribution of the number of balls that hit an arbitrary but fixed urn is
poisson with parameter A = lim,_,o, E[N/n]. Following this we define)\; = lim,_,, E[N;/n] and
t; = lim, 00 E[Z;/n]. A is the average number of balls with label less than or equal to ¢ that hit
an urn, and ¢; is the average number of unmarked balls with label 4 or less in an urn.

Let g¢;(z,s) denote the probability that an urn is hit by z balls with label less than or equal
to ¢ and s balls with label higher than i. Then g¢;(z, s) is the product of a poisson and a binomial

distribution as follows:

w8 =

et (g 4 s (A_)“’ (A — ,\,-)s ey M)
(x4+s)\ s A A 3 s! z!

The poisson factor gives the probability that an urn receives +s balls. (A—A;)/\ is the probability
that a ball is labeled higher than i. This probability is independent of the labels of other balls in
the same urn, since all balls are labeled before being dropped. Hence, the probability that s out of
z + s balls have a label higher than ¢ has a binomial distribution with parameter (A — A;)/). Notice
that g;(z, s) is then equal to the product of two independent poisson distributions with parameters
A — A; and).

The expected number of unmarked balls with label less than or equal to ¢ is simply

b=1 | bi=s oo
ti= | Y 2a(z,0)+ X (b—9)%(s,9)
s=0 | z=0 z=b—s+1
A AN .
= e 3 ey (M) + (8- 8) (M - eo—a(N))]
5=0 : :
where ej(y) = f::U 3':% is the truncated exponential function.

From the equations N;11 = N; + X;4; and X;;1 = m — Z; we can write N:; == % T

3
3|

10

and taking expected values and the limit as n — oo we get A;y1 = A; + ab — t;, which together
with Ay = a b gives us a recurrence relation for computing A;.
Define p;(a, b) to be the probability that a record probes at least i locations before being placed

in the table. Then, p;(a,b) = Pr{psl > i} and satisfies

. E[X
Pit1(e, b) = lim M

m—oo M
and from the relation X;1; = m — Z;,

: o . E[Zi/n] _ t;
Pizi(a, b) = I_JLIEOT =l

which together with p;(e,b) = 1 and the recurrence for);, allows us to compute the probability
distribution of psl. Figure 1 shows graphically the effect that the bucket size and load factor have
on the expected value and variance of psl. In Tables 1 and 2 we compare the result of our analysis
to results obtained through simulations. The number of urns in the file is n, the bucket size is b
and the number of records in the file is m = anb. Whether or not the theoretically predicted value
lies within the 95% confidence interval is indicated with a 4/ or X in the tables summarizing the

results.

3.3 Probability distribution of bmin

In this subsection we derive the probability distribution of the random variable bmin, the minimum
probe position among the records in an arbitrary but fixed bucket. Let r;(a,b) be the probability
that bmin = i. The probability that bmin = 0 is simply the probability that the bucket is nonfull,

that is, that b — 1 or less records hashed into the bucket. It follows that

b1 D i
ro(a,b) = E = e "ep_1(N)
z=0 2

11

: Average - 6 Variance

1.8
1.6
1.4
L 1.2
L 1.0
0.8
0.6
0.4
L0.2
. , ; ' . : : : . J 00

6 7 8 9 1.0 6 o 8 it 1.0
Load Factor Load Factor

1 b=124,8,16 L5

b=1,2,4,8,16

50 ~or=w0' 0 noo'T
1

Figure 1: Expected value and variance of psl

The probability that bmin < i is the probability of getting b — 1 or less balls with label greater

than i. Using the distribution ¢(z,s) defined in the previous subsection, we can write this as

oo b-1

Pr{bmin < i} = Z Z g(z,s) = e‘““l")eb_l(/\ - Ai)-
s=0z=0
It follows that
ri(a,b) = Pr{bmin < ¢} — Pr{bmin < i -1}

= e~ (A= Mgy 1 (A= N) - e_{A_'\"lleb-l()‘ = A1)

Figufe 2 shows the effect that the load factor and the bucket size have on the expected value and

variance of bmin, and Tables 3 and 4 compare our analysis to simulation results.

3.4 Cost of insertion

The cost of inserting a record measured in number of external probes is equal Lo one plus the

number of stored records that are displaced or moved from their location. To study the expected

12

.= 1021 n = 4093 n = 16273
b || predicted simulation predicted simulation predicted simulation
1 3.1371 | 3.127840.0169,/ 3.1519 | 3.1446--0.0091,/ 3.1530 | 3.154040.0042,/
2 2.1602 | 2.154540.00764/ 2.1639 | 2.159440.0041x 2.1645 | 2.1649-40.0019./
4 1.6392 | 1.637240.0042,/ 1.6403 | 1.639740.0020,/ 1.6404 | 1.6399+40.0010,/
8 1.3538 | 1.3534+0.0020,/ 1.3540 | 1.35484-0.00104/ 1.3540 | 1.353440.0005x
16 1.1938 | 1.194040.0012,/ 1.1938 | 1.193540.0005,/ 1.1938 | 1.193840.0003,/
Table 1: E[psl] (a =~ 0.95)
n = 1021 n = 4093 n = 16273
b || predicted simulation predicted simulation predicted simulation
| 1.2239 | 1.215840.01004/ 1.2293 | 1.2246+40.0050+/ 1.2297 | 1.229940.0026,/
2 0.5550 | 0.55324-0.0032,/ 0.5559 | 0.55554-0.0016/ 0.5561 | 0.55644-0.0007,/
4 0.3117 | 0.310440.0014,/ 0.3119 | 0.311940.0006./ 0.3119 | 0.311740.0003,/
8 0.2293 | 0.228940.0006./ 0.2293 | 0.2295+0.0003/ 0.2294 | 0.229240.0002,/
16 0.1562 | 0.1563+0.0007,/ 0.1562 | 0.1560+0.0003/ 0.1563 | 0.156240.0002,/
Table 2: V[psl] (a =~ 0.95)
n = 1021 n = 4093 n = 16273
b || predicted simulation predicted simulation predicted simulation
1 2.9773 | 2.96854-0.0160,/ 2.9940 | 2.9871+0.0087+/ 2.9953 | 2.9962-+0.0040./
2 1.7071 | 1.702240.0069+/ 1.7113 | 1.707640.0038+/ 1.7121 | 1.71224-0.0018,/
4 1.0953 | 1.09330.0039,/ 1.0967 | 1.0958+0.0019./ 1.0968 | 1.096440.0009,/
8 0.8111 | 0.81144-0.0011,/ 0.8112 | 0.8116+40.0006+/ 0.8113 | 0.8111-0.0003./
16 0.7246 | 0.72484-0.0012,/ 0.7246 | 0.724240.0006./ 0.7247 | 0.724740.0003,/
Table 3: E[bmin] (o ~ 0.95)
n = 1021 n = 4093 n = 16273
b || predicted simulation predicted simulation predicted simulation
1 1.6373 | 1.6275--0.01324/ 1.6404 | 1.633940.0069./ 1.6406 | 1.641140.0034,/
2 0.6675 | 0.66431-0.0049,/ 0.6682 | 0.6651+0.0025x% 0.6683 | 0.668540.0012,/
4 0.3503 | 0.347740.0028./ 0.3505 | 0.3496-+0.0014,/ 0.3506 | 0.350340.0006./
8 0.1662 | 0.1658-0.0007-/ 0.1661 | 0.166240.0004,/ 0.1661 | 0.1661--0.0002,/
16 0.1995 | 0.199440.0005./ 0.1995 | 0.1997-£0.0002,/ 01095 | 0.1 !lf)lﬂ 10.0001+/

Table 4: V[bmin| (a = 0.95)

13

” Average " Variance
4 6 2.0

-1.8
F1.6
1.4
1.2
-1.0
- 0.8
- 0.6
- 0.4
- 0.2
- 0.0

6 T 8 9 1.0 6 A 8 9 1.0
Load Factor Load Factor

1 b=1248,16 s | b=124816

DO == Q'Y ooo=T

Figure 2: Expected value and variance of bmin

value of the nummber of records moved, we need to model the insertion of a record when the load

factor is «, and increasing it by éc.

The model based on a Markov chain is defined as follows: Let the state of the Markov chain
be the probe position of the record we are trying to insert (which is not necessarily the new record
in the table). If the bucket being probed has a value of bmin which is less than the state, the
new state becomes bmin + 1, otherwise the state is increased by one. The one step transition

probability matrix corresponding to this Markov chain is the following infinite matrix

[§ 2 3 4 i Fid
0 (1 0 0 0 0 iy B 0 \
1]l 0 1l—1mg 0 0 0 0
2| 7o O 1 1—rg—171 0 0 0
3| 70 © Ty T l—rg—7r1—72 ... 0 0
tlrm 0 T2 T3 rig 1= 3070w

and the initial state is 1. It is clear from this that as long as ro(a,b) > 0, all states in the chain

14

are transient, except state 0 which is absorbing.

Even though some of the buckets will have their value for bmin changed during the insertion
process, the transition probability matrix, does not change since only a finite (out of an infinite)
number of bmin’s can change and the effect on the distribution r;(e, b) is zero.

The total number of external probes required for an insertion is then equal to the total number
of times the Markov chain goes from a state numbered ¢ to a state numbered less than or equal to

1 until state 0 is reached. Or

oo
E[insert cost] = 1+) E[times state i is reached from a state > 1]
#=1!
oo
=1+ Z ri(a, b)E[times state > 4 is reached].

i=1

Hence we need only to determine for every i, the value of E[times state > 7 is reached]. To deter-
mine this, we will modify our transition probability matrix to obtain a finite matrix by lumping

together all states with label larger than 7 to obtain

(11 2 3 4 SRR >1
0 (1 0 0 0 0 0 0 \
1 T 0 1-—rmp 0 0 0 0
2 o 0 T l—rg—m 0 0 0
3 79 0 1 T3 l—rg—7r1—12 0 0
i o 0) r3 et P b= EJ;; 7
>i\ro 0 m ry ra e Fpap T

Let Q) be the substochastic matrix obtained by removing the first 2 rows and columns from

this matrix and let M(?) = (1’ - Q(i)) _1. Then, it is a well known result (see for example chapter 5

15

of [2]) that the (7, k) element of a matrix M constructed in this fashion is the average number of

kt]l

times the state was reached before absorption, if the process was started at state j. Let the

elements of the matrix M) be denoted by ,LLEI) It follows that

E[times a state > i is reached] = (1 — 7o(a, b)) (,u,gt) 1 p',ggt-)

In practice it is not necessary to compute M(*) for every i of interest since p.g'j = ugfz Vi >
Hence a value of j large enough so that 1 — (ro(e,)+ - - -+ r;(, b)) is negligible can be chosen and
then the first row of M) will give us all the information that we need.

(4)

In computing the vector uy'; if ro(e,) is not close to 0, it may prove to be more convenient to

use the identity
. ; a12
(1,0,...,00M0) = (1,0,...,0) (I—{—Q("] + [Qf«”] + -)
we can then use Horner’s rule and rewrite this as

=(1,0,...,0) (1+ QY (1+ QW (1 +--))).

The evaluation of this expression can be done using only two vectors. Define initially v =
(1,0,...,0) and w2 = v. Then repeat the operations v = vQU) and py = py + v until the contribu-
tion of an additional term would be negligible. Since QU) is small (i.e. [|Q\W)] < 1), [Q(j)]k should
converge rapidly to 0. Also since Q(%) is very simple it is not necessary to store it explicitly. After
{ iterations, the sum of the elments of v is (1 — ro)’, so the number of iterations required to reach
a specified tolerance € is In(€)/In(1 — ro). Hence, if rq is close to 0 such that j < In(€)/In(1 — 7o),
it is better to work with the decomposition of Q7).

To obtain the average insertion cost up to load factor §, we can integrate numerically from

a = 0 to § the insertion cost at load factor a and divide the integral by (. Figure 3 shows the cost

16

Insert cost at load factqr, -

Average insert cost

3.0 4
E
X
t 2.5 4
e
r
n
i 2.0- /
P
r =
4 1.5 :
€
s It
. 1.0 D ————— v
6 and F‘acsl.or 1 2 I,r?;ul ii‘acu;f? 3 29
Figure 3: Cost of insertion
n = 1021 n = 4093 n = 16273
b || predicted simulation predicted simulation predicted simulation
| 1.9357 | 1.932540.0087./ 1.9448 | 1.94174-0.0047./ 1.9455 | 1.94654-0.0022,/
2 1.6029 | 1.600040.0048+/ 1.6057 | 1.602740.0025x 1.6062 | 1.606640.0012,/
4 1.3654 | 1.36444£0.0029,/ 1.3663 | 1.365540.0014+/ 1.3664 | 1.3660-0.0007+/
8 1.1939 | 1.193740.0016+/ 1.1941 | 1.194740.0008+/ 1.1942 | 1.193640.0004 x
16 1.0913 | 1.091340.0009+/ 1.0913 | 1.091240.0004+/ 1.0913 | 1.091340.0002+/

of insertion at and up to load factor « for different values of b and Table 5 compares our derivations

Table 5: Average insertion cost (a =~ 0.95)

to sirnulation results.

3.5

In this subsection we derive an expression for the cost of performing a successful search. We will

say that an unnecessary probe occurs whenever an external probe is made but the record being

Cost of successful searches

oo —e oo oxiT

searched is not present in the bucket. At the ith sten of the searching process an unnecessary probe
1 [y - 3

can occur only il bmin = 1.

Let R; be the total number of balls with label i rejected from an urn in which after all the N

balls were dropped the smallest label among the unmarked balls was 7. Then R;/X; is the fraction

1.4

n= 1021 n = 4093 n = 16273
b || predicted simulation predicted simulation predicted simulation
1 1.3309 | 1.33134-0.0023,/ 1.3311 | 1.330240.0012,/ 1.3311 | 1.330840.0006,/
2 1.3968 | 1.394740.0018x% 1.3970 | 1.3976+0.0009,/ 1.3970 | 1.397140.0004,/
4 1.4119 | 1.41194-0.0013,/ 1.4121 | 1.4127+0.0007,/ 1.4121 | 1.4118-0.0004,/
8 1.3473 | 1.347040.0017,/ 1.3475 | 1.3481+0.0009,/ 1.3475 | 1.347040.0005,/
16 1.1938 | 1.194040.0012,/ 1.1938 | 1.19354-0.0005,/ 1.1938 | 1.193840.0003,/

Table 6: Average successful search cost (o =~ 0.95)

of balls with label ¢ that are marked in an urn, where the smallest label among the unmarked balls
is 7. Let w; = lim, .o, E[R;/n]. It follows that the probability that a record (which was not stored
in its first (¢ — 1) choices) has for its ith choice a bucket with bmin = i and is not stored there is
equal to lim, o, E[R;/X;] = w; /(X — Ai_1).

w; is the average (over all urns) number of balls with label i marked in urns that received b — 1

or less balls with label higher than ¢. This can easily be shown to be equal to

b—-1 oo
Al A=A) T As"“’\i-— v
w; = Ze—(A—A;](1) Z (yw(b—:z:))e (A A‘)(: 1)
z=0 s y=b—z+1 y:

b—1 =
= e—(A=2i=1) Z % [(A,- - Ai-1) (eA"_’\"—l —epg1(Ai — 35—1))

=0

—(b—z) (e)“")‘i-1 — ep_z(Ai —)\,;1))] .

The expected cost of performing a successful search can then be computed as follows:

w;

E[successful search cost] = 1 + Zp,;(a, b)ﬁ
i A1

i=1

The p;(a, b) factor gives the probability that a record reaches the ith probe position and w;/(A; —
Ai_1) gives the probability that at the ith probe position an unnecessary probe occurs.
Figure 4 shows how the cost of searching increases with the load factor for different values of b

and Table 6 shows some simulation results. The expected search cost does not differ significantly

18

1.6+ Average Search Cost

€

X 154 $=124816
]

$ 144

n

T 134

P12

b

L

s e

6 ik 8 9 1.0
Load Factor

Figure 4: Cost of successful search

from the expected probe position until the load factor is fairly high (more than 80% for b = 1
and more than 99% for b = 16). This m;f:a,ns that for moderate load factors every internal probe
requires an external probe. Hence the information about the minimum probe value in the bucket
is not useful in reducing the successful search cost until the load factor is high. It remains useful

however in reducing the cost of insertion and unsuccessful searches.

3.6 Cost of unsuccessful searches

In this subsection we derive an expression for the cost of performing an unsuccessful search. A
search can be terminated as unsuccessful at the zth probe position if bmin < ¢ and the record
is not in the bucket. Hence the probability of reaching the ith step is H‘:’Il Pr{bmin > j} =

H‘I:_ll (l - Z‘;f_ll rk) . The probability of doing an external probe at the it} step is Z;;h Pr{bmin

I

i} = Z;;E rj. The expected number of external probes required to determine that a search is

unsuccessful is

oo i 71 71
E[unsuccessful search cost] = ZT‘j II(1- z Tk
i=1 \j=1 F=1 k=0

19

n = 1021 n = 4093 n = 16273
b || predicted simulation predicted sitmulation predicted simulation
1 0.6885 | 0.68290.0081,/ 0.6890 | 0.689740.0078+/ 0.6890 | 0.68494-0.0079+/
2 1.8140 | 1.81184-0.0077+/ 1.8144 | 1.81454:0.0072./ 1.8145 | 1.8197::0.0077+/
4 1.8380 | 1.84344-0.0063./ 1.8384 | 1.8366--0.0060+/ 1.8384 | 1.838340.0069,/
8 1.8033 | 1.801340.0042,/ 1.8035 | 1.8027+0.0041,/ 1.8036 | 1.8003::0.00384/
16 1.7246 | 1.723240.0043./ 1.7246 | 1.724340.0044,/ 1.7247 | 1.72654:0.0043,/

We already mention that for b = 1 the number of external probes can be further reduced by 1 since
the last probe is not necessary to determine that the record is not in the file. The cost measured
in internal probes is obtained by removing the first factor from the previous expression. Figure 5

shows the cost of unsuccessful searches for different values of a and b. Table 7 shows simulation

results.

2.4
= 2.2 4
C 2.0
T 1gd
€ 16-
n o 1.4-
T 124

1.0
E 0%
f 06-
e 0.4
8 024

b=1,2,4,8,16

Table 7: Average unsuccessful search cost (a = 0.95)

Unsuccessful Search

-

¢ e P N Ol VRS [SR S T

B

4 The Expected Largest bmin

In this section we derive bounds for the expected value of the largest valve in the array bmin

(E[Ibmin]) for {ull tables when no deletions have been made and prove that E[lbmin] = ©(In n).

i 8
Load Factor

fa]
—
<

b=1,2,4,8,16

i Unsuccessful Search 6

T 8
Load Factor

Figure 5: Unsuccessful search cost

20

9

ao0=T —PDHIe oD —

Assume we have a set R = {Ry,..., R;m} of records stored in a file where m = nb since o = 1.
Let 4 : R x {1,...,n} = {1,...,n} be the backup function, defined as the bucket that record R;
probed j steps before its current location.

Assume that the largest value in the array bmin (lbmin) is £ and the bucket that has that
value is bucket jyorse. W; will denote a set of buckets all of which have a corresponding value for
bmin of at least (£—¢). And U4, will denote the set of buckets that the records in the buckets in

the set W; would hit if moved back one position. More formally, Uy = {jworst}, Wo = U, and
U; = {k | k = ¥R, j)or some R in a bucket in U;_;} and W; = W, Ul;.

Each record in a bucket in the set W; is in at least its (£ — i)th probe position. If none of the
locations that we sample when moving back a record were repeated, then the cardinality of the set
W; would be (b+ 1)'. Since we are sampling the locations with replacement, the cardinality of W;
is a random variable denoted by w;. We will denote by u; the cardinality of the set i, — W;_4
which is the number of buckets that belong to the set W; but do not belong to the set W;_;.

We will find a bound for the expected value of w; using occupancy distributions [7,10]. w; is
equal to w;_; + u;. The distribution of u; is of the type called classical occupancy with specified
boxes (see for example chapter 14 of [7]) where the total number of urns is n, among which the
number of specified urns is n—w,_; and the number of balls dropped is bw;_; and we are interested
in the number of specified urns that are hit. We will now define a new sequence of random variables
v; such that E[v;] < E[w;] for all <. Initially wo = vo = 1. Let v; be the number of different urns
to be hit if (b + 1)v;_; balls are dropped at random. If we were to guaraniee thal the first v;_; of
these (b + 1)v;_; balls went all to different urns and the rest were dropped at random, then there

would be no difference between the random variables v; and w;. Since this is not the case, then

21

the expected value of v; is less than the expected value of w;. The distribution of v; is then of the

type called classical occupancy. We therefore have

1 (b+1]"€_1
Bvi | vi1] = n (1 ~(1-3)
n

9y (b+1)viy 1 (b+1)viy 1 2(b+1)vi_;
Vv vieal = nla - 1) (1) #n(i-7) {2

n
(b+1)viy 2(b+1)v;_
:nzl(l_z) _(1_%) 1]4—:&0(1)

n

which, using inequality 4.2.29 from [1], is bounded by
24 (6—2(b+1)v;_lj’n - e—2(b+1)Vg_1f(n—1)) +0(n) = O(n)

To get a bound on the expected value of the maximum bucket min we will first prove the following

three lemmas.
Lemma 1 E[v;] is asymptotically equivalent to E[v; | vi_1 = E[vi_4]].
Proof: We know that

1 (b+1)viy
Elvi|vii]=n (1 - (1 - —))
n

Removing the condition we get

SR G CON)

Using equation 4.2.29 again we get

E [e®+Via/(»-1)] < l(1 .

n

)(64‘1)"{—1

< E [(1- (b--{-])\‘t‘_lfn.)

22

We have mentioned that v,_; has an occupancy distribution. Rényi [15] establishes that an
occupancy distribution converges to a normal distribution as n — oo if e¥/™/n — 0, where d
is the number of balls dropped. The number of balls dropped in the distribution of v;_; is
(b+ 1)v,_a < (b + 1)n, so the condition is satisfied. Then the moment generating function of
vi_1 converges to My,_, (t) = E[etVi-1] = e#*+3°" Using this equation with ¢ = —(b+ 1)/n and

t=—-(b+1)/(n—-1), we get

exp (~(b+1) (Evial/(n— 1) - 0?/(n 1)) < E

(b+1)v;_,
SF S
n
<exp (~(b+1) (E[vial/n — 0*/n?))
and since 02 = V[v;_1] = O(n), these bounds become asymptotically

b+1)vi_
e—(+1EV:1]/(n-1) _ g (1 i l)(w l] < e—(B+1)B[viL1]/n
A

Using inequality 4.2.29 from (1] on (1 — 1)?ElVi-1] we obtain the same bounds:

o~(B+1)BIVi_]/(n=1) (1 et < e~(B+1EVis]/n

n

){b+1)E[v‘-._1]

Consequently the difference IE[(l — L)1)V] (1 - L)E+)EV-]

is bounded and goes to 0 as
n—oo. 0O

We can write E[v;] as n(1 — f;(n)). Then f;(n) obeys the following recurrence

1) (B+1)BLVi_1]

1 (B feoa ()
fi(n) = (1 =i ()

n

folaft

n

fi(n) represents the fraction of urns not hit by the (b+ 1)E[v;_;] balls. It is an increasing function

in n and decreasing in 1.

23

Lemma 2 f; ((b + 1) (n—1) - Ei;%(b + 1)") < fo(n).

Proof [By Induction]: Basis: for j = 1, we have

i

fo((b+1)(n—1)):1—m

1 (b+1) " il
fl((b-l-l)(n—l)): (l—m) < g n-1 <1—';L* :fg(n)

Inductive step: assume true for j — 1 and prove for j. Let nj = (b+ 1)/ (n—1) - 221 (b+1)°. The

induction hypothesis is f;_1(n;) < fo(n1). Now

< e~ (t+1)(1-F5-1(n5))
i

1 (b+1)n;(1—f;-1(n;))
fi(ng) = (1 o ;)

which by the induction hypothesis is
st P o g % - i) o
Lemma 3 Y20 fi(n) < 104 L(logyy, n + 1).

Proof: Let k be the smallest integer that satisfies n < ng = (b+ 1)¥(no — 1) + X¥21(6 + 1)*, where

no is an arbitrarily chosen constant greater than 1 (greater than 2 if b = 1). Then k < logy, 7+ 1

and

-1 i k-1 -1 (k-1

Y ofiln) <D filme) =D fillme)+ D filmk) <k+ D fire(me) < k+(L—k)fe(ne)
1=0 i=0 =0 i=k =0

letting ny = 2 and using the previous lemma

1 1 L, _
<k+(-Fk)fo(2) =k+ {—)(f —-k) = ;;f-’l- _,{]ﬁ’gb-l-} n-k) [l

Theorem 1 Asn goes to infinity, the ezpected value of Ibmin for a full Robin Hood Hash table with

n buckets of capacity b > 1 is bounded by E[lbmin] < 2In rbfﬂ‘l—ﬁ+logb+1 n+2(b—1)Inlnnl+2y+o(1).

24

Proof: Define r to be the sum of probe positions of the records in W;_,. From the construction of
the sets W;’s we know that Wy C W; C .- C Wy_1. If a record appears for the first time in the
set Wk, its probe position is at least (£ — k), and it appears in exactly (£ — k) of the £ sets W;’s. It

follows that r > wqg + - - - + wy_; and therefore

£-1 {-1 -1 -1
E[rllbmin={>> E[w;] > E[vi =) n(l-fir)) =n (E — Zf,(n))
=0 =0 i=0 =0

and by the previous lemma
b —;(f—logb+1nm L.
It follows that
n .
E[r] > 5 (E[lbmin] — logy ., n —1).

Let N be the sum of the probe positions of the m = n b records in R stored in the hash table. Since

Vi_1 is just a subset of R then E[N] > E[r]. Brayton [4] proved that as n goes to infinity

E[N/n]=Inn+(b— 1)lnlnn —In(b — 1)l + + O (h{f;“) .

Substituting this expression and solving for E[lbmin]| we get
E[lbmin] < 2lnn +logy,; n+2(b— 1)Inlnn — 2In(b— 1)! + 1+ 27 + o(1) .

Table 8 shows the largest value in the array bmin encountered in 210 simulations we performed

for each bucket size and each file size listed.

5 Conclusions and Open Problems

We have presented new and practical algorithms for external hashing. These algorithms can be

easily coded as can be seen from the pseudocode shown in Figure 6. Our algorithms use a small

25

1021 | 4093 | 16273

1 16 17 23
2 9 10 10
4 6 6 7
8 4 4 4
16 3 3 3

Table 8: Maximum observed bmin in 210 full tables

amount of internal storage to reduce the number of external probes required to maintain and search
the file. The amount of memory required for a file of n buckets with capacity bis lnln (n/(b — 1)!)+
O(lnlnlnn). About 4 bits per bucket are sufficient in most practical situations. We have also
included analysis of the behavior of our scheme that shows that the method is efficient. Simulation
results closely resemble the figures predicted by the analyses.

The most obvious open problem is to provide an analysis of the effects that large numbers of
deletions and insertions have on the performance measures. The simulations we have done indicate
that after the file contains only deleted or occupied entries (all empty entries have disappeared)
all the moments except the means of the random variables psl and bmin converge to values that
depend only on the load factor a and the bucket size b but not on the number of buckets n. The
expected value of the gap between the smallest and largest values in the array bmin does depends

on the value of n even if deletions have not been performed.

References

[1] Abramowitz, M. and 1. Stegun, Handbook of Mathematical Functions, Dover Publications, Inc., New
York

[2] Bhat, U.N., Elements of Applied Stochastic Processes, John Wiley & Sons, New York 1972

[3] Brent, R.P., “Reducing the Retrieval Time of Scatter Storage Techniques,” Communications of the
ACM, Vol. 16, No. 2, pp.105-109, February 1973

26

[4] Brayton, R.K., “On the Asymptotic Behavior of the Number of Trials Necessary to Complete a Set
with Random Selection”, J. Math. Anal. Appl., Vol. 7, pp.31-61, 1963

[5] Celis, P., P.-A Larson and J.I. Munro “Robin Hood Hashing” Proc. 26th Annual IEEE Symposium on
Foundations of Computer Science, pp.281-288, October 1985

[6] Celis, P. “Robin Hood Hashing” Ph. D. Thesis, University of Waterloo, January 1986.

[7] David, F.N. and D.E. Barton, Combinatorial Chance, Charles Griffin & Company Limited, London
1962

[8] Gonnet, G.H. and J.I. Munro, “Efficient Ordering of Hash Tables”, STAM Journal on Computing, Vol.
8, No. 3, pp.463-478, August 1979 (a preliminary version was presented at the 9th ACM STOC May
1977)

[9] Gonnet, G.H. and P.-A. Larson, “External Hashing with Limited Internal Storage”, Technical report
CS5-82-38, Computer Science Dept., Univ. of Waterloo, October 1982

[10] Johnson, N.L. and S. Kotz, Urn Models and their Application, John Wiley & Sons, New York 1977

[11] Larson, P.-A., “Analysis of Uniform Hashing”, Journal of the ACM, Vol. 30, No. 4, pp.805-819,
October 1983

(12] Larson, P.-A., and M.V. Ramakrishna, “External Perfect Hashing” Proc. of ACM-SIGMOD 1985 Int.
Conf. on Management of Data, 1985, 190-200

[13] Mallach, E.G., “Scatter Storage Techniques: A Unifying Viewpoint and a Method for Reducing Re-
trieval Times”, The Computer Journal, Vol. 20, No. 2, pp.137-140, May 1977

[14] Poonan, G., “Optimal Placement of Entries in Hash Tables”, ACM Computer Science Conference
(Abstract only), Vol. 25, 1976, (Also DEC Internal Tech. Rept. LRD-1, Digital Equipment Corp.,
Maynard Mass)

[15] Rényi, A., “Three New Proofs and a Generalization of a Theorem of Irving Weiss”, Magy. Tud. Akad.
Mat. Kutaid Int. Kozl., Vol. 7 pp.200-209, 1962

[16] Rivest, R.L., “Optimal Arrangements of Keys in a Hash Table”, Journal of the ACM, Vol. 25, No. 2,
pp.200-209, April 1978

27

function insert(Record)
if m = nb then return(F AIL) { table full }
k := Key(Record)
probetry := smallest
while k£ <> nil do
probetry := probetry + 1
bucket := H(k, probetry)
if probetry > fiz(bmin[bucket]) then
retrieve(bucket)
if non full(bucket) then
replace empty or deleted entry
k := nil
else
swap Record and entry with smallest probe choice.
k := Key(Record)
endif
write(bucket)
adjust(bucket) { fix bmin, smallest and counters if needed }
endif
endwhile
return(bucket)

function search(k)
probetry := smallest
while true do
bucket := H(k, probetry)
case (fiz(bmin[bucket])
> probetry : probetry := probetry + 1
= probetry : retrieve(bucket)
if found(bucket) then return(bucket)
else probetry := probetry + 1
< probetry : retrieve(bucket)
if found(bucket) then return(bucket)
else return(FAIL)
endcase
endwhile

function adjust(bucket)

:= findbucketmin(bucket)

if t > fiz(bmin[bucket]) then
count[bmin[bucket]] = count[bmin[bucket]] — 1
count [t mod 2“] = count [t mod Zd] +1
bmin[bucket] = t mod 2¢
while count [sma”est mod 2“] =0do

smallest = (smallest + 1) mod 2% n

endwhile

endif

Figure 6: Search and insert algorithms

28

