Creating Efficient Programs
By Exchanging Data for Procedures

By

John Franco
and
Daniel P. Friedman

Computer Science Department
Indiana University
Bloomington, IN 47405

TECHNICAL REPORT NO. 245

Creating Efficient Programs
By Exchanging Data for Procedures
by
John Franco and Daniel P. Friedman
March, 1988

This report is based on work supported in part by the Air Force Oflice of Scientilic Rescarch under Grant,
No. AFOSR 81-0372 and by National Science Foundation Grants DCR 83-03325 and CCR 87-02117.

ABSTRACT

We present a programming style which fosters the rapid development
of programs with low asymptotic complexity. The crucial idea behind the
new programming style is that mutually recursive procedures, each assigned
the task of returning the solution to a subproblem of the given problem,
are constructed directly from the problem instance. A side benefit is that
these procedures replace array structures, and, thus, there is no need for
array subscript arithmetic. Moreover, the new programming style preserves

generality and enhances comprehensibility.

Creating Efficient Programs by Exchanging Data for Procedures

John Franco and Daniel P. Friedman, Indiana University

1. Introduction

We present a programming style which fosters the rapid development of pro-
grams with low asymptotic complexity. The crucial idea behind the new
programming style is that mutually recursive procedures, each assigned the
task of returning the solution to a subproblem of the given problem, are
constructed directly from the problem instance. A side benefit is that these
procedures replace array structures, and, thus, there is no need for array sub-
script arithmetic. Moreover, the new programming style preserves generality

and enhances comprehensibility.

Conventional compilers lack the sophistication needed to optimize com-
plexity. Hence, it is up to the programmer to tune his programs for efficiency.
In Lisp-systems, on the other hand, macro-sublanguages provide a facility
for extending the compiled language. With a macro-facility it is therefore
feasible to design algorithms that translate input data directly into efficient
code. Such a solution is particularly preferable when macro definitions are

easy to design as with extend-syntax ([5,6]).

With a macro-algorithm, the input symbols become program identifiers
which are bound to procedures. As an example, consider the problem of
testing set membership (without recursion) in a small finite set. In the

macro-programming style, the algorithm becomes:

(extend-syntax (member-in-set?)
[(member-in-set? n ...) (let ([n (lambda (x) (eq? x ’n))] ...)
(lambda (x) (or (n x) ...)))])

This expands to

(let ([a (lambda (x) (eq? x ’a))]

[b (lambda (x) (eq? x ’b))]

[c (lambda (x) (eq? x ’c))])
(lambda (x) (or (a x) (b x) (c x))))

for the input (member-in-set? a b c), i.e., the input symbols a, b, c
become identifiers that denote the procedures (lambda (x) (eq? x ’a)),

etc.

Several problem solving methods can be implemented in the proposed
style. Examples of these are Dynamic Programming (e.g., the Knapsack
problem), Greedy (e.g., the Minimum Spanning Tree problem), Depth First
Search (e.g., finding the cutpoints of a graph), and Breadth First Search.
Furthermore, our style can turn a recursive Divide and Conquer solution
into an “inverted” Dynamic Programming solution. These implementations
are so similar that once the style is understood, new solutions are readily
obtained.

The remainder of this paper consists of four sections plus a conclusion.
Section 2 introduces our new programming technique. In Section 3 we apply
the technique to the problem of determining a topological sort of a directed
graph [4]. This example illustrates our style for a data structure more com-
plicated than a finite set. Section 4 contains our solution to the problem
of finding the cutpoints of a connected graph [1]. This gives a taste of the
sophistication achievable. In the fifth section we discuss how simple input
structures are expandable into highly efficient stream-programs. The con-
crete example for this is the Dynamic Programming solution to the Partition
problem [3]. Our programs are theoretically the most efficient known for the
problems they are designed to solve. That is, the runtime required is bounded
from above by a function of the input size which is within a constant fac-
tor of the complexity of the best solution. Ordinarily the compile time is

not taken into account when computing complexity since compilation occurs

just once. However, in our unusual style compilation occurs every time the
input data is changed. Therefore, we must also include compile time in our
complexity measure. Unfortunately, compile time depends on specific im-
plementations of extend-syntax and letrec. However, in a future paper we
show that extend-syntax and letrec can be implemented so that compile time
in our style is linear in the size of the “data-network” constructed by these
facilities (this should be intuitively clear). If we assume this to be the case
then the total complexity of our programs, including runtime and compile

time, is optimal to within a constant factor.

2. A Style for Efficient Programs

Given a decomposable problem P, we construct a network of nodes where
each node is a procedure for solving a subproblem of P. Each node has one or
more of two types of sections called complez and simple. A complex section,
unlike a simple section, initiates communication with other nodes; a simple
section returns final and intermediate answers. When evaluated, a node
changes its state by switching from a complex section to a simple section.
In addition, a node may change its behavior through communication with

another node.

Typically, a node has three states: never communicated with, trying to
figure out the solution to the subproblem it represents, and has found the
solution to its correSponding subproblem. In the first state a node is complex
while awaiting an “order” to compute its solution, in the second state it is
simple and reports partial results, and in the third state it is simple and
reports its final result. The first action of a complex section is to switch to
a simple section or a less complicated complex section that is guaranteed to
perform a small number of communications with other nodes. The collection
of all sections that a node can assume and the conditions under which each

section is assumed is called a node’s functionality.

We consider combinatorial problems which allow the functionality of

each node to be the same. Then the number of nodes needed to solve a

problem may- be huge and may be different from instance to instance, but
the code for each node is identical with the exception of the neighborhood
relationship. When the given problem is such that nodes must communicate
with any other nodes we make use of letrec to define them. Identifier lookup
with letrec is assumed to be random access so there is no complexity penalty

in its use.

The power of our technique lies in the design of each node so that its
complex section(s) gets computed only once. Each section (or state) cor-
responds to a procedure. Switching between sections, or changing state,
is accomplished through assignments to the node identifier. In particular,
assignments prevent recomputations of complex sections. Put abstractly,
our programming style generalizes Felleisen and Friedman’s [2] re-definition
technique for implementing import-by-need and c-letrec in module spec-

ifications.

3. Topological Sort Using Mutual Recursion

The problem of Topological Sort (hereafter referred to as sort) is stated as
follows: given a directed graph G = (V, E), find a total ordering of the

vertices of V' if one exists, otherwise return an appropriate error message.

Input and output representation are chosen for convenience. Thus, an
input is assumed to be a list of lists, one sub-list for each vertex, where each
sub-list contains the precedence information for that vertex (a list of vertices
called precedence neighbors). A successful output is a display of vertices in

a total ordering.

For any graph, if there exists a path from vertex v to vertex w we say
that w is reachable from v. We call a vertex free if its precedence list is
null or contains only vertices that have already been displayed. Observe the

following:

1. A sort of V is obtained if, for each v € V', all vertices reachable from v

can be sorted.

2. All vertices reachable from v can be sorted if all vertices reachable from
each precedence neighbor of v can be sorted, regardless of the order in

which these sub-sorts are carried out.
3. A vertex is free when its reachable vertices have been displayed.
4. A vertex that becomes free may be displayed immediately.

These observations suggest a one-to-one correspondence between ver-
tices and nodes. We extend reachability in the obvious way to nodes. We
develop node functionality as follows. From (2) the complex section of node
n should sort all nodes reachable from n. From (3) and (4), the symbol n
should be displayed right after the complex section is completed. Failure oc-
curs if a node which is executing its complex section receives a message from
some node since this implies the node is reachable from itself (a cycle). One
way to detect failure, then, is to assign the node an error function before the
complex section is entered. The error function prints an error message and
stops computation if invoked. Putting it all together we have the following

program for finding a topological sort of a directed graph.

(extend-syntax (topo)
[(tope ([n (m ...)] ...))
(letrec
([n (lambda ()
(set! n (lambda () (error ’n "is part of a cycle")))
(m)
(set! n (lambda () "don’t care"))
(writeln ’n))]
: 5ay)
(i) .31

The code (see the appendix for its expansion) may be tested with

(topo ([a (b c e)] [b (e £)] [f (c)] [c O [e (£ ©)1)).

Note the following: First, none of the input symbols are quoted because

each is rega:ded as a procedure. The data is a collection of procedure iden-
tifiers and these identifiers may clash with those given in the code. We have
avoided such clashes when choosing identifiers for our data. Avoiding clashes
is rendered unnecessary by using hygienic expansion [5]. Second, the com-
plexity of topo is linear in the number of input symbols since each complex
section is executed once and is responsible for communicating to a number
of nodes that is equal to the number of its neighbors. Third, no tests are
used in topo. This is a result of the first assignment in each node. Fourth,
the code for topologically sorting a partially ordered set found in [4] uses a
sophisticated data structure in order to achieve linear complexity, but here

data structure maintenance is hidden.
4. Cutpoints of a Graph, A More Complicated Example

The next problem we consider is the problem of finding the cutpoints of
a connected graph G = (V, E) with no self-loops. A cutpoint is a vertex
which, when removed from G, causes G to be disconnected. If there are
two vertices reachable from a vertex v such that every path connecting those
vertices contains v, then v is a cutpoint of G. Let us create one node for each
vertex. If n is a node then we let var(n) denote the corresponding vertex.
A node must communicate with, or ping, its reachable nodes to determine
whether it is a cutpoint. If each node is allowed to do so individually, an
O(|E[|V]) algorithm will result. We save a factor of O(|V|) by redefining the
node as a simple procedure once it has been pinged by another node; doing

so prevents a node from asking the same reachability questions repeatedly.

If a node n attempts to ping a previously pinged node m then call the
“edge” (n,m) a backedge. Let node m be an unpinged neighbor of pinged
node n. If all currently unpinged nodes reached from m, except through
n, do not reach any nodes that are pinged, then var(n) is a cutpoint which
separates the subgraph corresponding to the nodes visited “below” node m
from the rest of G. Therefore, an easy test for discovering whether var(n)

is a cutpoint is to determine whether any backedges from nodes “below” m

b wodes Yabare? = xioh This is accomplished by counting the number of
backedges. The global variable TB (for Total Backedges) keeps count of the
total number of backedges encountered. When the complex section of a node
is completed, TB is decremented for each backedge terminating at that node.
The local variable LB (for Local Backedges) keeps count of the number of
backedges terminating at a node. The complex function of node n saves TB,
sets LB to 0, and invokes a neighbor node. If the neighbor node has not
already been pinged, the value of LB is subtracted from the current value of
TB and the saved value is compared with the result. If they are the same,
then node n is a cutpoint and is displayed. The node n gets displayed each
time it is found to be a cutpoint unless n is the node from which computation
commences. Then node n gets displayed one more time than it is found to
be a cutpoint (this minor annoyance can be taken care of by removing the

last symbol that is output). Here is the code.

(extend-syntax (cutpoints)
[{cutpodnte ([n (B ...)} - .))
(et ([TB 01)
(letrec
([n (letx*
([LB -1] [ping-neighbors
(lambda (m"~)
(let ([old-TB TB])
(set! LB 0)
(when (not (negative? (m~)))
(set! TB (- TB LB))
(vhen (= 01d-TB TB) (writelmn ’n)))))1)
(lambda ()
(set! n (lambda ()
(set! LB (+ LB 1))
(set! TB (+ TB 1))
LB))
(ping-neighbors m) ...
(set! n (lambda () -1))
LB))]
-
n} ...000%)

A sample test of cutpoints is

(cutpoints ([a (b c d)] [b (a d)] [c (ad)] [d (a e h b e)]
[e (df gl [f(egh)l [g(efh)] [h dfigik)]
[i (h1p)] [j ()] [k (h DI 1 GpPI Ip G

The code performs essentially the same as the Depth First Search solu-
tion found in [1] but without the need for Depth-First-Numbers labeling the
nodes. Thus our code is less cluttered with data organizational details that

are irrelevant to the specification of the solution.

5. Partition Problem, Example of an Acyclic Node Structure

The preceding examples use extend-syntax primarily because the commu-
nication structure BetWeen nodes is not known before runtime, the commu-
nication structure between nodes is complex, and there is a one-to-one cor-
respondence between nodes and the elements of each input. In applications
of Backtracking, Divide-and-Conquer, Branch-and-Bound and Dynamic Pro-
gramming, the communication structure is a tree with a number of nodes that
can be exponential in the number of input elements. Frequently, however,
only a small subset of nodes needs to be visited in order to obtain a solution
to the given problem. If efficient implementations are to be obtained in these
cases the unnecessary nodes must not be created. It follows that nodes must
be constructed on-the-fly. In this mode extend-syntax and letrec reduce
to lazy coms. The result is efficient code for a variety of problems. Below is

cons$, our name for lazy cons. We leave car$ and cdr$ to the reader.

(extend-syntax (cons$)
[(cons$ a d) (letrec
([n (lambda ()
(set! n (let ([v al) (lambda () v)))
(n))]
[m (lambda ()
(set! m (let ([v d]l) (lambda () v)))
(m))1)
(cons (lambda () (n)) (lambda () (m))))1)

Consider, for example, the Partition problem (see [3]). An instance
of the Partition problem is a positive integer B and a set E of elements,
each having a positive integer value. The problem is to determine whether
there exists a subset of E with values that sum to B. We represent E as
a stream of integers. The program slide-merge below takes a stream S
of Partition subproblems and a value n as its arguments. We regard the
subproblems in S in the same way as nodes above. As long as an unsolved

subproblem exists in S, no solution to the given instance has been found,

9

and there is another unconsidered element e in the stream representing E,
then another stream of subproblemsis created by merging S with the stream
of positive valued subproblems obtained by subtracting the value of e from
each subproblem in S. If some subproblem turns out to have 0 value then
processing is terminated with the result that a partition exists, and if S

becomes empty then no solution exists.

(define slide-merge
(lambda (n S)
(letrec
([next-node
(lambda (S1 S2)
(cond
[(null? S2) S1]
[else (let ([x (car$ S1)] [y (- (car$ S2) n)l)
(cond
[(< y 0) (next-node S1 (cdr$ S2))]
[(< x y) (cons$ x (next-node (cdr$ S1) S2))]
[(= x y) (cons$ x (next-node (cdr$ S1) (cdr$ S2)))]
[else (cons$ y (next-node S1 (cdr$ $2)))1))I1))1)
(next-node S S8))))

(define partition
(letrec
([partition-stream
(lambda (E~ S)
(let ([NEXT (slide-merge (car$ E~) S)1)
(or (zero? (car$ NEXT))
(partition-stream (cdr$ E~) NEXT))))1)
(lambda (E B)
(partition-stream E (cons$ B ’())))))

A sample test for partition is

(partition (cons$ 7 (cons$ 6 (cons$ 4 (cons$ 2 ())))) 15).

10

Although this test uses only a finite stream, the procedure partition works

for infinite streams.

6. Conclusions

We have presented a style of programming using extend-syntax and
letrec which may be applied to a wide variety of combinatorial problems.
Writing programs in this style encourages low asymptotic complexity with-
out sacrificing elegance. Moreover, determining the complexity of programs
written in this style seems straightforward partially because the overhead of
data structure maintenance is eliminated. In our examples we have substi-
tuted node structures for arrays thus the arithmetic of array subscripts is

eliminated.

7. References

[1] Aho, A. V., Hopcroft, J. E., and Ullman, J. D., The Design and Analysis
of Computer Algorithms, Addison-Wesley (1974).

[2] Felleisen, M., and Friedman, D. P., “A closer look at export and import
statements,” J. Comp. Lang. 11 (1986), pp. 29-37.

[3] Garey, M., and Johnson, D. S., Computers and Intractibility: A Guide to
the Theory of NP-completeness, W. H. Freeman, San Francisco (1979).

[4] Knuth, D., Pundamental Algorithms: The Art of Computer Program-
ming, Addison-Wesley (1968), pp. 259-265.

[5] Kohlbecker, E., Friedman, D. P., Felleisen, M., and Duba, B., “Hy-
gienic macro expansion,” Proc. of the 1986 ACM Conf. on Lisp and
Functional Programming, (January, 1986), pp. 151-161.

[6] Kohlbecker, E., and Wand, M., “Macro-by-example: deriving syntac-
tic transformations from their specifications,” Conf. Rec. 14th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
(Munich, January, 1987), pp. 77-84.

11

Appendix

Below is the compile-time expansion of the test program for topo.

(letrec
([a (lambda ()
(set! a (lambda () (error ’a "is part of a cycle")))
(b) (c) (e)
(set! a (lambda () "don’t care"))
(writeln ’a))]
[b (lambda ()
(set! b (lambda () (error ’b "is part of a cycle")))
(e) (£) '
(set! b (lambda () "don’t care"))
(writeln ’b))]
[f (lambda ()
(set! £ (lambda () (error ’f "is part of a cycle")))
(c)
(set! £ (lambda () "don’t care"))
(writeln ’£))]
[c (lambda ()
(set! c (lambda () (error ’c "is part of a cycle")))
(set! ¢ (lambda () "don’t care"))
(writeln ’c))]
[e (lambda ()
(set! e (lambda () (error ’e "is part of a cycle")))
&) (o)
(set! e (lambda () "don’t care"))
(writeln ’e))])
(a) (B) (£) (c) (e))

12

