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Abstract

All graphs have cycle separators. In sequential computation, a cycle separator can be found in
O(n + €) time for any undirected graph of n vertices and e edges; in O((n + e)logn) time for any
directed graph. In parallel computation, finding a cycle separator is deterministic NC-equivalent to
finding a depth-first search forest. In particular, finding a cycle separator for any planar directed graph
is in deterministic NC; consequently, finding a depth-first search forest in any planar directed graph

is in deterministic NC, too.

*This work was supported in part by a 1987 Summer Faculty Fellowship from Indiana University at Bloomington.



1 Introduction

A separator of a vertex-weighted digraph G is a set S of vertices or edges such that G — S has
no strongly connected component heavier than a constant fraction of the total weight of G. This
definition also applies to undirected graphs if each undirected edge is replaced by a pair of directed
edges [LT79] [Lei80] [Mil84]. A cycle separator is a vertex-simple directed cycle such that its vertices
form a separator. (A single vertex is regarded as a trivial cycle.) Finding graph separators is a very
important part of the divide-and-conquer strategies for a wide range of graph theoretical problems
and applications. Many applications require small separators [LRT79] [Lei80] [Val81] [JV83] [FJ86]
[PR87]. Others can use separators of any size; for example, Smith [Smi86] shows that cycle separators
of any size can be used to parallelize depth-first search on planar undirected graphs. In fact, this
paper concentrates on the relationship between depth-first search and cycle separators of any size for
general directed graphs.

Miller [Mil84] shows that planar undirected graphs have small cycle separators; these graphs are
the only non-trivial class previously known to have cycle separators. In contrast, this paper shows that
all general directed graphs have cycle separators of any size. Not all graphs, however, can have small
cycle separators; complete graphs are obvious examples. The proof of the universal existence of cycle
separators is based on depth-first search; consequently, the proof has many complexity implications
on finding depth-first search trees and finding cycle separators for digraphs. These implications and
other contributions are briefly presented now; in the following let n be the number of vertices of any

given graph, and let e be the number of edges.
1. Sequential Complexity

e For planar undirected graphs, Miller [Mil84] gives a linear-time algorithm to find small cycle

separators.



e This paper shows that for general undirecied graphs, cycle separators can be found in linear
time, and that for general directed graphs, cycle separators can be found in O((n+¢)-logn)

time.
2. Parallel Complexity

(a) Deterministic NC-Equivalence
This paper shows that finding a cycle separator and finding a depth-first search tree are
deterministically NC-equivalent.

(b) Undirected Graphs

o For planar undirected graphs, Gazit and Miller [GM87] present an efficient RNC al-
gorithm for finding cycle separators of small size; Goldberg, Plotkin, and Shannon
[GPS87] also show that cycle separators of any size can be found deterministically in
O(logn) time and a linear number of processors on a CRCW PRAM.

o For general undirected graphs, Reif shows that ordered depth-first search is P-complete
[Rei85]. Aggarwal and Anderson [AA87] show that un-ordered depth-first search is in
RNC; this paper shows that immediately from the DNC-equivalence, finding a cycle

separator is also in RNC.
(c) Directed Graphs
o For acyclic digraphs, Ghosh and Bhattacharjee [GB84] give a deterministic NC algo-
rithm for lexicographically-first depth-first search.

o For planar digraphs, this paper shows that finding cycle separators is in deterministic
NC; immediately from the DNC-equivalence, depth-first search is also in deterministic

NC. The algorithms are non-trivial.

e For general digraphs, Schevon and Vitter [SV85] give a deterministic NC algorithm to



test whether any given spanning forest is a DF'S forest. The algorithm also produces a
DFS order if the forest is a DFS forest.

e For general digraphs, the author also discovered that cycle separators and thus depth-
first search forest can be computed probabilistically in O(/nlog®n) time and a poly-
nomial number of processors; this result is obtained by combining the ideas from the
proof for the universal existence of cycle separators and from a randomized parallel
undirected depth-first search of the same complexity by Anderson [And85]. This result
is omited from this paper because recently the author, Aggarwal, and Anderson have
jointly discovered an RNC algorithm for DFS on general digraphs. This new result will

be reported in another paper.

This paper is organized as follows. Section 2 gives the DFS-based proof for the universal existence
of cycle separators; this section also discusses the immediate algorithmic implications of the proof
in sequential and parallel computation. Section 3 uses cycle separators to build in parallel a DFS
forest for any general digraph; this section also proves the deterministic NC equivalence between
performing DFS and finding cycle separators. Section 4 describes the DNC algorithm for finding a
cycle separator in any planar digraph; from the DNC equivalence, this cycle separator algorithm yields

a DNC algorithm for DFS on planar digraphs. Section 5 gives the conclusions.

2 The Existence Proof of Cycle Separators

Subsection 2.1 gives the DFS-based proof for the universal existence of cycle separators. Subsection 2.2

discusses the immediate algorithmic implications of the proof in sequential and parallel computation.



2.1 The Proof

Throughout this paper a weighted graph always refers to one with non-negative vertex weights; to
avoid triviality, at least one vertex weight is greater than zero. Let G be such a weighted digraph.
Let W(v) denote the weight of any vertex v; let W(K) denote the total weight of any vertex set K.

K is overweight if W(K) > W(G)/2.

Definition 1 (Generic Separators)
Let G be any weighted digraph. A separator S of G is a vertez set of G such that G — § has no

overweight strongly connected component.

A cycle (or path) separator is a vertex-simple directed cycle (or path, respectively) such that its
vertices together form a separator. This section offers two separator theorems: all weighted digraphs
have path separators and cycle separators. The theorems can be immediately applied to any weighted
undirected graph by substituting each undirected edge with a pair of directed edges; in such a substi-
tution, any directed cycle separator obtained in the theorems cannot degenerate into an undirected
edge because it is one of the following three cases: the cycle of the empty set, the cycle of a single
vertex, or a cycle of at least three vertices.

In the following, depth-first search is used to identify a path separator for any given weighted

digraph; then the path separator is converted into a cycle separator.

Theorem 2 (Path Separator)

Every weighted digraph has a path separator.

Proof. Let G be any given weighted digraph with n vertices. Assume w.l.o.g. that G is strongly
connected. Otherwise replace G with its maximum-weight strongly connected component G’ because

every path separator for G’ is also one for G.



Construct a path separator for G as follows. Apply depth-first search (DFS) to G from an arbitrary
vertex r and list the vertices in the DFS last-visit order z1,...,z,. Let f be the smallest index such
that 1 < f < n and W(z1)+---+ W(zs) > W(G)/2. Then W(z1)+ ---+ W(zs-1) < W(G)/2 and
W(zsp1)+ -+ W(zn) < W(G)/2. Now let P be the vertex-simple directed path in the DFS tree
from the root r to zy.

Prove that P is a path separator of G as follows. Let A = {z1,...,2f_1} and B =G — (AU P).
Arrange the DFS tree in such a way that for all last-visit numbers ¢ and j, if ¢ > j, the vertex z; is
either above or to the right of the vertex z; in the tree. In such an arrangement, the vertex z; is
above or to the right of every vertex in A because the index f is greater than the last-visit numbers
of all vertices in A. Moreover, every vertex in B is to the right of z; because the last-visit numbers
of vertices in B are all greater than f and because P consists of ¢ and all its ancestors. The above
two observations imply that every vertex in B is to the right of every vertex in A. Because all cross
edges in DFS are directed edges from the right to the left, there are no undirected edges between A
and B, and no directed edges from A to B. Therefore, any strongly connected component of G — P
is contained either entirely in A or entirely in B. Consequently, the total weight of any strongly
connected component of G — P is no more than W(A) or W(B), which both are in turn no more than

W(G)/2 because A = {z1,...,z5_1} and B C {z441,...,Zn}. W

Theorem 3 (Cycle Separator)

Every weighted digraph has a cycle separator.

Proof. Let G be any given weighted digraph; let P = uy, ..., u, be a path separator of G obtained
from the Path Separator Theorem. Convert P to a cycle separator as follows. Let ¢ be the largest
index such that 1 < t < r and G — {uy,...,u;_1} has an overweight strongly connected component
X then the set X must contain u; because the path uy, ..., u; is still a separator. If such an index

t does not exist, then the empty set is a trivial cycle separator; otherwise continue the conversion



and let P' = uy,...,u;. Let s be the smallest index such that 1 < s < ¢t and G — {u,s41,..., ue} has
an overweight strongly connected component Y'; then the set ¥ must contain u, because the path
Ug, ..., Us 18 still a separator. To finish the conversion, there are two cases based on whether or not
s =t. If s =, then the vertex u, is a trivial cycle separator. If s # ¢, then u, ¢ X and u¢ ¢ Y.
Furthermore, because X and Y are overweight and strongly connected, X NY must have a vertex w
such that there is a vertex-simple directed path @ from u; through X to w and then from w through
Y to u,. Finally, because X UY does not contain any of 4,41, ..., u¢—1, the path @ and the path
Ug, ..., Ut form a vertex-simple directed cycle of at least three vertices; this cycle is a separator because

the path u,,..., % is a separator. ll

2.2 The Immediate Algorithmic Implications

In the following, let n be the number of vertices and e be the number of edges in any given graph.

1. Compute Path and Cycle Separators Sequentially

e Path Separators. The proof of the Path Separator Theorem yields a simple linear-time

algorithm for finding a path separator of any weighted digraph.

e Cycle Separators. The proof of the Cycle Separator Theorem can be easily translated
into algorithms for converting a path separator into a cycle separator. In general, such a
conversion takes O((n+ e)-log n) time if bisection is used to find the indices ¢ and s; in the
case of undirected graphs, the indices ¢ and s can easily be found in linear time. Therefore,
it takes O(n + e) time to find a cycle separator for any weighted undirected graph, and

O((n+ e) - logn) time for any weighted digraph.

2. Use DFS to Find a Path Separator in Parallel



For any weighted digraph, any path separator of its maximum weight strongly connected com-
ponent is also a path separator of the digraph itself; moreover, computing a maximum weight
strongly connected component is in NC. Consequently, the following discussion may assume

w.l.o.g. that the given digraph is strongly connected.

Algorithm 4 (Find-a-Path-Separator-from-a-DFS-Tree)
Input: a weighted sirongly connected digraph G of n vertices, and a DFS tree T of G.

Qutput: a path separator of G.

Ideas. The proof of the Path Separator Theorem indicates that in any DFS tree, at least one
tree path is a path separator; therefore a path separator can be found by simultaneously testing
all tree paths from the root to the leaves. Furthermore, if the last-visit order of the DFS tree
is known, the proof explicitly gives a path separator by identifying the vertex z ¢, which can be
found by a standard prefix computation algorithm in O(logn) time and O(n) processors on an

EREW PRAM [KRS85].

. Convert a Path Separator to a Cycle Separator in Parallel

Algorithm 5 ( Convert-a-Path-Separator-to-a-Cycle-Separator)
Input: a weighted digraph G of n vertices, and a path separator of G.

Output: a cycle separator of G.

Ideas. The proof of the Cycle Separator Theorem can be implemented as follows. The index
t can be found by bisecting and testing the path separator; after ¢ is obtained, the index s
can be found in the same way. The bisection process requires O(logn) tests of whether a
path is a separator. To save time over the processor complexity, the index ¢ can be found by

simultaneously trying all possibilities; after ¢ is obtained, the index s is treated in the same way.



3 Use Cycle Separators to Conduct Parallel DFS

The next theorem is the main result of this section.

Theorem 6 (The DNC Equivalence between Conducting DFS and Finding Separators)
Given an oracle for any of the following five problems, there is a deterministic NC algorithm for each

of the other four problems.

1. Conducting depth-first search on any digraph.

2. Finding a path separator of any weighted digraph.

3. Finding a path separator of any weighted digraph with unit vertez weights.
4. Finding a cycle separator of any weighted digraph.

5. Finding a cycle separator of any weighted digraph with unit vertez weights.

Proof. The following six reductions suffice: 1 < 5 (see the following overview), 5 < 4 (obvious),
4 < 2 (Algorithm 5), 2 < 1 (Algorithm 4), 5 < 3 (similar to 4 < 2), and 3 < 2 (obvious). W

The overview for the reduction from 1 to 5. A digraph is rooted at a vertex if the vertex
is reachable to all other vertices through directed paths. A partial DFS tree in a rooted digraph is
a subtree of a DFS tree such that the digraph and both trees are rooted at the same given vertex.
Subsection 3.1 uses cycle separators to extend any partial DFS tree of any rooted digraph. Subsection
3.2 applies this tree extending algorithm to build a DFS tree for any rooted digraph. Subsection 3.3

builds a DFS forest for any general digraph by decomposing the general digraph into rooted digraphs.

3.1 Use Cycle Separators to Extend a Partial DFS Tree

Let G be any given rooted digraph. Let T’ be any partial DFS tree of G; let z1, z2, ..., T¢ be the vertices

in T listed in the DFS last-visit order. Further let y;1,...yik, be the vertices not in T but incident



from z;; the order of y;1,...%; is arbitrary. Also for any two integer pairs p = (4,7) and p’ = (¢, 5'),
let p < p' denote that either ¢ < 7' or (¢ = i/ and j < j'). For any digraph D and its vertex z, let

R(z, D) denote the set of vertices reachable from z through directed paths.

Definition 7 (Dangling Subgraphs)
Let DSG(i,7) = R(%i,5, G—T)~Upc(i,jyR(Yp, G—T). The non-empty DSG(¢,])’s are actually digraphs

rooted at their corresponding y; ;’s, and are called the dangling subgraphs induced by T.

Lemma 8

The following three items form a DFS tree for G:

1. the partial DFS tree T,
2. the edge set {z; — y;; | DSG(3,7) # 0.}, and

3. an arbitrary DFS tree rooted at y; ;j for each non-empty DSG(i,7).

Proof. Finish the partial DFS tree T into the DSG(i,j)’s by visiting the vertices y; ;’s according
to the lexicographic order on their indices. W

The lemma provides a parallel computation scheme to build a DFS tree because the dangling
subgraphs are pairwise disjoint and their DFS trees can be computed independently. For the purpose
of recursion, a dangling subgraph is good if it has at most 1/2 of the vertices in G; otherwise the
subgraph is bad. A partial DFS tree is good if all its dangling subgraphs are good; otherwise the tree is
bad. A bad partial DFS tree has exactly one bad dangling subgraph because the dangling subgraphs
are pairwise disjoint. To obtain a good partial DFS tree, a bad partial DFS tree can be iteratively
extended to break its bad dangling subgraph; the progress on breaking the bad dangling subgraph is
measured by the size of some strongly connected components described as follows. Let T be a bad
partial DFS tree for G; let DSG(4,j0) be its bad dangling subgraph. Further let H be the induced

digraph of DSG(4o, jo) condensed at its strongly connected components. Because H is acyclic and

10



because DSG(io, jo) is bad and rooted, there is a vertex in H such that this vertex and its descendants

together consist of more than 1/2 of the vertices in G.

Definition 9 (Lowest Eztension Ends)
An extension end of T is a vertex in H such that this vertez and its descendants together consist of
more than 1/2 of the vertices in G. A lowest eztension end is one such that none of its children is an

eztension end, or equivalently none of its descendants is an eztension end.

Algorithm 10 (Eztend-a-Partial- DFS-Tree-to-Cut-Eztension-Ends)

Input: a rooted digraph G, and a bad partial DFS tree T of G.

Output: a partial DFS tree T' of G such that either T' is good or every extension end of T'
consists of at most 1/2 of the vertices of the same extension end of T'.

Oracle: find a cycle separator for any given digraph with unit vertez weights.

Methods. First find a lowest extension end L of T. Then find a cycle separator C of L. Then
find a vertex-simple directed path P in DSG(io, jo) from ¥;, j, to an arbitrary vertex z in C such
that P and C share only z. Then let C’ be the path consisting of C' without the edge incident to z.
Finally, let T' =T U {2, — %50} U P U C'.

Correctness. T' is a partial DFS tree of G because P U (' is a vertex-simple directed path
rooted at y;,;, in DSG(io,jo). Furthermore, if 7" is still bad, then every extension end of 7' is a
strongly connected component of L — (P U C’); consequently every extension end of T consists of at
most 1/2 of the vertices of the same extension end L of T.

Complexity. The following discussion shows that the algorithm is in deterministic NC. The
DSG(1,7)’s can be obtained by computing the transitive closure of G — T and by using the fact that
u € DSG(7,5) if and only if (4,7) is the smallest index such that u is reachable from y;; in G - T.

After the DSG(i,7)’s are found, the bad dangling subgraph DSG(io,jo) can be easily identified.

1



Furthermore, the induced digraph H of DSG(io,jo) can be obtained by computing the transitive
closure of DSG(i, jo); from the transitive closure of DSG(io, jo), finding the lowest extension end L
is easily in deterministic NC. With L found, the cycle separator C of L can be obtained by a call of
the given oracle; then the path P can be efficiently computed by the NC Bread-First Search algorithm

by Gazit and Miller [GM87].

3.2 Build a DFS Tree for Any Rooted Digraph

The next algorithm iteratively applies Extend-a-Partial-DFS-Tree-to-Cut-Extension-Ends to extend

the root of any rooted digraph into a DFS tree.

Algorithm 11 (Build-a-DFS-Tree-for-a-Rooted-Digraph)
Input: a digraph G rooted at .
Output: a DFS tree rooted at v for G.

Oracle: Eztend-a-Partial-DFS-Tree-to-Cut-Eztension-Ends.

Method and Complexity. Initially, let 7' be the tree consisting of only r. Then iteratively use
Extend-a-Partial-DFS-Tree-to-Cut-Extension-Ends to extend T into a good partial DFS tree. Because
the tree extending oracle cuts by half the size of some lowest extension end, it takes O(logn) such
iterations to obtain a good partial DFS tree. Once this good tree is found, compute its dangling
subgraphs; as discussed before, finding the dangling subgraphs is in NC. Finally, recurse the above
computation on the dangling subgraphs; the depth of the recursion is O(logn). The algorithm is

clearly in NC.

3.3 Build a DFS Forest for Any General Digraph

The next algorithm uses Build-a-DFS-Tree-for-a-Rooted-Digraph to build a DFS forest for any general

digraph by decomposing the general digraph into rooted digraphs.

12



Algorithm 12 (Build-a-DFS-Forest-for-a-General-Digraph)
Input: a general digraph G.
Qutput: a DFS forest for G.

Oracle: Build-a-DFS-Tree-for-a-Rooted-Digraph.

Ideas and Complexity. First decompose G into rooted digraphs as follows such that a DFS
forest for G can be obtained by taking an arbitrary DFS tree from each of the rooted digraphs.
List the vertices of G in an arbitrary order 2, ..., Zn; then let OWN(z;) = R(z;, G) — Up<i R(zp, G).
The non-empty OW N (z;)’s are digraphs rooted at their corresponding x;’s; furthermore, these rooted
digraphs satisfy the desired decomposition property, and can be found in the same way as the dangling
components are obtained. Once these rooted digraphs are obtained, apply Build-a-DFS-Tree-for-a-
Rooted-Digraph to compute their DFS trees and thus build a DFS forest for G. The algorithm is

clearly in NC.

4 A Deterministic NC Depth-First Search on Planar Digraphs

The main result of this section is the next theorem.

Theorem 13
Finding a cycle separator for any weighted planar digraph is in deterministic NC; from the NC-

FEquivalence Theorem, butlding a DFS forest for any planar digraph is also in deterministic NC.

The theorem is proven by the following description of a cycle separator algorithm for any weighted
planar digraph. The complexity of the cycle separator algorithm is O(log®n) time and O(n*) pro-
cessors on an EREW PRAM for any graph of n vertices; the complexity for the corresponding DFS
algorithm is O(log” n) time and O(n*) processors. Such complexity is beyond practical application

and is not worth the space for a tedious straightforward analysis; thus the following discussion con-

13



centrates on showing th?.t the cycle separator algorithm is in deterministic NC, and omits the analysis
for its complexity. For ease of understanding, the cycle separator algorithm and its subroutines are
presented in a top-to-bottom hierarchical way. Subsection 4.1 gives an overview of the cycle separator
algorithm; the subsequent subsections discuss in detail the subroutines used in the algorithm.

To shorten terminologies, all cycles and paths in the following discussion refer to vertez-simple

directed ones unless explicitly stated otherwise.

4.1 An Overview of the Cycle Separator Algorithm

Algorithm 14 (Find-a-Cycle-Separator)
Input: any weighted planar digraph G of n vertices.

Output: a cycle separator of G.

Overview. A vertex set is called a block if it is strongly connected in G. A path-block separator
is a disjoint pair of a path and a block whose vertices form a separator. G has an obvious path-block
separator, namely, the empty path and its maximum-weight strongly connected component. The
cycle-separator algorithm starts with this trivial separator and iteratively cuts by half the number of
vertices in the block while building up the path. After O(logn) cuts, the block is left with at most
one vertex. The cycle separator algorithm finishes by merging this one-vertex block and the final path
into a cycle separator, using the same idea as in the proof of the Cycle Separator Theorem.

The block-cutting procedure is described as follows. Let (P;, Bin) be any path-block separator;
the goal is to find another path-block separator (Poys, Bout) such that | Boye | < | Bin | /2, where | - |
denotes the number of vertices in a vertex set.

Step 1. To break Bj, into smaller pieces, first use the NC algorithm by Lovész [Lov85] to compute
an ear decomposition FEi, ..., By for B;,. Then find the smallest index f such that there are at least

| Bin | /2 vertices in By U:--U Ef. Let Bpjg = EyU---U Ey; also let Beypau = By U---U Ef_;. From

14



the property of the ear decompositions, Bpig and B,mqu are blocks; from the choice of the index f,
| Brig | > | Bin | /2 but | Bymau | £ | Bin | /2. Now compute the strongly connected components
SCh, ..., SC, of Bip, — Byig; the SC;’s are blocks such that | SC; | < | By, | /2. The structure of B;,
can be simplified by treating B,y and the SC;’s as individual vertices; let G and B;, be the condensed
versions of G and B;, respectively. Then in B;,, all non-trivial cycles go through the same vertex
Biig; a daisy will refer to any strongly connected planar digraph with such a centralization property.
A path-daisy separator is one consisting of a disjoint pair of a path and a daisy; the result of this step
is the path-daisy separator (Pm,_ﬁ;) for G.

Step 2. (Subsections 4.4 and 4.5.) This step starts with (R'm:g;,:), and operates in G. The daisy
Bi, can be thought of as a collection of cycles centered at the vertex Bpig; the goal is to iteratively
cut by half the number of cycles in B;, while building up P;,. However, there may be an exponential
number of cycles in B;,. For this concern, a novel approach is invented to cut B;, by cutting the
so-called petals; in a planar digraph, a petal bounded by an edge e is a cycle of a maximal interior
among the cycles going through e. In any daisy, there are at most two petals bounded by each edge;
therefore after O(logn) cuts, B, is left with at most one cycle. Then this one-cycle daisy and the
final path in the separator are merged into a cycle separator C of G, using the same idea as in the
proof of the Cycle Separator Theorem; the result of this step is the cycle separator C of G.

Setp 3. (Subsections 4.2 and 4.3.) This step starts with C' and operates in G. A pseudo-cycle of G
will refer to a cycle in any condensed version of G; C is a pseudo-cycle in G. A pseudo-cycle separator
of G is one consisting of a pseudo-cycle; C is a pseudo-cycle separator of G. A pseudo-cycle of G is
in fact a cycle of G attached with disjoint blocks; C may have more than one block. Again a novel
approach is used to iteratively cut by half the number of blocks in C' while keeping C a separator;

after O(logn) cuts, the result of this step is a pseudo-cycle separator of at most one block.

15



Step 4. The one-block pseudo-cycle separator can be decomposed into a path and a block; the
remaining block is either Bp;, or some SC;. In the former case, By can be further decomposed into
the ear Fy and the block Bymqaii. Therefore the separator consists of two or three paths and a block at
most half the size of B;,. To finish the block-cutting procedure, merge the paths in the decomposition
into a single path, using the same idea as in the proof of the Cycle Separator Theorem; the resulting

path-block separator is of the required block size.

4.2 Basics of Pseudo-Cycle Separators

o Let G = (V,E). A block B of G is a non-empty vertex set of G such that the digraph (B, EN
(B x B)) is strongly connected. If By, ..., By, are pairwise disjoint blocks of G, then the condensed
graph G of G at By, ..., By is a weighted planar digraph defined in the following expected way:
(1) Each B; is treated as a vertex in G; each vertex in G but not in any B; remains a vertex in
G. (2) For any vertices ¢ and y in G, there is a directed edge from z to y in G if and only if
there is a directed edge from = to y in G. (3) For any vertex z in G, the weight of z in G is the

total weight of  in G.

e A pseudo-cycle of G is a cycle of the condensed graph of G at some pairwise disjoint blocks. A

pseudo-cycle separator of G is a pseudo-cycle whose vertices form a separator of G.

e To shorten statements, Algorithm Join-Paths-and-Cycles will refer to a class of similar proce-
dures that merge a constant number of paths, cycles and vertices into a path or a cycle, using
the same idea as in the proof of the Cycle Separator Theorem. Examples of such processes can

be found in the overview of the Cycle Separator Algorithm in Subsection 4.1.

o The next algorithm and its slight variations are a key subroutine for processing path-daisy

separators and pseudo-cycle separators.
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Algorithm 15 (Find-a-Mazimal-Set-of-Paths)

Input: F, zi,...,zs, and y1, ..., ys, where (1) F is any planar digraph such that its boundary is
a vertez-simple cycle but not necessarily a directed cycle, and (2) z1,...,z, and ¥y, ..., ys are the

vertices on the boundary and in the clockwise order.

Output: a mazimal set of pairwise vertez-disjoint paths from z;’s to y;’s through only interior

vertices of F.

Ideas. The following discussion yields an NC algorithm to find an output. Let II; = {(,7) |
there is a path from z; to y; through interior vertices of F.}; let II, = {(%,7) | the index j is
the smallest for 7 such that (z,7) € II;.}; further let II3 = {(¢,7) | the index i is the smallest for
7 such that (z,7) € II;.}. Now for each (,7) € II3, let P(7,5) be an arbitrary path from z; to
y; through interior vertices of F'; let M P be the set of these P(%,7)’s. It is straightforward to
show that M P is a valid output; furthermore, M P can be computed in parallel as follows. Let
m be the number of vertices in F. To obtain the three II;’s, first compute an m X m boolean
matrix TC such that its (p, ¢)*® entry is 1 if and only if F has a path from the pth vertex to the
¢" vertex through interior vertices. TC' can be computed by slightly modifying the standard
doubling-up process for transitive closure; with T'C' obtained, the IIx’s can be easily computed
one by one. To compute an arbitrary P(¢,7) for each (3,5) € II3, first compute from T'C the
vertex set V(i,7) = {z;,y;} U {v | vis a vertex reachable both from z; and to y; through interior
vertices in F.}. These V(z,7)’s are pairwise disjoint because of the minimality of the indices ¢

and j; with the disjoint property, the P(z,7)’s can be simultaneously computed.

4.3 Trim Blocks off a Pseudo-Cycle Separator

The next algorithm is a detailed description for Step 3 in the overview of the Cycle Separator Algorithm

in Subsection 4.1.
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Algorithm 16 ( Trim-Blocks-off-a-Pseudo-Cycle-Separator)
Input: G and a pseudo-cycle separator C;n, containing k blocks By, ..., Bk.
Output: a pseudo-cycle separator Coy; such that Coys contains at most one block, and this block

s some original B;.

Method. The idea is to iteratively cut by half the number of blocks in Cj,; it takes O(log n) such
cuts to reduce down to one the number of blocks. The cutting process is described as follows.

Step 1. W.lo.g. assume that C;, runs clockwise and Bi,..., By are listed clockwise. Call
Bi, ...y Bz the upper blocks; call Byys141,---» Bk the lower blocks. The paths connecting adjacent
blocks on O, are called the ezternal connection paths. Each block has a vertex at which an external
connection path enters (or leaves) the block; call this vertex the entrance (or ezit, respectively) of the
block.

Step 2. On each upper block, find an arbitrary spanning tree converging to the ezif; in other
words, the tree is rooted at the exit and the tree edges point from children to parents. In contrast,
on each lower block compute an arbitrary spanning tree diverging from the enirance. Because the
blocks are strongly connected, such trees exist; because the blocks are pairwise disjoint, these trees
can be computed in parallel. Each block now has a unique tree path between its exit and entrance;
call this path the internal connection path of the block. Then all internal and external connection
paths together form a clockwise cycle; denote this cycle by Cpnig. If Cinig is not yet a cycle separator,
w.l.o.g. assume that the interior of C,,;q is overweight.

Step 3. Let L (or U) be the set of vertices that are on the boundaries of the lower (or upper,
respectively) blocks and simultaneously within the interior of Cpn;q. Then use Algorithm Find-a-
Maximal-Set-of-Paths in Subsection 4.2 to obtain a maximal set of pairwise vertex-disjoint paths
from L to U such that the internal vertices of these paths are within Cp;g but outside the blocks; call

these paths the division paths. Then for each division path P from z to y with z in a lower block LB
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and y in an upper block U B, the following four paths form a cycle: (1) P, (2) the spanning tree path
from y to the exit of UB, (3) the path on Cnig from the exit of UB to the entrance of LB, and (4)
the spanning tree path from the entrance of LB to y; call such cycles the division cycles.

Step 4. The interiors of the division cycles form a increasing chain of the set inclusion. Based on
the weights of these interiors, there are three cases: (1) no division cycles have overweight interiors,
(2) all division cycles have overweight interiors, or (3) otherwise. All three cases are essentially the
same; so only the third case is discussed in detail as follows. Because of the increasing chain property,
it is easy to compute in parallel an adjacent pair of division paths PL and PR together with their
respective division cycles C L and C R such that C'L has an overweight interior but C R does not; PL
is to the left of PR. The cycles CL and C R divide the interior of Cpp;4 into three regions: (1) the left
region is outside CL, (2) the central region is inside C'L and outside CR, and (3) the right region is
inside CR. Because the interior of C'L is overweight, the left region cannot be overweight; because
the interior of CR is not overweight, the right region is not overweight. Therefore the following three
parts form a separator: (1) Crid, (2) the paths PL and PR, and (3) the blocks on the boundary of
the central region.

Step 5. Further delete from the above separator some remaining blocks as follows. From the
maximality of the division path set, there are no directed paths from L to U within the central region;
consequently in the central region, the vertices of either the upper blocks or the lower blocks can be
removed from the separator while the remainder of the separator is still a separator. Therefore a new
separator can be obtained from (1) Cpmid, (2) the division cycles CL and CR, and (3) w.lo.g. the
upper blocks on the boundary of the central region; at this point, at most 1/2 of the B,’s remain.
The new separator can be decomposed into two parts: (1) a pseudo-cycle consisting of Cpiq and
the remaining blocks, and (2) two paths which are part of the division cycles CL and CR. Now

use Algorithm Join-Paths-and-Cycles in Subsection 4.2 to merge the pseudo-cycle and two paths into
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a pseudo-cycle separator; perform this computation on the condensed graph of G at the remaining

blocks. The outcome is a pseudo-cycle separator containing at most one half of the original blocks.

4.4 Basics of Path-Daisy Separators

e A daisy is a strongly connected planar digraph such that all non-trivial cycles go through the
same vertex u. (A trivial cycle is a single vertex or the empty set.) The vertex u is called a

center of the daisy.

e Let J be a daisy; let e be an edge of J. A petal bounded by e in J is a cycle C going through e
such that the cycle has a mazimal interior among all cycles going through e; in other words, for

any cycle C' going through e, if the interior of C is a subset of that of C’, then C = C".

Lemma 17
For any daisy, there are at most two petals bounded by each edge; furthermore, finding all these

petals i3 in deterministic NC.

Proof. The first half of the lemma. Let J be any daisy; let w be a center of J;let e =5 — ¢ be
any edge of J. Also let T (or S) be the set of edges on paths from t to w (or respectively, from w
to s). Because J is a daisy centered at w, the boundary of T' (or S) consists of one or two paths
from t to the center (or respectively, from the center to s). Furthermore, the following three
items form a cycle: (1) the edge e, (2) either of the two boundary paths of T, and (3) either of
the two boundary paths of S. There are at most four such combinations; these combinations

include the two petals bounded by e.

The second half of the lemma. The petals can be found by a straightforward implementation of
the above discussion, using the planarity algorithm by Klein and Reif [KR86] and a standard

transitive closure algorithm. W
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e A simple daisy is one such that the petals bounded by its boundary edges are the only non-trivial
cycles in the daisy. A simple daisy has no edges and no vertices inside any petal; moreover, the
petals have pairwise disjoint interiors and can be arranged in a circular order around the center
of the simple daisy. These properties can be used to visualize a simple daisy; they are also

essential for the petal-cutting process in the Subsubsection 4.5.2.

e Let L = (V,E) be a weighted planar digraph; let P be a path of L; let H = (V',E’) be a
daisy (or simple daisy) such that V' C V and E’ C E. The pair (P, H) is called a path-daisy
separator (or respectively, path-simple-daisy separator) of L if P and H are vertex-disjoint and
their vertices together form a separator of L. The edge set of H is not necessarily equal to
En (V' x V'); in fact, edges of H are often removed to simplify its structure without turning

(P, H) into a non-separator.

4.5 Cut Petals off a Path-Daisy Separator

The next algorithm is a detailed description for Step 2 of the overview of the Cycle Separator Algorithm

in Subsection 4.1.

Algorithm 18 (Convert-a-Path-Daisy-Separator-to-a-Cycle-Searator)
Input: G and a path-daisy separator (Pin, Din) of@.

Output: a cycle separator of G.

Overview. There are three steps.

Step 1. (Subsubsection 4.5.1.) Convert (P, D;n) to a path-simple-daisy separator (Prnid, S R

Step 2. (Subsubsection 4.5.2.) Convert (Ppiq, SDmiq) to another path-simple-daisy separator
(Pfinats S D finar) such that SD¢;nq has at most one petal, or in other words 5D finat is @ cycle.

Step 3. Use Algorithm Join-Paths-and-Daisies in Subsection 4.2 to merge the path Pfinq and

the cycle SD¢inat into a cycle separator of G.
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4.5.1 Convert a Path-Daisy Separator to a Path-Simple-Daisy Separator

The next algorithm is a detailed description for Step 1 of Algorithm 18.

Algorithm 19 (Convert-a-Path-Daisy-Separator-to-a-Path-Simple-Daisy-Separator)
Input: a weighted digraph G and a path-daisy separator (P, H;,).

Output: a path-simple-daisy separator (Poy:, Hout) and the petals of Hoy;.

Method. First find all petals of Hy,; the planar embedding for H;, is part of that for G. Then
there are two cases based on whether any petal has an overweight interior. Case I: No petal has
an overweight interior; Case II: At least one petal has an overweight interior. These two cases are
discussed separately as follows.

Case I. No petal has an overweight interior. Let L be the boundary of H,,; a boundary sink (or
source) is a vertex on L with zero out-degree (or in-degree, respectively) on L. Because H;, is a daisy,
for any boundary sink (source), H;, has a path from the sink to the center of H,, (or respectively,
from the center to the source) such that the path and L are disjoint except at its end(s); call such a
path a petal path. Compute in parallel a set of petal paths, one for each source and one for each sink;
because H,, is a daisy, the petals in any such set are pairwise disjoint except that they all share the
center. These chosen petals divide the interior of H;, into disjoint regions; each region is bounded
by the petal paths of an adjacent source-sink pair; so the boundary of each region is a cycle. Delete
from H,, all edges and all vertices within each region; then P;, and the remainder of H;, still form a
path-daisy separator of G because every cycle is contained in a petal and because no petal of H;, has
an overweight interior. After the deletion, the remainder of H;, is a simple daisy and the boundaries
of the disjoint regions are its new petals.

Case II. At least one petal has an overweight interior. To reduce this case to Case I, H;, can be

shrunk by the following deletion analysis. Take a pair of petals A and B with overweight interiors
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such that A and B run in the same direction, say, clockwise. Because both A and B have overweight
interiors, the following three areas cannot be overweight: (1) the area outside both A and B, (2) the
area inside A but outside B, and (3) the area outside A but inside B. In other words, only the area
inside both A and B may be overweight; call this area the central area. Based on this possibility,
there are two cases. Case A: The central area is not overweight. Then the two cycles already form
a separator; keep these two cycles. Case B: The central region is overweight. Then the boundary of
this central area is a cycle C' because H;, is a daisy and A and B run in the same direction; replace
A and B by C.

Now pair up the petals with overweight interiors such that each pair runs in the same direction;
perform the above analysis in parallel for all pairs. The outcome is either at least one pair is in Case
A or all pairs are in Case B. In the former outcome, save only one pair; in the latter outcome, there
remain one half as many overweight cycles as before the analysis. By repeating the analysis O(logn)
times, at most two cycles left; the following three cases and their symmetries are the only possibilities:
(1) one clockwise cycle from Case B, (2) two clockwise cycles from Case A, or (3) one clockwise cycle
and one counter-clockwise cycle both from Case B. The three cases are discussed separately as follows.

Case II-(1). Let R be the remaining clockwise cycle; let H,,;q be the H;, without the area
outside R; then (P, Hmiq) is still a separator. Because of the above shrinking process, the interior
of R is the intersection of all petals of H;, with overweight interiors; this fact can be used to show
that no petal of H,,;q4 except R has an overweight interior. Therefore, a segment C'H can be chopped
off R such that the remainder of H,,;q is still a daisy; however, because the loss of CH destroys R,
H,nia now has no petal of an overweight interior. To reduce the case back to Case I, use Algorithm
Join-Paths-and-Cycles in Subsection 4.2 to merge CH and F;, into a path.

Case II-(2). Let R1 and R2 be the two remaining cycles; then R1 and the part of R2 within

R1 form a separator. The remainder of R2 are actually chords on R1; to get a simpler separator,
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start with R1 and add the chords one by one. Adding a chord in effect chops off a region and forms
a smaller cycle; in other words, the chords induce a decreasing chain of cycles. In this chain some
pair of adjacent cycles still form a separator; finding such a pair is in NC. Moreover, an adjacent pair
is just a cycle and a chord; so use Algorithm Join-Paths-and-Cycles in Subsection 4.2 to merge the
adjacent pair into a cycle separator. This is a better output than requested for the output.

Case II-(3). Let CR and CL be the remaining cycles. Delete from H;, everything outside C'R;
then the remainder and P, still form a path-daisy separator. Moreover, the remainder of C L consists
of chords on C R; these chords divide the interior of C'R into disjoint regions. Because the regions are
disjoint, either exactly one region is overweight or no region is overweight. In the former case, delete
everything in all the regions except the overweight region; the case is reduced to Case II-(1). In the

latter case, delete everything in all the regions; the case is reduced to one very close to Case II-(2).

4.5.2 Convert a Path-Simple-Daisy Separator to a Path-Cycle Separator

The next algorithm is a detailed description for Step 2 of Algorithm 18.

Algorithm 20 (Convert-a-Path-Simple-Daisy-Separator-to-a-Path-Cycle-Separator)

Input: a weighted digraph G, a path-simple-daisy separator (Pi,, H;n) of G, and the petals
By By of Hie

Output: a path-simple-daisy separator (Pout, Hout) such that Hoy: has at most one petal, or in

other words Ho.: s a cycle of G.

Method. The idea is to repeatedly cut by half the number of petals in H;, while building up
Pin; it takes O(logn) such cuts to reduce to one the number of petals. The petal cutting process is
described as follows.

Step 1. W.lo.g. let Ey,...., By be listed in the same circular order as their edges appear on the

boundary of H;,. Call Ey,..., Efx/5 the upper petals; call Efg/a141, ..., Ex the lower petals. Let U
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(or L) be the set of vertices on the boundary of H;, and simultaneously on the upper (or lower,
respectively) petals. U and L contain one or two common vertices; delete them from U and L for
simplicity.

Step 2. Use Algorithm Find-a-Maximal-Set-of-Paths in Subsection 4.2 to compute a maximal set
of pairwise disjoint paths from L to U such that the internal vertices of these paths are outside the
boundary of H;, and not on P;,; call such paths the division paths. For each division path, there is a
cycle consisting of the path and parts of a lower petal and an upper one; the cycle goes through the
center of H;p; call such cycles the division cycles. Because H;, is simple, the division cycle is unique,
with one minor exception, for any division path. The exception happens when a division path ends
at the shared vertex of two adjacent petals; in such a case, use some simple resolution rule such that
the interiors of any two division cycles either are disjoint or contain one another.

Step 3. These division cycles form two groups, counter-clockwise and clockwise. If two cycles are
in the opposite directions, their interiors are disjoint; for the cycles in the same group, their interiors
form an increasing chain of the set inclusion. There are several cases based on whether any division
cycle has an overweight interior. All of them are essentially the same; so the following discussion
focuses on the case that in the clockwise group at least one cycle has an overweight interior and at
least one cycle does not have an overweight interior. From the increasing chain property, there is
an adjacent pair of clockwise division cycles C1 and C2 such that the larger C'1 has an overweight
interior and the smaller C2 does not; finding such an adjacent pair is in NC.

Step 4. Now discard petals as follows. Call the region between C'1 and C2 the central region.
Because C'1 does not have an overweight ezterior and because C2 does not have an overweight interior,
the following three items form a separator of G: (1) Py, (2) C1 and C, and (3) the petals in the
central region. The third item can be further discarded as follows. From the maximality of the

division path set, there are no directed paths from L to U through the central region; this implies
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that any strongly connected component of the central region cannot have vertices from L and U at
the same time. Therefore, w.l.o.g. the vertices of L in the the central region can be deleted without
turning the 3-item separator into a non-separator; at this point, no lower petals survive the cut even
though C1 and C2 contain segments of them. The remainder of the three-item separator has another
decomposition: (1) the simple daisy consisting of the remaining petals, (2) two paths which are part
of C1 and C2, and (3) the path Pj;. The first item is a simple daisy of at most [k/2] petals; the
other two items can be merged into a path by Algorithm Join-Paths-and-Cycles in Subsection 4.2.

The resulting path-simple-daisy separator is a desired output.

5 Conclusions

This paper has given very simple proofs to two rather unexpected theorems, namely, the Path Sep-
arator Theorem and the Cycle Separator Theorem. The proofs are based on depth-first search, and
have many algorithmic implications. In sequential computation, the proofs have been translated into
very efficient algorithms for computing path and cycle separators of any graphs. In parallel computa-
tion, finding path separators, finding cycle separators, and conducting depth-first search for general
digraphs have been shown to be deterministically NC-equivalent; the proof combines the ideas in
the two separator theorems with a general technique of using cycle separators to conduct parallel
depth-first search for general digraphs.

The paper has also presented a deterministic NC algorithm for computing a cycle separator for any
weighted planar digraph; consequently, finding a depth-first search forest in any planar digraph is also
in deterministic NC. The cycle separator algorithm runs in O(log® n) time and O(n*) processors on
an EREW PRAM; the corresponding depth-first search algorithm runs in O(log” n) time and O(n?)
processors. Such complexity is beyond practical application; it remains an open question to find

algorithms with much better complexity.

26



References

[AAS87]

[And85)

[FI86]

[GB84]

[GMS7]

[GPS87]

[TV83]

[KR86]

[KRS85]

Alok Aggarwal and Richard J. Anderson. A random NC algorithm for depth first search. In

ACM Symposium on Theory of Computing, pages 325-334, 1987.

Richard Anderson. A parallel algorithm for the maximal path problem. In ACM Symposium

on Theory of Computing, pages 33-37, 1985.

Greg N. Frederickson and Ravi Janardan. Separator-based strategies for efficient message

routing. In IEEFE Symposium on Foundations of Computer Science, pages 428-437, 1986.

Ratan K. Ghosh and G. P. Bhattacharjee. A parallel search algorithm for directed acyclic

graphs. BIT, 24:134-150, 1984.

Hillel Gazit and Gary L. Miller. A parallel algorithm for finding a separator in planar graphs.

In IEEE Symposium on Foundations of Computer Science, pages 238-248, 1987.

Andrew V. Goldberg, Serge A. Plotkin, and Gregory E. Shannon. Paralle]l symmetry-
breaking in sparse graphs. In ACM Symposium on Theory of Computing, pages 315-324,

1987.

Donald B. Johnson and Shankar M. Venkatesan. Partition on planar flow networks. In IEEF

Symposium on Foundations of Computer Science, pages 269-264, 1983.

Philip N. Klein and John H. Reif. An efficient parallel algorithm for planarity. In IEEE

Symposium on Foundations of Computer Science, pages 465-477, 1986.

Clyde P. Kruskal, Larry Rudolph, and Marc Snir. The power of parallel prefix. IEEE

Transactions on Computers, c-34(10):965-968, October 1985.

27



[Lei80)]

[Lov85]

[LRT79]

[LT79]

[Milg4]

[PR87]

[Rei85]

[Smig6]

[SV85]

[Val81]

Charles E. Leiserson. Area-efficient graph layouts (for VLSI). In IEEE Symposium on

Foundations of Computer Science, pages 270-281, 1980.

L. Lovasz. Computing ears and branchings. In IEEE Symposium on Foundations of Com-

puter Science, pages 464-467, 1985.

R.J. Lipton, D.J. Rose, and R.E. Tarjan. Generalized nested dissection. SIAM Journal of

Numerical Analysis, 16:346-358, 1979.

R.J. Lipton and R.E. Tarjan. A separator theorem for planar graphs. SIAM Journal of

Applied Mathematics, 36:177-189, 1979.

Gary L. Miller. Finding small simple cycle separators for 2-connected planar graphs. In

ACM Symposium on Theory of Computing, pages 376-382, 1984.

Victor Pan and John Reif. Fast and Efficient Solution of Path Algebra Problems. Technical

Report 3, Computer Science Department, State University of New York at Albany, 1987.

John H. Reif. Depth-first search is inherently sequential. Information Processing Letters,

20:229-234, June 1985.

Justin R. Smith. Parallel algorithms for depth first searchs I. planar graphs. SIAM Journal

of Computing, 15(3):814-830, August 1986.

Catherine A. Schevon and Jeffrey Scott Vitter. A Parallel Algorithm for Recognizing Un-
ordered Depth-First Search. Technical Report 21, Department of Computer Science, Brown

University, 1985.

L.G. Valiant. Universality considerations in VLSI circuits. IEFFE Transactions on Comput-

ers, 30(2):135-140, February 1981.

28



