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We propose an architecture for implementing nested relational databases. In partic-
ular, we discuss the storage structures, their organization and an access language for

specilying access plans.

The features of our implementaion are:
L. A notation for hierarchical tuple identification.
2. One value-driven indexing structure (VALTREE) for the entire database.
3. A main-memory based component (CACHE) for manipulating hierarchical tuple-
identifiers.
4. A hashing scheme (RECLISTs) for fast access to data specified by tuple-identifiers.
5. An access language based on the VALTREE, the RECLIST and the CACHE to define

access plans for execution of queries.
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1. Introduction

In 1977 Makinouchi [29] proposed to generalize the relational model by removing the
first normal form assumption. Jaeschke and Schek [21] introduced a generalization of the
ordinary relational model by allowing relations with set-valued attributes and adding
two restructuring operators, the nest and the unnest operators, to manipulate such
(one-level) nested relations. Thomas and Fischer [46] generalized Jaeschke and Schek’s
model and allowed nested relations of arbitrary (but fixed) depth. Roth, Korth and
Silberschatz [38] defined a calculus like query language for the nested relational database
model (NRDM) of Thomas and Fischer. Since then numerous SQL-like query languages
[28, 35, 36, 37], graphics-oriented query languages [19] and datalog-like languages [3, 4,
7, 26] have been introduced for this model or slight generalizations of it. It should also
be mentioned that other researchers [1,8,16,50] have addressed similar issues for a more

restricted class of nested relations, called hierarchical structures.

Several attempts at implementing the nested relational model directly are being made,
notable are among them are the AIM project at IBM-Heidelberg [12,35,36], DASDBS
at ‘TH-Darmstadt [14, 33, 34, 41], and the VERSO project at INRIA [5, 8] It is also
important to mention some other efforts at building object-oriented databases and post-
relational systems [6, 9, 13, 18, 10, 23, 42, 43, 44, 45, 52].

In this paper we propose an implementation for the NRDM. In particular, we discuss
the storage structures, their organization, and an access language for specifying access
plans. The motivation for our design comes from these observations:

e In the NRDM, nested algebra operations like select, join and nest are ‘value-driven’
while project and unnest are not. To implement the value-driven operations it is cru-
cial to be able to efficiently determine which attribute and tuples are associated with
a particular ‘value’. In contrast, for ‘structure-oriented’ operations like project and
unnest, it is required to efficiently access tuples and their components irrespective
of the values contained in them. Data-structures that are well suited for project and
unnest are unfortunately not always suitable for the value-driven operations. Ilence
our proposal for two storage structures where one supports value-driven requests
effectively, while the other supports structure-oriented operations.

e Primary storage on computers has become fairly inexpensive while a disk access is
still considerably more expensive than a memory access. We exploit this availability
of main memory and indicate methods that use the cache in order to perform queries

more efficiently.
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We chose to implement the NRDM from scratch rather than map it to some other
existing database implementations for the following reasons:
e Tuple components are not necessarily atomic, making the mapping to the relational
model difficult [42].
e Query optimizations that exploit the nested relational model cannot be used when
the underlying storage structure is relational [8].
e Selections are often made on components deeply nested within tuples [16, 28, 35,
36, 37].
e Hierarchical and network models were not developed with high level non-procedural

languages in mind [11].

In Section 2 of this paper, we briefly discuss the nested relational model and describe
an algebra for it. In Section 3 we discuss the architecture of our implementation. In
Section 4 we describe a notation for tuple identification and then discuss the three ma-
jor components of our implementation — VALTREE, RECLIST and CACHE. In Section 5 we
discuss the operations on these three components and define an access language. In Sec-
tion 6 we demonstrate how some typical nested algebra queries could be implemented.
Finally, in Section 7 we discuss important observations about this implementation and

discuss issues that need further investigation.

2. The Nested Relational Database Model

Let us consider two nested relational structures, SCHEDULE and AIRLINE-INFO, as shown
in Figure 1 and Figure 2. The structure SCHEDULE stores information about universities
their nearest airports and a list of their away football games while the AIRLINE-INFO
structure stores information about cities, flights departing the city and airlines for which
the city is a hub. These structures have been chosen to illustrate some typical features

of our approach and will be used as examples throughout this paper.

The NRDM defines data as a set of nested relational structures, i.e., a component of a
tuple in such a structure can be an atomic value or a nested relational structure itself.
This is in contrast with the classical relational model where a database is defined as a

set of flat relations in which components of the tuple are always atomic values.

The class of nested structures we have restricted ourselves to in our implementation
is referred to as the class of hierarchical structures [1,8,16,50]. The difference between
hierarchical structures and general nested structures is that in a hierarchical structure

a combination of atomic attributes form the key at each level of the structure, whereas
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TEAM BEAREST-AIRPDRTS TEAMS-TO-PLAY
Indiana Indianapolis Purdue
Cincinnati Michigan
Louisville Wisconsin
Purdue Indianapolis Minnesota
Chicago Iowa
Michigan
Northwestern Chicago Ohio State
Iowa
Minnesota
Michigan Detroit Micigan State
Ohio State
Wisconsin
Michigan State Detroit Indiana
Purdue
Iowa
Nlinois Chicago Indiana
St. Louis Ohio State
Northwestern

Figure 1: The SCHEDULE structure

this restriction is not imposed on a general nested structure. The algebra used for
manipulating hierarchical structures is an extension of mechanisms used to manipulate

flat rclations, with the addition of some restructuring operators.

Union (|J°) : The union operator has to be extended to ensure that the resulting
structure is hierarchical, i.e. the key property is maintained. The extended union
operator involves a union of all tuples and then a fusion of set components with identical

atomic values.

Difference (—°) :

operator.

The difference operator is extended in a similar manner as the union

Project (7¢) : The standard project operator does not maintain hierarchical structures.
Therefore project, like union, fuses set components that have identical key values. See

Example 11 in the Appendix.

Select (of) : The select operator though very similar to the relational model is far
more expressive in this model. Selects can be performed at any level of the structure.
For convenience a template for filtering tuples is provided [8, 16]. Besides standard
conditional operators (=, #, >, >, <, <) which can be used for comparing atomic values

we also need (€,¢,C, ¢, C, ¢Z) to compare sets and elements of the set.
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FL1GHTS
CITY DESTINATION A1RLIHES AIRLINE-HUBS
Indianapolis Chicago Transworld Transworld
United United
NewYork United
Eastern
St. Louis Transworld
Continental
St. Louis Chicago Transworld Transworld
United Eastern
New York Transworld
Eastern
Indianapolis Transworld
Continental
Detroit Northwest
Transworld
Chicago Indianapolis United United
Eastern Eastern
Northwest
New York Transworld
Northwest
United
St. Louis Transworld
Detroit Northwest
Los Angeles United
New York Indianapolis Transworld Transworld
Eastern United
Eastern
St. Louis Transworld Delta
Detroit Northwest
Cincinnati Delta
Bastern
Atlanta Delta
Hastern

Figure 2: The AIRLINE-INFO structure

Join (m) : Joins are only allowed when the pivot attributes in the two structures are

atomic. An example of the join operator is shown in Figure 11 in the Appendix.

Nest (v) :

operation yields a structure with only one set-valued attribute at the highest level. To

The nest operator is restricted in such a way that the result of a nest
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construct structures with multiple set-valued attributes one needs to use a combination

of nest and join operations. See Figure 9 in the Appendix.

Unnest (#) : The unnest operator is the inverse of the nest operator.

For a more detailed and a mathematical description of the algebra the reader is referred
to [1,8,16, 50]. Examples showing how this set of algebraic operators manipulates hier-

archical structures shown in Figure 1 and Figure 2 are described in the Appendix.

3. Architecture for the Implementation

Extended Algebra Expression

EXTENDED
ALGEBRA
OPTIMIZER

l Optimized Extended
Algebra Expression

ACCESS
PLAN
GENERATOR

DATA Access Plan

DICTIONARY

ACCESS
LANGUAGE
INTERPRETER

RECLIST CACHE VALTREE

Figure 3: The proposed design for a nested relational database.
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In this section we describe the architecture proposed to implement the nested relational

database. As shown in Figure 3 our implementation has the following major compo-

nents:

VALTREE — a tree structure storing all the atomic values present in the tuples and
sub-tuples of the database,

RECLIST — record-list structures which store data as tuples and sub-tuples,

CACHE - the main memory component of the implementation where tuple-ids are
manipulated,

DATA-DICTIONARY — stores all the important information about structure definitions,
ACCESS LANGUAGE INTERPRETER — interprets instructions described in the access
language,

ACCESS PLAN GENERATOR — converts optimized extended relational algebra expres-
sions to access plans, and

EXTENDED ALGEBRA OPTIMIZER — optimizes the given extended algebra expression

into an optimized expression.

The typical execution of a query expressed in the extended algebra would involve the

following steps:

1.
2.

An extended relational algebra query is specified to the system.

The EXTENDED ALGEBRA OPTIMIZER will optimize this query into an optimized al-
gebra expression. While research in the nested algebra optimization is still in its
infancy, several results from relational algebra optimization [22, 25] can be naturally
extended to the nested relations. [8, 3240]

The optimized algebra query obtained from the previous step is mapped to an
access plan in the access language of the system. As it is possible to come up
with several alternative access plans the ACCESS PLAN GENERATOR uses information
from the DATA DICTIONARY and knowledge of the data structures to come up with
an optimal access plan. Heuristics for generating access plans for nested relational
databases will have to be collected.

The access plans specified in the access language are interpreted by the ACCESS
LANGUAGE INTERPRETER. The interpreter communicates with the VALTREE, the RE-
CLIST, the DATA DICTIONARY, and the CACHE.

In this implemeniation we have considered only extended relational algebra operations,

however the trend is to provide the user with an SQL like interface [35, 36, 37] or graph-

ics oriented interface [19, 20, 53]. It will be possible for us to provide these interfaces by
mapping SQL queries to algebra expressions or rewriting the ACCESS PLAN GENERATOR
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module to convert from the user interface to the access language. In the current imple-
mentation we plan to maintain a loose coupling between the ACCESS PLAN GENERATOR
and the ACCESS LANGUAGE INTERPRETER. The ability to specify queries directly in the
access language would provide us with tools necessary to experimentally test contending
access plans and develop heuristics for the ACCESS PLAN GENERATOR.

In the first phase of the implementation we have built a prototype of the ACCESS LAN-
GUAGE INTERPRETER in Scheme [17]| with the VALTREE, the RECLIST, the DATA DICTIO-
NARY and the CACHE in the main memory. This provided us with insights that were

valuable in designing the access language.

In the second phase we are currently building these four components in C, this time
with VALTREE and the RECLIST in the secondary storage.

In Section 4 we shall discuss the details of the VALTREE, the RECLIST, and the CACHE.
In Section 5 we discuss the ACCESS LANGUAGE. The EXTENDED ALGEBRA OPTIMIZER and
the ACCESS PLAN GENERATOR are actively being researched and will not be discussed in
this paper.

4. Components of the Implementation

This section defines a notation for tuple and component identification and describes the
VALTREE, the RECLIST, and the CACHE.

4.1. A Notation for Tuple and Component Identification

In the nested relational model queries and updates can be performed on values that
are deeply nested. For example, in the structure AIRLINE-INFO of Figure 2 we could
select all cities that have flights by ‘Northwest’. In this case, selections are to be
performed on the ATRLINE attribute which is nested within the FLIGHTS attribute. To
efficiently handle this request, it is important for tuple-identifiers at the sub-tuple level
to be logically related to the tuple-identifiers of their super-tuples. Also, as some of the
components of the tuple could be sets, which in turn could have sets as their components,

tuple identifiers cannot be flat but must be hierarchical.

In this section, we introduce a notation for identifying tuples and their components.
Let the database consist of a finite set of nested relational structures {r,s,t,...}. The

notation for the identification of tuples and their components uses these relation names
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tagged with subscripts and superscripts. The subscripts take us down the tuples and

the superscripts take us across the components.

Example 1: We will illustrate our notation on the (CITY (DESTINATION AIRLINES*)*
ATRLINE-HUBS*)* structure. Thus, for structure ¢ corresponding to the AIRLINE-INFO
structure of Figure 2 the tuples would be identified as t;, {3, {3 and {4 Each tuple is made
up of three components: a CITY component, a FLIGHT component and ATRLINE-HUBS
component. Thus, the first tuple ¢; has three components £,°, 1% and t1¢, where £;*
corresponds to the CITY component, 1® corresponds to the FLIGHTS component and
11 corresponds to the AIRLINE-HUBS component. Each of these components is either
an atomic value or a structure. In our example #;* is an atomic value, whereas #;
and #;¢ are structures. The structures ¢1° and ;¢ consists of sub-tuples, so we need to
descend one level. The tuples of the structure t;? are identified as t1'51, t1% and #;°;.
The identifiers for the components of the tuple tlbl are ;%1% and #;%° corresponding to
the DESTINATION and AIRLINES components.

In Figure 4, the notation is illustrated on the AIRLINE-INFO structure. An interesting
feature of this notation is that once we get a tuple or component identifier, we can
trace which tuples or sub-tuples the tuple or component identifier belongs to by going

through the superscript strings and the subscript strings.

The length of the subscript and superscript strings depends on the depth of the hier-
archical schema of the database. As the schema of the database is fixed, the lengths of

the subscript and superscript strings are also fixed.

4.2. The Value-Driven Indexing Scheme

Traditional relational database management systems use indexing techniques to improve
access time. Typically, indexes are built on all or some of the attributes of a relation.
A value of the index maps to a list of tuple-identifiers of tuples that contain the value
of the indexed attribute. Our approach to indexing follows the domain based approach
suggested by Missikoff [30] and Missikoff and Scholl [31] for relational databases. In their
approach, an atomic value maps to a list of tuple identifiers of tuples in all relations
in the database which contain that value. We generalize this approach by storing in
the VALTREE, a mapping from a value to a list of all tuple identifiers of tuples in all
structures and sub-structures in the nested relational database which contain that value.
Hence, given an atomic value, the VALTREE returns a set of hierarchical tuple-identifiers,
which enables us to determine directly which tuples or sub-tuples the value is stored

in. Unlike the conventional database scheme where we have a separate tree for each
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FLIGHTS
CITY DESTINATION AIRLINES AIRLINE-RUBRS
Indianapolis Chicago Transworld Transworld
United United
NewYork United
E Eastern
{ St. Louis Transworld
Continental
St. Louis b Chicago Transworld Transworld
.Lz United Eastern
New York Trensworld
Eastemn -EC
by 2
2 : Indianapolis Transworld
Continental
Detroit Northwest
Transworld
Chicago Indianapolis United United
Eastern Eastern
'£3 i Northwest
New York Transworld
b a Northwest t b b
£3 2 United 3 2
S—
St. Louis Transworld
Detroit Northwest
Los Angeles United
New York Indianapolis Transworld Transworld
Bastern United
Eastern
St. Louis Transworld Delta
Detroit Northwest
Cincinnati Delta
Eastern
Atlanta Delta
Eastern

Figure 4: Tuple Notation for AIRLINE-INFO structure

indexed attribute, our scheme has only one tree, denoted VALTREE, that spans over all

the atomic values of the database.

Valduriez, Khoshafian and Copeland [48, 49] have suggested processing ‘Join Indices’ in
main memory to improve the performance of joins in relational systems; ‘Inverted Files’
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have been used by the ADABAS database management system [2]. Our implementation
of the VALTREE is a generalization of both these schemes. The CACHE allows us to perform

some of the operations in main memory to improve performance.

We now describe the VALTREE in more detail. VALTREE is made up of five different
levels. The top-most level is called the DOMAIN level. This level separates the non-
compatible domains into separate sub-trees. The second level, the VALUE level, stores
all the atomic values of the database. The third level is the ATTRIBUTE level. At this
level, we store all the attributes that a particular value of the VALUE level belongs to.
As the same attribute may belong to more than one structure, we have the fourth level
called the STRUCTURE level. Finally, the fifth and the lowest level consists of all the
tuple-identifiers (tid) that correspond to the the atomic value stored at the VALUE level;
this level is called the IDENTIFIER level. The advantage of using the VALTREE is that
given a value it provides us rapid access to the list of tuple-identifiers corresponding to

all occurrences of the value throughout the entire database.

The following observations can be made regarding the VALTREE structure:

1. An indexing technique like a B+Tree would be an appropriate data-structure at the
VALUE level.

2. The granularity of the domain level depends on the database administrator and may
depend on the installation. Typically, all compatible attributes belong to the same
domain.

3. Values for attributes which do not participate actively in value-driven queries (i.e.
remarks fields) need not be stored in the VALTREE.

4. It is possible to merge the attribute level and structure level into one if we avoid

conflicts in attribute names over structures.

Example 2: In Figure 5, we show parts of the VALTREE for the structures s correspond-
ing to the SCHEDULE structure and ¢ corresponding to the AIRLINE-INFO structure.

4.3. The Record-List Structure

As the VALTREE is a suitable data structure for performing value-driven operations
RECLIST structures have the following requirements:
e Fach structure in the nested relational database has a separate RECLIST structure.
e Given a tuple-identifier and an attribute, the number of disk accesses to access the
component of the tuple associated with the tuple-identifier and attribute should be
minimal.

e The number of disk accesses to retrieve an entire tuple should be minimal.
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VALTREE
levels
DOMAIN  A;rline Names ~ Team Names City Names
VALUE Chicago Detroit Los Angeles New York
Atlanta Cincinnati [ndianapolis Louisville St. Louis
CITY N-A
ATTRIBUTE o
DEST
STRUCTURE A—INFO A-INFO A-INFO SCHED
a b a b a
b a E1 Si1 ¢ Sy
IDENTIFIER £s2s
b a b a b a
€273 €30 ta1

Figure 5: The VALTREE structure

e It should be easy to do structure-oriented operations.

e It should be possible to traverse through the entire structure a tuple at a time.

There are several storage structures that can be used to achieve these goals. Tsichritzis
and Lochovsky [47] and Wiederhold [51] have a detailed description of some of these
structures. Carey, DeWitt et.al. [9] have also suggested a storage structure for the
Exodus project. Our implementation of the RECLIST is inspired by some of the storage
structures proposed by Dadam et.al. and Deppisch et.al. [12, 14].

In this subsection we discuss three possible schemes for the implementation of the RE-
CLIST. The first one is a simple scheme and is described to motivate the other two
schemes. The second scheme is based on the implementations of Dadam et.al. and
Deppisch et.al. [12, 14] and descriptions from Tsichritzis and Lochovsky [47]. The third
scheme is the proposed storage scheme for the RECLIST and is compared with the second
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scheme.

4.3.1. Simple Pointer Scheme

The simple pointer scheme consists of storing the tuples and sub-tuples as a linked
list. Insertions to the linked lists are done at the end of the linked list and deletions
are performed by flagging. Other variations of the linked list like double pointers and
coral rings could be used to improve performance. However, to access a tuple when
the hierarchical tid is known is tedious as a sequential traversal through linked lists is

required, thus violating our goal of minimizing the disk accesses when the tid is given.

4.3.2. Array Pointer Scheme

In the simple pointer scheme it is difficult to access a sub-tuple when we have the
hierarchical address because to get to the sub-tuple one has to traverse through all the
intermediate pointers. To circumvent this problem all pointers within a tuple are moved
to one single block — the structure block which stores only the structural information.
Data pages now contain uninterpreted data [12, 14]. The Array-Pointer scheme for parts
of the ATRLINE-INFO structure is illustrated in Figure 6. In this scheme it is possible to

get to any value of the sub-tuple in exactly two disk accesses.

Two important advantages of the Array-Pointer scheme are:

1. This structure allows the relocation of data pages without having to alter tuple-
identifiers. This is very important because tuple-identifiers are also used by the
VALTREE and their stability is very critical.

2. Structure nodes for several tuples that would be required frequently could be cached
thereby reducing disk accesses to the structure node. The VALTREE provides an

indication of which tuples may be required by the query.

There are several issues that must be considered when using this scheme:
1. If we keep a pointer for each sub-tuple in the structure node it may become too
large to fit in one disk block.
2. As the cardinality of a set is not fixed the structure nodes are dynamic. Therefore,

it 1s not possible to predetermine the size of the structure node accurately.

These problems can be handled as follows:
1. Instead of having a pointer for each sub-tuple, several sub-tuples can be grouped
together on one page, and instead of storing a separate pointer for each sub-tuple,

one pointer is stored for a group of sub-tuples stored contiguously in the data pages.
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Figure 6: Array Pointer Structure

The exact location can be computed by using the base pointer and a displacement

computed using the size of the sub-tuple. This reduces the number of pointers in

the structure node but forces the data pages to store sub-tuples of the same kind.

9 It is not unreasonable to ask the DBA to specify typical cardinality for the set

components at the ti

me of the definition of the schema. This could be used as a

‘guide’ when designing the sizes of the pointer arrays. In case the array overflows,
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a pointer to link to the next pointer array is also stored.
3. In case the structure nodes become too large it is possible to have a hierarchy of

structure nodes. This structure makes the file look like an Indexed Sequential File.

4.3.3. Hashing Scheme

The objective of the structure node in the Array-Pointer scheme is to map the hierar-
chical tuple-identifier to the actual physical address. It is natural to consider a hashing
scheme for this problem. Hashing could be done on the key values of the sub-tuple or

on the tuple-identifiers of the sub-tuple.

Hashing on key values is not necessary as the VALTREE takes care of value-driven index-
ing. Since we are also interested in the ability to traverse all tuples and sub-tuples of

the structure, hashing on key-values is not an appropriate scheme to do so.

The second alternative is hashing on tuple-identifiers. This scheme needs to be consid-
ered in the context of the granularity of the data and search, insert, delete and traverse

operators.

Granularity : It is convenient to have uniform buckets so that the slots in the buckets
are of the same size. This could be done by storing different kinds of sub-tuples in dif-
ferent hash areas. This is not a serious problem and it is a trade-off between the number
of disk-accesses required to reconstruct a tuple and the granularity of the operations on
parts of the sub-tuple. Thus if we have sub-tuples whose components would seldom be
accessed individually then it makes sense to store all components of the sub-tuple in
one slot of a bucket. This issue is discussed again in the section about granularity of

operations in this model.

Search : To search a sub-tuple given by a tid, say ¢;¥,, we generate a hash-value from
the tid which maps us to the bucket that contains the appropriate sub-tuple. As several
tids map to the same bucket, it will be difficult to associate the appropriate sub-tuple
to the tid unless that tid is stored along with the corresponding sub-tuple. This is at
the cost of extra storage space. It must however be noted that this extra storage space

is in the bucket and does not cost any more disk accesses.

Insert : To insert a tuple in the RECLIST structure one has to generate a new hierarchi-
cal tid before the tuple can be mapped to the appropriate bucket by the hash function.
Ilence it is required to save at each tuple and sub-tuple level the last generated tid for
that level. Doing this bookkeeping will require some additional space. We propose the

following two suggestions to handle this additional space problem:
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1. We can have a structure node similar to the Array-Pointer scheme which stores
counters instead of pointers for each tuple.

e This is better than the Array-Pointer scheme because counters are not required
for search and delete. They would be only be required for insert and for traverse.

e The structure node for the hashing scheme is less dynamic than the Array-
Pointer scheme since instead of keeping pointers for each sub-tuple all we need
to store is the count. It should be noted however, that this structure is not
totally static because we need one counter for each set of sub-tuples, in addition
the sub-tuple can in turn have many sets of sub-tuples.

e As the counters that need to be stored are smaller than pointers, the structure
node for the Hashing scheme would be smaller than the Array-Pointer scheme.
Hence, it should be possible to cache more structure nodes, thus reducing the
number of disk accesses.

2. Instead of having all counters stored together in one structure node the counters
could be placed along with the data pages. For example, if we number all tuples and
sub-tuples starting with 1, the 0 value could be used to map to the slot in the data
area which stores a counter instead of data-values. Thus the slot that corresponds

to 1y stores the counter for the number of tuples in the structure {.

Delete : It is not possible to reclaim tids by compression as this will involve updating
all the tids of the VALTREE. Thus deletions are performed by flagging. However, it is

possible to reclaim tids when inserting new sub-tuples.

Traverse : There are two kinds of traversals possible. Traversal within a tuple, i.e.
the reconstruction of the tuple, and traversals across all tuples of the structure. Both
kinds of traversals are performed by generating tids in order, until the maximum value

is reached and then reconstructing the entire tuple.

Delete flags create holes in the sequence generated for traversal. Each time the tuple-
identifier comes across a deleted sub-tuple a disk-access is wasted. A solution to this
problem would be to store the delete flags in the structure node instead of storing them
with the sub-tuples. This is done by storing a bitmap, where a bit of the bitmap is set
if the corresponding sub-tuple is valid — stored and not deleted. Since the counter value
can be computed by checking the largest set bit all counters can be replaced by bitmaps.
Again both the schemes proposed to store counters could be used to store the bitmaps.
An interesting observation can be made here: the layout of a structure node for the
bitmaps is very similar to the Array-Pointer scheme, with a pointer field replaced by a

bit to store the status of the corresponding sub-tuples. Hence all the observations made



4. Components of the Implementation 16

about the structure node in the Array-Pointer scheme apply to bitmaps associated with

the hashing scheme.

Now, traversal is performed by generating tuple-ids for sub-tuples where the delete flag

shows the existence of a valid sub-tuple.

Deletions in this scheme can be performed by simply toggling the appropriate bit in
the bitmap and not reclaiming the appropriate space immediately. This space could
be reclaimed later by a background process or it can be reclaimed when a new tuple
is inserted. This is possible because the tuple-identifier will always correspond to the

same hash bucket.

To summarize, the linked list method is not really suitable because it is too slow.
However, either the Array-Pointer or the the Hashing method would be appropriate.
The Hashing method is better than the Array-Pointer method for the following reasons:

1. Search does not need an access to the structure node.

2. The number of disk-accesses required for the Hashing scheme when the structure
node is required is exactly the same as the the number of accesses for the Array-
Pointer scheme.

3. The structure node in all variations of the the Hashing scheme is smaller than the

structure node of the Array-Pointer scheme.

4.4. The Cache

The CACHE is the primary storage component of the implementation. To improve perfor-
mance of nested algebra expressions it is important to reduce accesses to the secondary
storage components — VALTREE and RECLIST, and perform as many operations as pos-

sible in the cache.

We have the following goals for the CACHE:
e The storage utilization of the CACHE should be as efficient as possible.
e Since the total amount of available primary storage space is limited the cache should
only store as much information as required.
o The organization of the cache should be simple yet should allow the flexibility to
handle complex operations.

e Complex reorganization and garbage collection should be kept to a minimum.

The tuple-ids described in the previous subsection carry information regarding the exact
location of the value in a tuple. Given two tuple-ids it is possible to determine if they

belong to the same tuple or the same sub-tuple. For this reason, we store only tuple-ids
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obtained from the VALTREE in the CACHE and never store actual values or tuples. After
manipulating these tuple-ids in the CACHE the results corresponding to the tuple-ids are
extracted from the RECLIST.

In our implementation the CACHE consists of a set of stacks. We choose stacks to be the
cache as stacks provide a simple implementation with minimal pointer overhead, and

no garbage collection.

Several interesting queries can be processed by comparing tuple-ids as will be shown in
the next section. ldeally, our queries are processed in the following three steps:

1. Retrieve tuple-ids from the VALTREE and place them in the cache,

2. Process tuple-ids in the cache, and

3. Retrieve appropriate parts from the RECLIST.

Details of some of the important CACHE operations are described in the next section.

5. The Access Language

In this section we discuss some important operations on the storage structures. The
access language used for specifying the access plans consists of instructions for operations

on the storage structures and condition and iteration statements.

5.1. VALTREE functions

As discussed in Section 4.2 the nested relational structures are indexed by the VALTREE
which consists of a B+Tree at the VALUE level of the VALTREE. Therefore operations on
the VALTREE closely correspond to standard B+Tree operations.

5.1.1. Valtree Retrieve

You can imagine the vt-retrieve to be a procedure that does a pre-order traversal
of the entire VALTREE (This is not actually the case, the vt-retrieve procedure
makes judicious calls to the B+Tree tree and accesses only those parts of the VALTREE
that are necessary). The arguments to the procedure are used to prune the VALTREE
appropriately.

vt-retrieve (domain, value-cond, attribute-cond,

structure-cond, granularity, stack)
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The arguments to this procedure are:

5.1

domain : corresponds to the domain at the DOMAIN level to be selected.
value-cond : If the value at the VALUE level satisfies the value-cond then this
value is selected and the subtree corresponding to the ATTRIBUTE, the STRUCTURE
and the TUPLE levels is traversed otherwise the subtree corresponding to this value
is ignored.

attribute-cond : If the attribute at the ATTRIBUTE level for a selected value at
the VALUE level satisfies the attribute-cond then this attribute is selected and the
subtree corresponding to the STRUCTURE and TUPLE level is traversed otherwise the
subtree corresponding to this attribute is ignored.

structure-cond : If the structure-name at the STRUCTURE level satisfies the
structure-cond then the tuple-ids corresponding to the selected ( domain, value,
attribute, structure ) are placed on the stack otherwise the tuple-ids corresponding
to the structure are ignored.

stack : This is the name of the stack in the cache that is used to store the result
~ the set of tuple-ids, obtained from this retrieve.

granularity : This can be one of domain, value, attribute, structure or
tuple. This specifies the granularity of the elements placed on the stack. If struc-
ture is used as the granularity for the retrieve then each set of selected tuple-ids
obtained at the STRUCTURE level is placed on the stack as a separate element. If
value is used as the granularity then all the sets of tids obtained for different at-
tributes and structures for this particular value are unioned together and stored as

one element on the stack.

.2.  Valtree Insert

This procedure inserts appropriate information to the valtree. If a particular domain

or a value does not exist the value will be added otherwise the tuple-id will be unioned

to the set corresponding to the given ( domain, value, attribute, structure ) values.

vt-insert (domain, value, attribute, structure, tid)

The arguments to this procedures are:

domain : If domain exists then the ( value, attribute, structure, tid ) are inserted,
otherwise a new domain is created and then the rest of the information is added.
value : If the value exists then the ( attribute, structure, tid ) are added, else the

value i1s added.
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~ attribute : If the attribute exists then ( structure, tid ) are added, else the new
attribute is added and then structure and tids are inserted.

— structure : If the structure-name exists then the tid is added otherwise a new
structure-name is added before inserting the tid.

— tid : union tid to the existing set of tids.

4

5.1.3. Valtree Delete

Delete is very similar to the insert operation. A value, attribute or a structure are not

deleted in the VALTREE until all its subtrees have been deleted.

vt-delete (domain, value, attribute, structure, tid)

5.2. RECLIST functions

We use the hashing scheme with bitmaps stored along with data values as discussed in
Section 4.3.3 for our implementation of the RECLIST. As we have two data structures
— the VALTREE and the RECLIST, it is important to keep the information in both the
data structures consistent at all times. To ensure consistency all inserts and deletes
are performed on the RECLIST. These procedures in turn call the vt-insert and vt-
delete procedures. To ensure that inserts and deletes are done at the correct place in
the RECLIST, the RECLIST procedures call the vt-retrieve procedure.

5.2.1. Reclist Retrieve

This procedure returns sub-tuples from appropriate RECLIST that correspond to the
tuple-ids in the top element of the stack

rl-retrieve (stack)

5.2.2.  Reclist Insert

This inserts the template in the appropriate structure ensuring that the hierarchical
database properties are maintained. This procedure also generates a list of commands
that correspond to vt-inserts in the VALTREE. While it is possible to have null values
in the template, these values are not allowed for key values at any level.

rl-insert (structure, template)
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5.2.3.  Reclist Delete

This deletes the template in the appropriate structure ensuring that the hierarchical
database properties are maintained. This procedure also generates a list of commands
that corresponds to deletes in the valtree.

rl-delete (structure, template)

5.3. CACHE functions

The cache is organized as a collection of stacks in the main memory.

5.3.1.  Standard Stack Operations

create-stack
destroy-stack
push (element, stack)
pop (stack)
empty? (stack)
full? (stack)

53.2. Set Operations
Union : This forms the union of the top two elements (sets of tids) of the stack and
places the result on the top of the stack.

union (stack, tid-window-format)

Intersection : This forms the intersection of the top two elements (sets of tids) of the

stack and places the result on the top of the stack.
intersection (stack, tid-window-format)

Difference : This result of this operation is a set of tuple-ids that belong to the top

element of the stack but do not belong to the second element of the stack.
difference (stack, tid-window-format)

— tid-window-format : determines the window for the union operation. Wild-cards
like “*’ are used to indicate ‘don’t-care’ values. When performing a union of tuple-ids
with different formats but matching tid-window-format the tuple-ids with more in-
formation (subscripts/superscripts) is retained. Thus, if we specify the tid-window-

format to be ¢%,, then when forming the union, tuple-ids with common first subscript
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and ‘a’ as the first superscript merge in the union. Therefore the union of 12,4 and
%9%5 is 1% but the union of %y and 1955 is 1%5%5. In other words the tid-window-
format tells you which parts of the tids should be used for the union. This operation
performs a union and project in one step. The utility of this operation will be clear

after observing the examples in the next section.

Product : This takes the top two elements of the stack and forms the cartesian
product of the top two elements and places the result as the top element of the stack.
Thus, if the top element of the stack has n; tuple-ids and the next element on the stack
has ny tuple-ids then, the resulting element on top of the stack has n; x ng pairs of

tuple-ids.

product (stack)

5.3.3. Tilter, transform and copy instructions
This group of stack commands allow us to perform some miscellaneous functions to
make the specification of the access plans easier.

filter (stack, filter-format)

Given a filter-format this procedure removes tids that do not satisfy the format from
the top element of the stack.

transform (stack transformed-format)

This procedure transforms the tids from the top of the stack and transforms them to
correspond to the format specified by the transformed-format. If the structure is defined
as a structure tree then then it is possible to transform the tuple into its siblings, its

ancestors or siblings of its ancestors. This procedure is used for projections.
copy (stackl, stack2)

This instruction copies the top element of stackl and copies it to the top of stack2. If
both stackl and stack2 are the same, then this stack would have two identical elements

as teh top two elements of the stack.
sort (stack)
This procedure sorts all the tuple-ids in the top element of the stack.
one-of (stack)

This procedure picks one tuple-id from the top element of the stack and discards the

rest.

Several procedures like for-each (element of the stack) do, repeat until, if - then

- else and [unctional combinators etc. may be required.
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6. Access plans for some NRDM operations

The following examples apply to the AIRLINE-INFO and SCHEDULE structures.
Example 3: Select CITIES having ‘Eastern’ FLIGHTS to ‘Indianapolis’.

In this example we have two constant values DESTINATION = ‘Indianapolis’ and AIR-

LINES = ‘Bastern’ and finally we want to project the CITY component.

Following is the access plan:

1. vt-retrieve(City-Name, Indianapolis, DESTINATION, AIRLINE-INFO,
structure,S1)

2. vt-retrieve(Airline-Name, Eastern, AIRLINES, AIRLINE-INFO,
structure,S1)

3. transform(S1, t,%.%)

4. intersection(S1, t.%,.%)

5. transform(S1,t,?%)

6

. rl-retrieve(S1)

The corrcsponding state of the CACHE for the above query:

1. 81 = {{t:%" 4512, 454}

I ({tlbzbza, bzlﬁza,’t?.b1 2a,i4b1b2“,t4b4b2“,t4b552“},{igbga,igbla,t.;b]“})
3. 51 = ({t1%2%, 12%2%, 15%1%, ta®17%, ta%4® 4857}, {t2"3%, 13%1%, %17

4. 51 = {Bs"% 45"}

5. 81 ={8s* 4%}

6. [t3® = Chicago,t4* = New Y ork]

Example 4: Select CITY, DESTINATION pairs having ‘Eastern’ FLIGHTS leaving from
“Transworld’ ATRLINE-HUBS

In this example, different parts of the query are not at the same level. We have to
project the CITY and the appropriate DESTINATION pairs where ‘Eastern’ is one of the
AIRLINES and ‘Transworld’ is one of the AIRLINE-HUBS.

The access plan for this query is:
1. vt-retrieve(Airline-Name, Eastern, AIRLINES, AIRLINE-INFO,

structure, S1)

2. transform(Si, t.%,%)

3. vt-retrieve(Airline-Name, Transworld, AIRLINE-HUBS, AIRLINE-INFO,
structure, S1)

4. transform(S1,t,.%)
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intersection(S1, t.%)
copy(S1,51)
transform(S1, t.%)
union(S1, 1.%.*)

sort (S1)

10. rl-retrieve (S1)

L

o e

The corresponding state of the CACHE:

) O ({tjbzbza,tzbgbza,hb]bza,t4b1b2a,t4b4bza,t4b5bza )

2. 51 = ({t1%2%, t272%, t3%1%, 14%1%, t4%4%, tabs })

3. 5r= {85285 % 5%} {tl tz 2%, 3%1% 85 % 48 % 805

4. 51 = ({tx ,tzb,t4b} {tlb R R UL LR L

5. 51 = ({t1%2%, 12°2%, t4%1%, ta’ ,uf’sﬂ})

§., 8= ({hbz ,t2%s :t4 1 ,t4b4“,f4bs"'},{f1 AP 5% 0 4]
7. §1 = ({tlﬂ-,tgd,tf},{tlbzﬂ,tzbza,tf ottt

8. 91= [Tt 19 445, 405 5% 440 1 t4 5°})

9 S = 1% %% 1%, 212%, £ 41 %, 14%%, 1%}

10. [t1* = Indianapolis, t1%2® = New York,
* = S1. Louis,tgbga’ = New York,

14 = New York,14"® = Indianapolis, 14°4® = Cincinnati, t4%5® = Atlanta)
Example 5: For each airport in the SCHEDULE structure, list all teams close to it.

In this example, for each city we are interested in collecting teams which include the

city as one of the nearest airports.

This query is shown in Example 10 in the Appendix. Algebraically, it can be expressed

as

VTEAM (#NEARESTmAIRPDR’I‘ (W;EAM,NEAREST-A.IRPORT (SCHEDULE) ))

The access plan for this rather complex query is as follows:
l. vt-retrieve(City-Name, *, NEAREST-AIRPORTS, SCHEDULE, structure, S1)
2. repeat
2.1 copy(51,51)
2.2 one-of (S1)
2.3 rl-retrieve(S1)
2.4 transform(S1,s,%)
2.5 rl-retrieve(S1)
2. until empty?(S1)
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The corresponding state of the CACHE:
1. 81 = ({s2°5%,53%1%, 36%1%}, {s1%2%}, {84512, 55%19}, {s1%1%, 52°1°}, {51°3°}, {562°})
2. The state of the stack for the first iteration; these steps are repeated
until the stack is empty.
2.1 81 = ({82°2%,35%1%, 36%1}, {522, 53%1°, 56%1°}, {51%2°}, {54"1%, 55%1°},
{51%17, 52%1°}, {s1%3°}, {3652“})
2.2 81 = ({82%2%}, {52%2°, 53%1%, 56%1°}, {51%2%}, {84412, 5551}, {51512, 52%1°},
{a1%3°}, {26°2°})
2.3 [s2%2% = Chicago)
S1 = ({82%3%, 33%1%, 56%1%}, {81929}, {84%1%, 55%1°}, {51%1%, 52%1°}, {81%3°}, {56%2°})
2.4 81 = ({52%,53% 36"}, {51%2°}, {84%1%, 55°19}, {51%1%, 52°1°}, {51%3°}, {s6%2°})
2.5 [s2® = Purdue, s3* = Nortwestern, s¢® = Illinois]
= ({s12°}, {54%1%, 55°1°}, {51°1%, 52°1°}, {81%5°}, {s6°2°})
Example 6: For each city from the SCHEDULE structure find the teams close to it and

the Airlines that can be used to reach that city

This query is shown in Example 12 in the Appendix. Algebraically, this query is

(SCHEDULE))) b (AIRLINE — INFO)

=

€
TFU\M(""‘NEAREST—AIRPORT(WTEAM,NBAREST_MRPDRT FLIGHTS

The access plan for this complex query is as follows:
1. vt-retrieve (City-Name, *, (and DESTINATION NEAREST-AIRPORT),
%, ptructure, S1)
2. repeat
2.1 copy(s1,s1)
2.2 one-of (S1)
2.3 rl-retrieve(S1)
2.4 transform(S1, 5.5
2.5 rl-retrieve(S1)
2.6 transform(S1, s2)
2.7 rl-retrieve(S1)
2. until empty?(stack)

The state of the CACHE:
8 = e 0%, {32 2%, 53%1°, 56717}, {t4b4“} {s1%2°}, {t2%4", t3%4°},
{84 1%, 85919}, {82°32, 8341, ta81°}, {81%1%, 82%1°}, {£1%5°, £5%3°%, 1 2“},{3652“})
2. The state of the stack for the first iteration; these steps are repeated

until the stack i1s empty.
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2.1 51 = ({t:%1%, 2512}, {t:%1%, £2%1°}, {52%2°, s3° 1 S N
{51%2°}, {t214%, £3%4%}, {54512, 55%1 9}, {#283%, 3°1%, £4"1%),
{Slbla,82b1a},{t]b3a,t353a,t4bza’} {3662a})
2.2 81 = ({t:1%1°}, {t:1%1%, 2512}, {52822, 33%12, 56 1“} {8"%3,
{51%2°}, {t2%4%, t3%4%}, {54519, 55%1°}, {t2°3%, ta1%, tab1°},
{51512, 82%1°}, {#1%3%, 13%3%, t4° 2“};{3662a})
2.3 [t1%1* = Chicago
Bf ({tlb;l“,tzb a} {82b2a33351a,56b13} {t4b4“} {Slbza},{tzbf,tabf},
{3454%, 55 1“} {tzbam,tzbla,tf;bl“} {51°1%, 52°1°}, {t:%37, 332, 14%2°}, {56%2"})
24 5t = {0 6N {82 ,53°1%, 56%1%}, {ta%4%}, {s1%2°}, {284, t3%4°},
{s4® 1 o 55%19}, {t203%, ta%1%, ta%1%}, {51%12, 32°1°}, {t1%5°, taP3%, £4%2°}, {s6%2°})
2.5 [t; L= {Transworld, United},
b= {Transworld United}]
g1 = ({82 2%, 83"1%,26%1%}, {t£4%}, {3162“} {iz ,3%4}, {24%1%, 8551},

{232, 13%1%, 2% %}, {51°1%, 52%1°}, {t1%5%, 1a%5%, 84%2%}, {s6°2"})
28 5t = ({32 , 83 ,35“},{154!’4“} {3152“} {tgb t3b4a} {34 1% 8219},
{t23%, 13%19,14%19}, {5112, 52°1°}, {203, £3%5%, ta"2%}, {56%2°})

2.7 [32® = Purdue, s3* Northwestern,ss = thozs]

Sl = ({Mbdga}){31b2“},{tzb4a;f364a}a{34b1 ,95°1%}, {3263 t3by tdf’]a},
{51°1%,52%1°}, {81%3%, 13132, a2}, {56%2°})

Ilere are some observations about the access language:

1. The results obtained from the rl-retrieve procedure could be displayed on the
screen in the appropriate format. Details of the display routines for outputing the
results in the nested relational form have not been included in this paper. If the
results obtained from the rl-retrieve procedure are temporary or need to saved
in new structures then they could be inserted into new RECLISTS.

2. Conversion from nested algebra to access plan is hardly a trivial task. Efforts are
being made to determine if algebra is the right intermediate step for optimization.

It may be possible to design query languages that generate better access plans.

7. Discussion

In this section, we discuss how our storage structure is suitable to effectively handle

some other important DBMS issues.
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7.1. The VALTREE as a Nested Relational Structure

The VALTREE itself can be thought of as a nested relation as shown in Figure 7. This
allows one to perform nested relational algebraic operations on the VALTREE. This allows
for example to consider other indexing schemes like the standard (attribute, value) pairs
by simply restructuring the VALTREE using the nested relational algebra.

If fast implementations for the RECLIST structure become available, the VALTREE can
be implemented as a RECLIST and all the VALTREE operations can be performed by
performing algebraic operations on VALTREE stored as a RECLIST.

DOMAIN VALUE ATTRIBUTE STRUCTURE {IDENTIFIER}
City Name Atlanta Destination Airline-Info {ts%:%}
Chicago City Airline-Info {t3°}
Destination Airline-Info {t:1%1%, 2%}
Nearest-Airports Schedule {52°2%, 83%1 %, 56%1 7}
Cincinnati Destination Airline-Info {ts®4°}
Nearest-Airports Schedule {s1%2°}
Detroit Destination Airline-Info {t2%2°%,23%2°}
Nearest-Airports Schedule {55712, 8571}
Indianapolis City Airline-Info {t1%}
Destination Airline-Info {t2%3%, 8312, ts%1 %}
Nearest-Airports Schedule {51%1%, 5219}
Los Angeles Destination Ajrline-Info {t3%:°}
Louisville Nearest-Airports Schedule {s1%3%}
New York City Airline-Info {ts%}
Destination Airline-Info {61722, t2%2%, £2%2%}
St. Louis City Airline-Info {t2%}
Destination Airline-Info {tlba“, £3%3%, t4%2°%}
Nearest-Airports Schedule {56727}
Airline Name i S R { . }
Team Name {-}

Figure 7: The VALTREE as a nested relational structure
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7.2. Object-Oriented Databases

Object-Oriented Databases are becoming increasingly popular. Our research would be

beneficial to the implementation of object-oriented databases in the following two ways:

1. Several current implementations of object-oriented databases map the object ori-
ented systems to relational databases. While this is possible, designers of such
systems have problems mapping complex objects to flat relations. We feel that
the mapping from object-oriented databases to nested relational databases, though
not entirely trivial, is much cleaner than the mapping to a relational model. This
is because the nested relational paradigm models sets which are fundamental to
object-oriented systems.

2. The problems faced by designers building ‘pure’ object-oriented systems [13] are
very similar to the problems that are faced in the representation of the nested re-
lational model. Data-structures like the VALTREE and the RECLIST with some mod-
ifications could be used for designing object-oriented databases. The notation for

tuple-identifiers is similar to the tagged notation used for creating ob ject-identifiers.

Some more interesting solutions for problems with object-oriented systems, such as
object sharing, can be handled by associating object-ids explicitly with objects and
storing these object-identifiers in the VALTREE as though they were the values.

7.3. Granularity of the Database

While it may be ideal to save every atomic value in the VALTREE and have a pointer for
each atomic value in the structure node of the RECLIST, this may not be appropriate
or feasible. It is therefore left to the DBA to adjust the granularity of indexing. Thus
tuples which are always accessed together and never as components may be stored as
a single entity in the RECLIST and the key value for the tuple may be stored in the
VALTREE instead of storing all individual values.

7.4. Integrity Checking

When we perform an insert or delete we have to check if all the integrity constraints
have been satisfied. This checking is based on a value-driven approach. For instance,
when we say that A — B, we mean that when the values of attribute A match in two
tuples they must match in values of B. This can be checked by looking for each value
corresponding to attribute A in the VALTREE. We get a set of tids, say S4. We pick
any one tid from the set S4 and then using the RECLIST find a corresponding value, vp
for attribute B. Now we can go to the VALTREE and extract the set of tids, Sp that
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correspond to the value vg and attribute B. The integrity constraint is satisfied if the set
of identifiers associated with the B-value, Sp is a super-set of the list of tuple-identifiers
of the A-value S4. Other constraints also require that values for certain attribute obey
a set of criteria. Conditions can therefore be verified while performing inserts in the
VALTREE.

7.5. Intermediate Results

Most database queries are performed in stages, thus intermediate results are very impor-
tant. As our algorithms depend on the use of two data structures it may be important
to maintain the two data-structures for all partial results. We have not yet studied the
issue of intermediate results in detail. Several approaches to this problem could include:
1. Do not maintain any new data-structures on partial results; use tids and extract
from the same VALTREE and RECLIST all the values as and when needed.
2. Assume that the partial result is a new structure and store the structure as a RECLIST
and add values to the existing VALTREE.
3. Generate new, small and temporary VALTREE and RECLIST structures which survive

only until the expression has been evaluated.

7.6. Query Optimization

This is another issue that has not been studied in detail for nested relational models.
The VALTREE and the RECLIST are an integral part of our storage scheme and they
should be exploited to perform query optimization. Furthermore, while the algebraic
properties for the nested algebra are fairly well understood, as was demonstrated in
some of the examples of the previous section, alternate query plans for the same query
are possible. We believe that query optimization should not only take into account
the algebraic properties but should also consider heuristics and the current state of the
database. We are currently involved in studying this problem. While it is possible to
draw parallels from the query optimization techniques for the relational model, these
techniques cannot be mapped directly to the NRDM as additional problems need to be
addressed.

7.7. Partitioning and Parallelism

Nested structures inherently partition the data horizontally. Another level of parti-
tioning of the data occurs in the VALTREE. For instance, the tuples in a structure are

partitioned according to the values they have. We can effectively set up locks at each
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value level thereby allowing us to use concurrent processes to perform our operations.
When we are performing an update, we need to lock only the concerned values and do
not need to lock the entire database. This approach lets us localize in memory our most
active and interacting processes. Furthermore, partitioning of the database allows us to

perform several operations in parallel.

7.8. Computing Transitive Closures

Example 7: Let us consider the standard manager subordinate example. Let us say
we pick the chairman who has some subordinates. Each of the subordinates in turn
have some subordinates and so on. Assume we want to find all the subordinates of the
chairman. To handle this example in our scheme, we first select the chairman. Now as
the chairman is the manager of some subordinates, his name must appear as the manager
attribute of those tuples. We get the tuple identifiers for all the subordinates as soon as
we search for the chairman in the value-driven tree. Once we have the tuple identifiers
for each of the subordinate tuples we can extract the names of the subordinates from
the RECLIST structure. Once we have the names of the subordinates at the first level,

we can, possibly in parallel, search all their sub-ordinates in a similar manner.
Example 8: : Determine all cities which have direct or indirect flights to St. Louss.

This problem can be solved as follows:

1. Since we are interested in all cities connected to city of ‘St. Louis’, we must find all
cities that have flights with ‘St. Louis’ as the destination. To do this we look up the
VALTREE and collect all tids where ‘St. Louis’ is the destination.

2. Now, for each tid obtained from the previous step we extract the tid for the CITY

component and extract the city name from the RECLIST.

Now for each of the cities obtained from step 2 we repeat step 1 and 2, alternating
selections between RECLIST and VALTREE. If the relationship between these sets is an
arbitrary graph then it is possible to repeat indefinitely. To avoid this problem we need
to keep a list of all cities included and include a new city only if it is not already there.
The algorithm stops when no more cities can be generated. Notice that it is convenient

to store a list of tids corresponding to the city component rather than storing city names.

7.9. Logic Programming Interface

There are numerous advantages to coupling logic programming with relational databases|24] |

Beeri et.al. have proposed a logic language with sets which could be mapped to the
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NRDM][7]. Most deductive systems are based on resolution and unification principles

which are value-driven in nature. We believe that our storage structure would be ap-

propriate for supporting such deductive systems.
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TEAMS HEAREST-AIRPORT
Indiana Indianapolis
Purdue

Purdue Chicago
Northwestern

Tlinois

Indiana Cincinnati
Michigan Detroit
Michigan State

Indiana Louisville
Ilinois St. Louis

Figure 9: SCHEDULE" = v, .. (SCHEDULE')
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9. Appendix

The following examples illustrate some operators of the algebraic query language for
the NRDM.

Example 9: SCHEDULE' = i oivnen sinvonps ™ (SCHEDULE)

e
TEAM,NEAREST - AIRPORTS
This example projects the teams and the nearest airports and then unnests it as shown
in Figure 8.

TEAN HEAREST-AIRFPORT
Indiana Indianapolis
Indiana Cincinnati
Indiana Louisville
Purdue Indianapolis
Purdue Chicago
Northwestern Chicago
Michigan Detroit
Michigan State Detroit
INlinois Chicago
Ilinois St. Louis

Figure 8: SCHEDULE' (SCHEDULE)

ot €
i 'LLNEAREST'"JMRPORTWTEAM,NEAREST-AIRPORT

Example 10: SCHEDULE" = v, (SCHEDULE')

This example nests the SCHEDULE' structure from the previous example and nests the
TEAM component as shown in Figure 9. The resulting structure SCHEDULE" lists cities
and the teams that are close to them.
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Example 11: FLIGHTS' =g .. (AIRLINE-INFO)

This example projects the structure FLIGHTS from the structure AIRLINE-INFO as shown
in Figure 10. Notice how the project operator causes the sets of ATRLINES corresponding
to a CITY to merge, e.g observe the AIRLINES set for ‘Indianapolis’.

DESTINATION AIRLINES
Chicago Transworld
United
NewYork United
Bastern
Transworld
Northwest
St. Louis Transworld
Continental
Indianapolis Transworld
Continental
United
BEastern
Northwest
Detroit Northwest
Transworld
Los Angeles United
Cincinnati Delta
Eastern
Atlanta Delta
Eastern
4 i o e =
Figure 10: FLIGHTS' =77 - (AIRLINE-INFO)

Example 12: TEAM-AIRLINE = SCHEDULE" v« FLIGHTS'

In this example we join the structure SCHEDULE" with the FLIGHTS' structure as shown
in Figure 11. In our algebra, joins () are only defined when the pivot attributes are
atomic and the domains are compatible. In this example a join is performed on the
NEAREST-AIRPORT attribute of SCHEDULE" structure and the DESTINATION attribute of
the FLIGHTS' structure.
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TEAMS HEAREST-AIRPORT AIRLINES
Indiana Indianapolis Transworld
Purdue Continental
United
Eastern
Northwest
Purdue Chicago Transworld
Northwestern United
Tlinois
Indiana Cincinnati Delta
Eastern
Michigan Detroit Northwest
Michigan State Transworld
Illinois St. Louis Transworld
Continental

Figure 11: TEAM-AIRLINE = SCHEDULE" p< FLIGHTS'



