A Practical Unification Algorithm
by
Paul W. Purdom

Computer Science Department
Indiana University
Bloomington, Indiana 47405

TECHNICAL REPORT No. 242

A Practical Unification Algorithm
By
Paul W. Purdom
February, 1988



A Practical Unification Algorithm

Abstract: By refining Robinson’s algorithm, Corbin and Bidoit obtained a unification algo-
rithm that is fast for typical unification problems. The worst-case time of their algorithm, how-
ever, is O(n?). This paper gives two additional refinements that improve the worst-case time to
O(na(n,n)), where a(n,n) is an extremely slowly growing function of n. The resulting algorithm
is an efficient implementation of the Martelli and Montanari algorithm. Measurements show it to
be quite fast.

Introduction

A substitution assigns terms as values to the variables in its argument. Given two terms, s and
t, a unification algorithm returns true if and only if there exists a substitution ¢ such that o(s) is
identical to ¢(t). In addition, if such a substitution exists, the most general such substitution is
produced. The algorithms being considered represent terms using directed acyclic graphs.

Corbin and Bidoit [1] refined Robinson’s algorithm [2] for this problem to produce an algorithm
that is fast for small problems. The worst-case time for Robinson’s algorithm is exponential in
the size of the input, while the worst-case time for their algorithm is quadratic. The unification
algorithm of Paterson and Wegman [3, 4] runs in linear time, but it is complex and not fast for
small problems. The algorithm of Martelli and Montanari [5] has a worst-case time that is nearly
linear (O(na(n,n)), where a(n,n) is an extremely slowly growing function [6]). The measurements
of Corbin and Bidoit [1] showed their algorithm to be faster than that of Martelli and Montanari
for reasonable size problems. As shown in the next section, adding two refinements to the Corbin
and Bidoit algorithm produces a nearly linear algorithm that is fast for all reasonable problem
sizes. This algorithm is the same as the algorithm of Martelli and Montanari, except for the data
structures and the order of calculation.

The algorithm

There are two reasons why the algorithm of Corbin and Bidoit requires time O(n?) in the worst
case. First, they do an Occur Check as each variable is set. Second, each time they find two nodes
to be equivalent, they replace all pointers to one of the nodes with pointers to the other.

The first modification to their algorithm is to remove the Occur Check (acting as though each
variable passes the omitted Occur Check call). This algorithm still makes at most n — 1 recursive
calls, because each successful call results in one node being replaced. The answer from this modified
algorithm is not always correct, because some variable may be defined in terms of itself, but such
incorrect answers are rejected by following the algorithm with a single Occur Check call. The Occur
Check is done in linear time using depth-first search.

The second modification to the algorithm of Corbin and Bidoit consists of using pointers instead
of replacing nodes. Those nodes that have been merged form an equivalence class. The equivalence
class is represented by a tree, where each node except the root has a match field that points to
an equivalent node. The root has a nil match field. For any node in the class, the representative
node can be found by following match fields until a node with a nil match field is found. If each
chain is collapsed as it is traversed, then doing m finds on a structure with n nodes takes time no
more than O(n + m10g, 4 ,m/n n) [7). If the node to be replaced is selected in a way to keep chains
short (by selecting the node from the smaller of the two equivalence classes, for example) then the
time is reduced to O(n 4+ ma(m + n,n)) [7]. (Prohibiting the match field of a variable node from
pointing to a nonvariable node does not increase this bound.)

After these two modifications, plus one more to avoid forming cyclic chains of match fields, the
unification algorithm of Corbin and Bidoit becomes the algorithm shown in Figure 1.

1



Function Unify(s,t)
Set s « Find(s) and t «— Find(t). (follow maich fields and collapse chains)
If s =t then Unify « true.
Otherwise if s is a variable then set s].match « t and Unify « true.
Otherwise if ¢ is a variable then set t].match «— s and Unify « true.
Otherwise if label(s) = label(t) then
call Union(s,t); (set match of s or ¢ to point the other one)
let s; be the i*® immediate subterm of s
and let t; be the i immediate subterm of ¢;
for each 7 if not Unify(si,t;) then set Unify « false and exit immediately;
set Unify « true.
Otherwise set Unify — false.

Figure 1. A unification algorithm.

The routine Find(t) sets ¢ to the last node on the chain of match fields, and collapses the chain.
In the version of the program that was tested, Union(s,t) sets the match field of s to point to t.
This gives an algorithm with a worst-case time of O(nlnn). If the Union procedure keeps chains
small by selecting which match field to set, then the running time for small problems is increased
by a small constant factor but the worst-case time is reduce to O(na(n, n)). For the test problems,
measurements show that there is no advantage in using a more complex Union algorithm.

Comparison

The algorithm of this paper is a variation of the algorithm of Martelli and Montanari, but it
differs in the data structures and the order of the calculations. To unify s and t, Martelli and
Montanari form the equation s = t. They compute the nonvariable common parts of s and ¢. From
the frontier of the common parts they form new equations by equating the variable from one term
with the corresponding part of the other term. Equations with common terms are combined to form
multiequations (a set of terms that are all equal). The process is continued by forming the common
parts and frontier of some multiequation. If the Martelli and Montanari algorithm is programmed
to conform with their description, then there is a good bit of overhead associated with forming and
processing multiequations. This is clear from the measurements that Corbin and Bidoit [1] did on
the algorithm.

Each equivalence class formed by the algorithm in this paper corresponds to a multiequation.
Unifying the children of two terms is similar to computing the common part of the two terms.
For successful unifications, each comparison that Martelli and Montanari do is also done in this
algorithm. This algorithm is faster (by a constant factor) because it builds less intermediate
structure. For unsuccessful unifications, the time depends on the details of the two terms, because
this algorithm compares the terms in a strictly depth first order, while the order of the Martelli
and Montanari algorithm is similar to breadth first search.

Measurements

Table 1 shows the running time for this algorithm and for an algorithm that is identical to this

2



algorithm except that it calls the Occur Check routine each time a variable is set. The time for this
second algorithm should be similar to but less than that for the algorithm of Corbin and Bidoit.
The Find and Union routines were coded in line. The problem sets, ex 2 and ex 3, are taken from
[1]. The programs were written in Web [8] and compiled with the Berkeley Pascal compiler, and
run on a VAX8800. For each problem, the time is the result of averaging 100,000 executions of the
problem. (Similar runs on a VAX780 gave times about 7 times larger.)

problem ex 2 ex 3

v 2 4 g8 16 20 40 2 4 8 16 20 40 80
n 10 18 34 66 82 162| 12 28 60 124 156 316 636
T 0.17 0.30 0.55 1.06 1.31 2.95|0.24 0.59 1.28 3.10 3.74 8.08 18.02
T, 0.20 0.50 1.45 4.87 7.69 32.81 | 0.24 0.77 2.59 9.62 15.02 61.10 249.98

Table 1. CPU time in milliseconds for the new algorithm (7) and the time for the new algorithm with extra
Occur Checks (73) is shown for problems with various numbers of variables (v) and sizes (n).

The times in Table 1 include the time used for unification, for Occur Checks, and for resetting
the data structure. For the new algorithm about half the time is for unification and half for the
Occur Check. Of the time for unification, about half is for the actual unification and half for
resetting the data structure. For ex 2 the measured time is approximately 0.017 n milliseconds,
while for ex 3 it is about 0.027 n milliseconds.

References.

1. Jacques Corbin and Michel Bidoit, A Rehabilitation of Robinson’s Unification Algorithm, In-
formation Processing 83 (1983), pp 909-914.

2. J. A. Robinson, A Machine-Oriented Logic Based on the Resolution Principle, J. ACM 12
(1965), pp 23-41.

3. M. S. Paterson and M. N. Wegman, Linear Unification, J. of Computer and System Sciences
16 (1978), pp 158-167.

4. Dennis de Champeaux, About the Paterson- Wegman Linear Unification Algorithm, J. of Com-
puter and System Sciences 32 (1986), pp 79-90.

5. Alberto Martelli and Ugo Montanari, An Efficient Unification Algorithm, ACM Trans. Prog.
Languages and Systems 4 (1982), pp 258-282.

6. Robert Endre Tarjan, Efficiency of a Good But Not Linear Set Union Algorithm, J. ACM 22
(1975), pp 215-281.

7. Robert E. Tarjan and Jan van Leeuween, Worst-Case Analysis of Set Union Algorithms, J.
ACM 31 (1984), pp 245-281.

8. Donald E. Knuth, Literate Programming, The Computer Journal 27 (1984), pp 97-111.



