Experiments with Quadtree
Representation of Matrices

S. Kamal Abdali
Tektronix Labs
P.O. Box 500, MS 50-662
Beaverton, Oregon 97077, USA

David S. Wiset
Indiana University
101 Lindley Hall
_Bloomington, Indiana 47405, USA

Abstract

The quadtrees matrix representation has been recently proposed as an alternative
to the conventional linear storage of matrices. If all elements of a matrix are zero, then
the matrix is represented by an empty tree; otherwise it is represented by a tree consist-
ing of four subtrees, each representing, recursively, a quadrant of the matrix Using
four-way block decomposition, algorithms on quadtrees accelerate on blocks entirely
of zeroes, and thereby offer improved performance on sparse matrices. This paper
reports the results of experiments done with a quadtree matrix package implemented
in REDUCE to compare the performance of quadtree representation with REDUCE's
built-in sequential representation of matrices. Tests on addition, multiplication, and
inversion of dense, triangular, tridiagonal, and diagonal matrices (both symbolic and
numeric) of sizes up to 100x100 show that the quadtree algorithms perform well in a
broad range of circumstances, sometimes running orders of magnitude faster than their
sequential counterparts. '

CR categories and Subject Descriptors:

L1.2 [Algebraic Manipulation Algorithms]; Algebraic algorithms; E.1 [Data Struc-
tures]: Trees; G.1.3 [Numerical Linear Algebra]: Sparse and very large systems.
General Term: Measurement. ' '

Section 1. Introduction

Representation and manipulation of matrices has been a driving force for computer
development from the beginnings of digital computation. Indeed, it is difficult to say which has
had the greater effect on the other: the architecture of computers or the development of matrix
algorithms. Certainly both are responsible for the present situation: that the standard algo-
rithms manipulate matrices, or at least rows thereof, sequentially according to consecutive

¥ Visiting scientist at Tektronix Labs during the summer of 1987 when this work was done.

97

indexing, and that processors access memories, or at least the pages thereof, sequentially
according to consecutive addresses. By now it has become a chicken-egg problem.

~ The linear storage of matrices makes it, in general, inefficient to implement algorithms
exploiting the matrix theory relations based on partitioning. Consider, for example, the follow-
ing algorithm for computing the product of two partitioned matrices (where the blocks 4, B, etc.,
are assumed to be of such dimensions that all matrix multiplications stipulated on the right-
hand side are possible): _
[A B] . [E F] _ [AE +BG AF +BH'J

CD GH CE +DG CF +DH
In linear storage, the blocks A, B, efc. are not available directly; assembling them from the ele-
ments of the whole matrices is too costly to make the above algorithm of much practical value.
This is unfortunate since such algorithms abound in matrix theory. In fact, while many of such
relations have been known for over a century, relatively recent adaptations of some of these
have given rise to asymptotically fast algorithms (e.g., [10]).

Since computer algebra systems are built over a heap model of memory, they generally use
tree storage for representing and manipulating symbolic expressions. Yet, perhaps because of
the perceived necessity of indexing in known algorithms, these systems invariably resort to
linear storage for vectors and matrices. Little has been done, consequently, working toward
heap-based algorithms that manipulate matrices and vectors as structures more abstract than a
linear list. (cf. § 2.2 and § 2.3 of Knuth [6].) Such an effort might well uncover new algorithms
better suited to the heap memories that are already in use, and to the newer requirements of
decomposing problems for multiprocessor solution.

The-quadtree representation of matrices has recently been proposed by the second author
[11] for a heap-based, multiprocessing environment. This representation makes it possible to
implement with relative ease the algorithms based on partitioning. Another attractive attribute
of the quadtree representation of matrices is that it unifies computation on both dense and
sparse matrices. That is, this single representation can represent both dense and non-dense
matrices with relatively efficient use of space, and this single family of algorithms manipulates
both sparse and non-sparse matrices with relatively conservative use of time [14]. There are
better spedialized structures and algorithms for extremely dense or extremely sparse matrices,
but no other approach avoids a dichotomy of performance across the spectrum. Although not
often a design criterion in computer algebra systems, effident handling of both sparse and non-
sparse problems is a welcome dividend of this approach.

This paper reports the first empirical exploration of the quadtree structure for matrix mani-
pulations and its associated family of algorithms. To obtain a fair performance comparison of
quadtree and traditional linear structures, we have tried to minimize the effect of programming
level and style differences in the codes for the two representation. The experiments were per-
formed on a conventional uniprocessor, using REDUCE [5], a widely distributed computer
algebra system. REDUCE was selected for three reasons. First, it already contains a mature
package of algorithms, which uses linear structures. Next, all of its source code is available for

88

examination. Finally, it allows efficient insertion of user-written code for execution at par with
system code. For our experiments we were able to implement a package for quadtree matrices
closely following Hearn’s style in REDUCE’s matrix package, and, therefore, to extract mean-
ingful performance comparisons.

The experiments do not address the significance of quadtree matrix representation for
parallel processing [12]. The results do establish a comparison, however, between the tradi-
tional serial-access algorithms delivered in REDUCE and analogously coded quadtree version.
In some cases the algorithms are equivalent, except for the access pattern; in others, the quad-
tree structure suggests a completely different algorithm. In the former cases, a direct com-
parison is possible between performance of the traditional and of the quadtree algorithms on
matrices of various sizes and of differing density/sparsity. It is seen that, for example, the
quadtree matrix inversion algorithms are up to five times slower than REDUCE's algorithms on
completely dense symbolic matrices of very small sizes, but run many times faster on similarly
sized sparse matrices. In the case of symbolic multiplication, quadtree algorithms are overall
much faster.

The remainder of this paper is in six parts. The next section reviews the normal form
representation of quadtree matrices and outlines some familiar algorithms. Section 3 describes
the matrices used in experiments. Section 4 offers comparisons of run times of matrix additions
and multiplications of integer as well as symbolic matrices sized from 4 x 4 to 180 x 100 of dif-
ferent sparsities: fully dense, triangular, tridiagonal, and diagonal; all these results are directly
comparable to REDUCE’s default performance. Section 5 considers one approach to matrix
inversion, by simple partitioning, and presents results running times for this algorithm, which
is not effective in all cases. Section 6 discusses how to construct an algorithm that will always
be effective, but whose performance may approach that of the partiﬁoning inverse. Section 7
offers conclusions.

Section 2. Quadtree Representation

Dimension refers to the number of subscripts on an array. Order of a square matrix means
the number of its rows or columns when written as the conventional tableau. Similarly, the size
of a vector is the number of components when the vector is represented as a conventional
ordered tuple.

Let any d-dimensional array be represented as a 2-ary tree. Here only matrices and vec-
tors are considered, where d =2 suggests quadtrees, and d = 1 suggests binary trees.

Matrix algorithms are arranged so that we may perceive any nonzero scalar, s, as a diago-
nal matrix of arbitrary order, entirely of zeroes except for s’s on the main diagonal; that is,
s =[58;;]. Thus, a domain is postulated that coalesces scalars and matrices, with every scalar-
like object conforming also as a matrix of any order. Of particular interest is the scalar 0, which
is at once the unique additive identity and multiplicative annihilator for both scalar and matrix
arithmetic. It is often represented by the null pointer (nil in LISP notation) to save space from
non-dense matrices [14].

A matrix (of otherwise-known order) is either a ‘scalar’ or it is a quadruple of four
equally-ordered submatrices. So that this recursive cleaving works smoothly, we embed a
matrix of order nina F18A x84 maprix, justified to the lower, right (southeast) corner with
padding to the north and west. Padding to the north and to the west is 0, minimizing space.
There are two choices for padding on the principal diagonal: padding with 0 suffices there
i under additive operations, multiplication, and inversions that use pivoting: other inversions
? and the usual algorithms for determinants require 1 padding there to avoid singularities. (The
' choice is not critical because this padding can easily be switched before any algorithm at a cost
logarithmic in the order of the matrix.) Either choice prescribes a normal form for quadtree
matrices.

Similarly, we may perceive any non-zero scalar s as a homogeneous vector all of whose
components are s. Thus, a vector is either a ‘scalar’ or it is an ordered pair of equally-sized sub-
vectors. For the purposes of this paper we embed a vector of size n, justified downward, in a
vector of size 787 with zero padding at the top.

Inferring the conventional meaning from such a matrix or vector now requires additional
information (viz. its order), but we can proceed quite far without size information; it does
becomes critical upon Input or Output and in computing eliminants [1] or determinants. One
must acknowledge that the I/O conversions are non-trivial algorithms [12], but this is not seri-
ous because they also consume comparatively little processor resource and are restrained by
communication bandwidth. Like floating-point number conversions, they are an irritating
impediment to one who would experiment with algorithms discussed below.

The recursive definition of quaternary trees molds the recursive structure of programs that
manipulate them. Moreover, the bifurcation of tree composition leads naturally to more stable
algorithms. For instance, each addend in the sum over a vector of size 2” (as a binary tree of
depth p) naturally participates in no more than p binary additions; if the vector were instead
stored in consecutive memory locations, the “natural” algorithm has each addend participating
in up to 2° -1 additions. This can be important in postponing overflow of an inexpensive
representation (e.g. fixed integers) to a more expensive one (respectively, bignums) until higher
in the tree; since each addend participates in at most p sums, the partial results do not accumu-
late to overflow quite so soon and only a few of the additions, at the top or the tree, become the

expensive ones.

It is particularly surprising to uncover new variants of old, well-studied algorithms, like
the folding of full-matrix search into the Pivot Step algorithm [12]. While Pease’s block decom-
position of the Fast Fourier Transform is not new, the two factorings of the shuffle and the deal
bit-reversal permutation, each precisely following the nesting of the FFT recurrence pattern, is
an insight useful in its implementation [13]. This practical representation of an array as a tree
suggests—as already done in computer algebra systems—that data is more efficiently linked
across a heap memory, than allocated sequentially.

100

Size Den:a Triangular Tridiagonal Diagonal
4 10 33 33 83
83 33 50 33
5 50 66 83 50
116 66 100 83
6 50 83 66 8
150 100 116 83
8 100 50 83 100
166 133 83 83
10 133 150 116 100
216 183 150 83
12 150 183 133 166
300 200 183 50
20 416 416 350 366
766 450 284 116
30 900 800 700 733
1616 866 400 150
40 1516 1383 1233 1233
2783 1516 516 200
50 2383 2166 1933 1916
4400 2316 683 266
60 3434 - 3050 - 2716 2733
6250 3250 733 283
80 6067 | 5483 4884 4833
11200 5650 1050 383
100 9417 8517 7650 60334
18200 8834 1350 7550

Table 1. Addition of symbolic matrices
Section 3. Matrices Used in Experixﬁents

The experiment consisted of computing matrix sums, products, and inverses. Both sym-
bolic and numerical matrices were used. The matrices of four patterns of sparseness were util
ized: fully dense, triangular, tridiagonal, and diagonal. Zero entries were used only for the par:
governed by the sparseness pattern. For example, in triangular matrices, the entries in the par
above the principal diagonal were zero, and the remaining entries were all non-zero.

In symbolic matrices, each non-zero entry was a distinct symbol—to be exact, an operato
expression whose arguments were the row and column indices of the entry. In numericz
matrices, each non-zero entry was a random integer. Lest the arithmetic complexities of float
ing point or bignum computations cloud the results, only small random integers of absolut
value between 1 and 30 were used.

The experiments were attempted on matrices of sizes ra.nging from 4 x 4 to 100 x 100. Eacl
column in the tables to be discussed below was generated by a single program. In several cases
the programs could not run to completion: sometimes they éremamrely ended by running ou
of available memory; sometimes we just interrupted them because they had consumed tox
much time. For example, the inverse computation of dense symbolic matrices could be don
only for sizes 4 x4 and 5 x 5, but the multiplication of triangular symbolic matrices could b
completed for sizes up to 80 x 80.

-

The algorithm for mawrix addiuon and supwgacton (11] decomposes naturally into four qua-
drant additions, separate and independent processes. Whenever either addend is 0, their sum
is effidently represented as a shared reference to the root of the other addend, without need for
any further traversal.

Matrix multiplication decomposes into four sums and eight products. Whenever a factor is
either 0 or 1, the product is directly available, either as 0, or as a shared reference to the other
factor. The former case occurs particularly often within sparse factors, and annihilates the
recursion not only of quadrant multiplication, but also of the addition of quadrant-products
that follows.

Analytic measures of both sparse and dense quadtree representations have been presented
elsewhere [14]. These results have guided the selection of the test cases presented here. We
acknowledge that completely dense matrices and diagonal matrices are extreme cases, but they
bound the range of performance. Triangular matrices and tridiagonal matrices are a coarse, but
feeble, attempt to cover the middle of the spectrum; it is easy to generate reliable data for these
cases, but not for other cases that are more typical. Indeed, characterization of a “typically”
non-dense matrix seems to be an open problem; no one knows what pattern is typical of real
data.

Tables 1 and 2 summarize the timing results for addition of symbolic and numerical
(integer) matrices, respectively, for the four sparseness patterns: dense, triangular, tridiagonal,
and diagonal. Of the two entries shown for any size and pattern combination, the upper one is
the time taken by REDUCE's built-in matrix package, and the lower one is the time taken by the
quadtree package. All'times shown in the tables are produced by REDUCE's timing functions,
measuring CPU time in milliseconds, exclusive of garbage collection. The values in each
column come from a single experiment run under Tektronix’s Franz Lisp version of REDUCE
3.3 on a SUN 3/160 with eight megabytes of memory.

Tables 3 and 4 show similar results from symbolic and numerical multiplication.

The experiments indicate that quadtree addition is at most twice as slow as linear addition
for fully dense symbolic matrices of sizes larger than 40, but up to 8 times faster for diagonal
matrices of the same size range. Even more startling is the performance of quadtree multiplica-
ton. For fully dense symbolic matrices, quadtree catches up at about size 13, and is already
twice as fast by size 30. For very sparse matrices, it is remarkably faster.

It is interesting to note that the &msfaruianguhrmuiosgrowataboutﬂ\esamemmas
dense matrices, because the problem is dominated by the dense subquadrants of the problem.

Space was not measured. Accurate analytic results for these special cases are available [13,
14], although the analysis therein does not consider the extended costs for precise representa-
tion of large numeric entries. In order to avoid time corruption from large numbers, in fact,
these data were constrained so that every entry in the “filled” portion of an operand-matrix was
an integer between one and thirty.

102

Size Dense Tria.ng!g Tridiagonal Diaguna]
4 83 83 66 50
133 33 100 66
5 166 133 100 83
216 150 150 66
6 116 150 133 100
216 150 183 50
8 283 266 233 133
300 266 200 83
10 466 400 383 216
616 383 366 116
12 650 650 516 350
800 500 416 166
20 1933 1800 2066 1100
2316 1216 933 250
30 4166 4150 4866 3000
5083 2500 1383 400
40 7400 7750 8866 6000
8783 4283 2016 583
50 11450 12183 13683 9900
14160 6683 2533 766
&0 16684 17883 20400 15200
19583 9250 3033 900
_ 80 29617 32300 37550 32900
" 34617 16150 4233 1366
100 46283 50884 60050 51517
- 54983 25200 5416 1700

Table 2. Addition of integer matrices
Section 5. Inversion by Partitioning

REDUCE's default matrix inversion procedure is based on Bareiss’s method (2]. (Inversion
based on Cramer's rule can be invoked by flipping a special switch.) Bareiss’s method, as he
presents it, is more suitable for linearly stored matrices than for quadtree matrices. While a
quadtree adaptation of his method is possible by using some ideas given in [1], it is rather com-
plicated, and its computational advantage is quite doubtful. For our experiment, we just chose
to use the simple relation expressing the inverse of a matrix in terms of its four partitions (see
e.g., [3]).

While very simple to implement in the quadtree representation, inversion by partitioning
obviously fails to compute the inverse of a non-singular matrix any of whose northwest (prind-
pal) subquadrants is singular. Furthermore, at each level a composite matrix (Schur product)
must also be non-singular. For the abstract symbolic matrices considered in our experiments,
this situation cannot arise; we were certainly fortunate that none of our numerical test matrices
encountered any problem with this inversion procedure either. Not only do we question how
often such singularities occur in real data, but also we wonder whether more realistic sparse-
ness in data hampers the algorithm (by proliferating singular quadrants) or whether it actually
steers the refinement (by making it easier to identify and to avoid quadrants that, themselves,
are singular or whose partitioning always results in four singular quadrants.)

103

++ The timing results for symbolic and numerical matrices are shown in Tables 5 and 6,
respectively. The particular inversion method we used is inferior for fully dense symbolic
matrices. Since the inversion of dense symbolic matrices of even sizes as small as 10 is infeasi-
ble anyway without using a great deal of abbreviations for expressing intermediate expressions,
this test case is not of much practical significance. But in sparse cases, symbolic as well as
numerical, the partitioning method with quadtrees is unignorably efficient.

Section 6. Hybrid Inversion by Pivoting

It is unfair to test Bareiss’s total algorithm against the partial algorithm for matrix inversion
by partitioning; Bareiss’s is strictly more powerful than partitioning. Therefore, we are unable
draw any strong conclusion from the comparison.

Size Dense Trangular | Tridiagonal Diagonal

4 133 100 | 50 | 66 |
200 100 116 66
5 216 100 83 66
516 150 266 100
6 366 100 100 66
650 216 283 ' 83
8 1050 233 166 83
1416 416 . 316 100
10 2400 416 200 150
3000 700 583 100
12 4667 800 283 216
5000 1133 633 166
20 32700 4150 716 650
24617 4633 1200) 216
30 157466 17583 1916 1716
82867 14967 1883 283
40 || 485233 50634 4000 3716
207800 35083 2550 400
50 116550 7183 6817
68784 3300 433
60 232784 11783 11400
117633 3867 566
80 699534 25850 25633
290084 5266 ° 700
100 49366 48534
6784 883

Table 3. Multiplication of symbolic matrices

There remains a need for a total algorithm for matrix inversion based on block decomposi-
tion. One has already been proposed for numeric problems [12], specifically for stable perfor-
mance on floating-point number representations. It is based on pivoting, actually Crout’s for-
mulation of Gaussian elimination as presented by Knuth [6], and has the unique feature of pro-
viding full pivoting (full search of uneliminated elements) at no significant cost for accessing
memory—espedially in sparse matrices. It can be extended to symbolic/exact arithmetic by
replacing the local maximizaton (intended for floating point stability) with a local (non-zero)
minimizaton (to scale accumulated denominators).

Size Dense Triangular | Tridiagonal | Diagonal
4 150 83 66 66
183 116 150 66
5 166 133 100 66
533 250 283 116
6 300 166 150 100
650 300 300 116
8 550 316 216 250
1283 466 400 133
10 1066 333 450 233
2600 783 700 183
12 4766 833 633 366
4250 1250 916 183
20 6817 3000 2450 1383
18034 4333 1816 350
30 21683 8150 5833 4033
59984 12684 2866 516
40 49500 17167 11933 8417
139000 27750 3966 700
50 94816 30767 21166 15150
— 271767 52533 5433 916
60 161866 50084 32083 23850
464233 87333 6367 1133
80 376167 108800 - 64550 | 53183
1091166 199183 8817 1666
100 727000 200417 111333 92500
2128817 380484 11333 2050

Table 4. Multiplication of integer matrices

‘While this algorithm has an elegant quadrant decomposition, it does not exhibit the
divide-and-conquer behavior of inversion by partitioning, as we usually expect of tree decom-
positions. As published, this algorithm still requires n successive pivot steps to invert a matrix
of order n. We would like to reduce the number or the order of the full pivots.

A hint of the desired improvement has already appeared [13], but the goal is briefly
described here. Rather than pivoting on elementary elements, better performance will be

obtained from pivoting on whole blocks.” Thus, if we could find a non singular subquadrant of
order near Vz, then only Vn such pivots would be necessary.

A useful way to find these subquadrants is to compute determinants, where that can be
easily done. Not only do non-zero determinants identify candidate pivot blocks, but also their
magnitudes can be used to choose among several candidates, scaling exact arithmetic or sus-
taining floating point stability. If the determinant computation becomes too difficult, then we
treat the quadrant as if it were singular: don’t pivot there! Those matrices whose determinants
we can afford to compute are called affordable. We are, therefore, interested in affordably non-
singular quadrants. s

" Quadrants of order 1 and 2 are certainly affordable (as Bareiss and others have noticed.)
Matrices of order 4 are affordable if one of their quadrants is zero, but more generally
Sylvester’s identity can be used to construct a divide-and-conquer (partial) algorithm for deter-
minants, allowing other larger matrices to be affordable. This computation becomes- less

o

105

ble just as some of their non-trivial quadrants (of order more than 4) are affordably non-
{ingular. In those cases, it might appear that this effort will be lost when all larger quadrants
Lre non-singular, but even when the bottom-up computation breaks down, many non-trivial
L ivot blocks will, nevertheless, have been identified.

i

} ge Dense Triangular Tridiag_onal Diagonal
H 4 7933 933 2516 383
: 19800 300 3200 83
5 76517 1733 6300 566

468233 950 8766 83

6 4050 16416 883

1733 23283 116

8 20650 94050 2083

5483 196417 116

10 102800 531950 3966

21400 1275433 100

12 514083 6866

55916 150

20 35917

183

30 142484

266

40 392434

333

50 878766

416

60 1705416

483

Table 5. Inversion of symbolic matrices

In this way, the recursive computation (decoration [12]) using determinants offers a hybrid
algorithm which can pivot on smaller quadrants or invert on an entire partition, depending
upon which quadrants turn out to be affordably non-singular. Moreover the decomposition of
Sylvester’s identity makes it attractive for a multiprocessing envirorunent.

Section 7. Conclusions

The commonly used linear storage for matrices is not suitable for implementing algorithms
based on partitioning. This representation thus deprives us of exploiting many matrix theory
relations which can be the basis of divide-and-conquer algorithms. If the underlying program-
ming system uses the heap model of memory, then quadtrees offer an alternative data structure
to use for representing matrices, leading to very natural, straightforward implementation of
algorithms based on partitioned matrices. We have done an empirical investigation of quadtree
matrices and some associated algorithms, and are very impressed with their performance com-
pared to the conventional matrix implementations.

The quadtree structure has the appealing feature that it takes advantage of matrix sparse-
ness without the need of any spedal programming. Entire blocks of zeros often do not require
any storage space. Moreover, during computations, little time is spent in program steps related
to those blocks. In the case of dense matrices, the quadtree structure actually requires more

space than in the linear storage due to the overhead involved in storing the non-leaf nodes
the tree. But even for dense matrices, it is often possible for the quadtree structure to be mc
efficient with respect to computing time, because it may allow the use of an algorithm based

the divide-and-conquer strategy. Our results on symbolic matrix multiplication prove t!

point.

S=mg Dense Trian& Tridiagonal Diagnal
4 216 116 200 100
633 150 300 50

5 400 266 300 183
1317 350 516 100

6 666 383 434 233
4217 466 716 50

8 2767 1050 983 383
17133 1066 1416 100

10 6717 2134 2700 7
53133 2066 2284 150

12 13517 3834 5383 1283
142467 3516 5933 166

20 102866 20533 39850 4350
1887967 21550 38900 200

30 79400 199866 15967
150700 296483 300

40 198733 476017 38433
435633 542283 416

50 458016 1070984 82050
1157217 1191984 583

60 955417 2082250 157983
3504084 2404150 700

80 444733
916

100 1051284
1316

Table 6. Inversion of integer matrices

There is another important, less obvious computational advantage in certain manipulatic
with quadtree matrices. For conventional matrices, each element in a matrix product, for exa
ple, is computed by accumulating terms one by one into a sum. In quadtree matrix multipli
tion, the sum is developed over a binary tree. This benefits each type of arithmetic used in co
puter algebra systems: For integer addition, this is likely to postpone the invocation of bign
calculations, if any, until at higher levels in the tree. For floating-point addition, computatic
are likely to be more stable. For symbolic addition, the lookup and gathering of common sy
bols is likely to be more efficient. This a partial explanation of the consistently good perf
mance of quadtree multiplications in our experiments.

The earliest applications of parallel computing have been in the area of matrix compu
tions. For conventional matrices, the parallelism is gained by ‘array processing’ in which t
number of processors needed is comparable to the matrix size. In contrast, the parallelism
quadtree matrix computations arises most naturally from the four-way recursive decompositi
of the tree. It thus seems that quadtree matrices can offer parallel computing opportunit
even in the environments where the number of processors is small and fixed.

107

Very large matrices derived from practical applications are usually sparse. For example, it
be rare indeed for each component of an electrical dircuit to be connected to a large
s+ ¢ other components. Circuits usually tend to contain a small number of loosely con-
nected m';;;onents each of which is strongly connected or has a linear (ladder) structure. The
%= onding matrices are overall sparse, with their non-zero entries organized into dense
$josds ind bands. The quadtree representation can be expected to do well with such matrices.
) “ﬁhﬁ’gm a very sparse large matrix, it is quite possible, of course, that the blocks of zeros
" do not neatly align with large subquadrants. The quadtree representation in this case can be
made more efficient by suitably permuting the original matrix. Algorithms to do this will be
important in practice.

The quadtree structure often requires different matrix manipulation algorithms from those
suitable for linearly stored matrices. (This is similar to the situation of different requirements
for parallel and sequential solutions for the same problem.) We have, for example, discussed in
some detail the problem of matrix inversion where entirely different algorithms are desirable to
deal with the two representations. Due to the importance of matrix computations, a lot of
research has been devoted to designing efficent algorithms for the conventional matrix
representation. This is especially true in the field of numerical linear algebra. Development of
optimal algorithms for manipulating quadtree matrices seems to be an interesting area for

future research.

References
1. S.K Abdali & D.D.Saunders. Transitive closure and related semiring properties via
L eliminants. Theoretical Computer Science 40, 2,3 (1985), 257-274.

2 E.H.Bareiss. Sylvester's identity and multistep integer-preserving Gaussian elimination.
Math. Comp. 22}, 103 (July, 1968), 565-578.

3. V.N.Faddeeva. Computational Methods of Linear Algebra, Dover, New York (1959).
4. F.R Gantmacher. The Theory of Matrices 1, Chelsea, New York (1960).

5. A.C.Hearn. REDUCE User's Manual, Version 3.3. Rand Publication CP78, The Rand
Corp., Santa Monica, CA (July, 1987).

6. D.E.Knuth. The Art of Computer Programming, 1, Fundamental Algorithms, 2nd Ed.,
Addison-Wesley, Reading, MA (1975).

7. A.C.McKellar & E. G. Coffman, Jr. Organizing matrices and matrix operations for paged
memory systems. Comm. ACM 12, 3 (March, 1969), 153-165.

8. T.Sasaki & H Murao. Efficient Gaussian elimination method for symbolic determinants
and linear systems. In P.S. Wang (Ed.), Proc. 1981 ACM Symp. on Symbolic and Algebraic
Computation, ACM Order No. 505810 (August, 1981), 155-159.

9. M.K. Sridhar. A new algorithm for parallel solutions of linear equations. Inf. Proc. Lett. 24,
(April, 1987), 407-412.

10.

1L

12

13:

14,

1ug

V.Strassen. Gaussian elimination is not optimal. Numer. Math. 13, 4 (August, 1969),
354-356.

D. S. Wise. Representing matrices as quadtrees for parallel processors (extended abstract).
ACM SIGSAM Bulletin 18, 3 (August, 1984), 24-25.

D.S. Wise. Parallel decomposition of matrix inversion using quadtrees. In Hwang K,
Jacobs, S.]., and Swartzlander E. E. (Eds.), Proc. 1986 International Conference on Parallel Pro-
cessing, IEEE Computer Sodlety Press, Washington, 1986, pp. 92-99.

D. S. Wise. Matrix algebra and applicative programming. In G. Kahn (Ed.), Functional Pro-
gramming Languages and Computer Architecture, Lecture Notes in Computer Science 274,
Springer, Berlin (1987), pp. 134-153.

D. S. Wise &]. Franco. Costs of quadtree representation of non-dense matrices. Technical
Report No. 229, Computer Science Department, Indiana University (October, 1987).

AL

X NN .

Swain a7 0 v
<24 Lecture Notes in
Computer Science

Edited by G. Goos and J. Hartmanis

SWHN

OA
2695
. L 57

358 1 T3
m
P. Gianni (Ed.)
\,.‘ 3 ;}jf;f‘-.-_r,\ &, /l’w‘- s ;I_..-./.:_,-.’._,c'.,b‘_'n‘ :f ,*'} :. 15?69

i - -
¢ +
- o 3 A— - . £ L
Lo 7 “ 2 L e S EYEL S)
! £ > . 5 , & "

Symbolic and
Algebraic Computation

International Symposium ISSAC '88
Rome, ltaly, July 4—8, 1988
Proceedings

