Updating Materialized Views: Detecting
Conditionally Autonomously Computable Updates
By
Frank Wm. Tompa
Department of Computer Science

University of Waterloo
Waterloo, Ontario, N2L 3G1

and

José A. Blakeley
Computer Science Department
Indiana University

Bloomington, IN 47405

TECHNICAL REPORT NO. 240

Updating Materialized Views: Detecting
Conditionally Autonomously Computable Updates

by
Frank Wm. Tompa and José A. Blakeley
February, 1988

L ol . _.ll
.-_.._ -

Updating Materialized Views: Detecting
Conditionally Autonomously Computable Updates*

Frank Wm. Tompa! José A. Blakeley
Data Structuring Group, Computer Science Department,
Department of Computer Science, Indiana University,
University of Waterloo, Lindley Hall 101,
Waterloo, Ontario, N2L 3G1 Bloomington, IN 47405

February 11, 1988

Abstract

Access to a database through a user view can be serviced quickly when the view is materi-
alized, that is, the transformed data is explicitly stored. In the presence of database updates,
however, the materialized view can become costly to maintain; often it must be completely
rederived from the base data using the view definition. Under some conditions the view can be
updated directly given only the view definition, the current contents of the materialized view,
and the update operation (still expressed against the base data), without accessing the base
data itself.

In this paper, we consider relational views defined by projection, selection, and join. We
present necessary and sufficient conditions on the view definition, contents, and update oper-
ations for insertions and deletions to be reflected in the view without reference to base dala.
Because the possibility of such view-based updating is dependent on the current contents of the
view, we call the update conditionally autonomously computable.

Categories and Subject Descriptions: H.2.1 [Database Management]:Logical Design—Data Models; H.2.4

[Database Management|:Systems—Query Processing

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Database design, Relational databases, Conceptual relations, Stored

relations, Pre-joined relations, Derived relations, Materialized views, Snapshots

*This work was supported in part by the Department of Computer Science at the University of Waterloo and by

grant A9292 from the Natural Sciences and Engineering Research Council of Canada.

1On leave at Bellcore, Morristown, New Jersey, 1987-88.

1 INTRODUCTION 2

1 Introduction

A truly relational database management system supports deriwved relations, also called views, in
addition to base relations. A derived relation is defined by a relational expression (a query) over
the base relations or other derived relations. A derived relation may be virtual, meaning that its
defining relational expression has to be re-evaluated every time a user refers to it, or materialized,
meaning that the relation resulting from evaluating the expression defining the view is actually
stored. In this paper we are interested in the study of materialized views.

The support of materialized views in a database management system is important as a means
to speed up the performance of frequently posed queries, see for example, [1,9,12,17,20,19,25]. By
materializing the result of a frequent query, subsequent accesses to the same data involve only
the retrieval of the contents of the materialized view, and thus the effort involved in recomputing
the associated query from scratch is avoided. The use of materialized views to speed up the
performance of frequent queries is perhaps more important in a distributed environment where
the cost of recomputing a query from scratch involves not only processing but also communication
cost. Snapshols are an example of the use of materialized views in distributed systems [1,13].
Materialized views have been proposed by several researchers as a way of restructuring a relational
database at the internal level [12,19,20]. Materialized views can also be useful to extend relational
database management systems to support procedures [21,23] and rules [22].

Because base relations are modified by update operations, the materialized views defined on
them may have to be updated as well. The simplest way to bring an affected materialized view up
to date is by re-evaluating the query that defines it. However, this alternative is often wasteful and
the cost involved may be unacceptable.

The problem of updating a materialized view as a result of changes applied to the underlying
base relations that participate in its view definition can be decomposed into the following subprob-
lems [3]: (1) detection of irrelevant updates, (2) detection of autonomously computable updates, and
(3) efficient re-evaluation of the view.

Irrelevant updates refer to those updates to the base relations that cannot possibly have an effect
on the view [2,6,15]. Necessary and sufficient conditions for the detection of irrelevant updates for
the case when a view is defined by an expression involving selection, projection, and join are
presented by Blakeley et al. [3,4,5].

If an update is not irrelevant to a view, then some data from the base relations may be needed
to update the view. An important case to consider, however, is one in which all data needed is
contained in the view itself. Updates of this type are called autonomously computable updates.
Two types of autonomously computable updates, namely, unconditional and condiiional have been
distinguished [3,4]. Unconditionally autonomously computable updates refer to those updates to

the base relations that can be reflected into the view regardless of the database instance. This

2 BASIC CONCEPTS 3

type of update can be detected by examining the view definition and the update to the base re-
lation at compile time. Necessary and sufficient conditions for the detection of unconditionally
autonomously computable updates when a view is defined by a PSJ-expression and the updates
are insertions, deletions, or modifications are presented in [3,4]. Conditionally autonomously com-
putable updates refer to those updates to the base relations that can be reflected into a view only
for those databases that yield the current view materialization. This paper addresses the problem
of conditionally autonomously computable updates, in particular, (1) determining the conditions
under which an insert or delete operation to a base relation that participates in the definition of
a view is conditionally autonomously computable with respect to the current view materialization,
and (2) showing how to carry out the insertions or deletions on the view.

It must be stressed that the problem analyzed in this paper is completely different from the
problem of updates through views. In that problem, a user is allowed to pose updates directly
to a view, and the difficulty is in determining how to translate updates expressed against a view
into updates to the base relations. In the model proposed in this paper, the user can only update
base relations; direct updates to views are not considered. Therefore, rather than analyzing the
traditional problem of deriving appropriate update translations, this paper is concerned with finding
efficient ways of keeping materialized views up to date with the base relations. The reader interested
in the problem of updates through views may refer to work by Keller [11] or Medeiros and Tompa
[16].

The next section presents some basic concepts and notation required for this paper. Section 3
presents a formal definition for autonomously computable updates. Sections 4 and 5 present our
results on conditionally autonomously computable deletions and insertions, respectively. Section 6
discusses cases when conditionally autonomously updates can be performed more efficiently, and
finally, Section 7 presents the conclusions of this work.

2 Basic concepts

In the rest of the paper we assume that the reader is familiar with the relational model. In
this section, we review some familiar concepts, introduce some less familiar ones, and present the
notation used throughout the paper.

We assume there exists a universe U of attributes, and for each A € U, a set of values called the
domain of A denoted by dom(A). A relaiion scheme R is a finite subset of U. A tuple t over scheme
R is a mapping from R into |Jcp dom(A) such that ¢(A) € dom(A). A relation r over scheme R
is a finite set of tuples over R. We assume no constraints (e.g., keys or functional dependencies) to
be imposed on the relations allowed. For a set X C R and a tuple t € r over scheme R, we denote
the restriction of ¢ to X by t[X]. A database scheme D is a set of relation schemes. A database d

2 BASIC CONCEPTS 4

over a database scheme D is a set of relations containing one relation for each relation scheme in
D. Without loss of generality we assume that the relation schemes in D are non-intersecting, so
that attribute names are unique; this avoids having to refer to attributes in D by specifying both
a relation name and an attribute name.

Let 7; and r5 be relations over schemes R; and Ry, respectively.

1. The Cartesian product of r; and r; denoted by ry X 73 is a relation {t[{R: U R3] | t[R4] €
r1 and t[Ry] € 72} over scheme Ry U R,.

2. The projection of vy over X C R;, denoted by mx(r1) is the relation {t[X] |t € 71} over
scheme X .

3. The selection of tuples in r; satisfying predicate C, written o¢(ry), is the relation {t[R,] |t €
r1 and t satisfies predicate C} over scheme R;. Later in this section we will discuss in more

detail the type of predicates we allow.

4. The join of r; and r, denoted by ry Xp ry, where P is a predicate on Ry U Ry, is a relation
{t[R1 U R3] | t € r1 X v and t satisfies predicate P}.

A view definition E is a relational algebra expression over some subset of D. A view mater:-
alization (or just view) v(E,d) is a relation resulting from the evaluation of the relational algebra
expression E against the database d. In this paper we consider only views defined by relational
algebra expressions called PSJ-ezpressions, formed from a combination of projections, selections,

.and joins. Every PSJ-expression can be transformed into an equivalent expression in a standard
form consisting of a Cartesian product, followed by a selection, followed by a projection. From this
it follows that any PSJ-expression can be written in the form E = m 5 (0¢(Ry X Ry X - - - X Ryp)). We
can therefore represent any PSJ-expression by a triple E = (A, R,C), where A = {41, As,..., Ak}
is called the attribute set, R = {Ri, Ra,..., R} is the relation set or base, and C is a Boolean
expression called the selection condition which comprises the predicates of all the select and join
operations of the original relational algebra expression defining E. The attributes in A will often
be referred to as the wvisible attributes of the view.

We assume that for E = (A, R,C), each relation in R is referenced only once in the associated

PSJ-expression, that is, the expression contains no self-joins. Also, we use the notation:
a(C) the set of all attributes appearing in selection condition C

a(R) the set of all attributes of relation scheme R

Note that so far we have been referring to a subset from U as R, however, we introduce the notation «(R) to
make a clear distinction between the subset of attributes and the name of the subset.

2 BASIC CONCEPTS 5

a(R) the set of all attributes mentioned in the set of relation schemes R, that is, Ug.cp @(R;)-
The following example illustrates the above notation.

Example 2.1 Consider three relation schemes Ry(A1, B1), R2(Az, B2, C3), R3(Asz, B3), and a view
defined by the expression

E = ma, 4,8, (04, >20(R1) MB,=B, T4,B,(0B,=30(R2)) Ma,>4; 0B,<10(R3)).

This relational algebra expression can be converted into the equivalent expression

E'" = 74, 2,B5(0(4,>20)(By=B,)(B>=30)(A2> 43)(Bs <10)(R1 X R2 X R3)),

which in turn can be represented using the triple notation as
= ({Al,Az,Bg},{Rl,Rz,R‘a},(Al > 20)(31 - Bz)(Bz = 30)(A2 =% A3)(Bg < 10)),

In this example, OC(C) = {A13B1:A21323A31-83}1 a(Rl) = {Alx-Bl}: Q(RZ) = {AZ}BZ:CE})
Q’(Ra) = ’{Aa,Bg]’, and Q(R) = {A1,B],A2,Bz,02,A3,B3}. O

The update operations considered are insertions and deletions. Following relational languages
such as SQL [7] and QUEL [24], each update operation may change only one base relation; multiple
updates (possibly involving changes to several relations) can be packaged as transactions, but this
has no effect on our considerations. The following notation will be used to describe the update
operations:

INSERT (R,,T): Insert into relation r, the set of tuples T', where each ¢ € T is defined over R,.

DELETE (R,,Cp): Delete from relation r, all tuples satisfying the selection condition Cp defined
on scheme R,. Notice that by allowing this form of delete operation we automatically cover
the form where a set of tuples to be deleted is explicitly presented.

We assume that all attributes have discrete and finite domains. Any such domain can be mapped
onto an interval of integers, and therefore for simplicity we will treat all attributes as being defined
over some interval of integers. For Boolean expressions, the logical connectives will be denoted
by “v” for OR, juztaposition or “A” for AND, “=” for NOT, “=” for implication, and “<” for
equivalence. To indicate that all variables of a selection condition C, are universally quantified, we
write ¥ (C), omitting the names of the variables, and similarly for existential quantification. If we
need to identify explicitly which variables are quantified, we write ¥ X (C), where X is a set of
variables.

An evaluation of a selection condition is obtained by replacing all the variable names (attribute
names) by values from the corresponding domains. The result is either true or false. A partial

2 BASIC CONCEPTS 6

evaluation (or substitution) of a selection condition is obtained by replacing some of its variables
by values from the corresponding domains. Let C be a selection condition and ¢ a tuple over some
set of attributes. The partial evaluation of C with respect to ¢ involves the replacement of variables
in C by values for the corresponding attributes in ¢ and is denoted by C[t]. The result of a partial

substitution is a new condition with fewer variables.
Example 2.2 Consider the selection condition of the previous example
C = (Al > 20)(.81 = .Bz)(Bz = 30)(A2 > A3)(Bg < 10)

and let t = (45,30,18) be a tuple in 7, on scheme R,. The partial substitution C[t] is given
by the condition (4; > 20)(B; = 30)(30 = 30)(45 > As)(Bs < 10) which can be simplified to
(A; > 20)(B; = 30)(45 > A3)(Bs < 10). The evaluation of C on the values A; = 25, B; = 45,
Az = 20, and B3 = 8 yields the truth value false. O

In principle, the Boolean expressions allowed to be selection conditions are sentences in first-
order predicate calculus and in fact our lemmas and theorems impose no restrictions on the Boolean
expressions allowed. However, for efficient implementation we limit those Boolean expressions to
conjunctive expressions as explained below.

Detecting whether an update operation is autonomously computable involves testing whether
certain Boolean expressions are valid (i.e., tautologies), or equivalently, whether their complements
are unsatisfiable. Proving the satisfiability of Boolean expressions is, in general, NP-complete [8].
However, for a restricted subclass of Boolean expressions, polynomial algorithms exist. Rosenkrantz
and Hunt [18] developed such an algorithm for conjunctive Boolean expressions. Each expression 3
must be of the form 8 = B1ABaA-- - APk, where each f; is an atomic predicate of the form (z 6 y+c)
or (z @ c), where § € {=,<,<,>,>}, = and y are variables, and ¢ is a constant. Variables and
constants are assumed to range over the integers. The improved efficiency arises from not allowing
6 to be the operator #. A modified version of the algorithm by Rosenkrantz and Hunt for the case
when each variable ranges over a finite interval of integers has been developed. For full details of
the modified algorithm the reader is referred to Blakeley et al. [4].

An expression not in conjunctive form can be handled by first converting it into disjunctive
normal form and then testing each disjunct separately. Some theorems and lemmas in this paper
require testing the validity of expressions of the form C; = C;. The implication can be eliminated
by converting to the form (=C;)VCs. Similarly, expressions of the form C; <> C; can be converted to
(C1 AC3)V (=Cy A-1C3). The NP-completeness of the satisfiability problem is caused by the fact that
converting an expression into disjunctive normal form may, in the worst case, lead to exponential

growth in the length of the expression.

Definition 2.1 [12] Let C be a Boolean expression over variables z1,Z2,...,%n, ¥1,%2,- -+, Ym- A

variable y;, 1 < i < m, is said to be uniquely determined by 1,2, ...,2, and C if

3 AUTONOMOUSLY COMPUTABLE UPDATES 7

v ml!'-'1mnay1}"':ymry;_!"'sy;n
[C(mla---:mnuylt"-sym) A c(mls"':‘?:ﬂ:y;?"‘!y:n) = (yt:y:)]
(]

If a variable y; (or a subset of the variables y1,¥2,...,¥m) is uniquely determined by a condition
C and the variables z1,...,%,, then given any tuple ¢ = (®1,...,2,) where the extended tuple
(Z1y---yTny Y1y - - -, Ym) is known to satisfy C, the missing value of the variable y; can be correctly
reconstructed. How to reconstruct the values of uniquely determined variables was shown by Larson
and Yang [12]. If the variable y; is not uniquely determined, then we cannot guarantee that its
value is reconstructible for every tuple. However, it may still be reconstructible for some tuples.

Example 2.3 Let C = (4; = A3)(4,; > 7)(B2 = 5). It is easy to prove that A; and B are
uniquely determined by A; and the condition C. For example, if we are given a tuple that satisfies
C but only the value of 4, is known, then we can immediately determine that the values of A; and
B,. If A; = 10, then A, and B3 must be 10 and 5, respectively. O

Definition 2.2 [12] Let E = (A, R,C) be a view and let Ag be the set of all attributes in o(R)
that are uniquely determined by the attributes in A and the condition C. Then At =AUAgis
called the extended attribute set of E. D

It is proved by Larson and Yang [12] that A% is the maximum set of attributes for which values
can be reconstructed for every tuple of E.

3 Autonomously Computable Updates

To illustrate autonomously computable updates let us look at the following example.

Example 3.1 Consider two relation schemes R;(Ay, By) and Ry(Aj,, Ba, C2) with relations:

T = A1 B-l Ta ! Ag Bg Cg

1 10 5 10 25
2 20 6 10 26
3 30 17 20 31

Let a view be defined by the expression E = ({41, B1,C2},{R1, R2},(B1 = B,)) with view
materialization:

3 AUTONOMOUSLY COMPUTABLE UPDATES 8

o(E,d): A By C,

1 10 25
1 10 26
2 20 31

Because the view is defined on more than one base relation we cannot guarantee that any insert
operation to either r; or ry will be autonomously computable on materializations of E for every pos-
sible database d [4]. However, if the database is changed by the operation INSERT (R;, {(4,10)}),
then the current materialization of the view contains enough information to determine that the
tuples (4,10,25) and (4,10,26) are the tuples that must be inserted into the view to bring it up

to date; that is, the particular insert operation is autonomously computable for all databases d for

which v(E,d) = v(E, d). O

The next definition formalizes the notions of unconditionally and conditionally autonomously com-

putable updates.

Definition 3.1 Consider a view definition E and an update operation I/, both defined over the
relation schemes D). Let d denote a database on D before applying U and d’ the corresponding
database after applying U.

e The effect of the operation U on materializations of the view defined by E is said to be
unconditionally autonomously computable if there exists a function Fy g(v(E,d)) such that

YV d
v(E,d") = Fy g(v(E,d)).

o The effect of the operation U on a particular materialization v(E, d) of the view defined by E
on database d defined on D is said to be conditionally autonomously computable with respect
to v(E, d) if there exists a function Fy g(v(E,d)) such that

Y d such that v(E,d)= v(E,d)
?J(E,d') = F}JFE(U(E,&)).

(]

The main aspect of Definition 3.1 is the requirement that Fz; g be a function of the materialization
v(E,d). That is, if d; and d, are databases such that v(E,d;) = v(E, d3), then it must follow that
Fur(v(E,di) = Fur(v(E,d,)). The following simple but important lemma is a slight variation of
a lemma introduced by Blakeley, Coburn, and Larson [4], adapted to the definition of conditionally
autonomously computable updates. It will be used in several proofs throughout Sections 4 and 5.

4 CONDITIONALLY AUTONOMOUSLY COMPUTABLE DELETIONS 9

Lemma 3.1 Consider a view defined by E = (A, R,C) with materialization v(E, d), and update
operation 4 to relation r on scheme R € R, R C D. Let d;, d; be two databases and di, d
be the updated databases after applying U, respectively. If v(E,d;) = v(E,dz) = v(E,d) and
v(E,d}) # v(E,d)), then ¢ is not conditionally autonomously computable.

Proof: Assume there exists a function Fy g as in Definition 3.1 such that v(E, d') = Fy g(v(E, d))
for every database d such that v(E,d) = v(E, d) Consider the databases d;, d» such that v(E, d;) =
v(E,dy) = v(E,d). It follows that Fy p(v(E,d;)) = v(E,d}) and Fyg(v(E,dz)) = v(E,d)).
Since Fy g is a function and v(E,d;) = v(E,d,) it follows, from the definition of function, that
Fug(v(E,di)) = Fy p(v(E,ds)), or equivalently, that v(E,d}) = v(E,d;). This contradicts the
condition given and proves the lemma. O

In the next two sections we present necessary and sufficient conditions for determining when
an insertion or deletion is conditionally autonomously computable. We address the problem of
deletions first, because it is simpler.

4 Conditionally autonomously computable deletions

Unconditionally autonomously computable deletions require that all variables in the conditions Cp
and C which are not seen in the view, be “computationally nonessential in Cp with respect to C”
[3,4], that is, for all possible values assigned to those variables in such a way that they satisfy the
condition C, these values will make the condition Cp evaluate to the same truth value.
Occasionally, even though a variable in (a(Cp) U a(C)) — At is computationally essential in
Cp with respect to C, it may still be possible to compute the delete operation autonomously. The

following example illustrates this situation.

Example 4.1 Consider the relation schemes R;(A;, B;) and Ry(42, B3, C>), with corresponding
relations

ry Al Bj_ Ta Az Bz Cz

16 1 17 18 23
20 2 19 14 25
24 3 24 18 33

Let a view be defined by E = ({B1, A2, B2,C2},{R1, R2},(4; > A3)(A1 < C3)), and thus its

corresponding materialization is

4 CONDITIONALLY AUTONOMOUSLY COMPUTABLE DELETIONS 10

“U(E,d): 31 Ag Bg Cz
2 17 18 23
2 19 14 2
3 19 14 25

Now consider a delete operation DELETE (R;,(4; < 20) V (4; > 22)). Even though A, is
computationally essential in Cp = (4; < 20) V (A; > 22) with respect to C = (4; > A;3)(4; < Cs),
we can still determine from the tuples present in the view as well as the absence of tuple (3,17, 18,23)
that the third tuple in v(E, d) is precisely the one that needs to be deleted. O

For the effect of a delete operation to be conditionally autonomously computable with respect
to v(E, d) we need to be able to prove, for each of the tuples currently stored in v(E,d), whether
the tuple stays in the view as a result of the delete operation on a base relation. If there is
at least one tuple in the view for which we cannot decide whether it will stay in the view after
the delete operation, then the effect of the delete on the view is not conditionally autonomously
computable and hence the view should be updated using some other mechanism such as differential
re-evaluation [5,10]. We need to be able to prove the above regardless of the values for variables
z € (a(Cp) U a(C)) — A*, using only the information provided by the current materialization
v(E,d), the view definition E = (A, R,C), and the operation DELETE (Ry,Cp).

We now define notation for the contents of the view materialization that will allow us to establish
the relationship between the values for attributes that are visible in the view and the values for

attributes not visible in the view.

Definition 4.1 Let V denote the Z-eztended view of v(E, d) where each tuple e € v(E, d) is padded
with a distinct variable name zj, for each attributein Z = (a(Cp)Ua(C))—-A™*,1 < k < |Z|x|v(E, d)|,
as well as with values for uniquely determined variables (i.e., variables in At — A). O

Example 4.2 Consider again Example 4.1, and assume that the delete operation
DELETE (R-[,(A] < 20) \% (Al S 22))

is performed on relation r;. The Z-extended view V of v(E,d) is given by:

1 Al Bl Az Bz Cz
zn 2 17 18 23
zz 2 19 14 25
3 3 19 14 25

4 CONDITIONALLY AUTONOMOUSLY COMPUTABLE DELETIONS 11

To explore all possible relationships between the variables in Z and the values that show up in
v(E,d) we need the notion of a project-join mapping [14].

Definition 4.2 The project-join mapping my of the Z-extended view V is defined as:
my = WGL(V) X ?'l‘Gz(V) b R ¢ ﬂgm(V),

where G; = (a(Cp)U «(C)U A*) N aR;), 1 < i < m. In other words, G; represents the attributes
from R; which are either visible or used in the conditions Cp or C. O

Example 4.3 The project-join mapping for the Z-extended view V in the above example is:

my: A By Ay B; C;

z 2 I7 18
2y 2 19 14 25
z 2 17 18 23
2z 2 19 14 25
% 3 iy 18 93
z3 3 19 14 25

]

Observe that each tuple from my represents some knowledge about possible values from the
database for the attributes in Z. For instance, the tuple (z;,2,17, 18,23) represents the tuple from
71 of the form (21, 2) which when combined with the tuple (17,18,23) from 7, in such a way that
they satisfy the condition C, produce the tuple (2,17,18,23) € v(E, d).

We partition the set of tuples in my into two sets P and @ defined as follows:

P ={p|p€ my and p[A] € v(E, d)}
Q = {q|q € my and q[A] ¢ v(E,d)}

Clearly, 0 < |P|,|Q| < |v(E, d)|™, where m is the number of relations involved in the view definition.
Based on the sets P and Q we can build a Boolean expression that captures the knowledge stored
in the materialized view about potential values (from the database) for the attributes in Z.

Definition 4.3 The Boolean expression
VZl, 22y -0y Bk /\ C[p] /\ _'C[Q]
pEP qeQ

defines all potential values for attributes in Z that are consistent with the current materialization
v(E,d). O

4 CONDITIONALLY AUTONOMOUSLY COMPUTABLE DELETIONS 12

The following lemma establishes the condition under which it is guaranteed that a tuple t[A] €
v(E,d),t € V, stays in the view after the delete operation.
Lemma D.1 Consider the current materialization v(E,d) of a view E = (A,R,C), R =
{Ry,R3,...,Rn}, and the update operation DELETE (R,,Cp). Let V be the eztended mater:-
alization corresponding to v(E,d). The tuple i[{A] € v(E,d), t € V, is guaranteed to stay in the
updated view v(E,d’) if and only if

V21,2255 2k (/\ Clp) A\ —Clg] = —Cplt]),
pEP q€eq

where 1 < k < |Z| x |v(E, d)|.
Proof: (Sufficiency) If the condition holds, then no matter what values are assigned to the variables
21,22,. .., 2k to make the antecedent true (and hence consistent with the current view materializa-
tion v(E, d)), the tuple t{A], t € V, will not be deleted from v(E,d).

(Necessity) We need to show that if the condition does not hold, then there exists a database
dy that yields the view v(E,d;) = v(E, d) for which the tuple {[A] should be deleted. Assume there

exists an assignment of values to variables z;, 23, ..., 2zx such that

A Clpl(21, 22, -, 2) N\ ~Cla)(1, 22, - - -, %) = ~Cp[t](21, 22, - . -, 2)

pEP q€Q
evaluates to false, that is, the antecedent is true and the consequent false. To construct the database
d, we use the project-join mapping my. The database d; consists of the relations r; = 7g,(my),
where G; = (a(Cp) U a(C)U A*)N a(R;) and 1 < i < m. Clearly, v(E,d;) = v(E,d). If we now
apply the update to relation r, to obtain the updated database dj, then the tuple ¢[A], t € V,
should be deleted from v(E,d). o

The following lemma establishes the condition under which we can guarantee that a tuple

t[A] € v(E,d),t € V, must be deleted from the view after the delete operation.
Lemma D.2 Consider the current materialization v(E,d) of a view E = (A,R,C), R =
{Ry,R3,..., Ry}, and the update operation DELETE (R,,Cp). Let V be the eztended mater:-
alization corresponding to v(E,d). The tuple t{A] € v(E,d), t € V, is guaranteed to be deleted from
the view v(E,d) f and only if

L WA /\ Clp] /\ -C[q] = Cplt]),
pPEF qeQ
where 1 < k < |Z| % |v(E, d)|.
Proof: (Sufficiency) If the condition holds, then no matter what values are assigned to the variables
21,22, . .., 2, to make the antecedent true (and hence consistent with the current view materializa-
tion v(E,d)), the tuple {[A], t € V, cannot belong into the view.

4 CONDITIONALLY AUTONOMOUSLY COMPUTABLE DELETIONS 13

(Necessity) If the condition does not hold, then there exists a database d; constructed in a
similar way as in the proof of Lemma D.1 that yields the view v(E,d;) = v(E,d) for which the
tuple ¢[A] should not be deleted. O
Theorem D.3 If a delete operation is conditionally autonomously computable, then every tuple
t € V satisfies either the condition of Lemma D.1 or the condition of Lemma D.2.

Proof: Consider the contrapositive: if there exists a tuple ¢ € V for which the conditions of
Lemmas D.1 and D.2 do not hold, then the effect of the delete operation cannot be conditionally
autonomously computable.

In the same way as in the proofs of Lemmas D.1 and D.2, we can construct two databases d;
and d; such that v(E,d;) = v(E,d;) = v(E,d), and such that the delete operation on r, of d; will
cause {[A] to be deleted, and the same operation on dy will cause ¢{[A] to stay. Consequently, there
cannot exist a function which based on the current view materialization will compute the correct
updated view. Thus, by Lemma 3.1 the update cannot be conditionally autonomously computable.
a

The following example illustrates Theorem D.3.

Example 4.4 Consider again the view and delete operation given by Examples 4.1 and 4.2, re-
spectively, with Z-extended view and project-join mapping given by:

ol Al Bl Az Bz Cg my . A1 Bl A2 Bz Cz
@ 2 1T I8 29 7 2 1f 18 23
zZz 2 19 14 25 zz 2 19 14 25 p;
zz 3 19 14 25 2. 2 AT 18 23 P
z 2 19 14 25 p4
23 3 17 18 23 @1
23 3 19 14 25 Ps

For the first tuple #; = (21,2, 17,18,23) € V we find that the condition of Lemma D.1, given below,
holds.

Y =x
[(z1 > 17)(z1 < 23) (from py)
A (21 > 19)(# < 25) (from ps)

= —-((2:1 = 20) V (Zl > 22))]
holds, thus tuple ¢1[A] should not be deleted from the view. For the second tuple i, =
(22,2,19,14,25) € V we find that the condition of Lemma D.1, given below, also holds.

V 2z
[(22 > 17)(22 < 23) (from p3)
A (22 > 19)(z2 < 25) (from pg)

= (22 < 20)V (22 > 22))]

5 CONDITIONALLY AUTONOMOUSLY COMPUTABLE INSERTIONS 14

Thus tuple ¢3[A] should not be deleted from the view. Finally, for the third tuple &3 =
(23,3,19,14,25) € V we find that the condition of Lemma D.2, given below, holds.

YV 23

[(23 > 19)(23 < 25) (from ps)
A (23 > 17)(23 < 23)] (from ¢;)
= (23 < 20)V (23 > 22)]

Thus tuple t3[A] should be deleted from the view. O

5 Conditionally autonomously computable insertions

Consider the operation INSERT (R,,T), where T is a set of tuples to be inserted into relation 7,.
Let a view be defined by the triple E = (A, R,C), R, € R, with materialization v(E, d). The effect
of the insert operation on v(E,d) is conditionally autonomously computable if and only if

A. for each tuple t, € T, we can build the new tuples to be inserted into the view. In this step,
the new tuples are assembled using the inserted tuple ¢, and the tuples already present in the
view v(E, d); and

B. we can prove that the new tuples generated in the previous stage represent all the tuples that
need to be inserted into v(E,d) for the set of databases, including the current database d, that
yield this view.

Example 5.1 Consider two relation schemes R;(A4;, B1) and R3(Az, Bz, C3) with relations:

L I A1 BI Ta . Ag Bg Cg
1 19 5 10 25
2 2 6 10 26
3 80 17 20 31

Let a view be defined by the expression E = ({41, By, C2}, {R1, R2},(B1 = B;)), which results
in the materialization:

o(E,d): A, B, C,
T 10 25
1 10 26
2 20 31

5 CONDITIONALLY AUTONOMOUSLY COMPUTABLE INSERTIONS 15

If relation 7; is updated by the operation INSERT (Ry,{(4,10)}), then the tuples (4,10,25)
and (4, 10, 26) will have to be inserted into v(E, d) to bring it up to date. In contrast to the results
for unconditionally autonomously computable insertions [3,4], now several tuples may be inserted
into the view. This is possible because for conditionally autonomously computable updates we are
allowed to use the contents of the view in deciding whether the update is autonomously computable.
]

This section is divided into two parts. The first part deals with the problem of building the new
tuples to be inserted into v(E,d) as a result of inserting the tuple ¢, into 7, (see part A above).
The second part deals with the problem of verifying that the tuples built in the previous stage
are all tuples that need to be inserted (part B above). Both parts are performed using only the

information provided by the newly inserted tuple t,, the view definition E, and the materialization
v(E,d).

5.1 Building the new tuples

The process of building the new tuples to be inserted into the view is similar to the process used
to handle deletions. The notions of Z-extended view V of v(E, d), and of the project-join mapping
my are used here in the same way as for deletions with the exception that they are defined over
the set of relevant attributes defined by Z = o(C)— At (rather than by Z = (a(Cp)Ua(C))— A™T).

Definition 5.1 Let V denote the Z-eztended view of v(E, d) where each tuple e € v(E, d) is padded
with a distinct variable name z for each attribute in Z = a(C) — A%, 1 < k < |Z|« |[v(E,d)|. DO

Definition 5.2 The project-join mapping my of the Z-extended view V is defined as:
my = g, (V) X 1¢,(V) X -+ - X 7, (V),

where G; = (a(C)U A*) N a(R;), 1 < i < m. In other words, G; represents the attributes from

scheme R; which are either visible or used in the condition C. O

Definition 5.3 The set of candidate tuples T, to be inserted into the view as a result of inserting
the tuple ¢, into 7, is given by

A= ‘?l‘Gl(V) X Trgz(]/‘) X -0 X ‘?l‘Gu_l(V) ¥ {tu} X ﬂGuH(V) X o0 X ?r(;m(V).
(]

The set T, represents all new tuples that can be built using the information provided by the newly

inserted tuple t, and the current view materialization v(E, d).

5 CONDITIONALLY AUTONOMOUSLY COMPUTABLE INSERTIONS 16

Example 5.2 Consider three relation schemes Ry(A41, B1), R2(A3, B3, C3), and R3(A3, B3), and a
view F = ({Ag, B| 5 Ag, Cg, 33}, {R], Rg, R3}, (81 > Bg)(Az = A3)) with materialization:

'U(E,d) : Al B}_ Az C;; Bg
2 22 30 15 16
3 26 42 256 19

Since Z = a(C) — At = {By, By, A2, A3} — {A1, By, A2, C3, A3, B3} = { B3} the Z-extended view V
of v(E,d) and the project-join mapping my are given by:

V: A] Bl Az Bg Cz A3 B3 my . A]_ B; Az Bz Cg A3 B3

2 22 30 =zxn 15 30 16 222 30 =z 15 30 16 pa

3 26 42 =z 25 42 19 22 30 zn 15 42 19 ¢
22 42 z, 25 30 16 g
22 42 2z, 25 42 19 qa
26 30 2 15 30 16 ¢4
26 30 =z 15 42 19 g¢s
26 42 =z, 26 30 16 gs
2% 42 2z, 25 42 19 p,

[S%J J L T LT N T S e

If the tuple t, = (30,25, 28) is inserted into rg, then the set Ty is given by:

Tw = WAIBL(V) X {tu} X ﬂAsBa(v)
= {(2, 22,30,25, 28, 30, 16), (2, 22,30, 25,28, 42, 19),
(3,26, 30,25, 28, 30, 16), (3, 26, 30, 25, 28, 42, 19)}.

For t = (2,22, 30,25,28,30,16) to influence the view, for example, we must be able to show that
t[A] = (2,22, 30,28,16) will be in v(E,d'). O

We now present the conditions that allow us to prove, for each tuple ¢ € T, whether it belongs to
the updated view v(E,d’).

Lemma 1.1 Consider a view defined by E = (A,R,C), R = {R1, Ry, ..., R}, and the operation
INSERT (Ry,{tu}), Ru € R. Letv(E,d) denote the view materialization before the insert operation
is performed. Also let V, my, and T, denote the extended view of v(E,d), project-join mapping,
and sel of candidate tuples, respectively. A tuple t{A], t € Ty, is guaranteed to belong to the updated

view materialization v(E,d") if and only if
Vi, 22,2\ Clp) A\ ~Cla] = CIt)),
pEP q€Q
where Z = a(C) — A1, 1 < k < |Z| % |v(E,d)|, and P = {p | p € my and p[A] € v(E,d)} and
Q ={q| g€ myandq[A] ¢ v(E,d)}.

5 CONDITIONALLY AUTONOMOUSLY COMPUTABLE INSERTIONS £

Proof: (Sufficiency) Similar to the proof for Lemma D.1. 0
Lemma 1.2 Consider a view defined by E = (A,R,C), R = {R1, Ry, ..., R}, and the operation
INSERT (Ruy, {tu}), Ru € R. Letv(E,d) denote the view materialization before the insert operation
is performed. Also let V, my, and T, denote the extended view of v(E,d), projeci-join mapping,
and set of candidate tuples, respectively. A tuple t{A], t € Ty, is guaranteed not to belong to the

updated view materialization v(E,d') if and only if

v 213223+ 3%k (/\ C[p] /\ _'C[Q] = _'C[t])r
peEF ge@

where Z, k, P, and () are defined as in Lemma I.1.
Proof: (Sufficiency) Similar to the proof of Lemma D.2. O
Theorem 1.3 If an insert operation is conditionally autonomously computable, then every tuple
t € T\, satisfies either the condition of Lemma 1.1 or the condition of Lemma I.2.
Proof: Consider the contrapositive: if there exists a tuple ¢ € T, such that ¢ satisfies nei-
ther the condition of Lemma I.1 nor Lemma I.2, then the effect of inserting ¢, into r, is not
conditionally autonomously computable: we can construct two databases d; and dy such that
v(E,d;) = v(E,d2) = v(E,d), and such that the insertion of ¢, into r, of d; will cause {[A] not to
be inserted, but insertion of ¢, into 7, of d, will require t{A] to be inserted into the view. Conse-
quently, there cannot exist a function which based on the current view materialization will compute
the correct updated view. Thus, by Lemma 3.1 the update cannot be conditionally autonomously
computable. O
Theorem 1.3 is the basis for Algorithm Buildtuples described below.
Algorithm Buildtuples

Input: A view definition E = (A, R,C) with its corresponding view materialization v(E, d), and a
newly inserted tuple ¢, defined on scheme R,.

Output: The set of candidate tuples 74 (T,) or fail if the insertion of %, is not conditionally au-

tonomously computable.

1. Compute the sets T, and my.?

2. For each t € T,, if the condition of Lemma I.1 holds then keep ¢ in T,, else if the condition

of Lemma [.2 holds then remove t from T, else return fa:l.

3. Return 75 (Ty)-

2The set of tuples T, may be reduced by retaining only one copy of the tuples that agree on all attributes
Atu a(Ry).

5 CONDITIONALLY AUTONOMOUSLY COMPUTABLE INSERTIONS 18

Step 2 of the algorithm could be made more efficient by first discarding all tuples ¢t € T, such that
C|[t] evaluates to false. Based on the proofs of Lemmas I.1 and 1.2, it is clear that the set of tuples
7o (Ty) obtained from Algorithm Buildtuples represents a valid subset of the tuples that should
be inserted into the view as a result of inserting t, into 7,. For an illustration of the algorithm,
refer to Step A in Example 5.4 on page 23 below.

The next subsection deals with the question of how we can make sure that the tuples in 75 (Ty)
resulting from the above algorithm are all the tuples that must be inserted to bring the view up to
date.

5.2 Testing coverage

The rest of this subsection presents a necessary and sufficient condition for testing whether the set
of tuples 7 (T,) built by the above algorithm contains all the tuples that must be inserted into
the view as a result of inserting the tuple ¢, into r,. We must prove that all values for variables in
a(R — {R,}) N a(C) which can potentially interact with the values from the tuple ¢, to produce a
new insertion into v(E,d) are somehow contained in the view itself. This follows from the notion

of coverage, which is stated in the following definition.

Definition 5.4 Consider a view definition E = (A, R,C) with materialization v(E, d), where R =
{Ry,Ry,...,Rn}, and the update operation INSERT (Ru, {tu}), Ry € R. Let ¥ = a(R;)Na(C)N
At (i.e., the attributes from relation R; that participate in C and are visible or uniquely determined
by the view), and Z; = [a(R;) N a(C)] — At (i.e., the attributes from relation R; that participate
in C but are not visible nor uniquely determined by the view), 1 < [< m, | # u. The variables

Ufzﬁ?ﬁu(}’; U Z;) are said to be covered in the materialization v(E,d) with respect to the insertion

of the tuple ¢, into 7, if the following condition holds:

Y lflsZ.'l: .. -:1ru—1}Zu—1)1fu+1!Zu+]r' £ ‘11,11!5Zm
[C[tu](}rl ¥ Zl-: %310y r‘u—]) Zu-—isy'u-i-l: Zu-]—lr seey]-f‘m.; Zm) =
{V 21,22, 2k (Apep ClP) Aqeq ~Clal = Vpep Clp \ Ra](Y1, Z1))} A
e}
{¥ 21,22, - -, 2k (Npep ClP) Aqeq 7Cla] = VpepClP\ Ru-1)(Yu-1, Zu—1))} A
¥ 21,22, - -, 2k (A\pep ClP) Ageq Cla] = Vpep CIP\ Rut1)(Yuta, Zusa))} A
Sy
{V 214,225 2k (/\pep C[p] /\qEQ _'C[Q‘] = VPEP C[p \ Rm](}fm.) Zm))}]!
where P, Q are defined as before, C[p\ R;] denotes the substitution of values from p € P for variables
in the condition C except for those in scheme R, 1 < [< m,and 21, 23,...,2k, 1 < k < |Z|x|v(E,d)|.
We use R; instead of a(R;) in C[p\ Ry] to simplify notation.]

(1)

5 CONDITIONALLY AUTONOMOUSLY COMPUTABLE INSERTIONS 19

In other words, the variables UfZ;”}#u(Yg U Z;) are covered in the materialization v(E,d) with
respect to the insertion of the tuple ¢, into r, if every tuple ¢; € 74, 1 < ¢ < m and i # u, that
can possibly combine with ¢, to generate a new insertion ¢ into v(E,d) (i.e., C[t] = true, where
t =13 X Xty_1 Xty Xtyyy X+ -Xtn)is already present in the view. That is, for some e € v(E, d),
t; = ela(R;)], 1 £ i < m, 1 # u. The following example illustrates the above definition.

Example 5.3 Consider three relation schemes Ry(A;, By), R2(Az, B2,C;), and R3(As, B3) with
relations 7y, 73, and r3, respectively.

ri: A By ro: Ay By Ch r3: Az Bj3
1 20 14 19 5 L5 i
2 22 15 22 10 10 2
3 23 B0 23 30 30 4
4 25

i) First consider the view defined by the expression
By, = {{Als B, A3, B, CZ}! {Rla Rz}: (Bl < Bz))

with materialization v(B, d) and project-join mapping my, shown below:

'U'(El, d) Z /11 .B} Az Bz Cz my
1 20 15 22 10
1 20 50 23 30
2 22 50 23 30

B, A; B, C;

20 15 22 10 pu
20 50 23 30 p,
22 15 22 10 ¢
22 50 23 30 p;

1 -

N e e

Only one copy of the tuples (1,20,15,22,10), (1,20,50,23,30), and (2,22, 50,23,30) is kept
in my,. Suppose that the update operation INSERT (Ri,{(4,21)}) is applied to relation
r;. Then we can see that ¥, = {B,y} and Z; = 0. To be sure that the set of tuples T, =
{(4,21,15,22,10),(4,21,50,23,30)} are all the tuples that must be inserted into v(E,d) as a
result of the insertion of the tuple (4,21) into 71, we need to prove that the variables in Y are
covered. That is, we must prove the validity of the following condition:

V Y, [Clt)(Y2) =
{V 21,22y -3 %k (/\pEP Cb)] AqGQ mi?[‘?] = Vpepc[p\ R2](}’2))}]
Since the antecedent A ¢ p C[p] Ajeq ~Clg] = true in this example (because {21, 22, . .., 2} = 0),

the condition simplifies to:

V Y (Clt(Y2) = VpepCle\ Ral(¥a)).

5

i)

iii)

CONDITIONALLY AUTONOMOUSLY COMPUTABLE INSERTIONS 20

This is equivalent to testing the condition:
YV B, [(21 < Bg) = (20 & Bg) vV (20 “ Bz) \% (22 < Bz)]

Since the implication is valid we can then conclude that the variable B; is covered in the
materialization v(E;,d) with respect to the given insert operation. That is, there cannot be
a tuple in 75 such that the Bj-value matches the newly inserted tuple but matches no tuple
already present in the view.

Now consider the view Ey = ({41, A2, B2, C2}, {Ry, Ra2},(B1 < Bj)) which is exactly the same
view as E; except that attribute B, is not visible. The project-join mapping for E; is given by:

my, : Al B] Az Bg Cz

F-41 15 22 10 ™
z 50 23 30 po
zz 15 22 10 ps
z2 50 23 30 p4
z 15 22 10 @
zz 50 23 30 Ps

[e e

Here Y1 = 0, Z; = {B1}, Y2 = {B:}, and Z, = 0. Again, to verify whether the variables in Y
are covered we need to test the condition:
vV Y, [Cltu)(Y2) =
{V 21, 22,23 (ApEPC[p] /\qEQ _‘C[q] = VpEP C[p\ Rzl(l-’g))}]

This is equivalent to testing the condition:

V By[(21< B3) =
{V 21,29, 23 (2.'1 < 22)(21 < 23)(22 < 22)(22 < 23)(2‘3 < 23] N (23 > 22)
= (31 < Bz) \% (Zg < Bg) Vv (23 < Bg)}]

Once again the implication holds and we can conclude that the variable B, is covered in the
materialization v(Ez, d) with respect to the given insert operation. Therefore, the set of tuples
T, represents all tuples that should be inserted into the view as a result of the given update.
For any inserted tuple ¢, = (a1,b;) with b; < 21, the variable B, will not be covered in the
materialization v(Es, d).

Finally, consider the view
E; = ({A1, B1, A2, B;,C3, A3, B3}, {R1, Ra, R3}, (B1 = B2) A (43 = A3))

with materialization:

5 CONDITIONALLY AUTONOMOUSLY COMPUTABLE INSERTIONS 21

'U(Eg,d) . AI B] Ag Bz Cz Aa Bg
2 22 10 22 16 1O 2
3 23 30 23 50 30 4

The corresponding project-join mapping is given by:

my, - 4‘11 Bl Az Bz Cg Ag B3
9922 10 22 15 10 2
2 92 1§ 22 15 30 4 4
2 22 30 23 50 10 2 g3
2 22 30 23 50 30 4 g3
3 23 10 22 15 10 2 gy
3 23 10 22 15 30 4 g
3 23 30 23 50 10 2 g8
3 23 30 23 50 30 4 po

Suppose that the operation INSERT (R, {(30,22,60)}) is applied to relation ;. Then we
can verify that ¥; = {B}, Z; = 0, Y3 = {43}, and Z3 = 0. To be sure that the set
T. = {(2,22,30,22,60,30,4)} contains all the tuples to be inserted into v(Es,d) as a result
of the given insert operation, we need to prove that the variables in Y7 U Y3 are covered. That
is, we need to prove the validity of the condition:

vV 1Y [Ct)(4, Ys) =
(Vpep Clp \ Ra](Y1) A Vpep Clp \ Rs)(Y3))]:

This is equivalent to testing the condition:

V By, Az [(B1=22)(30 = 43) =
((B1 = 22)(10 = 10) V (B; = 23)(30 = 30))
A((22 = 22)(10 = A3z) Vv (23 = 23)(30 = A43))].
Since the implication is valid we conclude that the variables By and A3 are covered in the view
v(E3,d) with respect to the given insert operation. Notice that components of the new tuple

are not present in any one tuple in the view. In this example, for ¢, = (a2, bs,c3), A3 is not
covered if az ¢ {10,30} and B; is not covered if by ¢ {22,23}. O

Theorem 1.4 Consider a view definition E = (A,R,C) with materialization v(E,d) and the
operation INSERT (R,,{t.}). The set of tuples mwp(T,) to be inserted into v(E,d) as a result of
the insert operation includes all tuples that must be inserted into the view if and only if all variables
n Uf:’f“!#u(l’} UZi), i = a(R)Na(C)n At and Z; = [a(R;) N a(C)] — AT, are covered in the
materialization v(E, d) with respect to the insertion.

Proof: (Sufficiency) If the condition for coverage holds, then it is guaranteed that any combination
of values for the variables in UE;’T{#;(1 U Z;) that make the condition

5 CONDITIONALLY AUTONOMOUSLY COMPUTABLE INSERTIONS 22

Cleal(Y1, By~ > Yauts Zuts Yatkt s Dutts - -3 Yony Zrm)

hold, will be present as part of some subset of tuples currently stored in v(E,d). Each of the

conjuncts in the consequent of Condition (1) of Definition 5.4, namely,

¥ 21,22, 2k (Apep CIP] Ageq ~Clal = Vpep Clp \ Ri)(Y1, 1)),

assures that all combinations of values for the variables Y;, Z; which when combined with the
inserted tuple ¢, will make the antecedent of Condition (1) evaluate to true (i.e., creating a new
insertion into the view) are already represented in the view. Building the set T, involves generating
all tuples that result from combining t, with the tuples in v(E,d). Hence T, will contain all tuples
that must be inserted into the view as a result of inserting t, into 7.

(Necessity) If the condition for coverage does not hold, then there is an assignment of values to
the variables Uffﬁ#u(i’} U Z;) such that

C[tu](f/l H 211 sy 1‘}-!,f.—l) Zu—l;}}u+1 H Zu+11 ey i;'n.: Zm) = irue (2)

which is not available from tuples currently stored in the view v(E,d). This assignment of values
causes at least one conjunct of the consequent of Condition (1) to be false. Assume that such a
conjunct is given by

Y 21,22, 2 (Apep ClP] Ageq ~Cla) = Vper Clp \ Rrl(Z1)), (3)

where Zj, C a(Rp,). We can then construct databases dy = {r}...,7%} and dy = {r}...,r7,} such
that v(E, d;) = v(E,d;) = v(E,d). Database d; contains the values Zp in some tuple of relation
y,, but d; does not.

To construct the databases dy and dy we use the project-join mapping my for V corresponding
to the given view v(E,d). We assign surrogate values to all variables {21, 22, ..., 2x} appearing in

tuples from my in such a way that

N Clpl(z, - - -, %) A\ ~Clal(Z1,. - -, 2) = true.

peP q€Q
Clearly, such values can always be obtained. Relations r{, r?, 1 < I < m, are assigned the set of
tuples mo(m,)(my). In addition, we add a tuple ¢; to every relation rf, 1<j<m,j#u Each
tuple t; is built as follows: t;[Z;] = Zj, k] = f’_,', and ;[X;] = plX;], X; C a(R;) — (Z; U Y;),
for some p € my. Clearly, v(E, d;) = v(E,d;) = v(E, d).

Now suppose tuple t, is inserted into r} and r2 to obtain the updated databases d} and dj.
Because of Condition (3) we know that v(E, d}) = v(E, d;) and because of Condition (2) we know
that a new tuple will be inserted into v(E,d;) thus v(E,d}) # v(E,d}). Therefore there exists
a database d, where v(E,d;) = v(E,d) for which 75(T,) does not contain all tuples that must

5 CONDITIONALLY AUTONOMOUSLY COMPUTABLE INSERTIONS 23

be inserted into the view. Thus, by Lemma 3.1 the update cannot be conditionally autonomously
computable. O
Corollary 1.5 The effect of inserting the tuple i, into r,, on the view is conditionally autonomously
computable with respect to the view materialization v(E, d) if and only if the conditions of Theorems
1.8 and L4 hold. O

We illustrate the full algorithm resulting from Theorems 1.3 and 1.4 through an example.

Example 5.4 Consider two relation schemes R;(A;, By), R2(A2, Bz, C3), and their corresponding
relations:

{5 AI Bl Ta Ag Bg Cz
1 18 17 14 11
2 24 21 15 30
3 28 26 50 23
4 25 3 256 42
b 21

Consider a view defined by
B = ({Al,Bl.,Ag,Bg},{Rl,Rg},[(A]_ = 2)(31 < Az) \% (A] = 5)(31 > Cz) vV (31 = Bg)])

and its corresponding materialization:

’U(E,d): Al Bl Ag BQ
24 26 50
25 3 25
21 37 14

[B o

Assume the following update is applied to the database: INSERT (R:, {(2,25)}).
Step A: First, we build V, my, and T,.

1/‘: Al Bl Az Bg Cg my : B] Ag Bg Cz

2 24 26 50 =z 24 26 50 =z m
4 25 3 25 2 24 3 26 2z @
5 21 17 14 =z 24 17 14 23 gq2

25 26 50 2z ga
25 3 25 2z P2
25 17 14 23 g4
21 26 50 =z gs
21 3 25 Z9 ds
21 17 14 23 D3

SRS IR BT IR

5 CONDITIONALLY AUTONOMOUSLY COMPUTABLE INSERTIONS 24

Tu z Al Bl Az Bz Cz
2 26 26 B0 =z
2 26 3 2b =
2. 25 17 14 iz

The first tuple ¢ = (2,25, 26,50, 21) in T}, can be safely accepted because the condition of Lemma L1,
shown below, holds.

[((2=2)(24 < 26)V(2=5)(24> 2z)V (24 =50)) (fromp,)
-((4=2)(25< 26)V (4=5)(25> z)V (25 =50)) (from g3)
—((5=2)(21 < 26) V(5 =5)(21 > z) V (21 = 50)) (from gs)
(2 = 2)(25 < 26) V (2 = 5)(25 > 2) V (25 = 50)]

Il

I = =

In the above condition, we only need to consider tuples from my referring to variables z;, namely, p,

gs, and gs. For the second tuple t = (2,25,3,25,22) in T, we also test the condition of Lemma I.1.

YV 2z

[-((2=2)(24 < 3)V(2=5)(24> 2z) V(24 = 25)) (from ¢1)
A ((4=2)(26<3)V(4=5)(25>z)V(25=125)) (fromp,)
A —'((5 =2)(21 < 3)V (56 =5)(21 > z2) V(21 = 25)) (from gs)
= (2=2)25< 3V (2= 5)(256 > 23) V(25 = 25)]

Clearly, the above condition holds, and the tuple ¢ = (2,25,3,25, 2) in T, can be safely accepted
into the view. Finally, for the third tuple t = (2,25,17,14,23) in T, we test the condition of
Lemma 1.2

Y z3
[~((2=2)(24 < 17) V(2 =5)(24 > 23) V (24 = 14)) (from ¢3)
A ~((4=2)(25< 17)V (4 = 5)(25 > 23) V (25 = 14)) (from gs)
A ((5=2)(21 < 17)V (5= 5)(21 > 25) V (21 = 14)) (from ps)
~((2 = 2)(25 < 17) V (5 = 2)(25 > z3) V (25 = 14))]

Clearly, the above condition holds, and the tuple ¢ = (2,25,17,14, 23) in T, can be safely rejected
from the view.

Step B: Here we are interested in finding out whether the new tuples assembled in Step A
represent all tuples that need to be inserted into the view. We can verify that in this example
Yz = {A3, By} and Z; = {C;}. Testing whether the variables ¥> U Z, are covered requires testing
the following condition:

Y Yz, Zg (C[tu](fz, Zz) =
(Y 21,22, 23 /\pep C[P] /\qeq "C[q] =p VpePC[P \ Rz](Yzy Z2))-

6 SPECIAL CASES 25

This is equivalent to testing the condition:

Y A, B2,Cs [(2=2)(25< A;)V(2=5)(256> C) V(25 = B3) =
(V 21, 22, 23
((2=2)(24 < 26)V (2 =5)(24> z) V(24 = 50))
A((4=2)(25<3)V(4=5)(24> z) V(25 = 25))
A((B = 2)(21 < 17)V (5 =5)(21 > z3) V (21 = 14))
A=((2=2)24<3)V(2=05)(24> 2) V(24 = 25))
A-((2=2)(24 < 1T)V (2 =5)(24 > z3) V (24 = 14))
A —((4 = 2)(25 < 26) v (4 = 5)(25 > z) V (25 = 50))
A -((4=2)(25 < 17)V (4 = 5)(25 > z3) V (25 = 14))
A -((5=2)(21< 26) v (5 =5)(21 > 21) V (21 = 50))
A=((b=2)(21 < 3) v (B = 5)(21 > z) V (21 = 25))
= ((2=2)(24< A2)V(2=5)(24 > C;) V(24 = By))
V ((4=2)(25< A3) V(4 =5)(25> C,) V(25 = By))
vV ((5=2)(21 < 43) V(5 =5)(21 > C,) V (21 = By)))].

Because none of zy, z9, 23 remain in the conclusion, this reduces to

V' A3, B5,C; [((25 < 4;) V(25 = B2)) =
((24 < Az) \ (24 = Bg) \% (25 2 Bz) \ (21 > Cz) V (2]. == Bg))]

The implication is valid, and therefore, attributes A, By, and C, are covered in the view with
respect to the given insert operation. Hence, the set of tuples T, generated at Step A as a result of
the insertion of the tuple (2,25) into r; are all tuples that need to be inserted into v(E, d) to bring
it up to date. O

6 Special cases

The conditions required to decide whether an insertion into or deletion from a base relation is
conditionally autonomously computable are expensive to test since, in general, the size of the
conditions are a function of the number of tuples in the view. The purpose of this section is to

explore some special cases when the tests may be performed at a reasonable cost.

6.1 Deletions

To determine whether a delete operation is conditionally autonomously computable involves testing
the conditions of Theorem D.3 (which in turn involves testing the conditions of Lemmas D.1 and

D.2) for every tuple t € V. We note two cases that lead to substantial savings:

6 SPECIAL CASES 26

1. The first simplification occurs when a(Cp) — A" = () because then the tests of Lemmas D.1
and D.2 reduce to evaluating Cplt] for each ¢ € V. This is equivalent to asserting that the
deletion is unconditionally autonomously computable.

2. The second simplification is obtained by dropping the term A,co —C[g] from the antecedent of
the conditions of Lemmas D.1 and D.2, still resulting in a sufficient condition for deciding the
deletion of a tuple ¢ € V. If the simplified condition of Lemma D.2 A,¢pC[p] = Cplt] holds,
then the tuple ¢ can be safely deleted. However, if the condition does not hold, then it may
still be the case that ¢ could be safely deleted if we were to use the information provided by
the condition A,¢q —C[g]. Similarly, the condition of Lemma D.1 can be simplified to obtain
a sufficient condition to let ¢ stay in the view.

6.2 Insertions

Determining whether an insert operation is unconditionally autonomously computable involves
testing the conditions of Theorem 1.3 for every tuple ¢t € T, as well as testing the condition of
Theorem 1.4 for every tuple ¢, inserted into 7.

The size of the conditions of Lemmas I.1 and 1.2 mentioned in Theorem 1.3 depend on the number
of free variables in the consequents C[t] and ~C|[t], respectively. Let W denote a(C)— (AT UR,), the
set of free variables in the consequents of Lemmas 1.1 and 1.2. In the same way as with deletions, we
note two cases that lead to substantial savings when testing the conditions established by Lemmas
I.1 and 1.2:

o If W = 0, then the tests of Lemmas 1.1 and 1.2 reduce to evaluating C[t], t € T,,.

o The condition of Lemma I.1 can be simplified by eliminating the condition Ao ~C[g] from
the antecedent, still resulting in a sufficient condition for the acceptance of the tuple ¢. If the
simplified condition A,cpC[p] = C[t] holds, then the tuple ¢ can be safely inserted into the
view. However, if the simplified condition does not hold, then it may be possible to safely
accept t if we were to use the information provided by the expression A o —C[g]. Similarly,
the condition of Lemma 1.2 can be simplified to obtain a sufficient condition for the rejection

of tuple t.

In general, the number of atomic terms in the antecedent of the conditions of Lemmas I.1, 1.2,
D.1 and D.2, namely A,cpC[p] Ageg ~Clgl, is [v(E, d)|™|C

tuples in the view, m is the number of different relation schemes in the view definition, and |C|

, where |v(E, d)| denotes the number of

denotes the number of atomic terms in the condition C. However, not all the Boolean expressions
derived from C in the antecedent refer to free variables in the consequent C[t]. In Example 5.2 on

page 16, for instance, the variables z;, 2, for attribute B, are not free in C[t] because the newly

6 SPECIAL CASES 27

inserted tuple assigns a value to B; consequently, restrictions on values of B; in order to satisfy
the condition (B > B,) in p € P have no effect on the truth value of C[t]. Hence, we want to know
how many Boolean expressions derived from € must be included in the antecedent to be able to
test the conditions of Lemmas 1.1, 1.2, D.1 and D.2 correctly.

If the consequent C[t] includes free variables from k distinct relation schemes, then we want
to know how many rows p,q € my refer to these free variables. Such rows represent exactly the
conditions C[p], C[q] from the expression A,cpC[p] Ajeg ~Clg] that must be tested. To solve this,
consider the problem of counting vectors of size k, where each position may be occupied by one of b
different elements. The value k < m represents the number of relations schemes containing at least
one variable in Z. In our case b = |v(E, d)|, since each tuple in the view can contribute components
to each of the positions. The total number of vectors is b*. The value of C[t] specifies the vector
v1,V3,. ..,V and we are asked to find the total number of vectors that contain the element v; in
position 1 or the element v in position 2 and so on, until position k. This is given by O
Also, we have to count all different rows of iy that refer to the given vector vy, vy, ..., v; each
such row is associated with one of the remaining m — k relation schemes. Thus, the number of

Boolean expressions in the antecedent of the conditions given by Lemmas 1.1, 1.2, D.1, and D.2 is:

(lo(E, d))™* [(lo(B,)]} - (lo(E, d)] - 1)*] .

The cost of testing the condition of Theorem 1.4 is influenced by the sizes of the sets of variables
Z =[a(R)Nea(C)] — At and ¥ = a(R) N a(C) N AT. If all the attributes in the inserted relation
that participate in the view condition are reconstructible, i.e., Z = @), then all the conditions of the
form:

v 2152254y 2k /\pEPch} /\gGQ _'C[QI = VpEPc[p \ RS](Y;J ZS)

reduce to conditions of the form:

Vper Clp \ Ri](Y:)

for 1 < i < m, i # u. This, of course, greatly reduces the cost of testing for coverage. However,
even though the complexity of the condition for coverage simplifies substantially when Z = 0, it
is still necessary to test that all the relevant values for the variables ¥ are somehow represented
in the view. Thus, the size of the simplified condition still depends on the number of tuples in the
view. The smaller the number of relations involved in the view definition, the cheaper to evaluate
the condition.

As a final special case, the test for coverage given by Definition 5.4 does not require a formal
test for satisfiability in cases when Z = §, m = 2, C is a conjunctive condition involving terms of
the form (z = y) or (z = ¢) where z and y are variables and c is a constant. Here we only need to

scan the view |Y| times looking for the values that make C[t,](Y") evaluate to true.

7 CONCLUSIONS 28

7 Conclusions

We started this research by asking ourselves the question: How far can we carry the idea of
autonomously computable updates if in the process of deciding whether an update is autonomously
computable we have access to the data values stored in the view?

As a result, we have been able to establish necessary and sufficient conditions for the detection of
conditionally autonomously computable updates for the case when the updates consist of insertions
and deletions and the views are defined by PSJ-expressions. The results of this paper give us insight
into what is involved when we try to exploit the information stored in the view for inferring values
stored in database. This is an important step towards finding efficient ways of maintaining a
materialized view without requiring to access base data.

The conditions of Theorems 1.3, 1.4, and D.3 are, in general, expensive to test so we have
provided some special cases where the conditions to be tested can be greatly simplified.

We can apply the results of this research to the process of designing autonomously maintainable
materialized views by allowing the view definition to contain exactly those attributes required to
be able to carry out insertions and deletions autonomously without additional information from
the database.

It still remains to be seen how the ideas presented in this paper perform in practice. Thus, a
performance study of these ideas in realistic database settings is a direction for further research. We
leave it as an open problem to determine whether there is a simpler characterization of conditionally
autonomously computable updates when we assume further constraints on the database resulting

from the presence of keys or other data dependencies.

References

[1) ApiBa, M., aND LiNDSAY, B.G. Database Snapshots. In Proceedings of the 6th. Interna-
tional Conference on Very Large Databases, (Montreal, 1980), pp. 86-91.

[2] BERNSTEIN, P.A., AND BLAUSTEIN, B. A Simplification Algorithm for Integrity Assertions
and Concrete Views. In Proceedings COMPSAC 81, (Chicago, 1981), pp. 90-99.

[3] BLakeLEY, J.A. Updating Materialized Database Views. Ph.D. Thesis, Department of
Computer Science, University of Waterloo, 1987.

[4] BLAKELEY, J.A., CoBURN, N., AND LARsoN, P.A. Updating Derived Relations: Detecting
Irrelevant and Autonomously Computable Updates. Technical report No. 235, Computer
Science Department, Indiana University, Nov., 1987.

[5] BLAKELEY, J.A., LarsoN, P.A., aND Tompa, F.W. Efficiently Updating Materialized
Views. In Proceedings of the ACM SIGMOD International Conference on Management of

REFERENCES 29

Data,, (Washington, 1986), pp. 61-71.

[6] BunEMAN, P.O., AND CLEMONS, E.K. Efficiently Monitoring Relational Databases. ACM
Trans. Database Systems, Vol. 4, No. 3, (Sept., 1979), pp. 368-382.

(7] CuaMBERLIN, D.D., et al. SEQUEL2: A unified approach to data definition, manipulation,
and control. In IBM J. Res. and Develop., Vol. 11, (Nov., 1976, pp. 560-575.

[8] Cook, S.A. The Complexity of Theorem-proving Procedures. In Proceedings of the Jrd
Annual ACM Symposium on Theory of Computing, (1971), pp. 151-158.

[9] GARDARIN, G., SIMON, E., AND VERLAINE, L. Querying Real Time Relational Data Bases.
In IEEE-ICC International Conference, (Amsterdam, 1984), pp. 757-761.

[10] Hanson, E. A Performance Analysis of View Materialization Strategies. In Proceedings of
the ACM SIGMOD International Conference on Management of Data, (San Francisco, 1987),
pp. 440-453.

[11] KELLER, A.M. The Role of Semantics in Translating View Updates. Computer, Vol. 19,
No. 1, (Jan., 1986), pp. 63-73.

[12] Larson, P.A., AND YANG, H.Z. Computing Queries from Derived Relations. In Proceedings
of the 11th International Conference on Very Large Data Bases, (Stockholm, 1985), pp. 259~
269.

[13] LinpsAY, B., Hass, L., Monan, C., PiraugsH, H., AND WiLuMs, P. A Snapshot Differ-
ential Refresh Algorithm. In Proceedings of the ACM SIGMOD International Conference on
Management of Data, (Washington, 1986), pp. 53-60.

[14] MaiER, D. The Theory of Relational Databases. Computer Science Press, 1983.

[15] MAIER, D., AND ULLMAN, J.D. Fragments of Relations. In SIGMOD’ 83 Proceedings of
Annual Meeting, Sigmod Record, Vol. 13, No. 4, (San Jose, 1983), pp. 156-22.

[16] MEDEIROS, C.B., aND TomPa, F.W. Understanding the Implications of View Update
Policies. Algorithmica, Vol. 1, No. 1, (1986), pp. 337-360.

[17) MYLoPoULOS, J., SCHUSTER, S., AND TsicHRITZIS, D.C. A Multi-level Relational System.
In Proceedings of the 1975 National Computer Conference, AFIPS Press, (Arlington, VA.),
pp- 403-408.

(18] RosENKRANTZ, D.J., AND HunT III, H.B. Processing Conjunctive Predicates and Queries.
In Proceedings of the 6th International Conference on Very Large Data Bases, (Montreal,
1980), pp. 64-72.

[19] ScrkoLNICK, M., AND SORENSON, P. The Effects of Denormalization on Database Perfor-
mance. IBM RJ 3082, April 1981.

REFERENCES 30

[20] ScumID, H.A., AND BERNSTEIN, P.A. A Multi-level Architecture for Relational Data
Base Systems. In Proceedings of the International Conference on Very Large Data Bases,
(Framingham, 1975), pp. 202-226.

[21] SeLLis, T.K. Efficiently Supporting Procedures in Relational Database Systems. In Proceed-
ings of the ACM SIGMOD International Conference on Management of Data, (San Francisco,
1987), pp. 278-291.

[22] STONEBRAKER, M., HansoN, E., aNp Hong, C-H. The Design of the POSTGRES Rules
System. In Proceedings of the Third International Conference on Data Engineering, (1987),
pp. 365-374.

[23] STONEBRAKER, M., AND RowE, L.A. The Design of POSTGRES. In Proceedings of the
ACM SIGMOD ‘86 International Conference on Management of Data, (Washington, 1986),
pp. 340-355.

[24] STONEBRAKER, M., Wong, E., Kreps, P., AND HELD, G.D. The Design and Implemen-
tation of INGRES. ACM Trans. Database Systems, Vol. 1, No. 3, (Sept., 1976), pp. 189-222.

[25] TsicuriTzis, D.C., AND LocHovsKY, F.H. Data Base Management Systems. Academic
Press, 1977.

