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LOGICS WHICH ARE CHARACTERIZED BY SUBRESIDUATED IATTICES
by George Epstein in Bloomington, Indiana

and Alfred Horn in Los Angeles, California (U.S.A.)

" A subresiduated lattice (abbreviated s.r. lattice) is a pair
(A,Q), where A is a bounded distributive lattice (with largest
element 1 and smallest element 0), and Q is a sublattice of
A containing 0,1 such that for each x,y € A _there is ‘an
element =z e_Q with the property that for all q e€Q, xAqa<y
if and only if q < 2. This 2z is denoted by x o ¥s or simply
X > y. We shall sometimes refer to the s.r. lattice by A. When
Q =4, A is usually called a Heyting algebra (or pseudo-Boolean
algebra). The set of complemented elements of A is called the
center of A, and is denoted by B(A). If x e B(A), its
complement is denoted by -x.

Suppose we have a propositional calculus with symbols &, Vv, D
and ~ for conjunction, disjunction, implication and. negation, and
possibly with a symbol O for affirmation or necessitation. If
we assign to the propositional variables values in a s.r. latti-ce,
then we obtain a valuation v(@) for each formula @ by the
rules v(a & p) = v(a) A v(g), v(a v B) = v(a) v v(g), v(z>p)
= vy sulp), W(=e) woled <o s Woo) =1 swa). o s
said to be valid in A if v(Q) = 1 for every assigmment in A.
A logic is said to be characterized by & class K of s.r. lattices
if it consists of those formulas which are valid in every member
of K. |

This framework provides a unified method of classifying several



known calculi and leads naturally to new calculi which are of some
algebraic and philosophic interest. For example, it is well known
that the intuitionist propositional calculus is characterized by
the class of all Heyting algebras. .

" In the Lewis systems S4 and S5 of modal logic, there are
two kinds of implication: classical or material implication,
denoted by @ DB, and strict implication, denoted by O(a D B).
There are also classical negation, denoted by ~ «, and strict
negation, denoted by O ~ €. It will be convenient for us to
change the notation as follows: we shall use OB and ~0Q
for strict implication and negation. The notation for classical
nega.‘tion.will be & and classical implication, previously denoted by
G DB will be denoted by - VB. With this notation, the set of all
theorems of S4 (or S85) which involve the strict connectives D and ~
together with & and vV is called the Lewy calculus for S4 (or S5) by
Hacking [4 ]. We shall use R4 and R5 to denote these Lewy calculi.
Hacking gave a set of axioms for R4t and RS using Gentzen methods. We
shall see that R4 is characterized by the class of all s.r. lattices,
and R5 dis characterized by the class of all s.r. lattices (A,Q)
.;uch that Q is a Boolean subalgebra of the center of A .
The Lewis S4 and S5 systems are characterized by the class of
all s.r. lattices (A,Q) such that A 1is a Boolean algebra
(and for the case of S5, Q is a Boolean subalgebra of A )
provided we add the rule v(-a) = -v(a) . We shall give an

algebraic derivation of Hacking's axioms for R4 and RS

The calculus obtained by adding to S4 the axiom schema
(Ca>op) v(op>oOaQ) is called Sk.3 by Dummett and Lemmon
[2]. (Recall we are using O for strict implication.) Accordingly

we denote by RL.3 the logic obtained by adding this axiom to RL.



We shall see that RA.3 is characterized by the class of all s.r.
lattices such that Q is a chain.

The logic characterized by the class of all s.r. lattices
(A,Q) such that Q is the center of A 1is new. We shall give
an axiomatization of this calculus.

Of special interest is the logic PC characterized by the
cla.:ss of all s.r. lattices (A,Q) such that A is a P-algebra
[3], (or alternately, where A is a chain), and Q is the center
of A. In such a lattice, both x é)y and x g‘;y exist and
they are connected by the relations x 5 y=yVv(x 8 y), x & y
= O(x liL>3r). This leads to two types of implication in PC : ¢ DB
corresponding to x g y and @ 2 B corresponding to x i y.
Either of these connectives could be used as primitive in an
axiomatization of PC. 1In terms of O as Primitive, we shall
see that PC is a kind of strong modal extension of Dummett's

Icl1l.
1. BSubresiduated lattices

If x is a member of a s.r. lattice A, we set !'x =1 -x
‘and mx=x —» 0. We list some statements which hold identically

in every s.r. lattice.

(1) x<y ifendonlyif x-y=1

(2) =x<y implies X222y 3%, Z9X<ZYy, X!y and mx >y

It

(3) (xvy)-z=(x-2)A(y-2z)
() z-(xAy)
(5) (x-y)A(y->2)<x-z

(6) =0

(z-x)A(z>y)

t1=1, !0 =m1=0
(1 x<x
(8) i(xAy)=1xA'ly

(9) <lx Vy) =ax Aay



(10) !z =ix<g=-ix

o=

IA

-

J

X

X <=lx

|

(1) tmx=axg~-=

1A

(12) m=m=x ==1=x
(13) === ix ==-'x
(lu) TIE 22X smmX

(15) x»=mx="x

The identities (10)-(13) follow from the fact that Q is a
Heyting algebra. They show that there are at most seven elements
which can be formed by sté.rting with x and applying the operations
- and !. These are x,m X,"™MxX,m——u, 'x,—!x, and —ix. It
is easy to construct examples to show that these seven elements can -
be all different. |

In a s.r. lattice, the operation — determines the set Q,
since Q = {x : x = !x}. Therefore a s.r. lattice may be regarded
as an algebra (A, Vv, A, =, 0, 1). We use the terms s.r. sublattice,
S.r. homomorphism a.nd. S.T. éongruence relation from this point of
view. For example, & s.r. sublattice of A is a sublattice of A
containing 0 and 1 which is closed under — The following

theorem shows that the class of s.r. lattices is equational.

THEOREM 1. An algebra .<A: V, Ay, =, 0, 1) is a s.r. lattice
if and only if {4, Vv, A, 0, 1) is a bounded distributive lattice

and the following hold identically:

(a) (xAy)-y=1
(b) x-»y<z->(x-y)
() xA(x>y) <y

() zo(xAy)=(z-x)A(z->y)



Proof. The necessity of (a)-(d) is clear. Suppose these

identities hold in A, and let Q={x: x=1->x}. By (c) we

have

(e) | | 1wy <

and by (4d),

(£) X <y implies z »x<z >y,

Suppose q,r € Q. They by (f) and (e),
. g=1-2q<l-(gqvr)<caqgyvr,

and similarly r <1->(qVvr). Hence gvr=1-(qvr), so

gVreQ By (d), wealsohave gAr e Q. Also 1leqQ and
0 ¢eQ by (a) and (e). For any X,y ¢ A, we have x -y ¢ Q by
(b) and (e). It remains to show: if g e Q and x Ag<y then

g <x=-y. Indeed

q=l—-)q_5x-—)(l-aq) by (b)
<x-q
<x->(xAq) by (d), since x-x =1,

<x -y by (f).

THEOREM 2. Let (A,Q) be a s.r. lattice. There is en
order isomorphism between the set of all s.r. congruence relations

© in A and the set of all filters F in Q. Under this

correspondence
(1) F={xeQq: (x,1) e0}, and
(11) 6 = {(x,5) : (x>y) A(y-x) eF}

Proof. Given ©, define F by (i). Then F is a filter

in Q and (x,y) €¢© implies x>y e¢F and y-o»x e¢F. If



(x-y)A(y-x)=1(mod6), then x Ay=xA(x=y)A y
=xA(x->y)=x, and similarly x Ay =y. Hence (ii) holds.
If we start with a filter F in Q and define © by (ii), then
® 1is a congruence relation since (5) holds and
x-2y<(y-2)-(x~32)
x=y<(z-x)-(z-y)
x-oy<(xAnz)-(yaz)

x-ay<(xVvz)-(yvz)

Also (i) holds because (1 -q) A(g»1) =q for all q ¢ Q.

COROLLARY 3. A s.r. lattice (A,Q) is subdirectly irreducible

if and only if {x ¢ Q : x <1} has a largest element.

Proof. By Theorem 2, (A,Q) is subdirectly irreducible if
and only if Q hes a smallest filter properly containing {1}.

This is easily seen to be equivalent to the given condition.

2. The R4 calculus and RUL.3.

We first determine axioms for the logic characterized by the
class of all s.r. lattices. It is easy to see that the fdllowing
axiom schemas are valid in every s.r. lattice (@, and <y refer

to arbitrary formulas):

(A1) a>c

(42) (@>B) o2(y=>(a>8))

(43) (@o(eov))a2((@>p)>(x>y)) -
(Ay) (@ep)oa



(A5) (x&p)op

(46) (@>op)o((@>y)>(@>(p &vy)))

(A7) a> @v B)

(A8) po (xvB)

(49) (@oy)=2((B2y)2((eve)ov))
(a10) (@& (Bvy))=>((@ep)v(xey))

(A1) ~a>(aop)

(4a12) (e o~a) o~a

_(A13) e :)_((oe =) =)

(A14) ((@ o) oa) ooa

THEOREM L. The logic characterized by the class of all s.r.
lattices is axiomatized by (Al)-(All4), using modus ponens as the

only rule of inference.

Proof. We use the standard device of forming the Lindenbaum
algebra of equivalence cla.éses of formulas. Using (A2) and (A3)

it is not hard to prove

(16) (@>o8) o ((y>2a) o (y o8)),

and

(17) (@op)=a((B>v)2(@>Yy)

It is also easy to prove a deduction theorem: If Oﬂl,. ote ,O!n B

then o ,...,a  Fa o8, provided AP’ are each hypothetical,

n-1
that is, of the form y D %. Next one can show

(18) (@>op) o(~po~0)



using ~p > (B o~a), (A12), and (17).

Now define @ eq B if Fa>p and Fpoa. It is
easily seen that eq is an equivalence relation. Let [&| be the
equivalence class containing Q. We can define operations on the

set E of all equivalence classes unambiguously by

le] v [B] = |o v Bl

le| A [B] = |o & B

la| = |g] = | >8]
= o] = |~qf
tle| = |ocf

Although the schema @ o (B D) is not provable, we can
prove by in_duction on the length of the proof of @ that: if
Fa then F B >Da. This holds wﬁen @ is an axiom since every
axiom is a hypothetical formmla. Therefore the set of all provable
formulas forms an equivalence class, which we denote by 1.

If we define a partial ordering so that || < |B] when
Fa= P, then it is easily seen that E 1is a distributive lattice
whose largest member is 1, and in which V and A are join and
meet respectively. By (All), 1<l -x<x forall x . E.
Hence —m1 is the smallest member of E, and we denote. it by O,
Next we can prove E is a s.r. lattice by verifying (&)-(d) of
Theorem 1. For x ¢ E, we have -x'<x = 0 by (All), and
X = 0<x -mx <—x by (Al2), so that —x = x » 0. Finally
Ix =1 -»x by (Al3) and (Alk).

If @ is any formula, and we assign the value |p| to each



propositional variable P, then v(®) = |@|. Therefore if a is
valid in every s.r. lattice, we must have || =1 and so a is
provable. This concludes the proof of Theorem 4.

We could drop the affirmation operation O from our primitive
symﬁols and omit (A13) and (Al4). OQ could then be defined as
a shorthand for (@ D Q) D@. A more symmetric system would be
obtained by dropping the operations ~ end O and adding logical
constants T and F for truth and falsity. Axioms (A1l)-(A1k4)
would then be replaced by the axioms & DT and F DQ; and

OQ, ~a& could be defined by T D and @ DF respectively.

DEFINITION 5. An interior algebra is a Boolean algebra with

a unary operation I satisfying

Ix < x
AIx = Ix
I(xAy)=Ix/\Iy

EL

I
e

THEOREM 6. The R4 calculus is characterized by the class

of all s.r. lattices (A,Q) such that A is a Boolean algrbra.

Proof. It is well known that the Lewis S4 calculus is

characterized by the class of all interior algebras if we use

the rules v(O@) = Iv(a), v(-0) = 0. Thus for formlas of Rk,

we have v(@ DB) = Iv(~a vg) and v(~a) = I(-v(a)). If Q

denotes the set {x : x = Ix}] of open elements of an interior

algebra A, then (A,Q) is an s.r. lattice and x -y = I(-x vV y),



=

- x = I(-x) and tx = Ix. Conversely if (A,Q) is a s.r. lattice

such that A is a Boolean algebra, then A will be an interior

algebra if we define Ix = lx.

- THEOREM 7. If (A,Q) is any s.r. lattice, there exists a

Boolean algebra B such that (A,Q) is a $.r. sublattice of

- (B,Q).

Proof. We may regard A 1is a lattice of subsets of a set
X which contains X and the empty set @. Let B be the Boolean
algebra of subsets of X which is generated by A. Then (B,Q),
will be a s.r. lattice if for each x ¢ B, there is a largest
element !x of Q which is < x. Now every element x of B
has the form ’mﬁizl(_xi v yi), where X5 Vs © A. If q ¢ Q, then
4 <x if and only if q < X, Vv ¥y for all 1, hence if and only
if ax, < ¥yo so if and only if gq < xi -yi in A. Therefore
'x exists and is equal to_tﬂ?i:l(xi -'yi)' Finally if x,y e A,
then x-»y in (B,Q) is :(-x Vy), which is equal to X =y

in (4,Q).

THEOREM 8. The R4 calculus is characterized by the set

of all s.r. lattices, and is axiomatized by (Al)-(Allk).

Proof. By Theorem T, if v(a) < 1 for some assignment in
some r.s. lattice (A,Q), then v(&) <1 for the same assignment
in (B,Q). Therefore the theorem follows from Theorems 6 and k4.

The fact that (Al)-(Al2) is an axiomatization of RY4 without

0O was froved by Hacking [4] using Gentzen methods. Hacking also

showed that the set of theorems of R4 which have no connective



A

other than O can be axiomatized by (Al)-(A3). This can also be
proved algebraically, but we will refrain from giving this proof.
The logic S4.3 (see [2]) is obtained by adding to S the
axiom schems, (Da>0B) v (OB >0a). (Recall that we are
using O for strict implication). Thus S4.3 is characterized

. by the class of all interior algebras such that
(19) (x=y) v(y-x)=1 '

for any open elements x,y. Now an interior a.igebra. is subdirectly
irreducible if and only if there is a largest open element < 1.
This can be proved as in Theorem 2 and Corollary 3, using the fact
that x -y < (-y) - (-x). But in this case (19) holds only when
(x vy) =1 or (y-»x) =1. Therefore the set of all open
elements is a chain. Thus S4.3 is characterized by the class
of all interior algebras sﬁ;:h that the set of open elements is
a chain. If we let R4.3 be the calculus obtained by adding the
axiom (Dae>08) v(Dp>0OQ) then Rh.3 is characterized by
the class of all s.r. lattices (A,Q) such that Q is a chain.
Recall that B(A) stands for the center of A. By Theorem 7
the logic characterized by the class of all s.r. lattices (4,Q)
such that Q < B(A) is the same as that characterized by the
class of all s.r. lattices. The same is true for the logic
characterized by the class of all s.r. lattices (A;Q,) such that

Q 2 B(A). This is a consequence of the following theorem.

THEOREM 9. The logic characterized by the class of all s.r,

lattices (A,Q) with center {0,1} is the same as that characterized



S e

by the class of all s.r. lattices.

Proof. Let (A,Q) be any s.r. lattice. ILet L =A U {z}
and R =QU {2}, where z is a new element such that x <z < 1
for,all x ¢ A, x # 1. Then {L,R) is a s.r. lattice in which
for x,y e A, x E»y = X g—y,_x Ay in L is equal to x Ay in
A,zale%x, and x Vy in L is equal to x vy in A
except when x <1, y <1l and xVy=1 in A.

If @ is any formula and we assign values in A to the
variables, then v (@) =v,(@) ir vy(@) <1 end v (@) >z if
Vh(a) = 1. This can be proved by an easy induction on the length
of @. Hence if @ is not valid in (A,Q) it is not valid in
(L,R). This proves the theorem since the center of L is {0,1}.

We have seen that R4 is characterized by the class of all

s.r. lattices (A,Q) such that

(1) A and Q are arbitrary, or
(ii) Q< B(A), or
(iii) Q2 B(A), or
(iv) B(a)
(v) B(a)

10,13, or

A

~In the next sections we shall determine the logics characterized
by the class of all s.r. lattices (A4,Q) such that Q is a Boolean

subalgebra of B(A), or such that Q = B(A).

3. The R5 Calculus and R5 algebras

LEMMA 10. If (A,Q) is & s.r. lattice then the following

are equivalent:



(i) (@-x)~q<q forall geQ x €A
(ii) == <q forall qeQ

(iii) gqv=gq=1 forall q¢ Q

(iv) 'x v v-(ixv=x) =1 forall x¢A

(v) Q is a Boolean subalgebra of B(A)

Proof. By (2) and (14), (g -x) -q < (q~0) »q =—q.
Therefore (i) is equivalent to (ii). If (ii), then ——(q v—4q)
<4a V7. But 7=(q vog) =m(ng A=) ==0 =1 by (9) and (6).

Therefore (iii) holds. Clearly (iii) implies (iv) because

wil g

'Xx VX ¢ Q. If (iv), then forany q ¢ @ we have 1 =g V-=q V —{q v—q)

=q VvTqV (hg A-mq) = q Vg, which proves (iii). Clearly (iii)

implies (v) since (iii) implies —q is & complement of q.

Conversely if (v), then -q =—1q and (ii) and (iii) follow.

DEFINITION 1l. An R5 lattice is a s.r. lattice satisfying
the conditions of Lemms 10..' An S5 algebra is an interior

algebra such that the complement of an open element i& open.

THEOREM 12. The logic characterized by the class of all R5
lattices is axiomatized by (Al)-(Al4) together with any one of

the following

(a15) ((a>p) oy) o (a>p)) o(aop)

(A15)" (~~0a)oDa
(A15)" DOav~D«
(a15)" Dav~av~(ODavV~a)

Proof. We apply Lemme 10 to the Lindenbaum algebra E in

the proof of Theorem k.



il

THEOREM 13. The R5 calculus is characterized by the class
of all R5 1lattices, and is therefore axiomatized as in Theorem

12,

. mg. The Lewis S5 calculus is characterized by the class
of all S5 algebras. Hence as in Theorem 6, the R5 calculus is
characterized by the class of all R5 lattices (A,Q) such that
A is a Boolean algebra and Q is a Boolean subalgebra of A.

The result now follows by applying Theorem T. '

In a version of R5 in which O is- not & primitive operation,
we may replace OC by (@ >pg) in (Al5)' or (Al5)". The advantage
of (A15) is that all theorems of R5 whose only connective is D

are consequences of (Al), (A2), (A3), and (A15), see [4].

DEFINITION 14. If L 4is a bounded distri‘butive lattice,
let L* be the R5 1lattice (L,{0,1}). A s.Y. lattice of this
form is called a special R5 lattice.

Obviously & special RS lattice is a member of the class of
all s.r. lettices (A,Q) such that Q is a chain. We have

previously noted that this class characterizes the Rk.3 calculus.

LEMA 15. If (A,Q) dis an R5 lattice, x,y ¢A and q,r €Q,

then
(20) e L
(21) mX Va=mx =1

(22) XS-\-IX



=]5=

(23) SR

(2b) (xAngq) = (yvr)=mgvrvizx-y)
(25; QA X =0 implies gA==x =10
(26) ~(aAx)=aqAqqx

Proof. (20) and (21) follow from Lemma 10 (iii). (22) is
proved by taking the meet of x with both sides of (21). To
prove (24) observe that if b ¢ Q, then bAx A g £y Ny if end
only if Db AXx AgQA-Tr <y, hence if and only if b A g A-r <Xy,
or b<—qvVryv (x »y). For (25), qA x =0 implies Q<X
hence by (2), m—x <—q and s0o g A=-x = 0. Finally,
=g A x) <=-g A= = qA=mx. Also gAx A=(qg A x) =0,
hence by (25), a A=(g A x) A-Tx = 0. Therefore g A ™ S_I_(q A X),

and this proves (26).

LEMMA 16. An R5 lattice is subdirectly irreducible if and

only if it is a special R5 lattice.

Proof. By Corollary 3,' (A,Q) is subdirectly irreducible if
and only {x e Q : x < 1} has a largest element. Since Q is a

Boolean algebra, this holds if and only if Q = 0,1}

COROLLARY 17. An R5 lattice is a subdirect product of
special 'R5 lattices. Hence the R5 calculus is characterized

by the class of all special R lattices.



=16=

Proof. This follows from Lemma 16 by Birkhoff's Theorem.

By Theorem 1 and Lemma 10, the class of all R5 lattices is
an equational class of algebras (A, Vv, A, », 0, 1). We now
determine the free algebras of this class with finitely many free

generators.

THEOREM 18. Let (A,Q) be the free R5 lattice with n
free generators, and let L be the free bounded, distributive

lattice with n free generators. Then (A,Q) is isomorphic with

n (L)
oeC(L)

where C(L) is the set of all lattice congruence relations on L.

Proof. Note that the quotients L/ include copies (with
repetitions) of all possible bounded distributive lattices with
at most n generat ors.

Let vy,...,V, be free generators of (4,Q) aﬁd let L be

the sublattice of A generated by vi,...,vn,O,l. L is free

because if D is any bounded distributive lattice and al,...,an €D,

there exists a $.7. homomorphism f = A - D¥ such that f(vi) = 8,5
and f : A D is a lattice homomorphism. '

Let Sl = g, 82,.-0,SN

= = " " = - = e W divid
and let Py /\(sj), 8 \/(sa), and Vie = P57 S e divide

be all the subsets of [vl,...,vh],

the rest of the proof into parts,

(1) Q is the Boolean algebra generated by {w o P LSk N}
and A is the lattice generated by L U Q.

Let Q; be the Boolean subalgebra of @ generated by the



wjk, and let Ai be the lattice generated by L-U Ql. It
u,v e Al then u has the form ‘w%(pj A bj)’ where bj € Q)
and v has the form /\j(sj v cj)’ where cs ¢ Q- By (3),
(h)‘and (2h), u s« =/\j,k('b;j Ve Vv w;ik) €Q gAl. Thus
A, is a s.r. sublattice of A containing [vl,...,vn]. Hence

| Al = A and therefore Q1 = Q because each element of Q is
of the form u - v. This proves (i).

If K is any subset of {1,2,...,1\1}2, let.
A\ VAN :
t, = :
K = (1,3)ek i3 N (1,3)4 ~ Vi3

(ii) For any K E;{l,...,n]2, the following are equivalent

(a) ty 1is an atom of Q
(0 (i,/j\)ex_‘_‘_'ij £ (1, a3

(c) There exists a bounded distributive lattice D and a s.r.

homomorphism f = A - D¥ such that f(wij) =1 for (1,j) ¢K

and f(wij) =0 for (i,j) ¢K.

(d) There exists © ¢ C(L) such that pi/B < sjﬂa if and only
i i) e

To prove (ii), first note that the atoms of Q a;e those
tK which are not 0. Therefore (a) is equivalent to (b).
Obviously (c) implies (b) and (b) implies (c) by Corollary 17.
Suppose (d). ILet £, 1 A~ (L )* be the s.r. homomorphism such

that £ (v,) =vi/i9 for all i. Then clearly

T
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fe(wij) = vi/e b R =1 for (i,j) ¢K, and
(27)

fe_(wij) =0 for (i,j) £K.

This proves (c). Conversely if (c¢) holds then 6 =
{(x,y) ¢ = £(x) = £f(y)} satisfies (d). This completes the
proof of (ii).
If 0 ¢ C(L), let a(®) be the atom 'tK, ‘where K is
defined by (d). If a(el) = a.(ee), then for all x,y ¢ L, we
have x/0, < y/el if and only if x/0, < yP, since x isa

join of P, and y is a meet of s,. Hence 6. =6 So the

3 [ - <
mapping © — a(6) is a bijection of C(L) onto the set of all
atoms of Q.

Let fy =A ~ (L/)* be the homomorphism defined in the

proof of (ii). By (27), we have

(28) fe(a.(e)) =1, and fel(a(ez)) =0 if o, 7492
(iii) If x e¢ L, then fe(x) =1 if and only if x >a(e).
The sufficiency is obvious by (28). Suppose fe(x) = 1.

Since x is a meet of Sj’ we may assume X = s,. Then

J

1=1f(x) = sj/e s pl/e. Hence (1,j) ¢e X and so a(e) < vy
=1 - x < x. This proves (iii).

Now there exists & s.r. homomorphism

f=A- T (Lp)*
8eC(L)



such that the © component of f(x) is fé(x). 'To show f is

injective, suppose f(x) = 1. By (i), x has the form
7

~ where x(®) e L. By (28), for each 8, 1 = fe(x) = fe(x(e)).

Therefore by (iii), x(6) >a(e), and so x =‘yéa(e) & La

Finally to show f is surjective, let x(6)/ be any element

of AP, and let x =\/ex(e) A a(8). Then fe(x) - fe(x(e))
=x(6)/ for all 6. This completes the proof,

If A is a Boolean algebra, then A¥* may be identified
with the S5 algebra such that Ix =0 for all x < 1. The
following can be proved in a manner similar to but simpler than

the proof of Theorem 18.

THEOREM 19. If B isuthe free Boolean algebra with n
free generators, and & B) is the set of all filters of B,

then the free S5 algebra with n free generators is

T (B/F)*
Fe3(B)

4. B algebras and PC

In this section we consider s.r. lattices (A,Q) such that
Q 1is the center B(A) of A. Such algebras were called B

algebras in [3].

THEOREM 20. If (A,Q) is a s.r. lattice with center B

then Q =B if and only if

] G



2=

(29) Ix vax vl (x vy) v(x A y) =1

for all x,y ¢ A.

-

Proof. If (29) holds and q is any element of @, then
setting x=q, y =0, we get q v=mq = l Therefore Q 1is a
subalgebra of B and A is an R5 lattice. Now suppose x e B.
If we set y = -x in (29), we find - x Vv !x = 1. This implies
xAlx=x, so x<!x. Thus x =1x¢Q and so B cCQ, hence
B =g

Conversely suppose @Q = B. Then by (20), for all x,y ¢ A

we have
(x A-q(i AY)ANxvy)) vmi(xvy) vixAa——xAy) vy
=(xA=(xAY) Vﬂ!_gx Vvy) VixaaxAy)) vy
smtlzvy)vxvy>ailzvy) vilzvy) =1

Also

(xAZAY) A xVvI))A(=(GxVY) v Aq—{xhy)) vy) =0

LS

Therefore x A=(x Ay) A !(xVy) ¢e B, and so is in Q. Hence

by (20) and (26),

xAm(x AP AN VY) = (xAa=(xAy) ALlxVy))

=mxAa(x Ay) AL(xV yj.



o

This implies —-x A=(x A y) A (x Vy) < x, and therefore

m“xA=xAy) ANxVY) <ix. Thus

3

X Valrx A=(x A y) A (xvy))

12X v=x Va(x A y) val(x v y).

The following is an immediate consequence of Theorem 20.

COROLLARY 21. The logic characterized by the class of all

B algebras is axiomatized by (A1l)-(All4) together with
(A16) Dav~ayv~oavp) v~~a&sp).

The class of B aléebras in which

(30) (x»y) viy=x) =1

- holds identically is of particular interest. Such algebras are
called P algebras and their properties are discussed in [3].
There it is proved that any R5 lattice in which (30) holds is a
B algebra [3, Corollary 3.3]. In any s.r. lattice (30) holds

identically if and only if

(31) x=(yvx)<s(x-y) vix~z)

is satisfied identically. Indeed given (30), we have by (3),

(l) and (5):



—P P -

x=(yvz)=x-(yvz)Aaz-y) vx-(yvz))A(y-z))
=((x-(rvz)Al(yvz)-y) v(x-(yvz))
A ((y vz)-z))

< (E~y) V (x =)
Conversely given (31), then
g T e I I T Erw

It is also the case that (30) holds if and only if
(32) (x=>y)»z2<((y=x)-2) -2

holds identically. For setﬁing z=0 in (32) giveé (x-y) < --(y » x).

= (y »x), so that (30) follows. Conversely given (30), then by (3),
z>l-z=((x-y) viy=x)) »z=x~y) »2) A ((y ~x) ~z)

which implies (32).

Thus a s.r. lattice satisfying any of the conditions of Lemma
10 together with (30), (31) or (32) is a P algebra.

The logic characterized by the class of all P-algebras will be
called PC. The subdirectly irreducible P-algebras are chains [3,
Theorem 4.4], that is, are s.r. lattices (4,Q) such that A is

& chain and Q = {0,1}. Therefore PC 1is also characterized by



the class of all linearly ordered B algebras. A set of axioms

for PC is (A1)-(Al5) and either

(a17) (o= 8) =9) =(llp 56) 9% 59
or
(a17) (@o(Bvy)o((a28) v(aoy)

In [3, Theorem 3.4] it is shown that if A is a P-algebra
then A is a Heyting algebra — that is, x'& y exists for all

X,y. It is also shown that

(33) x£y=yV(x-'y),x—'y='-(x‘5*y)-
By (30) and (33), we have

(34) 3y vy i =1

(35) <Ao_xso0

From this we see that in PC, we may introduce another
implication connective D' by letting @ O B be an abbreviation
for B v (@ >B). By (35) it is not necessary to introduce an
additional negation connective. By (34), PC has as a theoren
(o) v (B> a). It is well known that fhe intuitionist

propositional calculus is characterized by the class of all Heyting

=
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a.lgébra.s. Therefore the fragment of PC 'consisting of all formulas
involving V, A, ~ and 2 (but not D) contains Dummetts IC[1].
Thus PC is a kind of modal extension of LC. We shall now derive
a set Ioi' axioms for PC which reflects fhis point of view.

From [3, theorem 3.4 (vi)] it is an easy consequence that a

_ Heyting algebra A satisfying (34) identically is a P-algebra

if and only if there exists a unary operation ! on A satisfying

1=1

t(x vVy)

1
X
<

<

If we choose as our primitive connectives vV, & ~, DO and

O, then we can obtain a set of axioms for PC as follows

(@ 0) Axioms for the intuitionist propositional calculus (using

o' for implication)

(a1) (@ ) v(po a)
(a 2) _ De= o

(a 3) ~~OoD OO

(a k) ofa ve) o (ODavOop)
(a5) o{a >'g) o' (ODa > OB)

The rules of inference are

(r1) If Fo and Fa> B then FB

(r2) If Fa then FDOo.



=B

Rule (R2) can be avoided if we replace each axiom Q by the
exiom DOQ, and add the axioms (D@ >00Q) and OC DA,
The proof of completeness of these axioms is similar to t_hat

of Theorem 4. The purpose of (Q 5) is to ensure that @ eq B

-

implies OCQ eq OB.

As a final remark we shall characterize the class of s.r.
algebras (A,Q) which are Heyting algebras satisfying (33).
Since x -y =!(y vV (x »y)) in every s.r. lattice, we need

only consider the first part of (33).

THEOREM 22. If (A,Q) is a s.r. lattice, then A is a
Heyting algebra such that x A y=yv(x-y) forell x,y eA

if and only if

(36) | y<xvi(x-y)

for all x,y e A.

Proof. Suppose (36) holds. Let z be any element of A
such that z A x<y. Since z <x V (x »2), we have
zs(z/\x)V(x'—»-z)=(z/\x)\r(x—»(z/\x))ﬁyv(x-ﬁy) by

A
(4) and (2). Also x A (y v(x »y)) <y. Therefore x>y .

yvi(x~-y).

' A
Conversely if (33) holds, than for all x,y ¢ A, y<x >y

n

2 xAy) =AY VX -(xAY) <x Vv (x=7).

COROLLARY. If (A,Q) is a s.r. lattice such that (x -»y) v (y »x)

1 for all x,y, then A is a Heyting algebra satisfying (33)



D

Proof. We have y = (y A (x -7y)) V.(y A (y ﬂ.x)) 5,(x ~y) Vx,

which proves (36).

1.
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