TECHNICAL REPORT NO. 239

Searching with Uncertainty

by
Ricardo A. Baeza-Yates, Joseph C. Culberson
and Gregory J. E. Rawlins
February, 1988

COMPUTER SCIENCE DEPARTMENT
INDIANA UNIVERSITY
Bloomington, Indiana 47405-4101

TECHNICAL REPORT NO. 239

Searching with Uncertainty

by
Ricardo A. Baeza-Yates, Joseph C. Culberson
and Gregory J. E. Rawlins

February, 1988

COMPUTER SCIENCE DEPARTMENT
INDIANA UNIVERSITY
Bloomington, Indiana 47405-4101

Searching with Uncertainty

by
Ricardo A. Baeza-Yates Joseph C. Culberson
Dept. of Compuler Science Dept. of Computing Science
University of Waterloo University of Alberta
Waterloo, Ontario Edmonton, Alberta
N2L 3G1, Canada. T6G 2E7, Canada
and

Gregory J. E. Rawlins

Computer Science Department
Indiana University
Bloomington, Indiana 47405, USA

TECHNICAL REPORT No. 239

Searching with Uncertainty
By

Ricardo A. Baeza-Yates, Joseph C. Culberson
and Gregory J.E. Rawlins

February, 1988

Searching with Uncertainty

Ricardo A. Baeza-Yates * Joseph C. Culberson
Gregory J. E. Rawlins *

Abstract

In this paper we initiate a new area of study dealing with the best
way to search a possibly unbounded region for an object. The model
for our search procedures is that we must pay costs proportional to
the distance of the next probe position relative to our current position.
This model is meant to give a realistic cost measure for a robot moving
in the plane. Also we examine the effect of decreasing the amount of
a priori information given to a class of search problems.

Problems in this class are very simple analogues of non-trivial prob-
lems on searching with bounded error, searching an unbounded region,
processing digitized images, robot navigation and optimization.

We show that for some simple search problems, the relative infor-
mation of knowing the general direction of the goal is much higher
than knowing the distance to the goal.

1 Introduction

The problems we consider in this paper were suggested by general problems
in graph searching, finding optimal paths, robotic navigation, and bound-
ary detection in digital images ([3]). All problems are of the following form:

*Supported by Natural Sciences and Engineering Research Council Grant No. A-3353,
the Institute for Computer Research at Waterloo and the University of Chile. Department
of Computer Science, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada. email:
rabaeza%watdaisy@waterloo.csnet

'Supported by Natural Sciences and Engineering Research Council Grant No. A-8053.
Room 3-38 Assiniboia Hall, Department of Computing Science, University of Alberta,
Edmonton, Alberta, T6G2E7, Canada. email: joe@alberta.uucp

'Supported by Natural Sciences and Engineering Research Council Grant No. A-
5692 and the Institute for Computer Research at Waterloo. Department of Computer
Science, 101 Lindley Hall, Indiana University, Bloomington, IN 47405, USA. email: rawl-
ins@iuvax.cs.indiana.edu

Suppose that we are searching for an object in some space under the re-
striction that for each new “probe” we must pay costs proportional to the
distance (under some chosen metric) of the probe position to our current
probe position. This is meant to model the cost in real terms of a robot (or
human) searching for an object when the mobile searcher must move about
to find the object. For example, when searching a graph or maze we usually
assume that we have some representation of the maze or graph. Suppose
that we do not, as is quite reasonable if we wish to have a robot explore a
maze or if we are playing a computer maze game. How can we best walk
the maze? Let us abstract this problem to the following very simple one.

Consider searching for a line in the plane starting at the origin. There
is an oracle who knows where the line is and who is willing to sell you
information about the line.

The oracle can tell you:

e The line’s position (that is, two points on the line).

That the line’s orientation is in the set {6;,0s,...,0,}.

That the line’s distance (under some metric) from you is at most n
units.

Any combination of the above.

Nothing.

What should the oracle charge you for the information?

In general, we are at the origin in d-dimensional space and we wish
to search for a k-dimensional body. There is an oracle willing to sell us
information about various parameters of the body at various prices. What
information, if any, should we buy?

For example, suppose that we are searching for a 1 dimensional point
(a line) in a 2 dimensional space. Suppose that the line is distance n steps
away from the origin.

o If we are given a normal to the line then we can find the line in n
steps.

o If we are given the line’s distance and orientation then we can find the
line in 3n steps.

o If we are given the line’s distance and that the line orientation is one
of two possible then we can find the line in (3/sin(6/2))n steps where
g is the angle difference of the two orientations. (If the orientations
are orthogonal then we can do this in 3v/2n ~ 4.242n steps.)

o If we are only given the line’s distance then we can find the line in
143+ 7n/6 ~ 6.392n steps.

e If we are only given the line’s orientation then we can find the line in
9n steps.

e If we are only given that the line orientation is one of two possible
then we can find the line in < 13.02n steps.

o If we know nothing at all then we can find the line in < 13.49n steps.

(Most of these scenarios appear in this paper but under different guises.)

2 The Lost Cow Problem

A cow comes to an infinitely long straight fence. The cow knows that there is
a gate in the fence, and she wants to get to the other side. Unfortunately, she
doesn’t know where the gate is located. Assume that the gate is positioned
an integer number of steps away from the cow and that the cow can only
recognize the gate when directly upon it. How can she optimally find the
gate?

If the cow knows that the gate is exactly n steps away then the obvious
algorithm is also optimal: Go left for n steps then turn and go right for 2n
steps. Consider the last time we turn. Suppose without loss of generality
that we were going left and now we are turning for the last time and heading
right. Since it is the last time we are heading right then we must have
explored all n steps to the left. Also, since we are heading right then we
must have not explored all n steps on the right. The adversary then places
the gate n steps to the right. This forces us to take 3n steps.

2.1 Gate Arbitrarily Far Away

Now suppose the cow knows that there is a gate somewhere but she does
not know how far. What is the minimum number of steps she must make to
find the gate as a function of the actual (unknown) distance to the gate?

If the gate is n steps away then we show that the cow has a 9n step
algorithm and that this is optimal up to lower order terms.

Geometric Search Algorithm: Choose a constant k and some constants
ai, ar, by, by, c; and c¢,. We execute cycles of steps as before except that now
the functions are I; = a;k* +bji+ ¢; for the left branch and 7; = a,.k* +b,i+c,
for the right branch.

There are only two possibilities for the worst case position of the gate.
Either the gate is at a distance n = [; + 1 to the left for some i, or the gate
is at a distance n = r; + 1 to the right for some 1.

If the gate is at a distance n = I; + 1 to the left then the total distance
walked is

2y L42) ritlitl=
j=1 i=1

k*—1 :
2k(a; + a,) + B+ b)i+)+ 2t)i+ Li+1

k-1
Which is of order
(1 pg Wt “”) n
k-1 a
A similar result is obtained when the gate is placed on the right. In this
case the distance walked is of order

k mk+%)
iy e b SIecE
(l+ k—1 B

The best choice for a; and a, is such that the result is the same in both
sides. This gives a, = a;vk. Now, the factor in the order n term is

k k
BN M, 7 T8 W, LG
+ = 1(+ Vk) + 751
This factor has its minimum value of 9 for k = 4. A similar approach
for the lower order terms gives: b, = —b; and ¢, = —¢;. Finally, minimizing

the resultant expression we obtain that ¢; = 0, by = 0. a; must be chosen
such that {; and r; are integers for all 7 and the constant term is minimized.
These two conditions force a; to be 1.

Hence, the best geometric algorithm is I; = 4* and r; = 2 - 4* (up to
lower order terms). This means that the algorithm may be described by the
following simple function:

fi=2"" vix>1

where the odd terms are the steps to the left and the even terms are the
steps to the right. The total distance walked in this case is no more than
9n — 16 steps (for n > 2).

We conjecture that no algorithm which has cycle lengths growing faster
or slower than some polynomial times a constant raised to the 3" power can
give a constant ratio.

Interestingly, if we require all the worst case ratios to be equal to some
constant then we get that [; = (2i — 1)4* and r; = i4**! and the constant is
exactly 9. This algorithm may be described by the simple function:

fi =2t vi>1
THEOREM 2.1 Geometric Search is optimal up to lower order terms.

Proof: Any algorithm to solve the cow problem can be described as a
function of steps f; from the origin, where the odd terms are the steps to
the left and the even terms are the steps to the right.

If the algorithm is to find the gate then f must besuchthat f; > 1,f; > 1
and f is a strictly increasing function in 1 for ¢ even and for ¢ odd.

That is,

fi> fica+l Vi>1 wheref 1 =/fp=0

Note that there is no a priori relation between f; and f;;1 although we
intuitively expect them to be equal. This intuition turns out to be incorrect.
The best we can say is that if we are to beat the 9n bound then we must
have that

firnn <3fi Vi>1

This implies that _
fi<34+4 Vix1

It may be that careful consideration of this case can lead to a 9n lower bound
by contradiction.

Suppose that for some 7 the unknown distance to the gate, n, lies between
fi+1and fi45. That is, assume that the gate will be found after the (i+ 1)
turn and before the (i + 2)** turn.

The worst case ratio of the total distance walked divided by the distance
to the gate is then

2 fit i+l T

= +1
& +1 fit+1
Suppose that f is such that
i+1
j:l fj’ ¥
=== <c VYix1l
i+l = S

where c is a constant. A lower bound on ¢ gives us a lower bound of 2¢ + 1
for the cow problem.

Since f is monotone increasing for even or odd 4 then we can choose a
sufficiently large ¢ such that Z;ill fi —¢> fi+ 1. For ease of description we
change variables to g; = f;/(fi + 1).

For a fixed and sufficiently large 7 we have that ¢ must satisfy the fol-

lowing infinite set of inequalities:

c > 1+4+6gin

14 giyo
i o T
Jit1 p—
G > Git1 T Jit3
c—1
14 giv1 +giv2 + -+ Gitk—1 + Gitks1
Jitk >

c—1

We solve this system inductively by solving the first k inequalities. For
a fixed k all we need do is discard the g;ix41 term in the last inequality,
substitute the bound for g;, in the expression for g;1x_1, solve for g;4x_1,
and substitute the bound found in the inequality for g;;x_2 and so on.

For example, for k = 0 we have that

c>1+gi11>1

Therefore, ¢ > 1 giving us a lower bound of 2c 41 = 3.
For k = 1 we have that

1+ giy2 1
git+1 >] > —
Therefore,
i
oo A & ; 1+ ——
iy 2 L —
This implies that,
c2—-2¢>0

Therefore, ¢ > 2 giving us a lower bound of 2c + 1 = 5.
Continuing this process we find that ¢ must be such that the infinite set
of polynomials

c—1

c? -2

S -3 +c

¢t —4c® + 362

c® — 5ct + 6c3 + ¢?

must each be positive.
By induction on k we can show that these polynomials are of the form

=3 (1) ayere

We require the minimal value of ¢ for which each of these polynomials
is greater than zero.
These polynomials obey the recurrence

f(k)=cf(k—1)—cf(k—2)
Which has characteristic equation
M _cA+ec=0

This equation has roots:

ctvc? —4dc
2

If the roots are distinct then

o e+ vV@— " (- v\
f(k)_c\/m 2 i 2

and this function is positive for all £ > 0 if and only if ¢ > 4.
If the roots are equal (¢ = 4) then

F(k) = (k4 1)24+

and this function is positive for all k > 0. m

Therefore any algorithm to solve the cow problem must take at least 9n
steps where n is the unknown distance to the gate.

Note that this is a lower bound on the constant multiple of the distance
walked to the actual distance to the gate. We can in fact obtain algorithms
which take no more than 9n — ©(lgn)* time for any k.

2.2 The m-Lane Cow Problem

Suppose that instead of a fence the cow is at the meeting point of one of m
lanes and the cow wants to find an exit into one of the fields.

If m = 1 then the cow is at one end and that end is blocked the cow
needs only to go along the lane looking for an exit. If m = 2 then we have
the equivalent of the straight fence problem.

We visit the lanes cyclically since there is no advantage to favouring one
over another, the goal may be in any one of the lanes. It does not matter if
we use some other order to search the lanes, or even if we change the visiting
order at random since all this does is complicate the description, it cannot
affect the worst case.

THEOREM 2.2 Let m be the number of lanes numbered in order of visits
(assuming a cyclic visiting pattern) 0,1,2,...,m — 1. Let f; be the distance
moved counting from the origin before the it* turn. The best search function
(up to lower order terms) is:

m .
G N R P>
% (m—l) Vi>1

Proof: For a fixed lane, f must be increasing, otherwise we are wasting
time.
That is, we must have that

iz fiim+1l Vi>m where f ;j=0V0<j<m-1

Suppose that the goal is found after the i** and before the (i+ 1)** turn.
In the worst case the goal will be exactly f; + 1 away from the origin. In
general the worst case ratio will differ depending on which lane the goal lies
in. The best possible case occurs when the gate is in the 0" lane (the first
lane visited in cyclic order) and the worst case occurs when the goal is in
the (m — 1)** (the last lane visited in cyclic order). To minimize the worst
case we must make these ratios equal (symmetry within all the lanes).

The worst case ratio is:

22;1’?_1 fitfhi+1l
fi+1

Let ¢ be a constant such that

) Bl ¢ <.
fi+1 —

8

We wish to bound ¢ from below to derive a lower bound on the worst case
ratio of 2¢ + 1.

Suppose that we are using geometric search. We need to determine
constants a; V0 < j < m — 1, such that the function

fi = aémodmk!

makes the worst case ratios the same.
This leads to the following set of simultaneous equations

=1 0 1
Yico aj kY oai+3 75 a5
g - al
B k> 0“;-"‘23—2 a;
az
2
_ kzmo GJ+ZJ—m 1
Am—1

Solving these equations we find that
ajzkﬁ"‘ VOSjSm—l
Substituting these values we find that the worst case ratio is

=" k
142— Y Bim =142 ———
+ k—lg % VEk—1

Minimizing this function we find that

=t

Just as in the lower bound analysis of the straight fence (2-lane) problem
we can construct a sequence of functions of ¢ each of which must be positive.
Each function places bounds on how small ¢ can be. These functions obey
the recurrence:

f(n+m)=cf(n+m—1)-c™"1f(n)
Which has characteristic equation:

A" g™ L™l =g

This equation has a positive real double root at ¢ = m™/(m — 1)™~1,
namely A = ¢(m — 1)/m. All other roots are negative or imaginary.
Dividing by ¢™ we see that this equation is equivalent to:

1
wm—mm“1+E:0

where z = A/c.
This implies that
1

- gm=1{] —w)
Thus, if 1 — 2 = 1/m then

mm

(m—1)m-1
The functions are (by inspection)

S i (n tm-2- (m— 1)@)(_1/0),.

1

C =

1=0
The value of ¢ is such that for any fixed m > 2 we have f(n,m,c) >0 Vn >
l.m
The worst case ratio is then
mm
1+ ZW ~1+42e(m—1) (forlarge m)

where e = 2.71... is the base of natural logarithms.

Thus to search 2 lanes (equivalently, the straight fence) we use increasing
powers of 2, to search 3 lanes we use increasing powers of 3/2, etc. and the
constant multiple factor is roughly 1 + 2em.

3 The 2-Dimensional Lost Cow Problem

Suppose that the cow is lost in a field and it wants to find the fence (to find
the gate etc.). Assume that the fence is a straight line.

3.1 Fence a Bounded Distance Away

A cow is lost one dark night at most one kilometer away from the fence.
The fence is perfectly straight and infinitely long. What is the minimum
distance the cow must walk to be assured of reaching the fence?

Call the circle radius 1 kilometer centered at the cow’s position the ref-
erence circle.

10

3.1.1 Orthogonal Turns

Suppose that the cow can only travel in straight lines or make turns of 90°
to the left or right.

Here is a simple algorithm which takes 8 kilometers: (for clarity we
describe it in terms of north, east, south and west, this does not imply that
the cow knows the directions.) Go 1 kilometer east, 1 kilometer south, 2
kilometers west, 2 kilometers north, 2 kilometers east.

(See Figure 1. The cow’s reference circle has been added for clarity.)

=
__/

Figure 1: A Simple Orthogonal Algorithm

We can immediately improve this algorithm by the rather counter-intuitive
idea of going 1 + ¢ kilometers before our first turn. The idea being that al-
though we initially go further east than is made necessary by our reference
circle when we are returning east we only have to go 1 plus some function
of € kilometers rather than 2 kilometers. (See Figure 2. The worst possible
position of the fence for this algorithm is shown as a dashed line.)

We shall now find the optimal € extra kilometers to walk.

Since the fence must be tangent to the reference circle the distance we
must cover is:

fle)=8+4+3e—4/(1+€)? -1

This function is minimized when e = 3/4/8 — 1 ~ 0.06066 and the mini-
mum value is 5 4+ 2v/2 =~ 7.8284 kilometers.

It seems that we cannot get a better bound if we make more turns. If we
end up 1+ € kilometers east of the origin without getting there in a straight
line then we will decrease the amount of kilometers we save when completing

0,

\

Figure 2: A More Complicated Orthogonal Algorithm

our path round the circle. For, the tangent would then be drawn from a
point south of the origin making us travel further east when we return east
to complete the tour.

If we break any of the three other turns into sequences of orthogonal
subturns then we will still cover the same distance.

The only other option is to go east 1+ ¢ kilometers, north for § kilometers
east for a further v kilometers then south for 1+ § kilometers etc. This path
can be transformed into the following: walk 1 + € 4+ 7 kilometers east, 6
kilometers north then 1 + ¢ kilometers south. This path can in turn be
modelled much more simply by amalgamating the y term into €. Thus we
are “paying” 26 in order to save 261/(1 + €)Z — 1 off of our original algorithm.

The distance walked is then

fle,6) =7+ 3e+ (264 1) (1- (l+e)2—1)

Fixing € we see that this function is monotone in é. Since § must be
greater than or equal to zero, the function is minimized for § = 0, giving us
the previous solution shown in Figure 2.

We do not have a good lower bound for this problem.

3.1.2 Arbitrary Turns

If arbitrary turns are allowed, the simplest algorithm is reach the perimeter
of the reference circle along a radius, follow the perimeter for g—?r radians
and then take the tangent to the worst possible position of the fence. This
give us 2 + 37 =~ 6.7124 kilometers.

12

As in the orthogonal case it is possible to improve this algorithm by first
going 1 + € kilometers from the origin. jFrom this point we follow one of
the tangents to the circle, then continue along the perimeter, until we find
the tangent perpendicular to the worst case shoreline (see Figure 3).

Figure 3: The G Algorithm (To Scale)

The distance we must cover is:

fle) = %7r+2-1-e+1,!(1+e)2—1~2arcta.n (1.;’(1+.f)2 - 1)

This function is minimized for ¢ = :% — 1 and the minimum value is

1+ /3 + &7 ~ 6.3972 kilometers ([7,6,1,5]).

It is perhaps more enlightening to write the function in terms of the
half-angle subtended at the point 1 4 € away from the origin. Let this angle
be @ then the total distance travelled is

1 1 T
f(ﬁ)—m-+m+§+29+l

Which has its minimum at § = 60°. This result has a simple geometric
interpretation. If we circumscribe the reference circle by a regular hexagon
then the G algorithm takes the following path: start at the origin, travel to
one of the vertices of the circumscribing hexagon, follow one of the edges of
the hexagon until the circle is intersected then follow the circle’s perimeter
until we have covered seven-twelfths of it, then follow the tangent from that
point for at most 1 kilometer.

13

3.2 Proof of Optimality

Even though this algorithm has already been proved optimal [7,6,1,5] we here
sketch an alternative way of proving optimality. We build our lower bound
argument demonstrating the optimality of the G algorithm in a sequence of
lemmas. First though we need the following lemma.

Lemma 3.1 Given two rectifiable functions fi and f, defined on the inter-
val [a,b] (a < b).
If

1. f1 is convez on [a,b],

2. fi(a) = fo(a) = f1(b) = f2(b) = 0, and
3. 0< fi(z) < fa(z), VYa<z <b.

Then, in the interval [a,b], the arc length of fi is strictly less than the
arc length of fa.

The following lemmas follow directly from the above:

Lemma 3.2 No minimal length path can intersect itself

Lemma 3.3 If P is any point inside the circle which is on a minimal length
path then we must have arrived at P along a radius of the circle.

Lemma 3.4 If P is any point outside the circle which is on a minimal
length path then we must have arrived at P along one of the tangents from
P to the circle or directly from the center of the circle.

3.3 Fence Arbitrarily Far Away

Now suppose that the cow does not know the distance to the fence, how many
kilometers must he walk as a function of the actual (unknown) distance to
the fence?

We can analyse this problem in a similar way to the unbounded orthog-
onal cow problem showing that the cow cannot hope for a better algorithm
than about 13n steps.

14

3.3.1 Orthogonal Orientation

Suppose that the cow knows that the fence is orthogonally oriented and that
it is situated some integer number of steps away horizontally or vertically.
What is the minimum number of steps the cow must make to find the fence?

If the cow knows the direction of the fence then it has an optimal n-step
algorithm. If the cow only knows that the fence is within n-steps then it has
an optimal 34/2 ~ 4.24n-step algorithm to find the gate.

For the proof observe that it is necessary and sufficient to reach all four
edges of the square of side length 2n centered at the origin. Consider the last
time we turn. Suppose that we are going NE, then we must have explored
all n steps to the south and west.

Now suppose that the fence is n steps away (horizontally or vertically)
and the cow does not know n. What is the minimum number of steps the
cow must make as a function of the actual (unknown) distance to the fence?

If the cow is restricted to only make spirals then we can establish a 12.74n
lower bound on this problem using similar techniques to the 1-dimensional
cow problem.

Let the distances that the cow covers along the azes measured from the
origin be denoted by f;. Figure 4 shows the early behaviour of this algorithm,
a worst case position of the fence is shown as a dashed line.

J % A

fs f

fa

Figure 4: The 2-Dimensional cow Problem

Because of the difficulty of the analysis we drop the requirement that

15

the function values be integers. Note that the same could be done for the
one dimensional problems as well.
We must have that

fi> fi_a (where f_;=0V0<j<3)

For a constant worst case ratio algorithm we must have that

TE R Rt R+ 4L
= cC

where ¢ is some constant.

The best geometric algorithm uses the constant k = 1.3816- - - to give
a bound of 13.0212.... We do not have an analytic expression for this
constant, it was found numerically.

3.3.2 Arbitrary Orientation

Now we wish to consider the problem in which the fence may have any
orientation. The following lemmas give necessary properties of the optimal
search path.

Lemma 3.5 In the worst case, any curve has a segment arbitrarily close to
the fence and for which the fence is a tangent and they do not intersect.

Proof: Otherwise we may give the fence another orientation, thereby in-
creasing the arclength of the curve. m

Lemma 3.6 The optimal curve is convez with respect to the origin in any
segment subtending an angle § < 2.

Proof: If not, we can construct a path, using a convex polygon that en-
closes the curve, which has a lower path length than the optimal path, a
contradiction. m

Lemma 3.7 In the optimal algorithm, after a complete cycle 2w, v(6 + 2)
must be strictly greater than r(0). This is valid for all 0.

Proof: If not, it is possible to construct a circle, with smaller path length,
and which is at least as good as the previous one, a contradiction. m

16

Lemma 3.8 The optimal algorithm must have the same worst case for any
line orientation.

Proof: If not, we can replace the curve for the cases that are bigger, using
a rotation of the curve that has the lower worst case. This implies that the
curve is not optimal for that orientation, a contradiction. m

Corollary 3.1 The optimal curve must be similar against rotations. This
implies that the derivalive of the curve is continuous.

Lemma 3.9 The optimal curve, 7(8), is a monotonic increasing function.
Hence the derivative is strictly positive.

Proof: This follows from the above lemmas. m

These lemmas, tell us, that the optimal curve must be similar with re-
spect to rotations and dilations (that is, the curve must have spiral similar-
ity). The only known curve with these properties is the logarithmic spiral.

In this case the cow executes a logarithmic spiral r = €®® where a =
0.22325---. This value (a) is a numerical approximation for the best log-
arithmic spiral. If the fence is n units away this algorithm takes approxi-
mately 13.49n + O(ln n) kilometers. Note that %22325 = 1.250- ...

We do not yet have a good lower bound for this problem, beyond the
bound established for the G algorithm. By analogy with the cow problem
it might pay to look at the class of functions which are monotone in @ and
obey the following inequality for some constant c:

g r(0)de _ Joter(0)do
r(@) — d(=)

where d(z) is the distance between the fence and the curve in the worst
case and o is the angle between the point of tangency and the point of
intersection measured respect to the origin. We then ask for the smallest
possible c.

<c Vz

Lemma 3.10 The value of a is bounded by m < o < 27.

Proof: This follows from the previous lemmas. m

If a linear spiral is used (r = af) the total distance in the worst case is
n?/2a 4+ O(n). Note the similarity between the algorithms for the lost cow
problem (1 dimension) and the lost cow problem (2 dimensions) (a linear
type search yields O(n?) steps and a geometric type search yields O(n)).

17

4 The Lost Robot Problem

Suppose a robot has to find a trapdoor in the plane given that it lies within
n steps (horizontally or vertically). Assume that the plane is a rectangular
lattice and that the robot can move left, right, up or down in one step. What
is the minimum number of steps the robot must make to find the trapdoor?
Call the vertices of the lattice which lie within n steps of the origin the
reference diamond. This is of course a circle under the £, metric (also called
the Manhattan or taxicab metric). As in the lost cow problem we shall use
compass bearings to describe algorithms, this is for ease of description only.
Note the close relationship between this problem and lost man problem using
orthogonal turns except that the robot must find an object of finite size.
Suppose, without loss of generality, that any algorithm always begins by
going north. Here is a simple algorithm to solve this problem. First, follow
a rectangular spiral until the border of the diamond is reached. That is, the
algorithm begins with the following sequence of moves:
NESSWWNNNEEE...
Having reached a vertex on the border of the diamond, we go up and
down covering the four triangular corners outside the spiral. (See the exam-
ple in Figure 5).

N I
~ ’
b s
0

Figure 5: A Spiral Algorithm for n = 3

The number of steps needed to execute the spiral portion of the search
is n(n — 1) for even n and n? for odd n. The number of steps necessary to

18

cover the four triangles is given by the following recurrence

6 n=1
f(n)=4 14 Bo= B
f(ln—-2)4+4n+6—-2(nmod2) n>3

The total number of steps is then
f(n) = 2n% +4n + n mod 2

Since we must at least take 2n%+2n steps (to examine all possible vertices in
the diamond) then this algorithm is within 2n + 1 steps of the lower bound.
This algorithm takes 7 moves to reach the last vertex of distance 1, and
this is optimal for n = 1. (The bound of 7 can be shown by brute force
enumeration). It takes 16 moves to reach the last vertex of distance 2.

If we know that the trapdoor is exactly n steps away, then we can do
considerably better. In this case, we move directly to one of the points
at distance n. We then follow the zigzag path that visits the the nodes
at distance n in sequence. The total number of moves is 9n — 2, which is
optimal. It is interesting to note that the ratio is the same as in the best
cow and fence solution.

4.1 Trapdoor Arbitrarily Far Away

Suppose as before that the robot knows that there is a trapdoor but it doesn’t
know how far away it is. What is the minimum number of steps the robot
must make to find the trapdoor?

As in the cow problem, our search strategy must ensure that every point
within a finite distance is covered in a finite number of steps. Unlike the
cow problem, it is not necessary to visit any point more than once, since we
can traverse a spiral path which will visit each point exactly once.

The following pattern yields an algorithm requiring only 2n? + 5n + 2
moves.

NESSWSWNN

(These visit all vertices at distance 1.)

WNENENESESS

(These visit all unvisited vertices at distance 2.)

The next 15 moves visit all unvisited vertices at distance 3 and so on.

This algorithm also generates a spiral, but the shape of the spiral more
closely approximates the diamond shape formed by the points at distance n
(see Figure 6).

19

Figure 6: Early Steps of the Modified Spiral Algorithm

This algorithm makes some counter intuitive steps. For example, the
sixth move, S, causes us to use two extra moves to reach the last point at
distance one. However, if we use the shorter route to explore all vertices at
distance one, then we require more than 13 additional moves to visit all the
remaining points at distance 2, and so the adversary can beat the cost of
20 of the previous algorithm. Thus, for each n, we must tradeoff between
exploring all vertices at distance n quickly against paying a little more at
each layer so that if it happens that the trapdoor is further out we gain.

This algorithm is within 3n 4 2 of the simple 2n? + 2n lower bound.

4.2 A Better Lower Bound

We can improve our lower bound when the trapdoor is arbitrarily far away
to show that the modified spiral algorithm is optimal to within n 4+ 3 moves.

THEOREM 4.1 Any algorithm which can find a trapdoor at any finite dis-
tance n requires at least 2n? + 4n — 1 steps.

Proof:

Suppose that we visit all points within distance n+1 before visiting some
point at distance n. The adversary places the trapdoor at the last position
we search at distance n, and we have thus used at least 2(n+1)2+2(n+1) =

20

2n% 4+ 6n--4 moves to find the trapdoor. This bound exceeds modified spiral
search by at least n+ 2. Therefore any optimal search must search all points
at distance n before visiting all points within distance n + 1.

Suppose that we visit all points within distance n — 1 before visiting
any at distance n. Consider those points along the edges of the diamond
containing all points at distance n or less. Since these points lie along
diagonals, between visits to any two points on this boundary, we must visit
at least one other point. There are 4n such points which implies that we
need 4n — 1 inbetween points, for a total of 8n — 1 points. Note that we
do not imply that these are the only inbetween points visited, nor that the
boundary points are visited in sequence.

The adversary chooses the last point visited by the algorithm at distance
n. This will require at least 8n—1 moves in addition to the 2(n—1)2+2(n—1)
minimum required to search the points at distance n — 1 or less, for a total
of 2n? + 6n — 8, which also exceeds modified spiral search (for n > 10).

Thus, any optimal algorithm must visit some number of points at dis-
tance n+ 1 (or farther) before completing those at distance n. Suppose that
this number is K(n). If K(n) is decreasing in n, then for some n, K(n) = 0,
and the above argument applies for n + 1. Otherwise, K(n) is constant or
increasing for some values of n.

Clearly, K(n) < 4n, else the adversary chooses the last point visited at
distance n for a total of 2n? 4 6n points which requires more moves to visit
than modified spiral search.

Suppose, for some n, that K(n) > K(n— 1) and that k; of the K(n—1)
are at distance n. Then we need at least 2(n — 1)2 4+ 2(n — 1) + K(n — 1)
moves to visit the nodes at distance n — 1 or less. There are 4n — k; more
nodes at distance n left to visit, and using the same argument as before,
this implies at least 2(4n — k;) — 1 moves will be required to complete that
layer. Finally, we need to add at least k; nodes at a distance greater than
n to make K(n) > K(n — 1). However, these may be added without extra
moves if they are the inbetween points used in completing the points at
distance n. To have all k; points added as inbetween points requires that
4n — ky — 1 > k; which implies that k; < 2n. Thus, we at have least

2(n—1)2+2(n-1)+K(n—1)+2(4n—ky)—1 > 20’ +6n—k; —1 > 2n* +4n—1

;From this it follows that modified spiral search is within n 4 3 steps of
optimality.

21

Essentially, the above proof says that we must explore two levels at once.
Interestingly, if we are given just the parity of the trapdoor’s distance then
we can improve the algorithm by n steps! That is, we can get a 2n® + 4n +
n mod 2 algorithm by exploring the appropriate pair of levels at each step.

To visit all points within a distance of n without repeating any given
that n is odd use:

NESSWWN

(visits all at distance 1 in 7 moves and this is optimal)
WNENENESESSESWSWWSWNWNWN
(visits all within 3 steps in 31 moves)

In general it will take 2n? + 4n + 1 steps to visit all within distance n,
where n is odd. However, if n is even, then this algorithm takes 2n? + 6n + 4
moves.

To visit all within n, given that n is even use:
NESESWSWNWNWNENE
(visits all within 2 in 16 moves)

The next cycle starts

NESE ..

and follows around again to visit all within 4 in 48 moves. In general,
this can visit all within distance n for n even in 2n? + 4n moves. However,
if the trapdoor is placed at an odd distance n, then this algorithm takes
2n? 4 6n + 3 moves.

For both algorithms, if the adversary is free to place the trapdoor at a
distance of opposite parity to the parity that the algorithm was designed
for, then the bound is worse than modified spiral search.

The lower bound says that we can’t eliminate more than half of the
“wasted” moves (moves outside of the diamond), and the m2 + 5n + 2
algorithm results from trading off between the even and odd algorithms,
making some of the wasted moves at even levels useful at the odd and vice
versa.

It is interesting that just knowing whether the distance is odd or even
is sufficient to improve the algorithm by nearly n moves! (Also, this gives
the best bound we have been able to achieve even if we are given that the
trapdoor is within n steps!)

22

5 Searching with Error

When searching in the plane, two different kinds of measurement errors may
occur. One error may occur when measuring the distance and the other when
measuring the direction.

For example, if you are walking along a path from point A to point B
while counting your steps and checking your orientation you may miscount
your steps or you may misjudge your orientation (or both). How can you
guarantee that you will indeed reach B starting from A if you have good
estimates on how much you could possibly misjudge your current position
and direction?

This problem is a very simple analogue of the general problem of ensuring
that a robot keeps to its correct path while mobile or that a robot can find
an object it is working on.

We will see that these two types of errors have different implications
when constructing a search strategy, and that, again, knowing the general
direction of the goal is more important than knowing its distance away from
you.

In the cow problem, only one type of measurement error is possible: an
error in the distance. This is because the only two possible directions are
given by the fence.

The simplest way to model this kind of error is to assume that an error
of no more than §z distance units is made in each step. Suppose that you
know the distance, d, to the gate, you need to consider your error, and make
the appropriate correction in the path. Hence, you need to walk a distance
d’ such that

d >d+ 6zd

However, you can make errors in the opposite direction as well, so the

overall distance walked is
146z i

1-—éz
Hence, in the worst case you will have to walk

d+ 21 i3 gzd = 3d + 46zd + O(6z°d)

If you don’t know the distance, d, then the error cannot affect any search
algorithm, provided that the increase in the number of steps is greater than
the worst possible error you could have made. The same applies to the
k-way cow problem.

23

In the lost cow problem, a direction error is more important.

To analyse possible consequences of this let us assume that a path con-
sists of a sequence of straight line segments and that the cow can walk a
straight line but when he changes direction he can make an error of 66 in
his intended direction.

A consequence of this model is that in a convex path, if you want to be
assured of being “outside” of the path then you need to make a correction
in your direction.

For example, if the cow wants to go around the reference circle, she must
be sure that she is never in the circle. (If not, she may never find the fence.)
Hence, in each segment of his path she must make a correction of §8 in his
orientation. However, in the worst case, the overall error in the angle is 266.
If the first segment has length [, then after traversing it we can be as much
as 2l sin 6@ units away from the exact path. After j segments the angle error
will be 2788 and with a distance depending on the segment lengths of the
exact path.

Suppose now that the error 66 is made in one unit step. That is, the cow
cannot even walk in a straight line without drifting off his intended direction
by 6. (Perhaps she had a little too much to drink.)

In this case, around the circle, after walking a distance [the angle error
is 2160, that is, a spiral, instead of a circle. A consequence of this, is that it
is not possible to guarantee that we reach an arbitrary distance away. This
is because in a straight line it is possible to have a 46 error in the direction
on the same side of the line. Hence, in the worst case, the line degenerates
to a circle of radius r = 1/(2sin(68/2)). Therefore, the maximum distance
from the origin in the worst case is 2r ~ 2/§8 for small é6.

If we have both types of errors at the same time, the corrections are
more difficult. Also, the resulting path is worse. A simple model in this case
is that after each unit distance, the final point is inside a circle of radius ép.
The maximum distance is of the same order as previously for small §p (that

is, 2/6p).

Finally, in an arbitrary path, it is difficult to compute a correction, even
if the average error made throughout the path may be small. This is because
an error in one step may be compensated for in another step.

24

6 Open Problems

6.1 The Lost Swimmer in a River

The lost swimmer problem stated at the beginning of this paper is still open
([3]). We conjecture that the best path is of length 1 + 2arctan(3/4) =
2.287w where w is the known width of the river.

What if the river’s width is unknown?

6.2 Billiard Paths

Generalizing from the restricted version of the 2 dimensional cow problem
we ask: given a billiard table shaped like a convex polygon, starting at the
origin we wish to bounce a billiard ball off of all of the edges. What is the
minimum length of the ball’s path as a function of the width of the polygon?

If we restrict the polygon to be a regular n-gon then we have the following
results for small n: (assume that the polygons are inscribed in a circle of
radius 1).

If n = 3 then the minimal length seems to be 2n. The best path seems
to be along the perpendicular bisector of any side.

If n = 4 the minimum length is 34/2. This solution is reminiscent of the
1 dimensional cow problem since the best path is a diagonal.

For general n?

6.3 The Lost Cow with a Little Lamb

Suppose that the lost cow has a little lamb and she is lost as before. The
cow decides to leave the lamb at their reference position and find the fence.
Having found the fence she intends to return for her lamb and return to the
fence. What is the minimum distance she must walk to complete the trip?

We conjecture that a symmetric G algorithm is the optimal solution.
This algorithm is such that the final path is symmetric to the initial path.

6.4 The Tired Lost Cow

Suppose as before that the cow is lost at most 1 kilometer away from the
nearest fence. The cow is very tired and can only walk z kilometers' what is
the best path for her to take to maximize her chance of reaching the road?

'Or she happens to be in a jeep and only has enough gas to travel z kilometers.

25

In this case we need to maximize the amount of the perimeter of the
reference circle covered by the algorithm as a function of the distance walked.
The optimal path chosen will, in general, depend on = and it may be that
the optimal solution is not continuous in z.

The simplest algorithm is just to walk for z kilometers in some direction.
The amount of perimeter covered is:

0 z<1
f(z) = { 2 arccos (l) z>1

T

This algorithm can only cover half of the circle’s perimeter (asymptoti-
cally).

The second algorithm is based on the G algorithm. Walk 1+ ¢ kilometers
in some direction, then take the tangent to the reference circle, then follow
the perimeter of the circle until y kilometers are left from the initial z
kilometers. Then follow the tangent for the y remaining kilometers.

Let ¢, = 1 + €. The amount of perimeter covered is:

(0 gl
2a.rccos(%) 1<z<e

2a.rccos(%) ag<z<e+4e-1

f(z) = { 2arccos(X)+

2arctan |z — € — e%—l) a+ye€-1<z<e+ e€—-1+y
2a.rccos(é) +x

| —y—ea— \/ele+2arctan('y) >+ —1+y

The best choice of y for this algorithm turns to be 1 independently of z

and e.
The best € for this algorithm is

2z(1 + 2?) — 22222 - 1
e 5 1+ 2g2

I z>14++/3
V3 -

The distance of the last part of this algorithm (found by substituting
the best €) is

=1 1€ 2<14v3

5
:c——l—\/g—l—g?rxm—ﬂ.llﬁl for z>1+V3~2.732

26

Comparing the two algorithms proposed we see that if ¢ < 2.4297 then
it is better to go straight forward. If z > 2.4297 it is better to use the last
algorithm. The breakeven point (2.4297) was found numerically, we have no
analytic expression for it.

Hence, given z, the best known strategy is:

If z < 1 then do anything you like or wait for help.
If 1 < z < 2.4297 then walk straight forward in an arbitrary direction.

If 2.4297 < ¢ < 1 ++/3 then compute the optimal e. Walk 1 + ¢ kilometers
in any direction, and then take a tangent to the circle.

If £ > 1++/3 then walk 2/4/3 kilometers in any direction, turn through 120°
and walk to the perimeter of the reference circle. Follow the perimeter
until exactly 1 kilometer is left from your z original kilometers, then
take the tangent from your current point. (Of course,if z > 1+ V3+
77 /6 then this is the G algorithm.)

We looked at other other possible algorithms, for example go around the
circle or go out to some distance a then turn through some angle 6 and walk
in a straight line. None of these other algorithms beat the above algorithm
for z in each range.

The best algorithm for bounded search is still an open question.

6.5 The Lost Swimmer Problem

Suppose a swimmer is lost at sea on a dark night 1 kilometer away from a
circular island of known radius 7.

Using a variation of the G algorithm, that at the end takes a tangent
that is orthogonal to the worst case position of the island (See Figure 7) the
distance is

flz) = z+Va?-142n4+vVri4+2r—r

i 22 4+ 2r+1
— t 2_1)— i —
arctan (v:z: | — arccos (‘r T 1) arccos (233(? Y 1))

where z = 1 + e.

This is a difficult function to minimize because of the dependence on =
and 7 in the last term. Table 1 gives some optimal values of z for various
7 (computed numerically).

27

Island

N

Figure 7: The G Algorithm Searching for an Island

i o €
0] o
/

1/2] 0.063
1 | 0.088
2]0.111
5 0.133
co | 0.15656

Table 1: Some Optimal Values of € for Various r

28

If the island is only at most 1 kilometer away then the above algorithm
does not work when r is small. In that case we need a curve that fills the
circle. One possibility is a linear spiral such that the maximum distance
between two points on the spiral with the same angle is less that or equal
to 2r.

This problem may be related to Oglivy’s River problem ([10]).

6.6 The Lost Swimmer in an Inlet

Suppose that the swimmer is lost in an inlet. The shoreline of the inlet is
almost a complete circle except for a small portion of the perimeter which
is open to the sea. Let the inlet have radius 1 kilometer and let the portion
of the missing perimeter subtend an angle of 6 at the center of the circle.
What is the minimum distance the swimmer needs to swim to reach land?

6.7 The Lost Diver Problem

Suppose that a deep-sea diver is diving on a dark night. Given that he
knows that he cannot be more than 1 fathom deep but that it is so dark
that he cannot tell where surface lies what is the minimum distance he must
swim to find the surface?

Call the sphere of radius 1 fathom centered on her position the reference
sphere.

Suppose we circumscribe the reference sphere with a polyhedron with n
faces, each face of which is tangent to the sphere.

Lemma 6.1 It is sufficient to visit each vertez of the circumscribing poly-
hedron.

Proof: Any plane which is tangent to the sphere and does not contain a
face, must intersect at least one face. Therefore it must separate at least
one vertex from the sphere, hence there is at least one path that crosses the
plane. m

It is possible that we can do better if we select non-vertex points on each
face.

Consider the case when three faces meet at a vertex. Take the spherical
triangle induced by the tangent points of the faces, and then consider a
plane tangent to the sphere at any interior point of the spherical triangle.
We need only have one point on each line from the tangent points of the
faces to the vertex located so that any such tangent plane will separate

29

at least one of those points from the sphere. Deciding on the appropriate
enclosing polyhedron, the location of the points and the connecting path
seems non-trivial. We cannot even guarantee that the polyhedron must be
regular as is shown below.

Circumscribe the sphere with a regular tetrahedron. First, swim straight
out to one of the vertices, then follow a sequence of 3 edges to visit each of
the other vertices.

We might be able to improve on this algorithm by distorting the tetra-
hedron. Suppose we move the last vertex visited directly away from the
sphere. Now only the opposite face will be touching the sphere. Shrink this
face in some manner so that the other three faces are again touching the
sphere. (Note that uniform shrinking is not necessarily the best method,
since two edges of the face are traversed, but not the third.)

The net effect of this process is that the length of the path from the origin
to the first vertex is reduced, as are the lengths of two of the traversed edges.
The last edge will be increased. If there exists an optimum stretch, what is
it?

If now the deep-sea diver does not know how far away from the surface
he is; What is the minimum distance he must travel to find the surface as a
function of the actual (unknown) distance to the surface?

6.8 The Average cow Problem

If the cow knows that the gate is within n steps and that it is distributed
uniformly about the interval of length 2n centered on the cow’s position
then the best worst case algorithm is also the best average case algorithm,
with a average distance of 3n/2. However, if the gate’s distribution is not
uniform then the best average algorithm is dependent upon the probability
distribution.

If the cow remembers that the gate is likely to be near by, then it might
want to turn after a smaller number of steps, since going very far from the
origin the probability of finding the gate further on is much less than finding
it nearer the starting point on the other side. Suppose, for example, that
the gate has a triangular distribution with origin in the starting point given

by
n—

p(z) = |3

for —n < ¢ < n, and 0 everywhere else. At what points should the cow
turn?

30

Let be ;n, tan, ... , tmn the absolute distance from the origin of the
turning points of an algorithm with m turning points. That is, go t1n steps
to the right then return to the origin and go t;n steps to the left, etc. If
after the last turn we have not found the gate, we go all the way to the end
of the other side. The average distance travelled by an optimal algorithm is

E[d} = n(1/3 + F(tls '”:tm))
where
F(tl, ,tm) - tmn} ((1 == tm)z + ZZt, g tf(? = t;) + tit,ﬁ_](Q = ti—l))

i=1
with o =0 <) <ty < ... <t < 1.
The optimal points are such that
2 — 4t + 32 —t;_1(2— 1)
2(1 -1t;)

tip1 =

for ¢ > 0 and
32 44l =2t baa)=10

Some solutions to this system of equations are:

tl tg t3 Eld]
4/3 ~ 1.3333
2/3 32/27 ~ 1.1851

w e = o3

=~ .656094 =~ .969746 ~ 1.183521
~ .6566093 =~ .969742 =~ .9998 ~ 1.183520

It is possible to show that the solution for m turning points, must be
different from any of the solutions of 7 turns, with 7 < m, because this points
are singularities of the equation. For the same reason, each time the next
value for t; is closer to the previous one. We conjecture that the optimal
algorithm for this distribution is such that the number of turning points is
infinite. Intuitively, this happen, because there is always a point, where is
better to turn back and look at places where the probability of finding the
fence is greater.

6.9 The Cow Problem with Polygonal Fences

Suppose that the fence is a simple polygonal curve in the plane bisecting
the plane into two halfplanes.

31

Suppose without loss of generality that the cow is in the “upper” half-
plane. We may solve this problem by finding the upper convex hull of the
fence and then solving the problem in the reflex subregions (if any).

A suitable example is searching a “V-shaped” region. There is a simple
algorithm which might be called “Bow-tie search” which is asymptotically
optimal.

As the angle is reduced to zero, the problem reduces to the 1-way lane
case. As the angle is increased to 180 degrees, the problem becomes the
2-way lane problem. Note however that the lane problem is intrinsically
different from the fence problem. In the fence problem the cow can, should
it so desire, leave the fence and walk in the field. In the lane problem this
is not possible, the cow is constrained to walk in a lane.

What about arbitrarily shaped regions? If each reflex subregion is convex
with respect to the cow then we may solve the problem by a simple extension
of previous ideas. If the subregion is not convex with respect to the cow then
it is unclear what to do. Perhaps we could solve each “sub-reflex region”
recursively?

7 Conclusions

To the best of our knowledge these kinds of incompletely specified problems
have only occurred in recreational mathematics and have not been studied
as a class. We think that they are deserving of comprehensive study as sim-
ple optimality arguments (in particular variants of convexity and symmetry
properties) are applicable to a wide sub-class of these problems. Further,
and more importantly, these problems are (very simple) models of searching
in the real-world. It is very often the case that we do not know many of
the parameters that are usually taken for granted when designing search
algorithms.

Bentley and Yao ([2]) considered a similar kind of problem to the cow
problem. They constructed an almost optimal algorithm to find an integer
chosen from an unbounded set of positive integers. The problems differ in
that we have to pay costs proportional to the distance of a probe from
the last position probed whereas they have random access to any location.
Rivest et al. ([11]) examined problems in which we wish to search for an
integer but the adversary can tell a bounded number of lies. This is similar
to the searching with error problem. Karp, Saks and Widgerson’s ([8])
consider “wandering RAMs” with bounded memory searching binary trees.

32

For them the number of node visits was the cost measure, this problem is
closer in spirit to the class of problems we consider here.

The most striking result about the lost cow, cow, and robot problems
is that the relative information of knowing the general direction of a goal
is much higher than knowing just the distance to the goal. (Using 20/20
hindsight this result is intuitively obvious.)

These results suggest that it is better to search a search space backwards
from the goal towards the start (assuming the goal is known) rather than
searching forwards from the start towards the goal. Of course these are
very simple problems and results from the more comprehensive problems
currently under investigation may be more enlightening.

Problem Knowledge

Direction Distance Nothing
1-d cow n 3n 9n
m-lane cow n (2m - 1)n (14+2m™/(m - 1)")n
2-d Ortho-cow n 4.24-..n < 13.02n, > 8.66n
2-d cow n 6.39---n < 13.49n
Robot n < 2n% + 4n + n mod 2 < 2n% 45042

> 2n% + 2n >2n% +4n -1

Robot with Parity n <2n?+4+4n+nmod?2| <2n?+4n+nmod?2

Table 2: The Advantage of Knowing Where Things Are

8 Acknowledgements

A variant of the 2-dimensional cow problem (fence a known distance away)
was posed in [10] and was solved independently by Joris ([7], referenced in
[4]). We wish to thank Gaston Gonnet for bringing this to our attention.
We wish to thank Ron Graham for giving us further references ([1,6,5]) on
this variant. Melzak ([9], page 153) has claimed a solution, however this
solution is incorrect giving a bound of 6.459 - - - instead of 6.397 - - -.

Jon Bentley and Andrew Yao (private communication) independently
studied a variant of the 1-dimensional cow problem (unpublished).

We would like to thank Jon Bentley, Gaston Gonnet, Ron Graham, Bob
Reckhow, and Chee Yap for many clarifying discussions on these problems.

33

References

[1] Bellman, R.; “A Minimization Problem,” Bulletin of the American
Mathematical Society, 62, 270, 1956.

[2] Bentley, J. L., and Yao, A. C.-C.; “An Almost Optimal Algorithm for
Unbounded Searching,” Information Processing Letters, 5, 82-87, 1976.

[3] Chang, S.-K.; “A Triangular Scanning Technique for Locating Bound-
ary Curves,” Computer Graphics and Image Processing, 3, 313-317,
1974.

[4] Faber, V. and Mycielski, J.; “The Shortest Curve that Meets all the
Lines that Meet a Convex Body,” American Mathematical Monthly, 93,
796-801, 1986.

[6] Gluss, B.; “An Alternative Solution to the the ‘Lost at Sea’ Problem,”
in 16" National Meeting of the Operations Research Society of America,
Pasadena, 1959.

[6] Isbell, J. R.; “An Optimal Search Pattern,” Naval Research Logisiics
Quarterly, 4, 357-359, 1957.

[7] Joris, H.; “Le Chasseur Perdu dans la Forét,” (in French), Element der
Mathematik, 35, 1-14, 1980.

[8] Karp, R. M., Saks, M. and Widgerson, A.; “On a Search Problem
Related to Branch-and-Bound Procedures,” 27" Annual Symposium
on Foundations of Computer Science, 19-28, 1986.

[9] Melzak, Z. A.; Companion to Concrete Mathematics: Mathematical
Techniques and Various Applications, John Wiley and Sons, Inc., 1973.

[10] Oglivy, C. S.; Tomorrow’s Math: Unsolved Problems for the Amateur,
Oxford University Press, 1962.

[11] Rivest, R. L., Meyer, A. R., Kleitman, D. J. and Winklmann, K.; “Cop-
ing with Errors in Binary Search Procedures,” Journal of Computer and
System Sciences, 20, 396-404, 1980.

34

