A Storage Structure for Nested Relational Databases

by

Anand Deshpande and Dirk Van Gucht

Computer Science Department
Indiana University
Bloomington, IN 47405

TECHNICAL REPORT NO. 234

A Storage Structure for Nested Relational Databases
by Anand Deshpande and Dirk Van Gucht

November, 1987

This report to appear in Nested Relations and Complez Objects, S. Abiteboul and H.-J Schek, (Eds.),
Springer-Verlag, 1988.

)

A Storage Structure for Nested Relational Databases

Anand Deshpande

Dirk Van Gucht

Computer Science Department
Indiana University
Bloomington, IN 47405, USA

We propose a storage structure for Nested Relational Databases. In particular, we define a combination
of two data structures: a record-list structure and a tree storing all the atomic values present in the
tuples and sub-tuples of the database. This storage structure allows for efficient execution of updates
and queries expressed in the extended relational algebra of the nested relational database model.

2 The Nested Relational Database Model 1

1. Introduction

In 1977 Makinouchi [16] proposed to generalize the relational model by removing the
first normal form assumption. Jaeschke and Schek [12] introduced a generalization of the
ordinary relational model by allowing relations with set-valued attributes and adding
two restructuring operators, the nest and the unnest operators, to manipulate such
(one-level) nested relations. Thomas and Fischer [26] generalized Jaeschke and Schek’s
model and allowed nested relations of arbitrary (but fixed) depth. Roth, Korth and
Silberschatz [24] defined a calculus like query language for the nested relational database
model (NRDM) of Thomas and Fischer. Since then numerous SQL-like query languages
(15, 21, 22, 23], graphics-oriented query languages [11] and datalog-like languages [2; 3,
5, 14] have been introduced for this model or slight generalizations of it. Also, various
groups [4, 7, 8, 9, 19, 25] have started with the implementation of the nested relational
database model, some on top of an existing database management system, others from
scratch.

The purpose of this paper is to address some issues related to the implementation of the
NRDM by defining a storage structure for nested relational databases. In particular,
we define a combination of two data structures:

e VALTREE — a tree structure storing all the atomic values present in the tuples and
sub-tuples of the database, and
e RECLIST - record-list structures which store data as tuples and sub-tuples.

The VALTREE is a generalization of the domain based approach proposed by Missikoff
[17] and Missikoff and Scholl [18] for the relational model. The RECLIST is inspired by
some of the storage structures proposed by Dadam et.al. and Deppisch et.al. [7, 8].
We will argue that the proposed storage structure allows for the efficient execution of
updates and queries. '

In Section 2 we discuss the nested relational model and describe an algebra for this
model. In Section 3 we describe a notation for tuple identification and then discuss
VALTREE and RECLIST storage structures. In Section 4 we discuss how these storage
structures could be used to efficiently execute nested algebra queries. Finally, in Section
5 we discuss important observations about this implementation and also discuss issues
that need further investigation.

2. The Nested Relational Database Model

In this section we briefly describe the nested relational database model and the algebra
associated with it. In this model the database is defined as a set of nested relational
structures, i.e., a component of a tuple in such a structure can be an atomic value or a
nested relational structure. This is in contrast with the classical relational model where
a database is defined as a set of flat relations in which components of the tuple are
always atomic values.

2 The Nested Relational Database Model 2

The class of nested structures we have restricted ourselves to in our implementation
is referred to as the class of hierarchical structures [1,6,27]. The difference between
hierarchical structures and general nested structures is that in a hierarchical structure
a combination of atomic attributes form the key at each level of the structure, whereas
this restriction is not imposed on a general nested structure.

The algebra used for manipulating hierarchical structures is an extension of mechanisms
used to manipulate flat relations, with the addition of some restructuring operators.
The algebraic operators that are used for the implementation are described informally
as follows (for more detail see [1,6,27]):

Union (|J) : The union operator has to be extended to ensure that the resulting
structure is hierarchical, i.e. the key property is maintained. The extended union
operator involves a union of all tuples and then a fusion of set components with identical
atomic values.

Difference (—¢) : The difference operator is extended in a similar manner as the union
operator.

Project (7°) : The standard project operator does not maintain hierarchical structures.
This can be observed in Example 4. Therefore project, like union has a fusion component
associated with sets components that have identical key values.

Select (0;) : The select operator though very similar to the relational model is far more
expressive in this model. Selects can be performed at any level of the structure. For
convenience a template for filtering tuples is provided [6]. Besides standard conditional
operators (=, #, >, >, <, <) which can be used for comparing atomic values we also need
(6,¢,C,¢&,C,Z) to compare sets and elements of the set.

Join (<) : At the present moment we discuss implementation of natural joins when the
pivot attributes in the two structures to be joined have been restricted to atomic values
only. An example of the join operator is shown in Figure 6. It would be interesting
to study how joins over set-valued attributes should be implemented. This problem is
non-trivial because it is difficult to index on sets of values. Conditional joins are also
not discussed in this paper.

Nest (v) : The nest operator we consider in our implementation, is restricted in such
a way that the result of a nest operation yields a structure with only one set-valued
attribute at the highest level. To construct structures with multiple set-valued attributes
one needs to use a combination of nest and join operations. Figure 4 shows an example
of a nest operation.

2. The Nested Relational Database Model 3

Unnest (#) : The unnest operator is the inverse of the nest operator. An example of
the unnest operator is shown in Figure 3. Again at the moment we restrict ourselves to
unnesting one level at a time.

Example 1: Let us consider an example with two nested relational structures, SCHED-
ULE and AIRLINE-INFO, as shown in Figure 1 and Figure 2. The structure SCHEDULE
stores information about universities their nearest airports and a list of their away foot-
ball games while the AIRLINE-INFO structure stores information about cities, flights
departing the city and airlines for which the city is a hub. These structures have been
chosen to illustrate some typical features of our approach and will be used as examples
throughout this paper.

TEAH BEAREST-AIRPORTS TEAMS-TO-PLAY
Indiana Indianapolis Purdue
Cincinnati Michigan
Louisville Wisconsin
Purdue Indianapolis Minnesota
Chicago Iowa
Michigan
Northwestern Chicago Ohio State
Iowa
Minnesota
Michigan Detroit Micigan State
Ohio State
Wisconsin
Michigan State Detroit Indiana
Purdue
Iowa
St. Louis Ohio State
Northwestern

Figure 1: The SCHEDULE structure

The following examples illustrates some operators of the algebraic query language for
the NRDM.

Example 2: SCHEDULE' = piyp,nest— ATRPORTS " oEAM NEAREST - AIRPORTS (SCHEDULE)

This example projects the teams and the nearest airports and then unnests it as shown
in Figure 3.

Example 3: SCEEDULE" = v. SCHEDULE'
TEAM

This example nests the SCHEDULE' structure from the previous example and nests the
TEAM component as shown in Figure 4. The resulting structure SCHEDULE" lists cities
and the teams that are close to them.

9 The Nested Relational Database Model 4

FLIGHTS
CITY DESTINATION AIRLINES AIRLIFE-HUBS
Indianapolis Chicago Transworld Transworld
United United
NewYork United
Eastern
St. Louis Transworld
Continental
St. Louis Chicago Transworld Transworld
United Eastern
New York Transworld
Eastern
Indianapolis Transworld
Continental
Detroit Northwest
Transworld
Chicago Indianapolis United United
Eastern Eastern
Northwest
New York Transworld
Northwest
United
St. Louis Transworld
Detroit Northwest
Los Angeles United
New York Indianapolis Transworld Transworld
Eastern United
Eastern
St. Louis Transworld Delta
Detroit Northwest
Cincinnati Delta
Eastern
Atlanta Delta
Eastern

Figure 2: The AIRLINE-INFO structure

Example 4: FLIGHTS ==f ... (AIRLINE-INFO)

This example projects the structure FLIGHTS from the structure AIRLINE-INFO as shown
in Figure 5. Notice how the project operator causes the sets of AIRLINES corresponding
to a CITY to merge, e.g observe the ATRLINES set for ‘Indianapolis’.

Example 5: TEAM-AIRLINE = SCHEDULE" pa FLIGHTS'

3. A Storage Structure for the NRDM 5

TEAN NEAREST-AIRPORT
Indiana = Indianapolis
Indiana Cincinnati
Indiana Louisville
Purdue Indianapolis
Purdue Chicago
Northwestern Chicago
Michigan Detroit
Michigan State Detroit
Illinois Chicago
Tlinois St. Louis

Figure 3: SCHEDULE' = ftypanest_AmporT ¥ opan NEAREST-ARPORT (SCEEDULE)

TEANS NEAREST-AIRPORT
Indiana Indianapolis
Purdue

Purdue Chicago
Northwestern

Dlinois

Indiana Cincinnati
Michigan Detroit
Michigan State

Indiana Louisville
Nlinois St. Louis

Figure 4: SCEEDULE"” = vy, (SCEEDULE')

In this example we join the structure SCHEDULE" with the FLIGHTS' structure as shown
in Figure 6. In our algebra, joins (b<) are only defined when the pivot attributes are
atomic and the domains are compatible. In this example a join is performed on the
NEAREST-AIRPORT attribute of SCHEDULE” structure and the DESTINATION attribute of
the FLIGHTS' structure.

3. A Storage Structure for the NRDM

Nested relational databases cannot be trivially mapped to existing database implemen-
tations for the following reasons:
o Tuple components are not necessarily atomic, making the mapping to the relational
model difficult.
e Query optimizations that exploit the nested relational model cannot be used when
the underlying storage structure is relational.
e Retrievals are often made on components deeply nested within tuples.

3. A Storage Structure for the NRDM

DESTINATION

AIRLIBES

Chicago

Transworld
United

NewYork

United
Eastern
Transworld
Northwest

St. Louis

Transworld
Continental

Indianapolis

Transworld
Continental
United
Eastermn
Northwest

Detrait

Northwest
Transworld

Los Angeles

United

Cincinnati

Delta
Eastem

Atlanta

Delta
Eastem

. 5 1
Figure 5: FLIGETS' = 7 .. (AIRLINE INFO)

TEAMS BEAREST-AIRPORT AIRLINES
Indiana Indianapolis Transworld
Purdue Continental
United
Eastern
Northwest
Purdue Chicago Transworld
Northwestem United
Dlincis
Indiana Cincinnati Delta
Eastern
Michigan Detroit Northwest
Michigan State Transworld
MNlincis St. Louis Transworld
Continental

Figure 6: TEAM-AIRLINE = SCHEDULE" pa FLIGHTS'

e Hierarchical and network models were not developed with high level non-procedural

languages in mind.

Several attempts at implementing the nested relational model directly are being made,

notable are among them are:

e the AIM project at IBM-Heidelberg [7,21,22],

3. A Storage Structure for the NRDM | 7

o DASDBS at TH-Darmstadt [8, 19, 20, 25], and
e the VERSO project at INRIA [4, 6]

Our motivation for proposing two tightly coupled data-structures comes from the ob-
servation that in the NRDM, nested algebra operations like select, join and nest are
value-driven while project and unnest are not. To implement the value-driven opera-
tions it is crucial to be able to efficiently determine which attribute and tuples contain a
particular ‘value’. In contrast, for structure-oriented operations like project and unnest
it is required to efficiently access tuples and their components irrespective of the values
contained in them. Data-structures that are well suited for project and unnest are un-
fortunately not always suitable for the value-driven operations, hence our proposal for
two storage structures where one supports value-driven requests effectively, while the
other supports structure-oriented operations.

In addition, primary storage on computers has become fairly inexpensive while a disk
access is still considerably more expensive than a memory access. We exploit this
availability of main memory and indicate methods to cache tuple-identifiers in order to
perform queries more efficiently.

3.1. A Notation for Tuple and Component Identification

In the nested relational model queries and updates can be performed on values that
are deeply nested. For example, in the structure AIRLINE-INFO of Figure 2 we could
select all cities that have flights by ‘Northwest’. In this case, selections are to be
performed on the AIRLINE attribute which is nested within the FLIGHTS attribute. To
efficiently handle this request, it is important for tuple-identifiers at the sub-tuple level
to be logically related to the tuple-identifiers of their super-tuples. Also, as some of the
components of the tuple could be sets, which in turn could have sets as their components,
tuple identifiers cannot be flat but must be hierarchical.

In this section, we introduce a notation for identifying tuples and their components.
Let the database consist of a finite set of structures {r,s,%,...}. The notation for the
identification of tuples and their components uses these relation names tagged with
subscripts and superscripts. The subscripts take us down the tuples and the superscripts
take us across the components.

Example 6: We will illustrate our notation on the (CITY (DESTINATION AIRLINES® g
AIRLINE-HUB*)* structure of Example 1. Thus, for structure ¢ corresponding to the
AIRLINE-INFO structure of Figure 2 the tuples would be identified as t;, t2, 3 and t4
Each tuple is made up of three components: a CITY component, a FLIGET component
and ATRLINE-HUB component. Thus, the first tuple ¢; has three components 1%, ;% and
t1¢, where t;° corresponds to the CITY component, t1® corresponds to the FLIGETS com-
ponent and ¢1° corresponds to the ATRLINE-HUB component. Each of these components
is either an atomic value or a structure. In our example £, is an atomic value, whereas
#1® and ¢,¢ are structures. The structures t,% and ;¢ consists of sub-tuples, so we need
to descend one level. The tuples of the structure t,? are identified as #1%1, t1%2 and t1%3.

3. A Storage Structure for the NRDM 8

The identifiers for the components of the tuple %, are ,%1% and #,%,% corresponding to
the DESTINATION and AIRLINES components.

FLIGHTS
CITY DESTIEATION AIRLIEES AIRLINE-HUBS
Indianapolis Chicago Transworld Transworld
United United
NewYork United
‘b{ Eastern
7 4
St. Louis Transworld
Continental
1
St. Louis b Chicago Transworld Transworld
j‘z United Eastern
a New York Transworld t:c
t Eastern
o ? 4
Indianapolis Transworld
Continental
Detroit Northwest
Transworld |
Chicago Indianapolis United United
b Eastern Eastern
t3y Northwest
E New York Transworld
t; - Northwest L P 5
2 United 32
St. Louis Transworld
Detroit Northwest
Los Angeles United
New York Indianapolis Transworld Transworld
Eastern United
Eastern
St. Louis Transworld Delta
Detroit Northwest
Cincinnati Delta
Eastern
Atlanta Delta
Eastern

Figure 7: Tuple Notation for AIRLINE-INFO structure

In Figure 7, the notation is illustrated on the structure of Example 1. An interesting
feature of this notation is that once we get a tuple or component identifier, we can

3. A Storage Structure for the NRDM 9

trace which tuples or sub-tuples the tuple or component identifier belongs to by going
through the superscript strings and the subscript strings.

The length of the subscript and superscript strings depends on the depth of the hier-
archical schema of the database. As the schema of the database is fixed, the lengths of
the subscript and superscript strings are also fixed.

3.2. The Value-Driven Indexing Scheme

Traditional relational database management systems use indexing techniques to improve
access time. Typically, indexes are built on all or some of the attributes of a relation.
A value of the index maps to a list of tuple-identifiers of tuples that contain the value
of the indexed attribute. Our approach to indexing follows the domain based approach
suggested by Missikoff for relational databases [17]. In Missikoff’s approach, an atomic
value maps to a list of tuple identifiers of tuples in all relations in the database which
contain that value. We generalize this approach storing a mapping from a value to a
list of all tuple identifiers of tuples in all structures and sub-structures in the nested
relational database which contain that value in the VALTREE. Hence, given an atomic
value, the VALTREE returns a set of hierarchical tuple-identifiers, which enables us to
determine directly which tuples or sub-tuples the value is stored in. Unlike the conven-
tional database scheme where we have a separate tree for each indexed attribute, our
scheme has only one tree, denoted VALTREE, that spans over all the atomic values of the
database.

We now describe the VALTREE in more detail. VALTREE is made up of five different
levels. The top-most level is called the DOMAIN level. This level separates the non-
compatible domains into separate sub-trees. The second level, the VALUE level, stores
all the atomic values of the database. The third level is the ATTRIBUTE level. At this
level, we store all the attributes that a particular value of the VALUE level belongs to.
As the same attribute may belong to more than one structure, we have the fourth level
called the STRUCTURE level. Finally, the fifth and the lowest level consists of all the
tuple-identifiers (tid) that correspond to the the atomic value stored at the VALUE level;
this level is called the IDENTIFIER level. The advantage of using the VALTREE is that
given a value it provides us rapid access to the list of tuple-identifiers corresponding to
all occurrences of the value throughout the entire database.

The following observations can be made regarding the VALTREE structure:

1. An indexing technique like a B+Tree would be an appropriate data-structure at the
VALUE level.

2. The granularity of the domain level depends on the database administrator and may
depend on the installation. Typically, all compatible attributes belong to the same
domain.

3. Values for attributes which do not participate actively in value-driven queries (i.e.
remarks fields) need not be stored in the VALTREE.

4. Tt is possible to merge the attribute level and structure level into one if we avoid
conflicts in attribute names over structures.

3. A Storage Structure for the NRDM 10

Example 7: In Figure 8, we show parts of the VALTREE for the structures t correspond-
ing to the AIRLINE-INFO structure and s corresponding to the SCHEDULE structure of
Example 1.

VALTREE
levels
DOMAIN Aiiline Names ~ Team Names City Names
VALUE Chicago Detroit Los Angeles New York
Cinemnati yndianapolis Louisville St.Lows '\
CITY K-A
ATTRIBUTE DEST
DEST
STRUCTURE A-INFO A-INFO A-INFO SCHED
b b
b Ey S;71 + S21
IDENTIFIER £y

Figure 8: The VALTREE structure

3.3. The Record-List Structure

As the VALTREE is a suitable data structure for performing value-driven operations
RECLIST structures have the following requirements:
e Each structure in the nested relational database has a separate RECLIST structure.
o Given a tuple-identifier and an attribute, the number of disk accesses to access the
component of the tuple associated with the tuple-identifier and attribute should be
minimal.
e The number of disk accesses to retrieve an entire tuple should be minimal; therefore
tuples should be clustered as closely as possible.

3. A Storage Structure for the NRDM . 11

e It should be easy to do structure-oriented operations
o It should be possible to traverse through the entire structure a tuple at a time.
To achieve these goals we compare several schemes and discuss their trade-offs.

3.3.1. Simple Pointer Structure

The simple pointer scheme consists of storing the tuples and sub-tuples as a linked list.
As shown in the Figure 9, for parts of the AIRLINE-INFO structure of Example 1, the
sets are implemented as a linked list. Insertions to the linked lists are done at the end
of the linked list and deletions are performed by flagging. Other variations of the linked
list like double pointers and coral rings could be used to improve performance. However,
to access a tuple when the hierarchical tid is known is tedious as a sequential traversal
through linked lists is required, thus violating our goal of minimizing the disk accesses
when the tid is given.

3.3.2. Array Pointer Structure

In the simple pointer scheme it is difficult to access a sub-tuple when we have the
hierarchical address because to get to the sub-tuple one has to traverse through all the
intermediate pointers. To circumvent this problem all pointers within a tuple are moved
to one single block — the structure block, which stores only the structural information
as shown in Figure 10. Data pages now contain uninterpreted data [7, 8]. The Array-
Pointer structure for parts of the AIRLINE-INFO structure is illustrated in Figure 11.
In this scheme it is possible to get to any value of the sub-tuple in exactly two disk
accesses.

There are several issues that must be considered when using this scheme.
1. If we keep a pointer for each sub-tuple in the structure node it may become too
large to fit in one disk block.
2. As the cardinality of a set is not fixed the structure nodes are dynamic. Therefore,
it is not possible to predetermine the size of the structure node accurately.

These problems can be handled as follows:

1. Instead of having a pointer for each sub-tuple, several sub-tuples can be grouped
together on one page, and instead of storing a separate pointer for each sub-tuple,
one pointer is stored for a group of sub-tuples stored contiguously in the data pages.
The exact location can be computed by using the base pointer and a displacement
computed using the size of the sub-tuple. This reduces the number of pointers in the
structure node but forces the data pages to store sub-tuples of the same kind. While
this is not necessarily a problem, it is interesting to observe that this approach has
a flattening effect on data.

2. Tt is not unreasonable to ask the DBA to specify typical cardinality for the set
components at the time of the definition of the schema. This could be used as a
‘guide’ when designing the sizes of the pointer arrays. In case the array overflows,
a pointer to link to the next pointer array is also stored.

3. A Storage Structure for the NRDM 12

[ndianapolis | @ | @ |8

——

Chicago 9 |e

Transworld

Transworld

)

T

L]

} United » United ‘?
nite J_ _l_

New York [L

> United L]

Eastern 5

St. Louis ? 0-1

*| Transworld I

L

Continental Fj

St. Louis 2] ® =

T — e

Chicagn 9 |e 5

Transworld

Transworld

g

$ran

-
rastern

=
H=

New York ¢ |

| Transworld

Eastern

T”--
]

Indianapolis | @ mll &

1 Transworld h

v
|
i

; -
Continental ! =

/ J

Figure 9: The Simple Pointer Structure

3. In case the structure nodes become too large it is possible to have a hierarchy of
structure nodes. This structure makes the file look like an Indexed Sequential File.

Two important advantages of the Array-Pointer scheme are:
1. This structure allows the relocation of data pages without having to alter tuple-

3. A Storage Structure for the NRDM 13

CITY FLIGHTS AIRLINE-HUBS
DESTINATIONS AIRLINES
* Z. ,——L.
¥ Y Array of Pointers
T
O
o) @])
@
I - -
o) o) o
&
e |
@ o ©
& | Pointers to atomic
values o
@ @
Overflow Pointers @

Figure 10: The Structure Node for the Array-Pointer scheme

identifiers. This is very important because tuple-identifiers are also used by the
VALTREE and their stability is very critical.

2. Structure nodes for several tuples that would be required frequently could be cached
thereby reducing disk accesses to the structure node. The VALTREE provides an
indication of which tuples may be required by the query.

3.3.3. Hashing Scheme

The objective of the structure node in the Array-Pointer scheme is to map the hierar-
chical tuple-identifier to the actual physical address. It is natural to consider a hashing
scheme for this problem. Hashing could be done on the key values of the sub-tuple or
on the tuple-identifiers of the sub-tuple.

Hashing on key values is not necessary as the VALTREE takes care of value-driven index-
ing. Since we are also interested in the ability to traverse all tuples and sub-tuples of
the structure, hashing on key-values is not an appropriate scheme to do so.

The second alternative is hashing on tuple-identifiers. This scheme needs to be consid-
ered in the context of the granularity of the data and search, insert, delete and traverse
operators.

Granularity : It is convenient to have uniform buckets so that the slots in the buckets
are of the same size. This could be done by storing different kinds of sub-tuples in dif-
ferent hash areas. This is not a serious problem and it is a trade-off between the number

3. A Storage Structure for the NRDM 14

STRUCTURE BODES DATA AREA
]ﬁ-
P e = — 1 e o Bt s e e e e 5
i] AIRLIN '
| | | ' AIRLINE-BUBS I ES '
! CITY IR E HUB :
; ! 1 [|
| 1 '
‘ : | Transworld Trnasworld |
! 1 1 !
: (e United Eastern :
| +~& [ndignapolis | ! ! i
- It . ; ' Transworld Transworld :
-3 St. Louis ! 1 !
: : : Eastern Continental !
= Chicago ! ;) !
: ! [United Northwest "
=3 New York : ! |
— 1 1 1 Eastern United i
I ! 1 1 i
: Do Transworld Eastern ';
| i |
Ii : : United Chathms !
—] ! I 1 :
| | . : : Eastern Transwrrld | !
! 1 1
! 1 1 '
Delta N .)
—3 Chicago S g Northwest :
! I I . 3]
1 New York e United |
I I ' Transworld :
5 St. Louis L d |
! 1 1) ‘ N
_ i | Chicago T Northwest !
! 1 1 - ;
i New York i E United |:
1
' | Indianapolis | 1 \ Transworld Transworld i
1 | 1 -
i | Detroit 1A United Eastern !
1 1 1 :
! | Indianapolis | | 1 United Transworld %
1))
| | New York : E Eastern Northwest i
! 1
i | St Louis i : Transworld Delta !
1 1 1 ;
\ | Detroit : ': Continental Eastern i
; I
¥
i | Lus Angeles i i Transworld Deita :
! 1
| £ United Eastern !
— : o '
b = 4 I P b

Figure 11: Array Pointer Structure

of disk-accesses required to reconstruct a tuple and the granularity of the operations on
parts of the sub-tuple. Thus if we have sub-tuples whose components would seldom be
accessed individually then it makes sense to store all components of the sub-tuple in
one slot of a bucket. This issue is discussed again in the section about granularity of
operations in this model.

Search : To search a sub-tuple given by a tid, say t;:, we generate a hash-value from
the tid which maps us to the bucket that contains the appropriate sub-tuple. As several

3. A Storage Structure for the NRDM 15

tids map to the same bucket, it will be difficult to associate the appropriate sub-tuple
to the tid unless that tid is stored along with the corresponding sub-tuple. This is at
the cost of extra storage space. It must however be noted that this extra storage space
is in the bucket and does not cost any more disk accesses.

Insert : To insert a tuple in the RECLIST structure one has to generate a new hierarchi-
cal tid before the tuple can be mapped to the appropriate bucket by the hash function.
Hence it is required to save at each tuple and sub-tuple level the last generated tid for
that level. Doing this bookkeeping will require some additional space. We propose the
following two suggestions to handle this additional space problem:

1. We can have a structure node similar to the Array-Pointer scheme which stores
counters instead of pointers for each tuple.

e This may be better than the previous scheme because counters are not required
for search and delete. They would b only be required for insert and for traverse.

e The structure node is less dynamic than the Array-Pointer scheme since instead
of keeping pointers for each sub-tuple all we need to store is the count. It should
be noted however, that this structure is not totally static because we need one
counter for each set of sub-tuples, in addition the sub-tuple can in turn have
many sets of sub-tuples.

e As the counters that need to be stored are smaller than pointers, the structure
node for the Hashing scheme would be smaller than the Array-Pointer scheme.
Thus, it should be possible to cache more structure nodes, thus reducing the
number of disk accesses.

2. Instead of having all counters stored together in one structure node the counters
could be placed along with the data pages. For example, if we number all tuples and
sub-tuples starting with 1, the 0 value could be used to map to the slot in the data
area which stores a counter instead of data-values. Thus the slot that corresponds
to tg stores the counter for the number of tuples in the structure ¢.

Delete : It is not possible to reclaim tids by compression as this will involve updating
all the tids of the VALTREE. Thus deletions are performed by flagging. However, it is
possible to reclaim tids when inserting new sub-tuples.

Traverse : There are two kinds of traversals possible. Traversal within a tuple, i.e.
the reconstruction of the tuple, and traversals across all tuples of the structure. Both
kinds of traversals are performed by generating tids in order, until the maximum value
is reached and then reconstructing the entire tuple.

Delete flags create holes in the sequence generated for traversal. Each time the tuple-
identifier comes across a deleted sub-tuple a disk-access is wasted. A solution to this
problem would be to store the delete flags in the structure node instead of storing them
with the sub-tuples. This is done by storing a bitmap, where a bit of the bitmap is set
if the corresponding sub-tuple is valid - stored and not deleted. Since the counter value
can be computed by checking the largest set bit all counters can be replaced by bitmaps.
Again both the schemes proposed to store counters could be used to store the bitmaps.
An interesting observation can be made here: the layout of a structure node for the

4. Implementation of NRDM Operators : 16

bitmaps is very similar to the Array-Pointer scheme, with a pointer field replaced by a
bit to store the status of the corresponding sub-tuples. Hence all the observations made
about the structure node in the Array-Pointer scheme applies to the bitmaps associated
with the hashing scheme.

Now, traversal is performed by generating tuple-ids for sub-tuples where the delete flag
shows the existence of a valid sub-tuple.

Deletions in this scheme can be performed by simply toggling the appropriate bit in
the bitmap and not reclaiming the appropriate space immediately. This space could
be reclaimed later by a background process or it can be reclaimed when a new tuple
is inserted. This is possible because the tuple-identifier will always correspond to the
same hash bucket.

To summarize, the linked list method is not really suitable because it is too slow.
However, either the Array-Pointer or the the Hashing method would be appropriate.
The Hashing method is better than the Array-Pointer method for the following reasons:

1. Search does not need an access to the structure node.

9. The number of disk-accesses required for the Hashing scheme when the structure
node is required is exactly the same as the the number of accesses for the Array-
Pointer scheme.

3. The structure node in all variations of the the Hashing scheme is smaller than the
structure node of the Array-Pointer scheme.

4. Implementation of NRDM Operators

Our goal is to design a complete database management system based on the nested
relational database model. To accomplish our goal, we must be able to perform all of the
standard data manipulation commands (INSERT, MODIFY and DELETE) and all extended
relational algebra operators (UNION, DIFFERENCE, SELECT, PROJECT, JOIN, NEST and
UNNEST). In this section, we show how we can implement the extended relational algebra
operators and the data manipulation operators of the NRDM in terms of our storage
scheme. We illustrate by using Example 1, how our storage scheme is put to use in the
implementation of the operations of the NRDM.

4.1. Database Maintenance Operators

Insert : Inserts in a tuple can be at the top level — adding a new service from a CITY
that does not exist in our database, or could be deeply nested — adding a new flight from
Indianapolis to Chicago. To ensure that the hierarchical property of nested relations is
not compromised, it is important to determine where the value to be inserted exists in
the database, an operation appropriate for the VALTREE. These inserts are handled as
follows:

Example 8: Let us add a United flight from Indianapolis to Minneapolis.

4. Implementation of NRDM Operators 17

In the AIRLINE-INFO structure, the CITY attribute is the key attribute, hence we first
check if ‘Indianapolis’ is already in the database. This check can be done by looking
up the value ‘Indianapolis’ in the VALTREE data structure. If the value ‘Indianapo-
lis’ is found, we add the flight to the existing set of FLIGHTS; otherwise we add both
‘Indianapolis’ and the flight information to the storage structure.

Some important observations:

1. When performing insertions it is important to ensure that all the integrity con-
straints are satisfied. As will be discussed in the following section the VALTREE is
well suited for constraint satisfaction.

2. At every level of the hierarchical structure to be inserted, atomic values must be
inserted before set components because atomic values form the key, and all sub-
tuples derive their tuple-identifiers from their immediate super-tuple. All the set-
valued components at a level may be inserted in any order.

Delete : The strategy for deletion is very similar to that for insertion. To delete a tuple
from the database, we need to find the location of the tuple in the RECLIST structure.
We find the location for the tuple by looking up the key-value in the VALTREE. We
delete a value from the VALTREE if the value to be deleted has only one element in the
tuple-identifier list.

Example 9: Discontinue the United service from Chicago to New York.

This deletion can be performed in the following two ways:

1. Determine if the value ‘Chicago’ exists in the database as a CITY, VALTREE could
provide this information easily. Then for each sub-tuple in the FLIGETS component
determine if ‘New York’ is one of them, RECLIST would be required for this operation.
Again traverse the AIRLINES component in the RECLIST and determine if ‘United’
is one of them. Now the RECLIST is updated by setting deletion flag for the value
“United’ and removing the tid from the IDENTIFIER level of VALTREE.

9. Search in the VALTREE and extract all tids that correspond to the appropriate at-
tribute for all the three values ‘Chicago’, ‘New York’ and ‘United’. The intersection
of the three tid sets results in a set of tids which corresponds to the sub-tuples that
must be deleted. This is now achieved by actually performing a delete in RECLIST
and the VALTREE.

It is interesting to compare the two schemes. The second one is better if the set of
identifiers generated by ‘Chicago’, ‘New York’ and ‘United’ is small as compared to the
number of sub-tuples that are contained in the AIRLINES component of the sub-tuple
with ‘New York’ as the DESTINATION and the number of sub-tuples contained in the
FLIGHTS component with ‘Chicago’ as the CITY value.

4.2. Data Manipulation Operators

Select : Selects in the NRDM are not restricted only to atomic values but could involve
sets as well.

Example 10: Find cities and Transworld flights originating at Transworld hubs.

4. Implementation of NRDM Operators 18

Observe that this query is value-driven. The VALTREE data-structure is particularly ap-
propriate in this situation. When we search for ‘Transworld’ at the VALUE level, we find
ATRLINES and AIRLINE-HUB attributes at the ATTRIBUTE level if there are Transworld
flights arriving at cities with ‘Transworld’ hubs. The intersection of the lists of tuple-
identifiers under these attributes will be non-empty and will correspond to list of desired
tuple-identifiers.

Join : Joins are anticipated to occur less frequently in the NRDM since nested relations
store some joins implicitly. According to the algebra defined in Section 2, the join
operation is defined only on atomic values. Therefore the VALTREE is well suited for
the operation. According to the strategy proposed by Missikoff [17, 18], we traverse
through the VALTREE and get lists for each value appearing in both structures under
the pivot attributes. We then combine tuples identified by the two lists by extracting
the tuples from the RECLIST. In Figure 6, we perform a join between SCHEDULE"” and
the FLIGHTS' structure and the pivot attributes for this join are NEAREST-AIRPORT for
the SCHEDULE" structure and DESTINATION for the FLIGHTS' structure. As the domains
of the pivot attributes are compatible the values for both the attributes will be stored
together in the VALUE level of the VALTREE. To perform a join, we traverse through the
VALUE level for the domain for the two attributes. If the ATTRIBUTE and the STRUCTURE
levels have identifier sets for both the pivot attributes then the value will participate in
the join, else the value will not participate in the join.

There are two advantages of this approach for performing joins:
1. Join is performed by traversing all values of the VALUE level of the VALTREE once.
Thus the complexity of join is linear with respect the number of values at this level.
9. The hierarchical structure of the joined relation is maintained as the VALTREE ensures
that all values are stored only once.

Project : A simple project operation is a structure-oriented operation and hence we
do not need to use the VALTREE. Instead, we use the RECLIST. The tuple-identifiers for
components to be projected can generated fairly easily. Thus the tids for the projection
shown in Figure 6 are

b where 1 < z < (maximum number of tuples)

These tuple-ids can now be hashed to appropriate buckets to extract complete sub-
tuples.

However, the extended project operator as discussed in Section 2, maintains the hierar-
chical structure. The extended project is performed by traversing the VALTREE for the
key attribute and constructing the required parts of the tuple by generating appropriate
tids from the set of tids that corresponds to the key value.

Nest :

Example 11: : Let us consider the nest example as shown in Figure 4.

5. Discussion 19

To perform the nest operation, we go through the VALTREE and extract all the identifiers
corresponding to each of the values under the NEAREST-AIRPORT attribute. For each
value, under the NEAREST-AIRPORT attribute and the SCHEDULE' structure we get a set
of tids which correspond to all occurrences of that value. For each element of the set
of tids, we reconstruct the tuples by extracting the rest of the values from the RECLIST
structure.

Unnest : This is a structure oriented operation. Unnests can be performed very easily
by traversing through the entire RECLIST. This is done by generating all the tids as shown
for projects and then reconstructing the tuples, repeating values where necessary.

5. Discussion

In this section, we discuss how our storage structure is suitable to effectively handle
some other important DBMS issues.

5.1. The VALTREE as a Nested Relational Structure

The VALTREE itself can be thought of as a nested relation as shown in Figure 12. This
allows one to perform nested relational algebraic operations on the VALTREE. This allows
for example to consider other indexing schemes like the standard (attribute, value) pairs
by simply restructuring the VALTREE using the nested relational algebra.

If fast implementations for the RECLIST structure become available, the VALTREE can
be implemented as a RECLIST and all the VALTREE operations can be performed by
performing algebraic operations on VALTREE stored as a RECLIST.

5.2. Object-Oriented Databases

Object-Oriented Databases are becoming increasingly popular. Our research would be
beneficial to the implementation of object-oriented databases in the following two ways:
1. Several current implementations of object-oriented databases map the object ori-
ented systems to relational databases. While this is possible, designers of such
systems have problems mapping complex objects to flat relations. We feel that
the mapping from object-oriented databases to nested relational databases, though
not entirely trivial, is much cleaner than the mapping to a relational model. This
is because the nested relational paradigm models sets which are fundamental to
object-oriented systems.

2. The problems faced by designers building ‘pure’ object-oriented systems [10] are
very similar to the problems that are faced in the representation of the nested re-
lational model. Data-structures like the VALTREE and the RECLIST with some mod-
ifications could be used for designing object-oriented databases. The notation for
tuple-identifiers is similar to the tagged notation used for creating object-identifiers.

20

5. Discussion
DOMAIR VALUE ATTRIBUTE STRUCTURE {IDENTIFIER}
City Name Atlanta Destination Airline-Info {tabs%}
Chicago City Airline-Info {ta®}
Destination Airline-Info {11519, 12519}
Nearest-Airports Schedule {82%2°,53%2°, 83%1°, 56%1°}
Cincinnati Destination Airline-Info {ta®4°}
Nearest-Airports Schedule {81%2°}
Detroit Destination Airline-Info {12542, 3%}
Nearest-Airports Schedule {24519, 5551}
Indianapolis City Airline-Info {t1%}
Destination Airline-Info {t2%3°,t3%1%,t4%1°}
Nearest-Airports Schedule {51%1%,52%1°%}
Los Angeles Destination Airline-Info {tabs%}
Louisville Nearest-Airports Schedule {s1%3°}
New York City Airline-Info {ta%}
Destination Airline-Info {t:1%22,12%2%,13%2°}
St. Louis City Airline-Info {t2°}
Destination Airline-Info {t:1%3%,t3%3%,84%2%}
Nearest-Airports Schedule {s6%2°}
Airline Name {-}
Team Name {--}

Figure 12: The VALTREE as a nested relational structure

Some more interesting solutions for problems with object-oriented systems, such as
object sharing, can be handled by associating object-ids explicitly with objects and
storing these object-identifiers in the VALTREE as though they were the values.

5.3. Granularity of the Database

While it may be ideal to save every atomic value in the VALTREE and have a pointer for
each atomic value in the structure node of the RECLIST, this may not be appropriate
or feasible. It is therefore left to the DBA to adjust the granularity of indexing. Thus
tuples which are always accessed together and never as components may be stored as
a single entity in the RECLIST and the key value for the tuple may be stored in the

5. Discussion 21

VALTREE instead of storing all individual values.

5.4. Integrity Checking

When we perform an insert or delete we have to check if all the integrity constraints
have been satisfied. This checking is based on a value-driven approach. For instance,
when we say that A — B, we mean that when the values of attribute A match in two
tuples they must match in values of B. This can be checked by looking for each value
corresponding to attribute A in the VALTREE. We get a set of tids, say Sa. We pick
any one tid from the set S4 and then using the RECLIST find a corresponding value, vp
for attribute B. Now we can go to the VALTREE and extract the set of tids, Sp that
correspond to the value vp and attribute B. The integrity constraint is satisfied if the set
of identifiers associated with the B-value, Sp is a super-set of the list of tuple-identifiers
of the A-value S4. Other constraints also require that values for certain attribute obey
a set of criteria. Conditions can therefore be verified while performing inserts in the
VALTREE.

5.5. Intermediate Results

Most database queries are performed in stages, thus intermediate results are very impor-
tant. As our algorithms depend on the use of two data structures it may be important
to maintain the two data-structures for all partial results. We have not yet studied the
issue of intermediate results in detail. Several approaches to this problem could include:
1. Do not maintain any new data-structures on partial results; use tids and extract
from the same VALTREE and RECLIST all the values as and when needed.
2. Assume that the partial result is a new structure and store the structure as a RECLIST
and add values to the existing VALTREE.
3. Generate new, small and temporary VALTREE and RECLIST structures which survive
only until the expression has been evaluated.

5.6. Query Optimization

This is another issue that has not been studied in detail for nested relational models.
The VALTREE and the RECLIST are an integral part of our storage scheme and they
should be exploited to perform query optimization. Furthermore, while the algebraic
properties for the nested algebra are fairly well understood, as was demonstrated in
some of the examples of the previous section, alternate query plans for the same query
are possible. We believe that query optimization should not only take into account
the algebraic properties but should also consider heuristics and the current state of the
database. We are currently involved in studying this problem. While it is possible to
draw parallels from the query optimization techniques for the relational model, these
techniques cannot be mapped directly to the NRDM as additional problems need to be
addressed.

6. References 22

5.7. Partitioning and Parallelism

Nested structures inherently partition the data horizontally. Another level of parti-
tioning of the data occurs in the VALTREE. For instance, the tuples in a structure are
partitioned according to the values they have. We can effectively set up locks at each
value level thereby allowing us to use concurrent processes to perform our operations.
When we are performing an update, we need to lock only the concerned values and do
not need to lock the entire database. This approach lets us localize in memory our most
active and interacting processes. Furthermore, partitioning of the database allows us to
perform several operations in parallel.

5.8. Computing Transitive Closures

Example 12: Let us consider the standard manager subordinate example. Let us say
we pick the chairman who has some subordinates. Each of the subordinates in turn
have some subordinates and so on. Assume we want to find all the subordinates of the
chairman. To handle this example in our scheme, we first select the chairman. Now as
the chairman is the manager of some subordinates, his name must appear as the manager
attribute of those tuples. We get the tuple identifiers for all the subordinates as soon as
we search for the chairman in the value-driven tree. Once we have the tuple identifiers
for each of the subordinate tuples we can extract the names of the subordinates from
the RECLIST structure. Once we have the names of the subordinates at the first level,
we can, possibly in parallel, search all their sub-ordinates in a similar manner.

Example 13: : Determine all cities which have direct or indirect flights to St. Louis.

This problem can be solved as follows:

1. Since we are interested in all cities connected to city of ‘St. Louis’, we must find all
cities that have flights with ‘St. Louis’ as the destination. To do this we look up the
VALTREE and collect all tids where ‘St. Louis’ is the destination.

2. Now, for each tid obtained from the previous step we extract the tid for the CITY
component and extract the city name from the RECLIST.

Now for each of the cities obtained from step 2 we repeat step 1 and 2, alternating
selections between RECLIST and VALTREE. If the relationship between these sets is an
arbitrary graph then it is possible to repeat indefinitely. To avoid this problem we need
to keep a list of all cities included and include a new city only if it is not already there.
The algorithm stops when no more cities can be generated. Notice that it is convenient
to store a list of tids corresponding to the city component rather than storing city names.

5.9. Logic Programming Interface

There are numerous advantages to coupling logic programming with relational databases[13]..
Beeri et.al. have proposed a logic language with sets which could be mapped to the
NRDM]J5]. Most deductive systems are based on resolution and unification principles
which are value-driven in nature. We believe that our storage structure would be ap-
propriate for supporting such deductive systems.

References ’ 23

10.

11.

12,

13.

14.

15.

16.

References

S. Abiteboul, N. Bidoit, “Non First Normal Form Relations to Represent Hierar-
chically Organized Data”, Proc. Third ACM SIGACT-SIGMOD Symposium on
Principles of Database Systems, 1984, 191-200.

F. Bancilhon, “A Logic-Programming/Object-Oriented Cocktail”, SIGMOD Record,
Vol. 15, No. 3 (Sept. 1986), pp. 11-20.

F. Bancilhon, S. Khoshafian, “A Calculus for Complex Objects” Proc. Fifth ACM
SIGACT-SIGMOD Symposium on Principles of Database Systems, 1986, 53-59.

F. Bancilhon, P. Richard, M. Scholl, “On Line Processing of Compacted Relations”,
Proc.8th VLDB, 1982, 263-269.

C. Beeri, S. Naqvi, R. Ramakrishnan, O. Shmueli, S. Tsur, “Sets and Negation in
Logic Database Language (LDL1)” Proc. 6th PODS, San Diego, 1987, pp. 21-37.

N. Bidoit, “Efficient Evaluation of Relational Queries Using Nested Realtions”, Rap-
ports de Recherche, no 480, INRIA, 1986

P. Dadam, K. Kuespert, F. Andersen, H. Blanken, R. Erbe, J. Guenauer, V. Lum,
P. Pistor, G. Walch, “A DBMS Prototype to Support Extended NF2 Relations: An
Integrated View on Flat Tables and Hierarchies”, Proc. ACM SIGMOD Int’l Conf. on
Management of Data, Washington, D.C., 1986, 356-366.

U. Deppisch, H.-B. Paul, H.-J. Schek, “A Storage System for Complex Objects”,
Proc. of the Int’l Workshop on Object-Oriented Database System, Pacific Grove,
1986, pp. 183-195.

A. Deshpande, D. Van Gucht, “A Storage Structure for Unnormalized Realtions”,
Proc. GI Conf. on Database Systems for Office Automation, Engineering and Scientific Applications,
Darmstadt, April 1987, pp. 481-486.

U.Dayal et.al. “The Probe Data Model” Proc. GI Conf. on Database Systems for Office
Automation, Engineering and Scientific Applications, Darmstadt, April 1987.

G. Houben, J. Paredaens, “The R?-Algebra: An Extension of an Algebra for Nested
Relations”, Tech. Rep., Tech. University, Eindhoven, 1987

G. Jaeschke, H.-J. Schek, “Remarks on the the Algebra on Non First Normal Form
Relations”, Proc. ACM SIGACT-SIGMOD Symposium on Principles of Database
Systems, 1982, 124-138.

L. Kerschberg ed., Expert Database Systems - Proceedings from the First International Work-
shop, Benjamin/Cummings Publishing Company, Inc. 1986.

G.M. Kuper, “Logic Programming With Sets”, Proc. 6th PODS, San Diego, 1987, pp.
11-20

V. Linnemann, “Non First Normal Form Relations and Recursive Queries: An SQL-
Based Approach”, Proc. 3rd IEEE Int. Conf. on Data Engineering, Los Angeles, 1987

A. Makinouchi, “A Consideration of Normal Form of Not-Necessarily-Normalized
Relations in the Relational Data Model”, Proc. 5th Int’l Conf. on Very Large Data
Bases, 1977, 447-453.

References 24

1.

18.

19,

20.

21,

22,

23.

24.

25.

26.

27

M. Missikoff, “A Domain Based Internal Schema for Relational Database Machines”,
Proc. ACM SIGMOD Int’l Conf. on Management of Data, 1982, 215-224.

M. Missikoff and M. Scholl, “Relational Queries in Domain Based DBMS”, Proc.
ACM SIGMOD Int’l Conf. on Management of Data, 1983, 219-227.

H.-B. Paul, H.-J. Schek, M.H. Scholl, G. Weikum, U. Deppisch, “Architecture and
Implementation of Darmstadt Database Kernel System” Proc. Ann SIGMOD Conf.,
San Fransisco, 1987, pp. 196-207.

H.-B. Paul, A. Soder, H.-J. Schek, G. Weikum, “Unterstiitzung der Biiro-Ablage-
Service durch ein Datenbankkernsystem” GI-Fachtagung Datenbanksysteme in Biiro,
Technik und Wissenschaft, Darmstadt, 1987, pp. 198-211

P. Pistor, F. Andersen, “Designing a Generalizied NF? Model with an SQL-Type
Language Interface”, Proc. 12th VLDB, Kyoto, Japan, 1986, pp. 278-288.

P. Pistor, R. Traunmueller, “A Database Language for Sets, Lists and Tables”,
Information Systems 11:4, 1986, pp. 323-336

M.A. Roth, H.F. Korth, D.S. Batory, “SQL/NF: A Query Language for -1NF
Relational Databases”, Tech. Report TR-84-36, University of Texas at Austin,
1984.

M.A. Roth, H.F. Korth, A. Silberschatz, “Theory of Non-First-Normal-Form Rela-
tional Databases”, Tech. Report TR-84-36 (Revised January 1986), University of Texas at
Austin, 1984.

M.H. Scholl, H.-B. Paul, H.-J. Schek “Supporting Flat Relations by a Nested Rela-
tional Kernel” Proc. 13th VLDB, London, 87

S.J. Thomas, P.C. Fischer, “Nested Relational Structures”, Advances in Computing
Research III, The Theory of Databases, P.C. Kanellakis, ed., JAI Press, 1986, pp. 269 -
307. .

D. Van Gucht, P.C. Fischer, “High Level Data Manipulation Languages for Unnor-
malized Relational Database Models”, Tech. Report, Indiana University, 1986.

