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In this paper, we deal with algebras for nested relations. First, we consider the nested relational
algebra augmented with the powerset operator. We show that this augmentation increases
the expressiveness of the nested algebra substantially. In particular, we show that in the
powerset algebra thus obtained, either the nest or the difference can be removed as a primitive
operator. As a consequence, the classical nested relational algebra without the difference
is already complete in the sense of Bancilhon and Paredaens. Next, we consider the least
fixpoint closure of the nested relational. We prove that this algebra is equivalent to the
powerset algebra, thus providing a way to investigate properties of query languages related to
the least fixpoint operator by using an algebraic approach. Finally, we show that there exists
a fundamental difference between least fixpoint semantics in the context of flat and nested
relations respectively, by expressing the parity of a relation in the Ifp closure of the nested
relational algebra.
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1 Introduction

In the last years, much attention has been paid to structured relations. In order to model some
database applications more naturally, Makinouchi proposed to generalize the relational model
by removing Codd’s first normal form assumption [10], thus allowing relations with set-valued
attributes [18]. Subsequently, a generalization of the relational algebra to relations with set-
valued attributes was introduced by Jaeschke and Schek [16]. More specifically, they presented
the nest and the unnest operator as tools to restructure such relations. Finally, Thomas and
Fisher generalized this model by allowing nested relations of arbitrary (but fixed) depth [23].
In [21] a calculus like query language for this model was defined.

Independently, Jacobs, Kuper and Vardi proposed database models, based on database logic!,
which generalize the relational as well as the hierarchical and network models [15,17]. In partic-
ular, Kuper and Vardi proposed two query languages, a calculus and an algebra, and established
an equivalence result analogous to that established by Codd [11]. In addition, it can easily be
seen that database logic incorporates the nested relational model. Recently, it has been observed
by Abiteboul, Beeri and Hull that it is possible to express the transitive closure of a binary re-
lation in database logic [1,5,14]. This is neither possible in the flat nor the nested relational
model [3,20]. We may thus conclude that database logic is a strict generalization of the nested
relational model. More recently, Abiteboul and Beeri addressed other problems concerning the
expressiveness of query languages for models such as database logic and the nested relational
model [2]. In this paper we investigate related issues.

We begin by defining a nested algebra similar to the one introduced in [23] (Sections 2 and
3). We then consider the powerset operator, which was used in the algebraic language in [17],
and add it to the nested algebra (Section 4). We show, by using a combinatorial argument,
that this powerset algebra is substantially more expressive than the nested algebra?, thus giving
insight in earlier results. We then proceed by showing that in the powerset algebra either the
nest operator or the difference can be considered as redundant. As a surprising consequence of
this result, the nested algebra without the difference is complete in the sense of Bancilhon and
Paredaens [4,12,19,24]. Furthermore, it follows from our constructions that there exists a close
relationship between the nest operator and the difference, which corresponds to an observation
made in [6].

When Aho and Ullman [3] realized that the transitive closure was not expressible in Codd’s
relational algebra and calculus, they proposed to extend these query languages with constructs
such as the least fixpoint operator. Chandra and Harel [7,8,9] studied even more powerful gen-
eralizations. We consider a similar extension to the nested algebra, by augmenting it with the
least fixpoint operator (Section 5). We then derive our main result which is the equivalence be-
tween the nested algebra with the least fixpoint operator and the powerset algebra. We feel that
this result and the way it is obtained suggests an algebraic approach towards the investigation
of semantical properties of query languages supported by the least fixpoint operator.

1 hot to be confused with Datalog

2 A similar result was obtained independently by Houben, Paredaens and Tahon [13].
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We conclude this paper by showing (Section 6) that it is possible to determine the parity of
a relation in the least fixpoint closure of the nested algebra, in sharp contrast with a result of
Chandra and Harel, establishing the impossibility of doing so in the least fixpoint closure of the
flat relational algebra [8,9]. This indicates that the least fixpoint semantics in the context of
nested relations is significantly richer than that in the context of flat relations.

2 A Model for Nested Relations

Basically we assume that we have an infinitely enumerable set U of elementary attributes and
an infinitely enumerable set V' of elementary values. In this section, we explain how arbitrary
attributes and values, relation schemes, relation instances and relations are constructed from
these.

First, we define an attribute. Attributes can either be elementary or composed. The latter
ones are sets of attributes (which can be composed in turn); the values associated to them are
relation instances over that set of attributes, interpreted as a scheme.

Definition 2.1: The set of all attributes U is the smallest set containing U such that for each
finite subset X of U in which no elementary attribute appears more than once, X € U. 1

An attribute of U is called an elementary atiribute; an attribute of U \ U is called a composed
attribute. The values associated to composed attributes will be called quite fittingly composed
values. The definition of a relation scheme is now very straightforward:

Definition 2.2: A relation scheme ) is a composed attribute, i.e. an element of U \ U. [
Before proceeding, we give an example of a nested relation:

Example 2.1: Consider the following relation representing persons, their jobs and their
addresses:

PERSON JOB STREET NR CITY

Jeff Willows professor [Broacl way 121 35| New York
{manager

Mary Higgins {Wilshire Blvd. 8125| Los Angeles

Formally, the scheme of this relation is a set of three attributes, the first of which is elemen-
tary whereas the others are composed and is represented as {JOB} and {{STREET, NR}, CITY }
respectively. The composed values corresponding to them are relation instances over these
attributes, considered as schemes. g

It should be clear by now that the notions of value, tuple and instance are so closely intertwined
that it is easier to define them jointly:

Definition 2.3: The set V of all values, the set Tx of all instances over X € U \ U, the set
Tx of all tuples over X € U \ U and the set T of all instances are the smallest sets satisfying:
1. ¥=VUZL;
2. T = Uxeuv Ix;
3. Ix consists of all finite subsets of Tx;
4. Tx consists of mappings t from X into V, called tuples, satisfying t(A) € V for all elemen-
tary attributes A € X NU and t(Y') € Iy for all composed attributes Y € X \ U. 1
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We now have all the necessary ingredients to formally define a relation:

Definition 2.4: A relation is a pair (Q,w) where Q@ € U\U and w € Zq. Q) is called the scheme
of the relation and w is called the instance of the relation. If Q C U, then (,w) is called a flat
relation. 1

3 The Nested Relational Algebra

In this section, we define a nested algebra based on the model for relations described in the
previous section. It is generated by eight operators, defined below.

Definition 3.1: Let (Q,w), (Q,w1), (N1,w1) and (a,wy) be relations. Suppose that Q; and
Q9 have no elementary attributes in common.

e The union (Q,w1)U (Q,ws) equals (2, w; Uws);

e The difference (Q,wy) \ (Q,w2) equals (R, w; \ wa);

o The cartesian product (Q1,w1) X (Ra,w2) equals (X, w') where Q' =0y UQ, and

W= {t €Ty | tlg, €w1 & t|g, € w2}

Let ' C Q. The projection mq(Q,w) equals (V,w') where ' = {t|oy | t € w};
Let X C Q. The nesting vx(Q,w) equals (', w') where Q' = (Q\ X)U {X} and

W = {t = TQ! |3tr € w:tlg\X = t”Q\X &

t(X) = {t"|x | t" €w & t|o\x = t"lo\x } }
Let X € Q\ U. The unnesting ¥ x(Q,w) equals (',w') where Q' = (Q\ {X})U X and

w= {f € Ty | 3t € w: tlg\{x} = t’lﬁ\{X} &ty € t’(X)}
Let (,w) be a relation scheme. Let ¢ be a permutation on U. ¢ is extended in the natural way
told, toT and to V:
o The renaming p?(Q,w) equals (¢(N),p(w));
o Assume furthermore that p(Q) = Q. The selection 0¥ (Q,w) equals (Q,w') where

W'={tew| VX € 2ip(HX)) = t(¢(X))} '
Note that the cartesian product is only defined for relations with completely “independent”
schemes. This is actually not a heavy restriction: it is indeed always possible to arrange
that the schemes of two relations have no elementary attributes in common by performing an
appropriate renaming.

We end this discussion about the basic nested algebra operators with a notational issue. In most
practical cases, renaming involves only one attribute X at the time. If X is renamed to X', and
if, in case X and X' are composed attributes, no ambiguity is possible as to how the renaming
is done, we shall denote this operation as px/._ x. We shall use the same notation if X is a set
of attributes of the scheme under consideration, and each attribute of X is renamed in a well
known way to an attribute of X’. Similarly, if selection comes down to only checking whether
the values for composed attributes X and X' are equal upon renaming and if no ambiguity is
possible as to how the elementary attributes in X and X' are to be matched, we shall denote
this selection by o x—x. Again, we shall use the same notation if X and X' are sets of attributes
of the scheme under consideration.
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We can now formally define a nested algebra ezpression (nae):

Definition 3.2:

1. z,y, z, ... are nae’s;

2. ForallQ e U\ U, (R2,0) is an nae;

3. ForallQ e U\ U, ({92},{0}) is an nae;

4. For all nae’s, the basic operators of Definition 3.1 applied to these expressions, are also
nae’s. . 1

To avoid extensive use of brackets, we assume the following precedence on nested algebra oper-
ators:

1. unary operators;

2. cartesian product;

3. set operators.
The set of all nae’s will be denoted by A/. If r,',... is a finite sequence of relations and
E(z,y,...) € A is an nae with as many variables as there are relations, then E(r,r',...) is
interpreted as the relation obtained by substituting every occurrence of a variable in E(z,y,...)
by the corresponding relation, whenever this substitution makes sense®, and undefined otherwise.

Now how powerful is the nested relational algebra? To answer this question, it suffices to
consider this question for single relations only, since a database can always be represented as
the cartesian product of its non-empty members. A first way to look at this problem is to
consider for each relation r the set of relations {E(r) | E(z) € A} that can be derived from
r. Van Gucht and Gyssens [12,24] have shown, generalizing results of Bancilhon and Paredaens
[4,19], that these sets can be characterized as follows:

Theorem 3.1: Let r and s be relations. There exists E(z) € N such that s = E(r) if and
only if s remains invariant for (the natural extension to I) of all permutations on V that leave
r invartant. 0

Theorem 3.1 is usually summarized by saying that A is BP-complete [4,7,12,19,24]. Intuitively,
the philosophy behind BP-completeness is that a query language should manipulate all values
as uninterpreted; only their equality or inequality is relevant.

So, as far as relations are concerned, the nested relational algebra seems sufficiently expressive.
We can however ask a much stronger question, which is situated at the level of queries, rather
than relations [7,8]: Let @ be a computable query, i.e. a partial recursive mapping from relations
to relations such that whenever Q(r) is defined, Q(r) remains invariant for all permutations on
V that leave r invariant. Does there exist E(z) € N such that Vr: E(r) = Q(r)? The answer
to this question is no. Although by Theorem 3.1 it is always possible to find an expression that
satisfies this equality for a particular relation, there is in general no expression that will do for
all relations. Indeed, it was already shown in 1979 that the classical relational algebra is not
complete in the sense mentioned above with respect to flat relations. In particular, Aho and
Ullman [3] showed that the transitive closure of a binary flat relation is not expressible in the
classical relational algebra. Recently it was shown that this query is not even expressible in the
nested relational algebra [20].

3 where ({Q},{@}) is short for ({Q},{t € Tioy [ 1(Q) = @})
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Several attempts have been made to enrich the nested relational algebra. In the following
sections, we present some remarkable results in connection with these attempts.

4 Adding the Powerset Operator to the Nested Relational Algebra

Kuper en Vardi introduced the powerset in [17] as one of the primitive operators in their algebraic
query language for database logic. Basically the powerset operator generates all subsets of a
given relation:

Definition 4.1: Let (Q,w) be a relation. The powerset II(Q,w) equals ({Q},w') where ' =
fte T | 4D Cw). :

We shall first establish that the powerset operator cannot be expressed as a query in the nested
relational algebra. Therefore we need a technical lemma of a combinatorial nature:

Lemma 4.1: Let E(z) € N be an arbitrary nae. Let u(E) be the number of unions and p(E)
the number of cartesian products in E(z). Let for any arbitrary relation s, M(s) be the set of
all relations that can be obtained from s using nae’s in which only the unnest operator appears.
Then for each relation r we have that for each relation ™ € M(E(r))*:

p(E)
|r”| $2“(E) mazc (|1v""|,l)2
rleM(r)

Proof: By straightforward induction on the size of E. 1

Corollary 4.1: Let E(z) € N be an arbitrary nae. Then there exist nonnegative integers a, b
and c such that for all flat relations r, |E(r)| < a|r|® + c. 8

We can now establish:

Theorem 4.1: There is no nae that expresses the powerset operator.

Proof: Suppose at the contrary that there exists E(z) € A such that for all relations r, E(r) =

II(r). In particular, this equality holds for flat relations. Since |II(r)| = 2I"l, Corollary 4.1
cannot possibly hold for this nae, a contradiction. 1

We now consider the powerset algebra whose set of expressions P is generated by the basic
operators of the nested relational algebra defined in Definition 3.1, augmented with the powerset
operator. An expression of the powerset algebra is called a powerset algebra expression (pae).
Although only one operator is added, P turns out to be remarkably more expressive than A/.
We demonstrate this by showing that either the nest operator or the difference can be omitted
as a basic operator of P.

Theorem 4.2: There is a pae in which the nest operator does not occur that expresses the nest
operator.

4 For each relation s, |s| denotes the number of tuples in s.



4 Adding the Powerset Operator to the Nested Relational Algebra 6

Proof: Let r be the relation (©2,w) and let X C Q. Let 1, @2 and (3 be permutations on U such
that Q, Q1 = ¢1(R), Q2 = p2(N) and N3 = ¢3(N) have no elementary attributes in common.
Let X1 = ¢1(X), X2 = ¢2(X) and X3 = 3(X). We now define some pae’s the last of which
will express vx(r), independent of w:

Ey(2) = Tquix,}0 X=X, P X, OXy=X, (T X I x, px, —x(2) X 7 x,px,x(2))

It is readily verified that s = E;(r) is the relation over the scheme Q U {X} which is empty
whenever r is empty, and otherwise satisfies:

1. mo(s) =r;

2. mx,(s) =lrx, px,—x(r);

3. For each tuple ¢ in s, p;(t|x) € {(X71) (and hence ¢(X;) # 0).

Es(z) = Tou{x,)uXs 00\ X=0s\ X290 X=X (E1(Z) X pa,—apxs—x, E1(z))

s = E5(r) is a relation over the scheme QU {X; } U Xy which is empty whenever r is empty, and
otherwise satisfies the conditions 1, 2, 3, and:
4. pX*—XQWXQ(S) = 1TX(‘JN);
5. For each tuple ¢ in s, cpltpz_l(ﬂxz) € t(X1).
6. For each tuple ¢ in s, the tuple ¢’ over Q defined by t'|g\x = t|o\x and @2(t'|x) = t|x,
is in 7.

E3(z) = Tou{x;)uXx, 9 X1=Xs (£1(2) X pa,—0pxsex, E1(2)) \ E2(z)

s = FEj3(r) is a relation over the scheme QU {X; } U X3 which is empty whenever r is empty, and
otherwise satisfies the conditions 1, 2, 3, 4, 5 and:
6. For each tuple t in s, the tuple ' over Q defined by ¢'|g\x = tlo\x and @2(#'|x) = t|x,
is not in r.

Ey(z) = E1(z) \ mauix,) E3()

s = E4(r) is a relation over the scheme 2 U {X;} which is empty whenever r is empty, and
otherwise satisfies the conditions 1, 2, 3 and:

7. For each tuple ¢ in s, each tuple ¢’ over Q satisfying #'|q\ x = tlq\x and ¢1(t'|x) € t(X31)

is in 7.

The projection of E4(r) onto (2 \ X) U {X1} can alternatively be described as the relation
defined by the property that for each tuple ¢ it contains, there exists a tuple ¢’ in vx(r) such
that t|g\ x = #'|g\x and t(X1) C ¢1(#'(X)). So, what we still need to do is select those tuples ¢
from E4(r) for which ¢(X7) is maximal with respect to inclusion. The remaining constructions
in this proof have as a purpose to perform this selection.

E5() = T\ X)u{X1,Xs} 9\ X =02\ X2 (B4(Z) X pxp xPx3—x, Fa(2))
\ T@\x)u{X1, X5} T0=0, (Ea(2) X px,yxP X5 x, Ea(2))

Es(r) is a relation over (2 \ X) U {X;,X3} which can be defined by the property that for
each tuple ¢ it contains there exists a tuple ¢’ in vx(r) such that t|g\x = t'|o\x, 8 # #(X1) C

P1(H(X)), 0 # t(X3) C p3(#'(X)) and o7 (¢(X1)) N3 (H(X3)) = 0.
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Obviously a tuple ¢ in the projection of Ey(r) onto (2 \ X) U {X1} is not in px,. x vx(r) if
t(X) is not maximal, i.e. if ¢ is the projection of E5(r) onto (2\ X)U {X;}. We may conclude:

vx(2) = px—x, (T@\x)uix:) Ba(@) \ 7o\ x)uix,) Es(z)) '

A careful examination of the proof of Theorem 4.2 reveals that it centered around an extensive
and subtile use of the difference. Therefore it is a logical question to ask whether the nest
operator and the difference might be interchangeable in the powerset algebra. Surprisingly
enough, the answer is yes! In order to make the proof more legible, we first establish the
following technical lemmas:

Lemma 4.2: Let r = (,w) be a relation. Let N(r) denote the one tuple relation
({9}, {t € Ty | () = w})

There exists a pae in which the difference does not occur that expresses N(r), independent of w.

Proof: First note that nesting over the entire scheme yields the desired answer if w # ) and that
the powerset operator gives the right answer if w = (). An expression that always returns the
correct result is:

N(z) = ) M) oga:}=(0} (Y0} TI(2) X v(,}({21},{0})) U vo(z) -

Lemma 4.3: Let r = (Q,w) be a relation and let X, X' € Q\U be composed attributes. Suppose
there exists a permutation ¢ on U such that X' = o(X). ¢ is extended to T in the usual way.
Denote by 0% yi_y(r) (or oxnxi=p(r) if ¢ is understood) the relation

(2 {t ew | o(t(X)) Nt(X") = 0})
There exists an nae (and hence a pae) in which the difference does not occur that expresses
0% xi—g(T), independent of w.

Proof: Let ¢; and @2 be permutations on U such that Q, Q1 = ¢1(Q) and Q2 = ¢2(Q) have
no elementary attributes in common. Let X1 = ¢1(X), X] = ¢1(X") and X} = @2(X’). First
consider the expression:

Er(z) = vy maux;ox,=x1 P X, Fx1 0a=0, (z x pg,—a(z))

Ey(r) is a relation over Q U {X;} containing those tuples ¢ that satisfy simultaneously:
1. t|g is a tuple of r;

2. p19((X)) N1 (H(X")) = t(X]);

3. 4(X1) # 0.
What we need however are those relations for which ¢(¢(X)) N#(X') = 0. We can obtain this
set fairly easy by the following “marking” procedure:

Ex(2) = vixry bxny (vixy Ba(e) U @ x vz (1X13,{03))

Let ¢ be a tuple of this relation. Then ¢({X]}) consists of two relations if ¢(¢(X)) Nt(X") # 0
and of one relation, namely ({X}},{0}), in the other case. Hence we have:

nxi=a(®) = maoxy=(x5) (Ea(2) x vix;y ({X3},{0})) :



5 The Least Fixpoint Closure of the Nested Relational Algebra 8

Theorem 4.3: There is a pae in which the difference does not occur that expresses the difference.

Proof: Let r = (Q,w) and ' = (9, w") be relations over the same scheme. Since r\r' = (ruUr')\r/,
we may assume without loss of generality that w' C w. Let ¢; and ¢3 be permutations on U
such that €, ; = ¢1(2) and Q3 = ¢3() have no elementary attributes in common. We now
define some pae’s the last of which will express the nest operator. Throughout our comments,
we assume that r # ', i.e. 7\ v’ # 0; we invite the reader to check that the expressions below
yield the correct result in the other case too.

Ei(z,y) = vq, kg, (0a=q, ([I(z) x pa,all(z)) U I(z) x po,—qva(y))
Eq(r,r') is the relation over the scheme {{2,Q;} consisting of those tuples ¢ for which ¢() is a
subset of w, 1(Q) = @1 ({(Q) Uw') and ¢(9y) # 0.

EZ(:‘C: y) = 1||T{S'E}‘:TX1=X2 (El(l‘,y) X PQa—Q Vﬂ(x))

It is readily verified that Es(r,r') = ({Q}, {t € II(r) | ¢(Q)Uw' = w}). Hence Ey(r,r’) basically
consists of the non-empty subrelations of r that contain r \ /. Hence the desired result is the
smallest among these relations, i.e. the one that has no tuples in common with r':

z\ y = bo T ayoang,=0 (E2(z,y) X po,—aN (¥)) I
As an equally remarkable corollary to this surprising result, we have:

Corollary 4.2: The set of nae’s in which difference does not occur is BP-complete.

Proof: Let r = (Q,w). We first show that for all nonnegative integers i, there exists an nae
E;(z) in which difference does not occur such that

Ei(r) = ({0}, {t € Tiay | Q) S w & [t(X)| < i})

For notational convenience, we only write down Ez(z) explicitly; the generalization is obvious.
We assume that ¢; and ¢ are permutations on U such that Q, Q1 = ¢1(Q) and Q2 = 2(Q)
have no elementary attributes in common.

Ey(z) = m(q) va(oa=q, (z X pa,—a(z) X pa,—a(z))
U 0g-0,(z X pa,—a(T) X pa,—a(z))) U ({2},{0})

Clearly, II(r) = Ulr__lo E;(r). Note that this expression depends on the size of r, which should

be the case, by Theorem 4.1. Corollary 4.2 now immediately follows from Theorem 4.3 and
Theorem 3.1. M

5 The Least Fixpoint Closure of the Nested Relational Algebra

Another powerful tool to model relational queries is the least fizpoint (Ifp) operator [3,8.9].
Actually this operator does not work on relations but on queries; it transforms them into other
ones. A classical example of a query that can be constructed from a flat relational algebra
query using the lfp operator, is the transitive closure of a flat binary relation. As this query
cannot even be expressed in the nested relational algebra [3,20], it follows that there are nae’s
for which the lfp operator applied to it cannot be expressed as an nae. Therefore we shall study
the Ifp closure of the nested algebra. We show that it is equivalent to the powerset algebra, thus
proving once again the expressiveness of the latter one.
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First, we formally define the Ifp closure of the nested relational algebra. Therefore, we need to
observe that the Ifp operator makes only sense for unary monotone erpressions. We say that
an nae or pae E(z) is monotone if, for all relations r and s for which E(r) and E(s) are defined,
r C s implies E(r) C E(s).

Definition 5.1: The Ifp closure N'* (respectively P*) of the nested algebra N (respectively
the powerset algebra P ) is the smallest set of expressions satisfying:
1. N CN™* (respectively P C P*);

2. for each scheme preserving expression E(z), E*(z) is also an expression. 1

If E(x) is a monotone expression and r is a relation, then E*(r) is defined if and only if E(r)
is defined and must in that case be interpreted [22] as the smallest relation s containing r for
which E(s) = s. Now let E(z) = z U E(z). A straightforward argument then shows that

—~

Bl =112, Ei(r), where, for all positive 4, E'(z) stands for

()

=)

e

t limes
Note that for each relation r for which E(r) is defined, E*(r) can always be computed, since
there must exist some positive integer k for which E*(r) = E¥1(r) = EF*2(r) = .... N*
will be called the Ifp nested algebra for short; an expression of A'* will be called an Ifp nested
algebra expression (Inae). A similar terminology will be used for P*.

We first show that the powerset operator can be expressed in the lfp nested algebra:

Theorem 5.1: There exists an Inae that expresses the powerset operator.
Proof: Let r be the relation (2,w). Let ¢; and @3 be permutations on U such that 2, Q; = ¢1(02)
and (J3 = ¢3({2) have no elementary attributes in common. Since II(r) is a relation over {Q},
we first need an nae Ej(z) such that Fj(r) is a relation with scheme {Q}:

Ey(z) = m(q) va oa=q, (z X pa,—a(2)) U ({2},{0})

Clearly, E;(r) consists of all singletons of » and the empty set, i.e. of all subsets of r of size at
most 1. We now write down an expression E3(z), defined on relations with scheme {Q}:

Esy(z) = miq) va Mo (0a=q, (¢ X pa,—a(2) X pa,—a(z))
U 0a=0,(z X pa,—a(T) X pa,—a(z))) U ({0},{0})

If s consists off all subsets of r up to size 7, then Es(s) consists of all subsets of r up to size 2i.
Since Ej(z) is monotone, we may conclude:

II(z) = E3 E1(z) 1

As an immediate corollary to this result, we have:
Corollary 5.1: N'* and P* are equivalent, i.e. they express the same class of queries.

We are now going to show that for each Ipae there exists an equivalent pae, thus proving that the
Ifp nested algebra and the powerset algebra are equivalent. Therefore we need three technical
lemmas. The first one is of a notational nature.
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Lemma 5.1: Let r = (Q,w) be a relation and let X, X' € Q\U be composed attributes. Suppose
there exists a permutation ¢ on U such that X' = o(X). ¢ is extended to T in the usual way.
Denote by 0%  y/(r) (or oxcx/(r) if ¢ is understood) the relation

(2 {tew]| otX) ct(X")})

There exists an nae (and hence a pae) that expresses aﬁgx,(r), independent of w.
Proof: Let ¢ be a permutation on U such that  and ©; = ¢;(f2) have no elementary attributes
in common. Let X; = ¢1(X) and let X] = ¢1(X’). We invite the reader to check that the
following nae satisfies the requirements of Lemma 5.1:
0% /(1) = Tqo v
xcx\T) = TQox=x, VX, "aux,9x,=x} ¥x! kX, oa=q, (z x pa,—a(z))
U mgog=q, (= x ({X1},{0}))

in Lemmas 5.2 and 5.3 we introduce some constructs necessary to prove that the lfp operator
can be expressed in the powerset algebra.

Lemma 5.2: Let E(z) be a pae defined on relations r with scheme Q. Let QF be the scheme
of the resulting relations E(r). Let @1 be a one to one mapping from U to itself such that no
elementary attribute of ) is contained in the range of p1. For all X € U, let X7 = ¢1(X).
Then there exists a pae E(z) defined on relations with scheme {Q} such that for each relation

s= ({9}, w):

B(s) = ({2,9F}, {t € Ta.ar} |H(®) € w & (9F) = 01 (E(())) })

Proof: By induction on the size of E(z). As an example, let E(z) = Ej(z) x Ez2(z). Let @2
be a permutation on U such that Q5 = 5(Q), QzEl = @y (Qfl) and QzE2 = (g (Q{?z) have no
elementary attributes in common with Q, QlEl or 9252. Then:

E(x) = W{Q,QIEHJQIEI} VQIE1UQ::32 pnfl “va’z IT0=0Q, (El(ﬁ?) X pﬂ2<—QE2($))
U m(0)9g1 _gf (El(m) x ({09}.40))) = ({efuof), ()
U mi0) 0 s g2 (Ba(2) x ({0f7), {@})) x ({ofruaf?},{9})

We leave it to the reader to write similar expressions for the other nested relational algebra
operators as well as for pae’s of size 1, which are all fairly straightforward. Finally, let E %r) =
IIE;(z) and let @3 be a permutation on U satisfying the same conditions for Q and Q;* as
above. Then:

E(z) = ViaP1} T(a,0F1}O0F coPt (Hrﬂfl ‘u'Qf’l Eq(z) x Pt _oF1 Ei(z)) 1
Lemma 5.3: Let r = (,w) be a relation. Define by Q(r) the relation:

({Q},{te Tiqy | all elementary values in t also appear somewhere in w})

There ezists a pae Eq(z) which is independent of w such that Eq(r) = Q(r).
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Proof: Rather than writing down the expression Eq(z) which is very involved, we explain how it
is constructed. First, we construct an expression which yields a one attribute relation in which
all the elementary values of » appear. This expression is obtained by a sequence of unnestings,
followed by projection, renaming and union. Let Ej(z) be this expression. Now, consider for
each elementary attribute A in Q the expression E4(z) yielding a relation over {A} obtained
from Fj(z) by an appropriate renaming. We now construct Eq(z) inductively as follows. Let
X = {Xy,..., Xy} be a set of attributes. Then Ex(z) = II(Ex,(z) x --- x Ex,). Obviously,
Eq(z) satisfies the requirements of Lemma 5.3. [

We are now ready to state our result:

Theorem 5.2: Each lpae can be expressed by a pae.

Proof: Let E(z) be a monotone pae. We show that there exists a pae that expresses E*(z).
Therefore, let r = (Q,w) be a relation on which E(z) is defined. Let ¢; be as in Lemma 5.3
and let o2 and @3 be permutations on U such that 2, Q2 = p2(f2) and Q3 = 3(N) have no
elementary attributes in common. We now introduce some pae’s the last of which expresses
E*(z).

Ey(z) = Q)0 _aFt EEq(z)

Clearly, E1(r) consists of the set of all relations s over  satisfying:

1. the elementary values of s occur in r;

2. Bla)=a.
Clearly, of all these relations, E*(r) is the smallest containing r. Therefore, let (cfr. Lemma
4.2):

Ey(z) = mioy00,c0(pa,—aN(z) x Ei(z))

E5(r) consists of all the relations of Ey(r) that contain r. Since the smallest of these is charac-
terized by its containment in all the relations of Ea(r), we finally have:

E*(2) = #q T (000,05 (Va, Taca, (Ba(z) X pa,—aFa(x)) X Vo, pas—aFa(z)) '
As an immediate corollary to Theorems 5.1 and 5.2, we have:

Corollary 5.2: P, N'* and P* are all equivalent, i.e. they all express the same class of
quertes.

6 The Expressiveness of the Lfp Nested Algebra

In this final section, we discuss two issues related to the expressiveness of the Ifp closure of the
nested relational algebra. First, we would like to make a comment about the transitive closure
of a binary relation. Since it can obviously be expressed by an lnae, one might wonder whether
the Ifp algebra can be generated from the nested relational algebra and the transitive closure.
The answer is no, since:

Theorem 6.1: There is no expression built from the nested relational algebra operators and the
transitive closure of a binary relation that expresses the powerset operator.
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Proof: Let r = ({4, B},w) be a binary relation and let 7(r) be the transitive closure of 7. Then
7(r) C may(r) x 7yp}(r). The theorem follows from this observational and a combinatorial
argument, similar to that of Lemma 4.1, Corollary 4.1 and Theorem 4.1. i

So, the lfp operator is significantly more powerful than the transitive closure.

The other issue we want to address in this section concerns a comparison between the expressive
power of nested and flat algebras. Indeed, several results point out that there is no fundamental
difference between the flat and the nested relational algebra as to this matter [12,20,24]. There
is however a major difference between their lfp closures. To see this, consider:

Definition 6.1: Let r = (Q,w) be a relation. Then:

r if |r| is even

even(r)= {(Q,@) if || is odd

As pointed out by [8,9], this query applied to flat relations cannot be expressed in the lfp closure
of the flat relational algebra. We have though:

Theorem 6.2: Let r = (Q,w) be a relation. There is an lpae that expresses even(r), independent
of w.

Proof: Let 1 and ¢2 be permutations on U such that €2, Q; = ¢1(Q) and Q2 = 2(Q) have no

elementary attributes in common. First, consider the expression®:

Ei(z) = 0y va(oa=a,0,20, ( X pa,—a(z) X pa,—a())
U 00=0,00,£0, (z X po,—a(z) X pa,—a(z))) U ({2},{0})

E;(r) is the relation over {2} that consists of all subrelations of r of even size not greater than
2. Now let E5(z) be the following expression defined on relations with scheme {Q} (cfr. Lemma
4.3):
Ey(z) = mia} va Ha (0a=0,70,n0,=0 (T X pa,—a(2) X pa,—a(z))
U 00=0,00,n0,=0 (% X pa,—a(@) X pa,—a(z))) U ({0},{0})

Clearly, if s is the relation over {§)} consisting of the subrelations of r of even size not greater than
2: for some positive integer 7, then Fj(s) is the relation over {2} consisting of the subrelations
of r of even size not greater than 2i + 2. Since F2(z) is obviously monotone, we can express:

E3(z) = B3 B (2)

E3(r) is the relation over {2} consisting of all subrelations of r of even size. Obviously, we now
have (cfr. Lemma 4.2):

even(z) = g #q o=q, (E3(z) X pg,—aN(z)) '

Hence the Ifp closure of the nested relational algebra is fundamentally more expressive that the
Ifp closure of the flat relational algebra.

5 Note that selection on inequality can be expressed by selection on equality followed by complementation.
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7 Conclusion

In this paper, we considered the powerset algebra. Not only does this algebra turn out to be
substantially more powerful than the nested relational algebra, it is even equivalent to the lfp
closure of the nested relational algebra. Finally, we showed that there is a fundamental difference
between the Ifp closures of the flat and the nested relational algebra respectively. Now what is
causing the lfp nested algebra to be so significantly more powerful than the lfp closure of the
flat relational algebra? Basically, we feel that, whereas the flat algebra can express first order
logic queries, the powerset algebra can also deal with second order logic queries, since in this
algebra, it is possible to manipulate sets. This is we think an issue that certainly needs further
investigation.
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