
STRICTNESS ANALYSIS APPLIED TO PROGRAMS
WITH LAZY LIST CONSTRUCTORS

Cordelia V. Hall

Submitted to the faculty of the Graduate School
in partial fulfillment of the requirements

of the degree
Doctor of Philosophy

Indiana University
Department of Computer Science

December, 1987

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of the requirements

of the degree of Doctor of Philosophy.

David S. Wise, Ph.D.

f I\
I I / ,,,,. '. • !)
' / ; . ' (. ' I 1\0 I I' / .•' ..,.

- / . f
' (.\~._.> (i..~tw-

Daniel P. Friedman

Doctoral Committee
Steven D. Johnson

Vernon Kliewer

September 4, 1987 Paul W. Purdom

lll

@1987

Cordelia V. Hall

ALL RIGHTS RESERVED

IV

Acknowledgements

Several people have given me their time, interest and support (financial and

otherwise) during the process of completing this work.

My thesis advisor, David Wise, provided an excellent working environment

which was both challenging and unusually supportive; it allowed me to experi­

ment and grow. He also helped me finance my education with money from an

NSF research grant for several years. Steve Johnson acted as an advisor during

Wise's sabbatical year, and afterwards continued to provide interesting and use­

ful discussions as well as tactful support when necessary. I am also grateful to

my committee members, Paul Purdom and Dan Friedman, for the interest they

showed in my work, and to Vernon Kliewer for acting as my outside committee

member.

I learned, and continue to learn, much from John O'Donnell, with whom it

is possible to have useful technical discussions with a minimum of explanation.

His support and interest have been invaluable to me, as has that of the rest of

my family.

v

Abstract

Strictness analysis applied to programs with lazy list constructors

Cordelia V. Hall

Lazy applicative languages are more powerful than conventional languages, in the

sense that they can avoid an unnecessary infinite loop by delaying the computation of

an argument, computing its value only after determining that it is essential to the be­

havior of the program. However, the mechanism used to delay such evaluations requires

time and space, which may be wasted if the program eventually needs the values any­

way. This dissertation demonstrates how a compiler for a lazy applicative language can

identify many arguments that can be evaluated early, while still avoiding any premature

computation of values that might cause a program to loop.

This work has a practical goal: to use strictness analysis to annotate code so that

it retains its original semantics, but runs more efficiently. Unlike other efforts to solve

this problem, both non-flat data and function domains are considered. The essential

tool is analysis of list/record construction; such operations are readily recognizable from

syntax, and occur every time a list of arguments is passed to a function. In practice, the

strictness in fields within those records often follows regular patterns that can be finitely

represented. Of particular interest are programs that manipulate useful structures such

as streams. When compiled using the approach presented here, these programs typically

contain a small number of efficient, mutually recursive loops, causing the exchange of a

small increase in overall code size for a large decrease in space and time conslimption as

the stream is produced.

Weak and strong safety become important issues and are discussed at length. Ter­

mination is guaranteed by several factors, including a finite resource which controls the

increase in code size, and a regularity constraint placed upon the strictness patterns prop­

agated during compilation. The compiler is proved to be safe relative to an axiomatic

specification of an interpreter. Limited extension of the analysis through conditional

expressions and to higher-order functions is possible.

VI

Table of Contents

Chapter 1: Introduction

1.1 Applicative lazy languages

1.2 Strictness analysis

1.3 Strictness analysis and lists

1.3.1 Lists with looping components

1.3.2 Infinite lists

1.4 Brief overview of techniques presented here

1.4.1 Daisy-the source and target language

1.4.2 Demand generated by the printer

1.4.3 Compiling Daisy programs with strictness patterns

1.5 Other work on strictness analysis

1.5.1 Flat domains

1.5.2 Higher order functions

1.5.3 First order functions with data structures

1.5.4 Data structures and higher order functions

1.6 Outline · · · ·

Chapter 2: Compiling strictness into streams

2.1 Inherited and synthesized strictness patterns

2.2 A lattice of strictness patterns .

2.2.1 Definition of P .

2.3 The compiler

2.3.1 Restricted Daisy syntactic categories

2.3.2 Restricted Daisy syntax

2.3.3 Restricted Daisy value domains and semantic functions

2.3.4 Compiler domains

1

1

2

3

5

7

7

7

8

8

9

9

10

11

11

12

13

13

13

15

16

18

18

18

19

vu

2.3.5 Domain of compiler environments

2.4 Compiler semantic functions

2.4.1 Notation

2.4.2 Compiler rules

2.5 Three examples .

2.6 Representation of l. p and pattern fixed points

2. 7 Compiler safety and termination

2. 7.1 Weak and strong safety

2. 7 .2 Stream output . .

2.7.3 Admissable values

2.7.4 Termination ...

20

20

21

22

32

40

42

42

42

43

44

Chapter 3: C is safe with respect to an instrumented interpreter I 46

3.1 Outline of approach 46

3.2 C is monotonic and continuous 47

3.3 I - an interpreter that displays demand patterns

3.3.1 Notation

3.3.2 Interpreter axioms

Chapter 4: Further analysis of conditional expressions

4.1 Iterative functions

4.1.1 Iterative style equation

4.1.2 Example

4.2 List mapping functions

4.2.1 List mapping function equation

4.2.2 Example

4.3 Combining iterative and mapping functions

4.3.1 Iterative mapping function equation

51

52

53

93

91

100

101

103

105

106

108

108

Vlll

4.3.2 Example 110

Chapter 5: Compiling higher order functions 113

5.1 From C to C' 113

5.1.1 New Daisy syntax and compiler domains 114

5.1.2 Equations for C' 115

5.2 Restrictions upon source expressions 120

5.2.1 Functions must be defined at compile time 120

5.2.2 Expressions must be correctly typed 120

5.2.3 Functions cannot be returned as values by the entire program 121

5.3 An extension of C' to C" . 121

5.3.1 New compiler domains 121

5.3.2 Synthesized patterns are passed around in a stack 122

5.3.3 Application arguments are also passed around in a stack 123

5.3.4 Compiler equations for C" 124

5.4 Extended examples 131

Chapter 6: Conclusion 138

6.1 Comparisons with other work 138

6.2 Contribution of research presented here 141

6.3 Areas for future investigation 143

Bibliography 145

1

Chapter 1: Introduction

This work presents a source-to-source compiler intended to improve the time

and space behavior of programs written in a class of higher order, statically

scoped languages referred to here as applicative lazy languages. These languages

are lazy (all expressions are evaluated at most once), and they are applicative,

meaning that they have no side-effects. A lazy evaluator was simultaneously

described by Henderson and Morris [14] and Friedman and Wise [11], who pro­

duced an interpreter with equivalent semantics by implementing a traditional

Lisp interpreter with lazy cons. The lazy source language treated here is Daisy,

a descendant of the interpreter presented by Friedman and Wise.

Friedman and Wise assert that cons should not evaluate its arguments [11].

This approach is elegant and powerful, but expensive. The thesis of this work

is to show how to safely compile special cases in which cons should evaluate its

arguments.

Section 1.1: Applicative lazy languages

Applicative lazy languages, such as SASL[36], LML[2], Ponder[lO], or

Daisy[20], have many properties worth exploring. They have no side-effects,

a fa:ct which makes them interesting candidates for general-purpose parallel pro­

gramming languages because control-flow problems are removed, leaving only the

problem of reducing data dependencies. They produce values where applicative

order, or call-by-value, languages loop forever. Finally, they permit expressions

to be substituted for equivalent expressions, providing programs which are easier

to reason about, thus supporting automatic proofs of correctness.

Unfortunately, implementations of these languages tend to be slow. "Lazy"

or "delayed" evaluation provides the semantic power of these languages by per­

mitting any given computation to avoid calculating values which are not required

in computing the final value. This is generally implemented by a mechanism sim­

ilar to Algol's call-by-name, except that instead of computing the value each time

2

it is required (necessary in a language with side-effects), the value is compt

only once. Usually, this mechanism, referred to here as a 3U3pension, is

plemented in a general way that does not distinguish between values that

eventually be required and values that are never needed.

Suspensions are expensive. They can be regarded as process control blc

that contain a bit indicating whether the delayed expression has been evalua

and if not, a pointer to the environment current during runtime when the

pension was created and a pointer to the code whose evaluation will produce:

value represented by this suspension. Each time a value is required from a

pension, that bit must be tested before the extant value can be used (Bloss

Hudak [3] develop techniques for the detection of unnecessary tests). If it

not exist, an expensive context swap is necessary. Environments must be

served until no suspensions point to them. The costs of suspensions are incre

when the expression being suspended itself depends on a suspension.

Suspensions representing values which will be required (with some inte

ing restrictions) needn't be suspensions at all - the values they represent

as well be computed at once, because they are going to be computed any

If they can be computed at once, then all of the overhead involved in crei

a suspension is avoided. This is the essential idea that has recently persu

many people to examine .'!trictnes.s analyJiJ.

Section 1.2: Strictness analysis

Strictness analysis calculates the relationship between a function's l

ments and its result. A function is said to be .'!trict in argument n if the fuw

is .l when argument n is ..L, where .l is the undefined element that gene

represents an infinite loop in the domain of S expression values. For exar

binary addition must use both addends to compute its result; it is strict in

arguments when its result is required. However, a conditional expression req

the value of its first argument in order to determine which of its other argun

will be required to produce a result. In general, it is possible to determine v

3

argument will be required only at run-time; this makes strictness an undecidable

problem for compilers.

The relationship between strictness analysis and the safe removal of suspen­

sions is simple. If a function is strict in an argument n, and if the function's result

will be required by the whole computation, then there is no point in suspend­

ing either n or the function's result. Moreover, there is no point in suspending

values upon which the computation of the value of n depends. Since the whole

computation would loop if any of these values looped, there is no harm in letting

a loop occur at a different point in the computation than it would have if the

computation had been completely lazy. Of course, if none of these values looped,

then there is no point in suspending them anyway.

The identification of expressions that need not be suspended has some bene­

fits to the use oflazy languages on parallel architectures. Functions, such as add,

may be strict in more than one argument. Since there are no side-effects in the

language and the values of the arguments are known to be necessary to the com­

putation of the final result, these arguments may be evaluated simultaneously by

processors which can be fully committed to their evaluation.

Section 1.3: Strictness analysis and lists

Many lazy languages are descendants of Lisp [27], and list processmg is

central to the programming techniques developed by users of these languages.

Strictness analysis produces some particularly interesting results when used to

com.pile lazy list-constructing programs, due to the variety of ways in which a

list-valued function's result may be used by a calling function. Unlike the result

of an addition, which is either required or not required by the caller, a function

as simple as cons may require neither of its arguments, its first argument, its

second argument or both arguments, depending upon the use made of its result.

The following four programs (all assumed to be entire programs, executed at

top-level and written in Lisp) illustrate these different uses of the result of an

application of Cons, defined as (lambda (a b) (cons a b)):

..

4

~ ((lambda (a b) b) (Cons 1 2) 3)
((lambda (a) (car a)) (Cons 4 5))
((lambda (a) (cdr a)) (Cons 6 7))
((lambda (a) (add (car a) (cdr a))) (Cons 8 9))

Consider a program in which all four of these expressions appeared and

produced values necessary to the final value, such as:

(add

(add ((lambda (a b) b) (Cons 1 2) 3)
((lambda (a) (car a)) (Cons 4 5)))

(add ((lambda (a) (cdr a)) (Cons 6 7))
((lambda (a) (add (car a) (cdr a))) (Cons 8 9))))

Suppose that such a program is to be compiled so that the arguments to

Cons are evaluated immediately wherever possible, and arguments in which

Cons is strict are annotated. There are two choices in compiling the body of
Cons:

1) Cons can be compiled once as if it was strict in neither of its arguments. This

approach has the advantage of keeping the code size small, but the disadvantage

of ignoring the strictness information that can be discovered at compile-time. If

the compiler marked (with$) all of the expressions that it could safely determine

to be evaluated early, it would produce the following code:

5

(add

$(add $((lambda (a b) b) (Cons 1 2) $3)
$((lambda (a) (car a)) (Cons $4 5)))

$(add $((lambda (a) (cdr a)) (Cons 6 $7))

$((lambda (a) (add $(car a) $(cdr a))) (Cons $8 $9))))

(add's arguments are grouped by an implicit cons).

However, Cons, the function (lambda (a b) (cons a b)), would remain

lazy, meaning that, wherever called, it creates unnecessary suspensions. The

number of these suspensions is trivial here, but becomes increasingly important

as function definitions grow larger, are executed often and appear in many parts

of the program.

2) Cons can be compiled in as many different ways as there are different uses of

its result. These are the four possible versions of Cons [6,9, 41]:

(lambda (a b) (cons a b))
(lambda (a b) (cons $a b))
(lambda (a b) (cons a $b))
(lambda (a b) (cons $a $b))

The use of Cons versions has the advantage of making full use of the infor­

mation that can be determined at compile time, but the disadvantage of produc­

ing four definitions of Cons, three more than would otherwise be needed. This

is a disadvantage when Cons is not executed frequently, but the advantages of

versions greatly increase when a version of Cons is often executed.

1.3.1: Lists with looping components

Looping programs may produce values that are not J_, but that contain J_ as

a component. For example, a program may produce the partial list (1, 2,

before looping. This would be represented as (1, (2, j_)), which is distinct from

6

.L Strictness introduced by compilation could cause a looping element, which

would ordinarily have been evaluated only after the 1 and 2, to be evaluated

before either of the other values, so that the complete value of the interpretation

of the source code would no longer be equal to the value of the interpretation of

the object code, even though eventually both values would loop. In such a case,

the assumption that makes strictness analysis an interesting aid in designing a

compiler- that looping expressions may safely be evaluated at any time during

a program's execution if they can be shown to be eventually required by the

computation-needs to be examined more carefully.

In fact, if the interpreter is assumed to be truly lazy, then the left parenthesis

of a list value is printed before any attempt is made to determine the first element

of the list, since it doesn't need to know the value of the head of the list to

determine that it is printing a list and that a left parenthesis is needed. Any

analysis that shows that the first element of the list will be needed and that

asserts that this information justifies the earlier evaluation of this element may

cause the interpretation of the compiled code to loop without printing anything­

not even a left parenthesis. Unfortunately, the problem of determining when the

compiler is justified in marking this first element is in general undecidable.

Two kinds of safety may be defined (and were proposed by O'Donnell [33]):

1) Weak safety means that the interpretation of source and compiled code is

equal when the interpretation of the source code is not _L and does not

contain _L.

2) Strong safety means that the interpretation of source and compiled code

produce the same element in the lattice of values.

It is also possible to weaken the definition of strong safety so that programs

may be proven equal if their results printed on a terminal screen are identical on

a non-null prefix, which may be infinite. These definitions will be discussed in

more detail in Chapter 2.

7

1.3.2: Infinite lists

Infinite lists can represent objects such as a stream of electrical impulses in

a circuit design [19], or the infinite dialogue between user and machine that is

the heart of a programming environment [13,30] or operating system [32]. They

have also been useful in developing hardware description languages [31].

Infinite lists present special problems to a compiler designer bent upon using

strictness analysis to improve lazy programs. Unfortunately, it isn't possible both

to preserve the semantics of programs that produce them and to annotate every

element of the list which may eventually be required because the order in which

these list elements are produced is very significant - the user expects to see

the initial elements before seeing elements farther down in the list, and certainly

expects to see them before the end of the list appears. The basic assumption

driving the application of strictness analysis to applicative lazy programs is vio­

lated when applied to infinite lists, because they are not J.., yet their components

(specifically their recursively defined tails) cannot be evaluated in any order if

an interesting approximation to their complete value is to appear on a terminal

screen.

In order to preserve the behavior ofinfinite lists, the compiler avoids marking

code that generates their tails, a technique that will be discussed in more detail

in Chapter 2.

Section 1.4: Brief overview of techniques presented here

1.4.I: Daisy - the source and target language

Daisy is an applicative statically-scoped lazy language developed from the

original Lisp interpreter. Delayed evaluation is achieved by altering only the be­

havior of cons, a few list predicates, and list accessing functions such as car and

cdr. The interpreter itself continues, as does the Lisp interpreter, to use eager

evaluation, causing all function arguments to be evaluated regardless of whether

they are required. By delaying the evaluation of its arguments, cons provides

/

'/

l
I

j

8

the only laziness required to produce normal order semantics. Functions receive

a single argument, which may be a list. Often, the function treats sub-structures

of this argument list as if they were distinct arguments; it is this convention

which guarantees that evaluation of function arguments (sub-structures) will be

delayed until the argument value is required by the computation.

l.4.2: Demand generated by the printer

Consider a program such as (cons 1 2). It is clear that both argument

values will eventually appear in the resulting value (1 . 2). However, the

interpreter, as described, produces only a cons cell containing two suspensions.

What mechanism causes their evaluation?

It is assumed that an external device (the printer) demands the entire value

of whatever expression it is given, and that it is this device that produces the

final result of the evaluation of any program. From this point on, the interpreter

will be referred to as if it was composed with the printer.

l.4.3: Compiling Daisy programs with strictness patterns

The compiler presented here, and in a preliminary description of this work

[12], attempts to predict at compile time the values that the printer will require

at run-time, by propagating abstractions of the printer's demand throughout the

compilation of sub-expressions in the code tree. These abstractions are referred

to here as strictness patterns. A Jtream is used here to refer to a finite or infinite

list; this does not prevent a stream from being a tree (or, in the case of data

recursion, a graph.)

The initial demand pattern used here is itself recursively defined, although

regular, and can be represented with a finite graph. The compiler is shown to

propagate this demand with strictness patterns which are either of finite length

or are rational (a term proposed by Hughes [18]), in order to guarantee that the

compiler terminates, a precaution that was independently taken by Hughes in

specifying contexts [18].

9

In addition to marking cons arguments that can be shown to be necessary

to the computation of a program, the compiler often unrolls loops. In fact, there

is an interesting relationship between the propagation of regular patterns and

stream-producing functions, which are typically recursive. A function version is

a pairing of the code representing the function and the pattern propagated to the

compilation of the function's application. As a stream-producing function appli­

cation is compiled with a regular pattern, the compiler encounters the recursive

call within the body of the function with a strictness pattern that may itself be

regular, depending upon the relationship between the original pattern and the

code forming the function body. If the pattern propagated to the compilation of

the recursive call is an unfolding of the original pattern, then the recursive call

can be compiled as a call to the new version created by the compilation of the

original application. If it is not, the function code and the pattern propagated to

the compilation of the original call may often be unfolded together, creating new

versions during this process, until the unfolded pattern is finally an unfolding

of the original pattern. This whole process produces a finite-state automaton

formed by versions which refer to each other in a cycle.

Section 1.5: Other work on strictness analysis

Interest in strictness analysis has steadily grown since Mycroft [28] first used

abstract interpretation to determine strictness for flat domains (programs pro­

ducing atomic values) in 1980. Recent work has centered upon higher order

functions in both the typed and untyped lambda calculus, and first order func­

tions on non-flat domains. This body of work is described briefly here; detailed

discussion of especially relevant work appears in Chapter 6.

1.5.1: Flat domains

Clack and Peyton-Jones [7,8] provide a useful clarification of Mycroft's work

on flat domains, and provide measurements of the degree of parallelism achieved

by applications of an algorithm similar to that of Mycroft.

10

1.5.2: Higher order functions

Work on strictness analysis of higher order functions is directed towards a
v .
ariety of problems. Like Clack and Peyton-Jones, Maurer's work [26) is moti-

vated by an interest in exploiting possible parallelism in functional languages.

Maurer extends Mycroft 's result to typed higher order functions, by representing

strictness information with special lambda expressions. He achieves termination

using a cutting mechanism that approximates information that might otherwise

be derived from the non-terminating analysis of certain expressions, such as an

application of the Y combinator.

Wray, and Hudak and Young have produced algorithms for analyzing higher

order functions. Hudak and Young {15] develop an algorithm for performing

higher order strictness analysis in the untyped lambda calculus, based upon a

set-theoretic description of strictness. Wray {40,41] extends Mycroft 's result with

an algorithm that annotates strict expressions in lazy higher order combinators.

Kuo and Mishra [23] assert that strictness analysis of programs in the un­

typed lambda calculus is elementary (however, they make no claims concerning

the strictness of composite structures) and that strictness analysis can be shown

to be a particular case of type inference for the typed lambda calculus. They

describe a practical system that performs both type checking and strictness anal­

ysis.

Nielson [29] develops a theory of abstract interpretation for the typed lambda

calculus, which is shown to also be suitable for strictness analysis. This work is

aimed at constructing a general theory for the analysis of functional programs,

since, as Nielson observes, otherwise the correctness of strictness analysis must

be independently shown for each functional language.

Burn, Hankin and Abramsky [4] use abstract interpretation to analyze higher

order functions in the typed lambda calculus. Abramsky [1]. extends these results

to polymorphic types, showing that strictness analysis for polymorphic functions

can be efficiently reduced to strictness analysis for the typed lambda calculus.

I
I
I

I

I,
I

1/

I.
I;

/'

11

1.5.3: F" t irs order functions with data structures

This is a particularly interesting problem, and is the focus of the work pre­

sented here. Various techniques have strong and weak points.

Wadler [37] is able to determine certain kinds of list strictness, such as

strictness in all heads and tails, all tails or just the outer structure of the list.

While this approach is useful in analyzing some finite lists, the technique does

not handle infinite lists, since some tails must remain lazy.

Kieburtz and Napierala [21] use abstract interpretation to develop total in­

terpretations, which can be used by a compiler without risk of non-termination.

A total interpretation is then developed for strictness analysis; however, total

interpretations apparently yield less strictness information than that of Wadler

[37] on finite lists, and an interpretation presented for unbounded data structures
Is not total.

Hughes [18] analyzes a first order functional language containing only vari­

ables, function applications and case expressions, using a simple domain of con­

texts, which carry strictness information. He proposes this work as a potential

basis for further work on practical strictness analysis. He then presents a the­

oretical framework for strictness analysis of a slightly more powerful language,

using continuations to represent contexts [16]. Wadler and Hughes [38) present

another theoretical treatment of contexts as retracts, or projections for analysis

of a monomorphic first order language.

Lindstrom [25} proposes a domain tJiat contains typing information as well

as strictness information for finite lists. This domain is shown to be useful but

does not represent patterns that are internally strict but externally lazy. Infinite

lists are described as an open problem.

l.5.4: Data structures and higher order functions

Hughes [17] compares two approaches to strictness analysis. One is based

upon abstract interpretation, which he calls "forward" analysis, and the other

' I

I

I
I

I

12

involves reasoning from information about the strictness of an expression to de­

duce information about a sub-expression, or "backwards" analysis. He argues

that backward analysis is likely to be more efficient than forward analysis and

that it can be extended to provide strictness information about lists and higher­

order functions in typed languages.

Section 1.6: Outline

Chapter 2 presents a lattice of strictness patterns, and then demonstrates

the use of these patterns in a series of equations, with short examples, defining

a simple recursive descent compiler. A restriction is placed upon the expressive

power of certain propagated cyclic patterns in the compiler equations, which

permits the compiler to handle streams. Three more complex examples follow
'

demonstrating the advantages of version cycles. The compiler is shown to termi-

nate and to propagate only rational patterns.

Chapter 3 proves that the compiler is safe by demonstrating that the strict­

ness patterns propagated by the compiler are always below or equal to those

displayed by a suitably modified interpreter. This interpreter is identical to the

Daisy interpreter, except that it displays a pattern representing the demand of

the Printer upon the value of the expression currently being interpreted.

The equation compiling conditional expressions in Chapter 2 is expanded in

Chapter 4 to handle conditional expressions written in iterative style and with

nil'! tests - the chapter includes examples of its application to some well-known

functions.

Chapter 5 presents an extension of the compiler discussed in Chapter 2 to

higher order functions.

Chapter 6 compares these results to recent results of other researchers in the

area, summarizes the contribution of this work, and suggests some interesting

Possibilities for future study.

13

Chapter 2: Compiling strictness into streams

Section 2.1: Inherited and synthesized strictness patterns

Strictness patterns have two roles . When the strictness pattern is deter­

mined from the enclosing evaluation context (such as the exhaustive evaluation

of a program's result), it is an inherited pattern. Strictness patterns can also be

created during the analysis of a function application. When a is bound using a

A-form, a may occur several times in the form's body and inherit several patterns,

Possibly pieces of the pattern inherited by the application. Some combination of

these patterns forms a synthesized pattern, which becomes the pattern inherited

by the argument. For example, if the entire program to be evaluated is ((lambda

(a) (head (cons a []))) (cons 1 b)), then the pattern synthesized by com­

pilation of the lambda expression permits (cons 1 b) to be strict only in its first

argument.

Section 2.2: A lattice of strictness patterns

Strictness patterns can he defined as elements of a complete lattice that

contains both finitely representable and infinite limit points. The set of useful

strictness patterns is reduced to those patterns that can be represented by a finite

graph, with or without cycles (cf. rationals, as opposed to irrational numbers).

All functions in the source and target language are regarded as taking one

argument. This argument is similar to a Lisp S-expression (see Section 2.3.3). If

the argument is a list, then different fields within it may be regarded as the func­

tion 's arguments and the entire structure is then called the argument collection.

For this reason, the definition of a strict function is expanded to include binary

trees and specify an index for each part of the argument collection in which the

function is strict. Consider the conventional labeling of a binary tree with root

labeled '1 ', right children sucessively labeled with '1' and left children labeled

with 'O'. The index of each node in this tree is the number represented by the

14

a ena 10n of bit labels along the path from the root to its location. The
cone t t •

following displays the indexing of a tree:
1(2(4 ... ,5 ...), 3(6 ... , 7 ...))).

In the following definition, (n ac) selects an argument at index n in the argument

collection ac.

Definition: A function f is strict in an argument a at index n of its argument

collection ac if (n ac) = J_ ==> f ac = J_.

A list marked with$ at any indexed sublist is to be evaluated by a suitably

modified lazy interpreter using call-by-value for the marked field. Strictness at

a given index does not necessarily imply that a function is strict at any other

index of its argument. For example, the evaluation of

(cons $(cons b c) d)

is lazy in the the values of b , c , d but strict in the external structure of the pair

<b c> (cf. Landin's stream construct [24]).
In other words, an expression is strict in a given sub-expression when the sub-

expression and_ all containing structures are marked. For example, the program

(cons (cons $(cons a b) nil) nil)

Is not strict in a but
'

(cons $(cons $(cons $a b) nil) nil)

Is strict in a.

15

2.2.1: Definition of P

Let $P = {$7r/7r E P}, let + connote coalesced sum, and let us require all

lifting to be explicit [34]. Then the domain P may be defined by the reflexive

equation
' 7r: P == $P + (P x P)J..

subject to the homomorphic collapse required by the following two rules:

RULE 1. 7T" c $7r.

Strictness strengthens a pattern.

RULE 2. $$7r c $7r.

PROPOSITION. $7r == $$7r.

Strictness is idempotent.

P is a complete lattice [35], with a top element,

. '
$($..L, $..L) •

.. , ~ l~ , ..
$($..L ..L) ($..L, $..L) $(..L, $..L)

\'7<= I~/
...) (..L $:)''' $(..L ..L)''

(U,1- ~,

~) $J_7
I/

F
.

1
P t"al lattice p of strictness patterns

1gure . ar I

16

An important element of P is the printer pattern

which can b b . . e a stractly represented as the firnte cyclic graph:

WY 1q
The meet, join, and equality of two such patterns, represented as finite cyclic

graphs, can be finitely computed (derived similarly to taking the intersection of

regular expressions.) In the equations that follow, all patterns belong to the set

of finitely representable elements in P, which form an (incomplete) sublattice.

Section 2.3: The compiler

The compilation of a program inherits the printer pattern, 7f'o, which is

strict only in the outer structure and the heads of all trees and sub-trees. This

strictness pattern implies a leftmost-outermost evaluation order, and allows the

compiler to find strictness in programs that generate trees as well as flat streams.

A function defined in a fiz expression will be compiled into one or more

Versions - initially one of a set of identical function definitions that is uniquely

associated with a strictness pattern, and compiled accordingly. Identifiers bound

In a fiz expression will be treated similarly, as they may represent recursively

defined streams. However, identifiers bound in a lambda expression will not be

converted into versions. Instead, they will form part of the mechanism for syn­

thesizing patterns by passing on an accumulation of all their inherited patterns,
Wh' h . Ic when complete is treated as a synthesized pattern.

The join of cyclic synthesized patterns might produce a pattern higher in

the sublattice of p than 7f'o (see (C 12) below), so any synthesized pattern is

created by taking the meet of any least upper bound with the printer pattern

itself. Some restriction of this kind is needed to avoid marking recursive calls

that create the tails of infinite lists; however it is also possible to propagate a

17

similar initial pattern with a cycle containing several marked tails, as long as one

remains unmarked in the cycle. 11"o will be used here for the sake of simplicity.

The meet of synthesized patterns with 11"0 guarantees that 11"o is an upper

bound for all patterns synthesized during compilation. Aside from the printer

pattern, synthesized patterns are the only patterns that need to be controlled

in this way, because only they represent potentially new cyclic patterns that

may cause recursive versions to be created as the patterns are unrolled during

compilation.
One consequence of restricting patterns in this way is that some list con-

structors may not be marked as fully as possible, and that strictness marks may

appear inside sublists but not on the surrounding list expression. The effect

produced by this is that the interior marks will affect the efficiency of the list

evaluation when the sublist is evaluated. Except for conditional expressions '

which contain marks that may not affect executed code because both branches

are compiled while only one is executed at runtime, interior marks indicate that

the surrounding sub-expression will in fact eventually require the value of the

marked expression.
The compiler builds up strictness information about identifiers and func-

tions in a compile-time environment. It receives an integer resource that bounds

the number of different versions that can be created for any given function or

identifier. This limit is essential, even when versions inherit only rational pat­

terns, because it is still possible to construct a pathological function that, when

compiled, causes an infinite number of versions to be created, all of which are

associated with unique rational patterns.
Function invocations that can be recognized as references to extant versions

consume no additional resources.
The abstract compiler presented here marks only strict cons arguments, as

Daisy is a strict interpreter.

18

2.3.1: Restricted Daisy syntactic categories

id EIDE·
'

(identifiers)

(syntactic expressions)

(constants) e E EXP·
'

const E CONST.

2•3 •2= Restricted Daisy syntax

e ::= expr I $expr

expr ::= const I
[]I

(exprs)I
prim:(e e) I
head:e j

tail:e I
if:(e e e) I
(.X id. e) : e I
(fix :[id .X id. e]):e I
fix :[id eJ I
id:e I
id 1

bottom

exprs ::= e exprs I e . e I empty

constants

nil

lists

primitives with 2 arguments

head application

tail application

conditional application

lambda application

application of a recursive function

data recursion

function application

identifiers

infinite loop

Expressions surrounded by double brackets are syntactic expressions in the

source and target language. Syntactic expressions will often contain numbered

sub-expressions, so that they are easier to discuss. For example, [prim: <e e>J

becomes [prim: <e1 e2>] .
2.3.3: Restricted Daisy value domains and semantic functions

(atoms)

(structures) A·
'

S = A+ (S x S) + (S -+ S).

~-============-~-

19

Johnson presents a denotational semantics for Daisy [19]. However, de­

notational semantics can say nothing about the order of evaluation-early or

delayed-upon which this work focuses. If the reader were willing to absorb a

formal operational semantics for Daisy, it might be possible to formally argue the

relative performance of the compiler's source and object code. No such semantics

Is presented here.
Colon is an infix apply operator occuring between function and argument;

angle brackets construct lists, like Lisp's list. A function argument is either an

atom or a list. fix expressions can be alternatively read with an (understood)

outermost ..\ and infix period wrapping the bracketed structure.

2-3.4: Compiler domains

c D--t D;
(compiler)

D - EXP x P x ENV x INT ;
(compilation data)

11" p - $P + (P x P);
(strictness patterns)

p ENV - V--t (BEXP x PF x INT
X BTAG) +unbound;

(compiler environment)

{, INT·
' (resource)

l/ : v JD+ (ID x P);
(version identifiers)

BEXP - [[]] + [(fix : [idl
)i id2. el]): e2] + [fix : [id el]

pa: PF -
(P--+ (P11'o +unbound))+ P11'oi

(inherited and synthesized pattern entries in environment)

P11'o - { 11" E p I 11" ~ 7ro};

BTAG - lambda+ fix

20

(binding tags in environment)

The following functions are projections on environment entries:
Binding = A e. ell

Pat-fun = A e . el2ll

Binding-type = A e. eJ2l2l2ll

The compiler is given a syntactic expression, a strictness pattern, a com­

piler environment that performs some bookkeeping, and a natural number that

lirnits the number of versions to be created for any one function. The domain

of strictness patterns, of which P "'o is a subset, has already been defined , but

the domain of environments has interesting structure which is described in more

detail in the following section.

2·3.5: Domain of compiler environments

The compiler environment allows the compiler to predict the scope in which

expressions will appear at run-time. An entry for a given identifier contains a

syntactic expression (either a particular fiz expression encountered during com­

pilation or a dummy expression [(]]), inherited and synthesized pattern infor­

mation which may either be a pattern or a function from patterns to patterns,

a Version count, and a tag indicating that the identifier was bound in either a

lambda expression (lambda) or a recursively defined fiz expression (fix).

The domain of environments, ENV, contains only environments with pat­

tern entries that are at most 7ro if simple patterns, and that, if functions, map

elements from p into p "'o, a sub-lattice of P whose top element is 7ro.

Section 2.4: Compiler semantic functions

These equations describe an operational semantics for the abstract compiler.

Examples appear after some of the equations. These examples present the code

·--------

21

(the other parts of the tuple are omitted) produced by the compiler when it

receives an expression, inherited pattern, environment and resource. The envi­

ronment is assumed to be the initial environment, but the expression, inherited

pattern and resource will be described. The pattern

is the pattern to be initially p.ropagated by the compiler, however the examples in

both this and the next section use a variety of patterns. (Note that this pattern

contains a mark outaide the scope of the fiz expression defining it; this is not the

same pattern as

which represents a pattern with marked tails.)

2.4.1: Notation

The following notation is introduced:

a·?r represents a strictness pattern, 7r, that may or may not be prefixed with

$. If$ is the prefix, then a = $, otherwise a is the null string.

A single vertical bar indicates concatenation of an identifier with a strictness

pattern; this forms a new name defined locally within each rule.

Unsubscripted J_ stands for 1-p.

- ($ E Q'.·7r) denotes a strictness pattern in which a strictness mark is concate­

nated to some structure or sub-structure.

- The insertion of strictness marks during the compilation process is idempo­

tent, and expressions marked by the programmer may be compiled.

- [e] [[a] / [e']] refers to the substitution of [a] for all instances of [e'] m

[e] .

The compilation of the distinguished expression bottom is as follows:

C [bottom] a·?r p i = [bottom] a·7r P £

Note that the compilation of [bottom] contributes no new pattern to any

entry in the compiler environment.

22

2·4.2: Compiler rules

[C [const] a·7r p 1, = [$const] a·7r p 1,.

(C 1)

Constants cannot cause an infinite loop, so they can always be safely marked.

C [e] a·7r p "'where($(/ a·7r) =

[e[[fix: [id exp]]/ [e'] J] a·7r p"

where [fix: [id exp]] -
(Binding (p [e']))

if :3 [e'] E [e] such that [e'] EID
& (Binding-type (p [e'])) =fix ,

[e[[(fix:[f Aid. body]):exp]/[e']J] a·7rpl

where [(fix: [f Aid. body])] =
(Binding (p [f]))

if :3 [e'] E [e] such that [e'] = [f:exp]

& (Binding-type (p [:f])) =fix ,

[e] a·7r p 1,

otherwise.

(C 2)

This rule is required in order to ensure that lazy references to renamed

fix expressions do not refer to names which no longer exist- it is necessary

for bookkeeping purposes. Essentially, compilation stops once the propagated

strictness pattern cannot improve the source code.

(C 3)
C [head: e] a·7r p 1, = [head: ei] a·7r P1 "

where [ei] a
1

·7ri p1 1,1 == C [e] a·(a·7r, .l.) P "·

23

C [tail:e] a·?r pl= [tail:ei] a·7r P1 l

where [ei] a 1 ·7r1 p 1 Li = C [e] a·(j_, a·7r) pl.
(C 4)

Patterns inherited by applications of [head] or [tail] are injected into a

list pattern to eventually be inherited by a list. For example, if exp =

[head : <head : <a . b> . tail:<c d>>]

then C [exp] $fiz,\7r. ($7r, 11') p 4 =

[head:<$head:<$a . b> . tail:<c . d>>].

If exp=

[tail:<head:<a . b> . tail:<c d>>]

then C [exp] $fix,\7r.($11', 11') p 4 =

[tail:<head:<a. b> . $tail:<c . $d>>].

C[<e1. e2>] a·11'pl=

{
C [<e1 . e2>] a·7r p l, where ($ rJ. a·11')
[«l'.1 ·e11 . a2 ·e22>] a·11' P2 L,
where

a1 ·7r1 = (7rll)
0'.2·7r2 = (7rl2)
[e11] a 1·7r1 p1 ll = C [e1] (7rll) p lj

[e22] a 2·1!'2 p2 1,2 = C [e2] (7rl2) P1 l.

if($ rt. 7r);
otherwise;

(C 5)

The compilation of cons passes the head of its inherited pattern to the

compilation of its first argument and then the tail of the inherited pattern to the

compilation of its second argument. Preorder traversal is implied by an inherited

pattern under 7ro. (Note that when 11' doesn't contain a strictness mark, the

second compiler rule is executed.)

For example, if exp=

[<head:<a . b> . tail:<c . d>>]

then C [exp] $fix,\7r.($tr, 11') p 4 =

24

[<$head:<$a . b> . tail:<c . d>>].

C [prim: <e1 e2>] a·7r pl= [prim: ei] a·7r P1 l
where

[ei] 0:1·7r1 P1 t1 = C [<e1 e2>] ($..L ,$($..L,..L)) Pl.

Primitives (arithmetic and logical) are strict in both arguments.

For example, if exp =
[add:<head:<a . b> tail:<c . d>>]

then C [exp] $..L p 4 =

[add:<$head:<$a . b> $tail:<c . $d>>].

(C 6)

Note that a slightly different strictness notation for lists is introduced

here. [<$x $y>] is strict in both [x] and [y] - the meaning is the same

as [<$x . $<$y . $<>>>].

C [if:<e1 e2 e3>] a·7r pl

== [if:<$e11 e22 e33>] a·7r p4 l
Where

[eii] 0:1 ·7r1 P1 l1 =.C [e1] $..i Pt;

~022] 0:2 ·7r2 P2 t2 = C [e2] a ·7r PI lj

li
833] 0:3·7r3 p3 t 3 = C [e3] a·7r P1 t; ·

p4 ==Ai. if b-type2 = lambda;
{

([binding2], (pa2npa3) , O, b-type2)

([bindi~g2] ,pa4 , v-count: + v-count3, b-type2)

h
1f b-type2 = fix ,

W ere

([binding2] ,pa2, v-count2, b-type2) = P2 ~
([binding3] ,pa3, v-count3; b-type3) = P3 z

Pa4 ==).pat 3 •

(C 7)

{
(pa pat) if (pa2 pat)= unbound;

· (pa2 pat) otherw1se.
------~~~~~~~~~~~~~~~~~~~~~~~~~~-..J

25

A conditional expression is strict in its predicate, but not in any of the paths

of the predicate's result. Each branch of the if may safely be compiled using the

pattern inherited by the if application as long as the leading $is stripped off the

compiled code when the new application is assembled and returned. This per­

mits the predicate to be evaluated before either of the two branches, and allows

the selected branch to be as efficient as possible. The new environment returns

the meet of the patterns inherited from either branch by a variable bound in a

lambda expression, or the appropriate entry. (The compilation of conditional ex­

pressions receives special attention in Chapter 4, where a more powerful equation

is developed and presented.)

For example, if exp =
[if:<same?:<head:<a . b> tail:<c . d>>

<head:<d . e> . d>

<b . c>]

then C [exp] ($_l_ , $_l_) p 1 =
[if:<$same?:<$head:<$a b> $tail:<c . $d>>

<$head : <$d . e> . $d>

<$b . $c>>].

C[(Aid . body):e] a ·7rpt=

[()dd. body1) : ei] a·7r p4 "

where
[bodyi] a 1 ·11"1 p 1 t 1 = C [body] a·7r P2 "

. { ([[J] J_ O, lambda), if i = [id];
P2 =Ai. · ' ' otherwise; pi,

- ' . { p i, if i = [id] j
p3 - "'· . h . p1 i, ot erw1se;
[ei] a 2 ·7r2 p4 t 2 = C [e] (Pat-fun (p1 [id])) P3 "·

(C 8)

26

Lambda applications demonstrate the need for the compiler environment,

p. Initially, an entry is created for the identifier [id], which includes a (mean­

ingless) syntactic expression, an initial inherited pattern, a version count (again

meaningless), and a tag which indicates that [id] was bound in a lambda

environment . As the compiler explores the body of the lambda expression, the

pattern inherited by [id] is updated. When analysis of the body is complete,

the identifier has inherited a composite pattern which becomes the synthesized

pattern for this lambda expression. The projection funtion, Pat-fun, retrieves

this pattern so that it can be propagated to the analysis of [e].

For example, if exp =
[(Aa. <head : a . head:a>):<b . c>]

then C [exp] ($..L , $..L) p 1 =

[(Aa. <$head:a . $head:a>): <$b . c>]

C[(fix : [f Aid. body]):e] cerrp1,= (C9)
[(fix : [f/a·7r Aid . bodyi]) :ei] a·7r P4 1,

where
[bodyi] a 1 ·7ri p1 1,1 = C [body] a·7r P2 1,

{

([(fix:[f Aid. body])],pa,1 , flx) , ifi= [f];

P2 = Ai. ([CJ] ,..L,O,lambda),
if i = [id];
otherwise; pi,

A { rec-p if pat = a·7r;
pa = pat. unbound otherwise;

_ , . {pi, if i = [id] or i = [f]; p3 - ..-u. .
p1 i, otherwise;

rec-p = [e] • C [(u~1 (Uu (fix: [f Aid . body]))): e] a·7r pt,

= (P1 [id])l2ll
[e1] a2·7r2 p4 1,2 = C [e] rec-p p3 £ .

27

The compiler constructs a synthesized pattern rec-p by recursively defin­

ing the result of the analysis of the ..\ body. This pattern is then inherited by

the argument [e] . U is defined and discussed in Chapter 3. (Section 2.6 on

the implementation of the compiler discusses the significant problem that arises

when pattern bindings are not maintained as explicitly labelled objects by the
compiler.)

For example, if exp =

[(fix : [f

..\1st.

<add:<head:lst head:tail:lst>

. f:tail:lst>]):a]

then C [exp] fiz..\7r.($..L , 7r) ..\id.unbound 1 =

[(fix: [f-p1

..\lst.

<$add : <$head:lst $head:tail:lst>

. f-p1:tail:lst>]):a]

where p1= fix..\7r.($..L , 7r).

[a] then inherits the pattern $fiz..\7r.($..L ' 7r).

C [fix: [id e]] a·7r p 1, = [fix: [id/a·7r ed] a·7r p3 £1

where
[ei] 0:1 ·7r1 P1 £1 = C [e] a·7r P2 i;

_ . { ([fi.x :_[id ~J] :pa, 1,fix),
P2 - ..\ i. if i = [1 d] ,

p i, otherwise;

pa== "'pat . , { ..L if pat = a·7r;
· unbound otherwise;

p ==..\'{pi, ifi= [id];
3 . i. . h .

P1 z, ot erwise.

This equation permits the construction of recursively defined lists.

(C 10)

------=-

For example, if exp =
[fix: [l <a . l>J]

28

then C [exp] ($i. , (J.., jiz>.7r.($i., 7r))) >.id.unbound 1 =
[fix: [l-p1

<$a .

fix: [l-p2

<a . fix:[l <a . l>]>]>J]

and C [exp] ($i. , (J.. , jiz>.7r.($i. , 7r))) >.id.unbound 2 =
[fi:x:: [l-p1

<$a .

fix: [l-p2

<a . fix:[l-p3 <$a. l-p3>]>]>J]
where

p1:::: ($i. ' (i. ' jiz>.7r.($i. ' 7r)));
P2= (J.. , fix >.7r. ($i. , 7r));
p3:::: fiz>.7r.($i. , 7r).

In the first example, the compiler can make only the first two elements of

the output stream strict because the number of versions is too small to permit

it to discover the recursive loop. When it is allowed one more version, it is able

to make the entire stream strict in its heads. A resource of three or more would

still produce the result from the second example.

29

C [f:e] a·7!" p 1, =

{

Reached-Limit if (pa a·11") = unbound & v-count 2: "i

Compile-Binding if (pa a·1!") = unbound & v-count < 1,;

Mark-With-Pattern otherwise· '
where([(fix: [f .Aid. body])] , pa, v-count, fix) = p [f] ;

(C 11)

Reached-Limit is [(fix: [f .Aid. body]) : e] a·7!" p 1,;

Compile-Binding is
[(fix: [fja·7!" .Aid. bodyi]):e1] a ·7!" p4"

where
[body1] ai ·7!"1 p1 i1 = C [body] a·7!" P2 "

{

([(fix:[f .Aid. body])],pa1'v-count+l,ftx), ifi= [f];

p
2

=..Xi. ([[J] ,..L,O,lambda), ifi= [id];

p i, otherwise;

pa
1

= ..Xpat. { rec-p if pat ~ a·7!"j
pa otherwise;

p
3
= ..Xi. { Pi, if i = [id] or i = [f] ;

P1 i, otherwise;
rec-p = [e] • C [(U~==l (Uu (fix: [f .Aid. body]))): e] a·7!" P l

= (P1 [id])l2ll
[e1] a2·7!"2 p4 i2 = C [e] rec-p PJ "

Mark-With-Pattern is
[fla·7!":ei] a·1!" Pl"

where
[e1] ai·7!"1 Pl i1 = C [e] (pa a·11") P"

There are three possible ways in which recursive function applications can be

compiled.
- If the version count for this particular function has been exhausted and

the combination of this function call and the strictness pattern currently

inherited has not been seen before, then the compiler expands the expression

30

once, guaranteeing that the lazy call refers to the correct name, and stops

exploring the source code.

If the version count for this .particular function has not been exhausted and

the combination of this function call and the strictness pattern currently

inherited has not been seen before, then a new version is compiled. The

current compiler environment is updated so that the function mapping an

inherited pattern to a synthesized pattern for each version created so far

now has an entry for this new version.

Otherwise, the compiler is currently compiling a version whose compilation

originally inherited the pattern propagated to the current function applica­

tion. In this case, the synthesized pattern for this function is already known

and can be retrieved from the environment entry for this function to be used

in compiling the argument [e]. See the previous examples.

31

C [id] a·7r p 1, =

{

Variable if b-type =lambda;
Reached-Limit if (pa a·7r) =unbound & v-count ~ 1,;
Compile-Binding if (pa a·7r) =unbound & v-count < 1,;

Mark-With-Pattern otherwise;
where([binding] ,pa, v-count, b-type) = p [id];

Variable is
[id] a·7r Pl 1,

where
. { ([binding], (a·7rUpa)n7ro,O, b-type),

P1 = .Xi. if i = id;
. p i, otherwise;

Reached-Limit is [binding] a·71" p 1,;

Compile-Binding is
[fix: [id/a·7r e1 J] a·tr p3 1,

where
[fix: [id eJ] = [binding]
[et] a1 · 11"1 p1 L1 = C [e] a·tr p2 Lj

. { ([fix : [id eJ] , pa1 , v-cov.nt + 1, fix) ,
P2 = .Xi. if i = [f] ;

p i, otherwise;

pa = .X t { ..L if pat = a·tri
I pa. . unbound otherwise;

p 3 = .xi. { p i, if i = [id] ;
P1 i, otherwise.

Mark-With-Pattern is [id/a·tr] a·tr P"

(C 12)

Identifiers may be recursively bound to a value, in which case they are

treated like recursive data (but in cases which are similar to the discussion above)

or they may be bound in a lambda expression, in which case the pattern currently

being inherited is combined with the pattern accumulated by earlier compilation

of instances of the identifier in a lambda body. See the previous examples.

32

s t• ec ion 2.5: Three examples

The following is a simple and common program, in which a filter passes on

certain elements of its argument stream.

[(fix : [G ..\1.
<head : l . G:tail:tail : l>]):

(fix : [F ..\x .
if:<eq? : <head:x 1>

<1 . 0>]

<head:x . F: <tail:x . head :x>>
<(fix:[Bad ..\y. Bad:y]):head :x

. F: <tail:x . head:x>>>]):

[F] produces a stream of alternating 1 'sand ..15. [G] selects odd elements of

[F] 's result, avoiding the divergent elements. The compiler produces the following

compiled expression, given fiz..\7r.($7r , 7r), the initial environment ..\id.unbound,

and the resource 5·
'

[(fix: [G-pO ..\1.
<$head : l . G-pO:tail:tail:l>]):

(fix : [F-p1 ..\x .
if : <$eq?:<$head:x $1>

<$head :x . F-p2:<$tail:x . head:x>>
<$(fix : [Bad-p4 ..\y . Bad-p4:y]):head:x

. F-p2:<$tail:x . head:x>>>]):
<$1 . $0>]

where [F-p2]

[(fix: [F-p2 Ax .
if:<$eq?:<$head:x $1>

33

<head:x . F-p3:<$tail:x . head:x>>
<(fix: [Bad Ay . Bad:y]):head:x

. F-p3:<$tail:x . head:x>>>J)]

and [F-p3] =

[(fix: [F-p3 Ax.
if:<$eq?:<$head:x $1>

<$head:x . F-p2:<$tail:x . head:x>>
<$(fix:[Bad-p4 Ay. Bad-p4:y]):head:x

. F-p2:<$tail:x . head:x>>>J)]

and where

po =fix A1r.($7r , 7r)

P1 = $fi:c-\7r.(1ro , (..l , 7r))

P2 = fi:c-\7r.(..l , (7ro , 7r))

p3 = fii-\7r.(1ro , (..l , 11"))
p4 = 7ro

The versions of [F] produce a stream that is alternately strict and lazy in

its heads, and [G] is strict in all elements it accesses, but produces a stream

strict in all heads and lazy in the tails. Notice that three patterns, those patterns

which distinguish between versions of [F], have

fi:c>..1r. (..l ' (..l , 7r))

as their greatest lower bound. If no versions of [F] were produced here, it would

not have been possible to find strictness in [F] . Versions [F-p1] and [F-p3]

are similar and could be coalesced into one version inheriting the meet of the two

patterns. [Bad-p4] produces a synthesized pattern that is ..l. The effect of this

34

pattern would be obvious if [Bad-p4] was applied to an expression using list

syntax, such as [<a . b>].
The following examples are hard to read using the fix notation defined so far,

so rec will be used instead. One of the advantages of rec is that it is a recursive

binding function that permits all versions to be gathered into the same scope,

producing less object code. Formals are grouped together, as are actuals, rather

than pairs of formals and actuals. One of the implemented compilers replaces fix

with rec.
In addition, an if with more than two branches is introduced. Predicates

following the first one may be marked, but since the mark is covered by the tail

of the if argument, it won't be evaluated until the branch in which it appears

is selected. Function formal arguments are now destructured into a fl.at list of

bound variables, however the corresponding actuals are written as dotted pairs.

The functions [odd?] , [number?] , [identifier?] , [Fn] , [Args] , [Body] ,

[Formals] and [nil?] are all assumed to produce the synthesized pattern $.L

[eq?] and [same?] are treated as in (C 6).
The first is a function that prints the even Fibonacci numbers, seeded with

two values from anywhere in the series.

[A [a b].
rec: [[h Addall Skip]
<

35

h =
<a . <b . Addall:<h . <tail:h>>>>

>

Addall = .A[a b] .
<add:<head:a head:b> .

Addall:<tail:a . <tail:b>>>

Skip= .A[stream].
if:<odd?:head : stream

Skip:<tail:stream>
<head:stream . Skip:<tail:stream>>>

in
Skip : <h>]] ~~~~~~~~~~~~~~~~~~~~~~~~_J

When compiled with the pattern fix.A1!".($J_ , 11"), and a resource of 4, the

co ·1 mp1 er produces the following output;

36

[.X[a b].
rec: [[h-p2 h-p3 Addall-p1 Skip-pi]
<

>

h-p2 =
$<$a <$b Addall-p1:<$h-p2 . <$tail:h-p3>>>>

h-p3 =
$<a . $<$b . Addall-p1:<$h-p2 . <$tail:h-p3>>>>

Addall-p1 = ,X[a b].
<$add : <$head:a $head:b> .

Addall- p1 : <$tail:a <$tail:b>>>

Skip-p1 = .X[stream].
i£:<$odd? :head:stream

Skip-p1:<$tail:stream>
<$head:stream . Skip-p1:<$tail:stream>>>

in
Skip-p1:<$h-p2>]]

p1 = fiz .X7r.($..L , 7r)
P2 = $fiz .X7r.($..L , 7r)
P3 = $(..L , $fiz .X7r.($..L , 7r))

[Skip-pi] is strict in all the heads of its stream argument, and passes this

pattern to the recursive data structure [h-p2] . [Addall-p1] inherits the same

pattern. Note that two versions of [h] are created because one inherits the cyclic

pattern passed on from [Addall- p1J while the other's inherited pattern is lazy

lil its head but inherits the cyclic pattern in the tail.
The second function compiled using rec is a simple interpreter. Its language

is restricted to constants, identifiers, head, tail, cons, quote (written as A),

and functions of one argument.

~[.X[input]. EVAL:<input . <[]>>]

where [EVAL]

[).[exp env] .
if:<number?:exp

exp

37

identifier?:exp
LOOKUP:<exp . <env>>
APPLY:<Fn:exp

<EVAL:<Args:exp . <env>> . <env>>>

>]

and [APPLY] _

[.A [fn args env].
if:<nil?:args

[error]
same?:<Ahead fn>

head:args
same?:<Atail fn>

tail:args
same?:<Acons fn>

<head:args . tail:args>
identifier?:fn

APPLY:<EVAL:<fn .. <env>> . <args . <env>>>

EVAL:<Body:fn .
<MKENV:<Formals:fn . <args . <env>>>>>

>]

38

and [LOOKUP]

[A [exp env].
if:<same? : <exp head:head:env>

tail:head : env
LOOKUP : <exp . <tail:env>>

>

and [MKENV] =

[A[formals actuals env].
if:<nil?:actuals

env
<<head:formals . head:actuals> .

MKENV:<tail:formals . <tail:actuals env>>>
>]

When the interpreter is compiled with the pattern $..l, and the resource 3,
the f, ll · 0 owing output is produced;

[A[input]. EVAL-p1:<$input . <$[]>>]
where

P1 :::: $...L

39

where [EVAL-p1] _

[.A[exp env].
if:<$number?:exp

exp
$identifier?:exp

LOOKUP-p1:<$exp . <$env>>

<
<
<
<

APPLY-p1:<$Fn:exp .
<$EVAL-p1:<$Args:exp . <env>> . <env>>> <>»»

>]

and [APPLY-pi] _

[.A [fn args env].
if:<$nil?:args

[error]
$same?:<$Ahead $£n>

head:args
$same?:<$Atail $fn>

tail:args
$same?:<$Acons $£n>

<head:args . tail:args>
$identifier?:fn

APPLY-p1:<$EVAL-p1:<$fn . <env>> .
<$args . <env>>>

EVAL-p1:<$Body:fn .
<MKENV:<Formals:fn . <args .

<env»>»

>]

<
<
<
<
<
<
<
<
<

<

<»»>»»»

40

and [LOOKUP-pi] _

[A[exp env].

if:<$same?:<$exp $head:head:env>
tail : head:env
LOOKUP-p1:<$exp . <$tail:env>>

>]

<
<

<>»

and [MKENV] =

[A[formals actuals env].
if : <nil? : actuals

env
<
<

<<head : formals . head:actuals>
MKENV:<tail:formals .

<tail:actuals env>>> <»>
>]

[EVAL-p1] is strict only in its first argument, and [APPLY-p1] is strict only

~nits first two arguments. [LOOKUP-pi] is strict in all of its arguments. [MKENV]

Is never reached by the propagation of a strict pattern, so it remains unchanged.

Se t• c Ion 2.6: Representation of J_ p and pattern .fixed points

The equations shown here are not directly executable with conventional

binding mechanisms. For example, in analyzing the expression

[(fix : [f An. f:n]) :3]

the compiler would find within equation (C 9) that rec-pis bound to "the value

~f rec-p" and loop indefinitely. Actually rec-p = 1-p, but conventional bind­

ing machinery denies us the ability to detect this case. However, the compiler

maintains a table of pattern bindings, permitting it to detect such a binding.

Since only rational patterns arise here, every potential divergence manifests itself

b

41

in such a cycle. Therefore, any binding that would diverge because of indirect

self-dependence must cycle through some binding in the table. It is the second

visit to such an entry in the table (of bounded size) which determines that the

value of rec-pis J.p .

The fixed points of synthesized patterns are constructed using the following

fiz equation, which corresponds to (C 9) as follows:

C[(fix:[f Aid . body]) : e] a·trpt=

[(fix: [f/o:·tr Aid. bodyi]):ei] 0:·7r p4 t
where

[bodyi] et1 ·tr1 PI t1 = C [body] et·tr P2 t ·

{

([(fix : [f Aid. body])] ,pa,l,fix),
P2 =Ai. ([[]] ,J. , O,lambda),

pi,

pa = Apat { rec-p if pat = a·tr;

· unbound otherwise;

p3 =Ai.{pi, ifi= [id] or i= [f];
PI i, otherwise;

rec-p = (P1 [id])l2Jl
~ [ei] 0:2·7r2 p4 t2 = C [e] rec-p p3 t.

if i = [f] ;

if i = [id];
otherwise;

(C 9')

The fixed point rec-p is initially represented by a distinguished pattern, inter­

preted as l.p if its value is required before the entire fiz expression has been

compiled; this distinguished pattern is bound to the synthesized pattern in the

table of strictness patterns when compilation of the lambda body is finished.

Since the value of rec-pis often not known when a recursive function application

is compiled, the compiler currently makes another pass to annotate the argument

of this application. (Subsequent passes may further improve the compiled code,

although the examples presented in this thesis have been compiled using only

two passes.)

42

Section 2.1: Compiler safety and termination

2
·1· 1= Weak and strong safety

Any implementation of a lazy list-processing language that improves perfor­

mance only through an analysis of strictness sacrifices some semantic strength

when Printing a list containing 1-s . The problem is that some element of a list

may he ..Ls and it might occur in a position that has been analyzed as "strict."

Thus, an enveloping portion of the list may "diverge" (i.e. evaluate to 1-5), even

though a truly lazy implementation would have no difficulty with the structure

of the envelope. In the simplest case, Landin's ($1.5 . v) (where vis a value in S

higher than 1-5), this divergence causes the printing operation to lose even the

outer left parenthesis, since it is assumed that the printer is as lazy as possible

and will note the fact that the object being printed is a list before attempting

to Print the list 's contents. For this reason, weak safety as defined in Chapter
1

is as much as can be expected in a compiler unless a special analysis is done

in order to establish the order in which elements within a list will be printed, so

that some troublesome cases can be avoided.

2• 7 .2: Stream output

A more complicated case, such as F:($..Ls $1), where F = Aa b.

($b · ($a . ())), would cause the loss of the output prefix '(1 '.

This problem is inherent in streams, but streams create yet another problem.

In some special cases, the printer will not print some prefix of the output even

though none of the elements are 1-s· For example, a stream of natural numbers

can he created by the following expression:

[F:O where F = An. <$n . F:inc:n>]

It can also be created as follows:

[F:O where F = An. <$F:inc:n . n>]

Which, of course, has no printable prefix. Traversal of the stream of naturals con­

structed the second way, with recursion in the left of the resulting list, will cause

the loss of the initial parentheses produced by traversal over a lazy expression.

43

(This could be avoided if the printer pattern was weakened so that it was strict

only in every other head, rather than strict in all heads, but an infinite series of

parentheses appears meaningless enough to 'permit the use of the stronger pat­

tern.) For these reasons, it seems best to define an admissible answer and show

that for such results, the printer produces the same output as the traversal of a
lazy expression.

From this point on, a statement that C is safe means that C is safe when its

interpreted source code produces admissible values. If the user isn't interested in

seeing the preceding elements of a list that contains .lg, or in seeing an infinite

series of left parentheses, then C produces useful results even when its interpreted

source code is not admissible.

2• 7.3. Ad . .bl l · m1ss1 e va ues

Any resulting stream structure, which would be fed to the printer/output

device, must he "maximal" in the domain of streams . .lg cannot occur anywhere

within its result. This stipulation does not require that the result be isolated (e.g.

the stream of ascending natural numbers is maximal, but not isolated.)

In addition, it is desirable to exclude values that contain an infinite series of

left parentheses (assuming the printer makes a preorder traversal). The follow­

ing definition identifies values that contain an infinite unbroken sequence of left
Parentheses.

Definition: A stream sis head-infinite if preorder traversal of s requires traversal

of an infinite number of head fields, without any tail fields, in some sub-stream
of s.

Suppose a preorder traversal of a stream outputs an 'H' every time it tra­

verses a list car, a 'T' every time it traverses a list cdr, and an 'A' each time it

finds an atom. The traversal of a head-infinite stream would eventually produce
an· fi in nite sequence of 'H's.

Definition: A stream is head-finite if it is not head-infinite.

44

. A stream that is head-finite contains no infinite sequence of left parentheses;
If J_s do 't . .

esn occur m the stream, then the prmter must eventually make progress

and produce output during its traversal of the value produced by interpretation
of the c .1 , .

ompI er s obJect code.

Definition: An admiJJib/e value is maximal in S and head-finite.

This definition permits certain kinds of infinite lists to appear in the head

of a list, unlike the previous definition [12] which, as Wadler [39] pointed out,
excludes them!

Theorem 2 1 Th . . • : . e compiler preserves meanmg.

Outline f f: · d · I r. o proo : Strictness patterns are propagate m a eitmost-outermost

manner' so that by structural induction over the compiler rules a strictness pat­

tern will be compiled with the appropriate expression. •

Corollary: In itJ preorder traverJal of a program 1J result, a printer proceeds ex-

actly as fi · t · · · b · t d h "t · ar m erpretmg Jource code as interpreting o '}ec co e w en z prints an
admissible value.

2.1.4. T . . · errn1nat1on

Strictness patterns can be represented by graphs of list structures suggested

by their notation (angle brackets become parentheses, J_ p and $ become <lis­
ting · h

Uis ed tokens). All finite patterns can thus be represented by finite graphs.
lnfinit l . · d · fi ·t e eye ic patterns contain only firute patterns an one or more m m e repe-

titio f · Th t•t· ·th · h ns o either a finite pattern or a cyclic pattern. e repe I ions WI m t ese

Patterns can also be represented by a cyclic graph containing a pointer to the

structure representing the repetition. Infinite acyclic patterns contain at least
on · · ·

e infinite pattern that is not cyclic, and so cannot be represented by either
finite Ii or eye c graphs.

Definition: Rational strictness patterns are those patterns that can be repre­

sented by finite graphs.

--..:::::: __ _

45

Lemma 2.2.1: The compiler propagates only rational patterns.

Proof by structural induction on the compiler rules. There exists a finite repre­

sentation for the initial inherited pattern, 7ro. Rules 1-4, 6-8, and 10-12 propagate

a pattern that is at most finitely increased in length. Rule 5 is distributive, and

thus propagates a pattern no longer than that it receives. Rule 9 defines rec-p

both as the pattern to be finally synthesized by the compilation of the fiz ex­

pression and as the synthesized pattern to be passed up during compilation of a

recursive call. Thus rec-p may be written as the join (or meet) of rec-p (inherited

by the local lambda variable during compilation of a recursive call) and a pat­

tern 7r inherited by the other instances of the local lambda variable within the

fi;r; expression, or the rational expression

fiz A rec-p. 11" U rec-p .

0

Lemma 2.2.2: The compiler executes a finite number of rules.

Proof: Rules 1 through 10 recursively invoke the compiler on proper subexpres­

sions or not at all. A simple induction on the structure of the expression shows

that it terminates in a finite number of steps. Rules 11 and 12 decrement the

resource to limit the possible expansion of the source code. Thus the compiler

applies the rules finitely often. 0

Theorem 2.2: The compiler terminates.

Proof: Finite cyclic graphs may be compared or combined in finite time. Thus,

meet, join, and environment-lookup all terminate. By Lemmas 2.2.1 and 2.2.2,

the compiler terminates. •

46

Chapter 3: C is safe with respect to an instrumented interpreter I

This chapter shows that C is safe relative to a series of rules specifying the

behavior of an interpreter I which is strict and which derives its lazy semantics

from a lazy cons Lll1.

Section 3.1: Outline of approach

An abstract machine, or instrumented interpreter (composed with a printer),

is postulated that associates the interpretation of an expression with a stream

of patterns representing the successive demand made upon its value, displaying

those patterns as it interprets the code. The compilation of each piece of code

is then proven to inherit a pattern no higher in P than the one displayed as the

code was interpreted. For' example, on page 52, the interpretation of equation (1)

provides a trace of the evaluation of a simple expression; the second column is

the stream of patterns displayed. In many cases, the pattern propagated by the

compiler is far below that displayed by the interpreter because all cyclic patterns

are forced to be no higher than the printer pattern 7ro in the lattice of strictness

patterns. In fact, the equations presented here are even less powerful than they

might otherwise be because all patterns inherited by identifiers, not just cyclic

patterns, are bounded by the printer pattern for the sake of simplicity. This

bound can easily be relaxed in future compilers.

The proof is a straightforward structural induction over the compiler rules,

complicated only by the interpreter axioms, presented in Section 3.3.2, the in­

variants needed to constrain the compiler environment, and an extra proof and

lemma needed to show that the compiler handles recursive function applications

correctly. The lemma requires that the compiler be a continuous functional on

CEXP, a special domain of syntactic expressions. CEXP contains only the finite

expressions specified by the grammar EXP , except that it uses the least upper

bound of an infinite chain of code unfoldings to represent a recursive function def­

inition, rather than the finite fi-;r: expression presented in Chapter 2. However, the

47

structural induction deals only with finite approximations to the infinite program

represented by this least upper bound, not to the non-isolated bound itself.

The following notation is used in several sections of this chapter.

If a syntactic expression [e'] is a subexpression of another expression [e],

then this relationship is denoted as [e'] E [e].

[e] [n] is the nth character in the string of characters, excluding strictness

marks, that form [e] . Strictness marks are decorations on characters, and

cannot be indexed. The predicate (Marked? [e] [n]) indicates whether a

character is decorated with a strictness mark.

Strictness patterns may be partitioned into two sets- those which contain

strict marks and those which do not. ($ E a·7r) identifies patterns that do

contain a strictness mark.

J_S E x denotes a value that either is J_S, or contains J_S as a component.

In other words, z contains J_S = J_S E x.

Section 3.2: C is monotonic and continuous

CEXP is a domain of syntactic expressions with the following structure:

Target code has at least as many strictness marks as source code, so it is no

lower than the corresponding source code, and

A recursive function definition is represented as a chain of successive finite

unfoldings of that expression.

The function U producing successive unfoldings of a recursive function def­

inition is defined as

U : INT x EXP -+ EXP

where

U 0 [(fix: [f Aid. body])] [Aid. bottom] .

48

Un+l [(fix:[f .Aid . body])]= [.Aid. body']

where [body] 1 [body] [(Un [(fix: [f .Aid. body])])/ [f]].

For example,

U 1 [(fix : [f .Al . <head:l . f:tail:l>])]

[.Al . <head:l . (.Al. bottom):tail:l>]

U 2 [(fix: [f Al. <head:l . f:tail:l>J)]

[.Al. <head:l . (.Al. <head:l . (.Al . bottom):tail:l>):tail:l>]

U n [(fix: [f .Aid. body])] is frequently written as

Un [(fix:[f Aid. body])].

More formally, CEXP is ordered as follows:

V [E], [E'] E EXP -{[(fix :[idl .A id2. el]):e2]}
[E] C [E'] {:::::>

([E] [t:/$] = [E'] [t:/$]) &
(Vs such that 0 < s :S /[E]I, (Marked? [E][n]) ==} (Marked? [E'][n])

v

:3 [exp] ,j, k such that [exp] E EXP, 0 :S j :S k,
[E] = [(Uj [exp]): e2] and [E'] = [(U1c [exp]): e2]

(A similar unfolding function can be defined for data-recursive definitions, but

since such expressions do not yield synthesized patterns, they are not interesting

enough to be discussed further here).

49

Theorem 3.1: C: D---+ Dis monotonic and continuous.

Proof: Dis now defined as CEXP x PAT x ENV x INT . BEXP, which

contains syntactic expressions bound to a particular variable during compilation,

is redefined to contain the least upper bound of a chain of approximations to a

recursive function definition, rather than the finite fix expression given in Chapter

2.

C is shown to be monotonic and continuous on each of C's four arguments,

if the other arguments are held constant.

Lemma 3.1.1: C is monotonic and continuous in its first argument.

Proof: The compiler adds or verifies the same number of strictness marks when

it is given two expressions which are identical, except that one contains strictness

marks not present in the other. An approximation contains no more strictness

marks, when compiled, than a higher approximation. Thus, the compiler pre­

serves the relative positions of elements in its domain, and so is monotonic.

Vi> 0, (C [e] i a·7r p i)ll ~ (C [(U~ 1 [e]i)] a·7r P i)ll

as C is monotonic in its first argument. Thus

LJ:1 ((C [e]i a·7r p i)ll) ~ (C [(U~ 1 [e]i)] a·7r p i)ll,

as u:l ((c [e]i a·7r p [,)ll) is the least upper bound for all the (c [e]i a·7r p [,)ll,

while (C [(u~ 1 [e] i)] a ·7r p i)ll is an upper bound.

U~1 [e]i ~ LJ:
1
(c [e]i a·7r p i)ll, as C does not remove strictness marks.

(C [(U~1 [e]i)] a·7r p i)ll ~ (C(LJ:1 ((C [e]i a·7r p i)ll)) a·7r p i)ll,

as C is monotonic in its first argument . LJ:1 ((C [e]i a·7r p i)ll) is a fixed point

for C's first argument, since the compiler does not derive any new information

from the marked code that would allow it to introduce a new strictness mark

or unfolding, and simply verifies the marks already present (strictness marks are

idempote t · .1 d ssi'ons as well as strictness patterns). Thus n in comp1 e expre g [(LJ~ 1 [e]i)] a·7r P i)ll ~ LJ:i ((C [e]i a·7r p i)ll)

50

Lemma 3.1.2: C is monotonic and continuous in its second argument.

Proof: V [exp] a·7r pl, (C [exp] a·7r p l)l2l1 = a·7r,

so C is trivially monotonic and continuous in its second argument. D

Lemma 3.1.3: C is monotonic and continuous in its third argument.

Proof: It is assumed that the environments being considered are consistent

with the expressions being compiled; for example, they are defined upon all free

variables in [e] and their definition is consistent with their use.

The domains of integers and tags stored in environment tuples are flat. The

infinite chain representing a recursive function definition is only copied, and so

does not change during a particular compilation. Therefore, the only interesting

ordering is that produced by strictness patterns.

The compiler successively combines a fixed set of patterns determined by

the compilation of [e] with a·7r, with the inherited patterns for a given variable

in some Pi and Pi+l, Pi ~ Pi+l, in a chain of i environments thus preserving

their relative ordering. (Patterns may also depend upon other inherited patterns

present in an environment, but this still preserves the ordering.) A similar argu­

ment shows that the relationship between environments ordered by the pattern

function, pa, is also preserved.

The function pa is simply a bookkeeping mechanism necessary to a compiler

that processes a finite representation of a fiz expression; since the compiler dis­

cussed here processes an infinite piece of code, only patterns inherited by lambda

bound variables need now be considered.

(C [e] a·7r (Ui:1 p;) l)l2l2l1 ~ LJ:1 ((C [e] a·7r Pi l)l2l2l1)

by an argument similar to that of Lemma 3.1.1.

LJ:1 ((C [e] a·7r Pi l)l2l2l1) ~ (C [e] a·7r (Ui: 1Pi) l)l2l2l1

by the following argument, initially. similar to that of Lemma 3.1.1, smce

C only maintains or adds information to an environment. To see that

LJ:
1
((C [e] a·7r Pi l)l2l2l1) is a fixed point for C, note again that the

compiler only maintains or adds information to an environment, so it is only

51

necessary t h . . 0 s ow that the compiler does not produce an environment higher
after com "Ii

PI ng an expression with u:1((C [e] a·11" Pi 1,)121211). The only
Wa .

y in which the compiler can add new information to this environment is by

Propagating 0'.·7r through the analysis of [e]. Let a be the combination of meets
and joins "fi d .

spec1 e by the compiler rules of all the patterns inherited by instances
of a ·

given variable, [id], during the compilation of [e] with 0'.·1!".

Let the pattern already initially present in Pi, (Pi [id])1211, be bi. Then

~(C [e] O'.·?r Pi 1,)121211) [id])1211 is a U bi. Since a U U~1 bi = LJ:
1

a U bi,

does not add more information to LJ:
1
((C [e] a ·?r Pi l)l2l2l1). 0

Lelllllla 3.1.4: C is monotonic and continuous in its fourth argument.

Proof: V [exp] a·?r p 1,, (C [exp] a·7r p l)12121211 = 1,,

so C is trivially monotonic and continuous in its fourth argument. D
By Lemmas 3.1.1-4, C : D ----+ Dis monotonic and continuous, proving Theorem
3.1..

It is interesting to note that this theorem holds even when there is no finite

resource controlling the number of versions created, and irrational as well as

rational patterns are propagated; of course, under these conditions the compiler

might not terminate.

Section 3.3: I - an interpreter that displays demand patterns

Strictness patterns were introduced earlier so that the compiler could propa­

gate strictness information approximating the behavior of the interpreter. Here,

axioms describing part of the behavior of the interpreter itself are presented. This

interpreter produces an extra result that describes the strictness pattern it used

to evaluate an expression; this result can be regarded as a window through which

Various strictness patterns can be seen as they move by during the interpretation
Process.

The domain equation for this modified interpreter is

1: CEXP x lENV ~VAL x p
where
o.d"1rd E P

52

R E lENV = ID ~ [VAL + unbound]

.Note that the interpreter axioms are written as if its domain equation
specified th di l
1 . C e sp ayed pattern as an argument, as in

. EXPx P x IENV ~VAL

The following example demonstrates the behavior of I:

Whe · t n In erpreting the program

add:<head : <1 2> 3> (1)

f.)oves through steps (i) through (viii) during its interpretation.
(~ ') l[add:<head:<1 . bottom> 3>] fiz>.:rr.$(7r, 7r) R

(~~ .) l[<head:<1 . bottom> 3>] $($j_ ,$($J_ ,j_)) R
iii l[$ (') head:<1 . bottom>] J_ R

(
iv) 1[<1 . bottom>] $($j_ , j_) R
v. 1[1] $J_ R

((v~~ /[bottom] J_ R
vii) /[<3>] $($j_ ,j_) R

(viii) 1[3] $J_ R

3.3 I· N t • • • o ation

Some notation is required when it is necessary to discuss the patterns dis­

played by 1 during a series of steps in the interpretive process, or when a pattern

displayed during the interpretation of a particular expression must be identified.

For example, it is useful to be able to discuss the pattern displayed by the inter­

pretation of [<1 . bottom>] when the entire program being interpreted is (1).

This will be denoted as:

53

[<1 · bottom>] IJ[add:<head:<1 . bottom> 3>] ad·7rd R.

The corre di span ng compiler pattern is written as

[<1 · bottom>] • C [add:<head:<1 . bottom> 3>] a·7r pl.

The compilation of a lambda expression often involves the creation of a series
of e ·

nVJ.ronments, each with a possibly updated entry for the bound variable. In
fact th . .

' ere are at least n new environments created, where n is the number

of references to [id] in the body of the expression. Occasionally, it will be

necessary to discuss the pattern inserted in the environment entry created when

the compiler has just seen the ith instance of this bound variable. This is written
as:

([id] i where 1 ~ i ~ n) • C [exp] a·7r pl.

3·3.2: I t n erpreter axioms

In general, these axioms relate I's behavior on expressions to its behavior on

sub-expressions, rather than specify I completely. I may display one of several

Possible patterns when interpreting a piece of code, even though the resulting

Value will be probed in the same way. For example, the interpretation of the

expression [<1 . 2>] could display the pattern $($.1_ , $_l), or the pattern

$(7ro ' 7ro); it is assumed to make no difference here, since 1 and 2 are atomic.

V [e], ad.1rd, R,
(-Ls rt J[e] l¥d•7rd R) & ($ E l¥d"7rd) ==?

(I[e] ad-1rd R = J[$e] ad·1rd R).

(al)

54

Explanation: The interpreter is strict in the outer structure of any value con­tai .
IUng some inner structure in which it is also strict, since it must traverse the

outer structures to reach the inner ones. For this reason, for all patterns contain­
ing a st . t
t rrc ness mark, the interpreter produces the same result whether or not

he pattern is prefixed by a strictness mark. Since this is the case, the interpreter

will require the outer structure of the resulting value, and so its behavior will
not chang h h . . . al d l e w en t e expression producmg the value is ev uate ear y.

The following five axioms are closely related to the correspondingly num-
bered . .

equations m Chapter 2.

V lE]' O:d ·tra, R, such that [E] = [head:e],
..L} rJ I[head :e] aa·tra R) & ($ E aa·7ra) ==}

([head:e] aa·tra R = J[e] $·($·7ra,J_) R) .

V lE]' ad.7rd, R, such that [E] = [tail: e] ,
..Ls rf I[tail:e] ad'7rd R) & ($ E aa·7ra) ==}

(l[tail : e] ad'7rd R = J[e] $·(1-,$·7ra) R).

(a3)

(a4)

V ~]' ad, a1 ·7r1 , a 2·7r2, R, such that [E] = [<e1 · e2>]' (a5)
(S rJ I [<e1 . e2>] aa·(a1 ·7ri, a2·7r2J R) <==?

(..Ls rJ I[e1] a 1 ·7ri R) & (1-s rj J[e2] a2·7r2 R).

V [E]' O:d·7rd, R , such that [E] = [prim:<e1 e2>]'
(..Ls rf /[prim: <e1 e2>] aa·7ra R) & ($ E aa·7ra)

==> (..Ls rj l[<e1 e2>] $($J_, $($J_, j_))R).

(a6)

55

V [E] , ad·7r d, R, such that [E] = [if: <e1 e2 e3>] ,
(l_s rf- J[if:<e1 e2 e3>] ad·7rd R) & ($ E ad·7rd) ===}

(..Ls rf- J[e1] $..LR) &
(((J[e1] $..LR -1- false) & (..Ls rf. J[e2] ad·7rd R))

v
((J[e1] $..LR =false) & (..Ls rf. J[e3] ad·7rd R))).

(a7)

7 [E]' "d""d, R, such that [E] = [().id. body) :e], (a8)
..Ls rf- ![(Aid . body) :e] ad·7rd R) ===}

(..Ls rf- ![body] ad·7rd R[[e] /[id]])
& (..Ls rf- I[e] (uf=

1
([id] ,1J[(,\id. body) :e] ad·7rd R)) R).

Explanation: If the interpretation of a lambda application doesn't contain ..ls
then the interpretation of the lambda body doesn't contain ..ls and it displays

the o · · al · ngm pattern, ad ·7rd· The interpreter can be thought of operationally

as displaying the appropriate pattern each time it evaluates an instance of the

bound variable, for which [e] is substituted. The patterns displayed during

this di t "b . s r1 ut1on of the evaluation of [e] can also be regarded as one pattern

displayed during only one evaluation of [e] -this one pattern is the least upper

bound· of those displayed when the interpreter evaluated the instances of the

bound . bl var1a e within the lambda body.

V [E]' O'.d·7rd, R, such that [E] = [(fix: [f .Hd . body]) :e]' (a9)

(..Ls rf- ![(fix: [f ,\id. body]):e] O'.d"Tf°d R) =*
(J_S rf- I [body] ad·7r d R[[(fix: [f ,\id. body])] I [f]]) & .
(..lg rf- I[e] ([e] I J[(U~=l (Uu (fix: [f ,\id. body]))): e] O'.d"'1T'd R) R) .

. ::~lanation: If the interpretation of a fix application doesn't co.nta.in 1-5 then

interpretation of the lambda body doesn't contain ..ls and it displays the

56

original tt
pa ern, ad"7rd· In addition, the interpretation of the application ar-

gument does 't .
n contam ..Ls and it displays the least upper bound of all of the Patterns di 1

sp ayed when the interpreter evaluates a possibly infinite number of
Unfoldings f h 0

t e fix expression. ThiJ pattern may be higher than the pattern ac­tually d"
II ZJplayed by the interpreter during any particular application evaluation.

owever "t .
' I Is reasonable to assume that the interpreter displays this pattern after co "d .

nsI enng the following argument:

Assume that an oracle determines the precise number of applications of A

needed by the interpreter, and consider the pattern displayed by the inter­

preter as it evaluates [e]. The least upper bound presented in (a9) is equal
or high · p

er In than this pattern only because it includes patterns that have
been inh "t d L". • d · d . erI e J.rom applications of U that were not mterprete m pro uc-

Ing the final answer. This is distinct from the interpretation of expressions

whose values weren't required, causing the interpreter to display ...L.

Another way of looking at the problem can be shown using the following
e.Jeampie:

[(fix: [f ..\1st.
if:<nil?:lst

nil

<add:<1 head:lst> . f:tail:lst>>]): <1 2 3>]

di The oracle would produce four unfoldings of [f], and the interpreter would
Splay $($

-L, $($..L, $($..L ..L))) when evaluating [<1 2 3>] . If the argument
Were e.:x:t '
in ended to [<1 2 3 4 5 6>], then $($...L, ...L) would become correspond-

th:l~ e.:x:tended to $($..L,$($..L,$($..L,$($..L,..L)))). However, no harm is done if

b Interpreter is said to display this pattern when the argument was [<l 2 3>]

ecause there is no more structure left to be made strict after the 3 has been seen.

57

V ~], Q~d~·7r:--R-:-~~~~~~~~~~~~~~~~~
(..Ls rtl[t~~-' such that [E] = [fix:[f eJ], (alO)

(..L · [f e]] ad·7rd R) ===}

S rt I [e] ad·7rd R[[fix: [f eJ] / [f] J).

EJcplanation· If th .
data st • e mterpretation of a data recursion, or recursively defined

ructure do ' .
doesn't ' esn t conta.m ..Ls, then the interpretation of the structure itself

contain ..Ls and the pattern it displays is the same as the original.

V ~], ad-.1r---R~~~~~~~~~~~~~~~~~~_,
(..Ls rt![~' 'such that [E] = [f:e], (all)

3 f. e] ad·7rd R) ===}

(..L [E] such that ((R [f]) = [(fix: [f Aid. body])] = E) &
S rtl[e] ([e]1l[(U~1 (Uu(fix:[f Aid. body]))):e] ad·7rdR)R).

tJcpianati
then the . on: If the interpretation of a function application doesn't contain ..ls,
then d . interpreter doesn't contain ..Ls when evaluating the argument, and it

isplays a t .
When th . pa tern that is the least upper bound of the patterns displayed

e interp t re er evaluates the lambda expression bound to f.

l'heoreni 3.2:
C is safe with respect to I

h 'I'he Proof is t ·1 ul · h · d t• .Ypoth . as ructural induction on the comp1 err es, wit an m uc ion
es1s whi h . to th c relates the interpretation of the code produced by the compiler

e interpret t. T a ion of the source code.
~~~t· . a:nd c Ion hypothesis is that interpretation of the compiler source code 

compiler b . 
_ . 0 Ject code produce equal values when: 

interpret t. _ a. Ion of the source code produces a value that doesn't contain ..ls 
the com ·1 . . . . 

PI e-time environment satisfies certam constramts, and 



58 

- the comp"1 t" . . 1 
a 10n inherits a pattern that is at most equal to the pattern dis-

played by the interpreter. 

(Assume for the purposes of simplifying the proof that all variable names 
are unique.) 

The formal . d . . . 
in uctive hypothesis 1s: 

'V [ex n 
P11' o:d.1rd, 0:·1r P /, R R' 

su h h ' ' ' ' ' 
c t at [exp] E CEXP, a ·7r, ad ·7rd E P, p E ENV, 
1, E INT, R, R' E IENV and Equivalently-eztended (p, R, R') 

let [exp'] a'·7r' p' 1, 1 be C [exp] a·7r p 1, in 

Safe-pat (o:·7r,o:d·7rd) & Safe-comp-env (p) & (.ls rt /[exp] ad"7rd R) 
::::::::::;.. 

(/[exp] o:d"1rd R =/[exp'] ad·7rd R') & Safe-comp-env (p') 

In the following definitions, dom J = {[id] : JD/ f [id] =I= unbound}. Cyclic 
Patterns . . . 

are non-isolated elements in the sub-lattice of fimtely representable ele-
ments in p . . . bl 

' meaning that they are limit points which are fimtely representa e. 

Equiv l 
d a ently-eztended (p R R') = 
onip d ' ' -:::::::: om R = dom R' 

E-;cte · 
d n&zon-of (p,p') = 
om P ~ dom p' 



Safe-pat (a ·1r , ad·1rd) _ 

(Cyclic ad·1rd & a·1r ~ (ad·1rdn1ro)) 
v 

(-iCyclic ad·1rd & a ·1r ~ ad-1rd) 

59 

Cyclic patterns propagated by the compiler must be no higher than the 

printer pattern; all patterns propagated by the compiler must be no higher than 

the corresponding pattern displayed by the interpreter. 

Safe-comp-env (p) = 
Y [ide] · 

(p [ide] ) =unbound v 
((p [ide]) =/=unbound & 

((Binding-type(p [ide]) = lambda) =? Safe-lambda-exp (p, [ide] )) & 

((Binding-type(p [ide]) = fix ) =? Safe-fix-exp (p, [ide] )) ) 

Identifiers may be bound in either a lambda or a fix environment; 

the compiler forms each environment entry assuming only these cases ex­

ist. The syntactic expressions containing an identifier are [ Oid · body) : e] ' 

[Cfix:[f Aid. body]):e], [fix:[id eJ], [f:e] and [id] . An environment 

must be shown to be safe whenever the compiler creates a new identifier binding. 



Safe-lambda-exp (p, [ide]) = 
y R a ' ·7r,ad·7rd /., p' 

such th ' ' E _at Safe-pat (a·7r,ad·11"d), 
quivalently-extended (p' R) 

and E ' ' xtension-of (p, p') 

60 

y [E] such that [E] = [ (,Aide. body) : e] 

pa C (( [ide] n where 1 ~ i ~ n) • C [E] a·11" p' 1.,) C 

(u~1 ( [ide] i •I[E] ad·11"d R)) 

P ide]) = (binding,pa,O,b-type) Where ( [· 

If the identifier [ide] is bound in a lambda environment, then the compiler 

environm t . . en created when the nth instance of [ide] was compiled durmg the 

com ·1 th pi ation of [body] contains an inherited pattern which must be no higher 

an the pattern displayed by the interpreter when it interprets the application 

of the I ambda expression to [e] . 



Safe-fix-exp (p, [ide]) 

V R, a·7r, ad·-n:d, l, p' 
such t~at Safe-pat (a·7r,ad·7rd), 

Equivalently-extended (p', R), 
ExtenJion-of (p, p') 

61 

V [E] such that [E] = [(fix: [ide exp]) : e] 

((pa a·7r) C: [e] •I[E] ad·7rd R) 
& 

V [E] such that [E] = [ ide: e'] 
((pa a·7r) C: [e'] IJ[E] ad·7rd R) 
& 

V [E] such that [E] = { [fix: [ide exp]] , [ ide] } 

a·7r C: ad·7rd 

where (p [ide] ) = (binding, pa, v-count, b-type) 

If the identifier is bound in a fix environment, then it either represents a 

function d · h th "t · · all or a ata structure, depending upon w e er 1 origin y appeared in 

[(fix:[f Aid. body]):e] or [fix:[id eJ]. !fit represents a function [f], 

then for every safe pattern inherited by the compilation of an application of 

[f]' the environment must be shown to contain a safe synthesized pattern that 

can be inherited by the compilation of the application argument. If the identifier 

repre t . . 1 sen s a data structure, then no synthesized pattern is mvo ved, and the given 

safe relationship between the compiler pattern a·11" and the interpreter's displayed 

pattern ad·7r dis enough to show that recursively defined data structures are safely 

compiled. 

Base case: 

Assume that the entire program being compiled does not represent a value 

that contains ..lg. The compiler initially inherits the printer pattern, while the 



62 

interpreter initially displays fiz>..7r.$(7r, 7r), a pattern which is above the printer 

pattern 7ro in P. The initial compiler and interpreter environments contain no 

entries. 

C [const] 0::·7r pl= [$const] a·7r pl. 

Case 1: [exp] = [const] 

G • I iven: ad·7rd, R, R such that 

i) ..Lg r/. I[const] ad·7rd R 

ii) Safe-pat (a·7r,ad·7rd) 

iii) Safe-comp-env (p) 

iv) Equivalently-extended (p, R, R') 

Need to show: 

(I[const] ad·7rd R = J[$const] ad·7rd R') & Safe-comp-env (p) 

Proof: 

(C 1) 

The interpretation of a constant always terminates, so marking a constant is 

always safe. 

(I[const] ad·1T"d R = J[$const] ad·7rd R') & Safe-comp-env (p) 

By iii) and (C 1). 0 



63 

C [e] 0:·7r P i , where ($ rf. o:·7r) = 

[e[[fix:[id expJ]/[e']J] o:·7rpl 
where [fix: [id exp]] = 

(Binding (p [ e'] ) ) 

if 3 [e'] E [e] such that [e'] EID 
& (Binding-type (p [e'] )) =fix , 

[e[[(fix:[f .Aid. body]):exp]/[e']J] a·7rpl 

where [(fix: [f .Aid. body])] = 
(Binding (p [ f] ) ) 

if 3 [e'] E [e] such that [e'] = [f:exp] 
& (Binding-type (p [f] )) =fix , 

[e] 0: ·7r pl 
otherwise. 

Case 2 [ . : exp] = [e] where ($ rf. a·7r) 

Chven· , . • 0:d·7rd, R, R such that 
i) J_ d S ')!: I[e] o:d·7rd R 
ii) Sa-te- ( 
••• 'J' pat 0:·7r,o:d·7rd) 

~11) Safe-comp-env (p) 
iv) E . quivalently-extended (p, RR') 

(C 2) 

Need to show each of A, B and C below, which are exhaustive: 

(l[e] O:d ·7rd R = J[e[ [:fix: [id exp]]/ [e'] J] ad·1f'd R') & Safe-comp-env(p)(A) 

if 3 [e'] E [e] such that [e'] EID 

& (Binding-type (p [e'] )) =fix 

(I[e] O:d·7rd R = I[e [[(:fix: [:f .Aid. body]) : exp]/ [e'] J] ad·7rd R') (B) 

& Safi e-comp-env (p) 



64 

if :3 [e'] E [e] such that [e'] = [f: exp] 

& (Binding-type (p [f] )) =fix , 

(J[e] O'.d·7rd R = I[e] ad·11"d R') & Safe-comp-env (p) 

otherwise 

Case 2.A 

(p [ e] )ll = [fix: [f exp]] 

Equivalently-extended (p, R, R') 

(/[e] ad"11"d R = I[e[ [fix: [id expJ] / [e'] J] ad·1rd R') 

& Safe-comp-env (p) 

By (C 2). 

By iv). 

By (1), (2), and iii). 

Case 2.B 

(p [e] )ll = [(fix:[£ ).id. body])] 
By (C 2). 

Equivalently-extended (p, R, R') 
By iv). 

(I [e] O'.d·7rd R =I [e [ [(fix: [:f .Aid. body]): exp]/ [e']]] ad-11"d R') 

& Safe-comp-env (p) 
By (1), (2), substitution and iii). 

Case 2.C 

(I[e] O:d·11"d R = I[e] O'.d·7rd R') & Safe-comp-env (p) 
By iii). 

(C) 

(1) 

(2) 

(1) 

(2) 



65 

C[head:e] a·?T'"pi= [head:ei] a·7rp1 l 

where [ei] a1 ·7T'"1 P1 i1 = C [e] a·(a·?T'", ..L) pi. 

Case 3: [exp] = [head: e] 

Given: ad"7T'"d, R, R' such that 

i) -Ls tJ I[head:e] ad·7T'"dR 

ii) Safe-pat ( a ·?T'", ad-7rd) 

~ii) Safe-comp-env (p) 
iv) E · quivalently-extended (p, R, R') 

Need to show: 

(C 3) 

(J[head:e] ad"1rd R = J[head:ei] ad·'Trd R') & Safe-comp-env (p1) 

Proof: 

The interpreter and compiler patterns may or may not contain$. However 

one case,($ tJ ad"7rd) & ($ E a·7r), is excluded by ii). Thus there are the following 

three th 0 er cases: 

Case 3.1) ($ tJ ad"7rd) & ($ tJ a·7r) See Case 2). 

Case 3.2) ($ E ad·7rd) & ($ tJ a·7r) See Case 2). 

Case 3 3) ($ · E ad"7rd) & ($ E a ·7r) 
Steps (1) through (5) justify the use of the induction hypothesis (IH) in (6). 

Steps (2) through (5) show that the corresponding substructures of the compiler 

and· interpreter patterns in ( C 2), line 2, are safe. 

(1) 

By i) and a3). 

(2) 

By ii). 



66 

Safe-pat (1-, 1-) (3) 

Safe-pat ( (a·7r, 1-), ($7rd, 1-)) (4) 

By (Z), (3) and defn. of P. 

Safe-pat ( a·(a·7r, 1-), $($7rd, 1-)) (5) 

By ( 4) and defn. of P. 

R') & Safe-comp-env (P1 ). 
(I [eJ "d"7rd R = I [ •1] "d""d By {I), (5), iii) and IH. 

(6) 

By (6) and substitution. D 



67 

(C 4) 

[ [ · 1 ] a·7r p1 L C tail:e] a·7r p L = tai :e1 J_ a·7r) p L. 
where [ei] a

1
·7ri p

1 
Li= C [e] a·( ' '-:;__::__:__ __________ _ 

Case 4: [exp] = [tail: e] 

Given: o:d·7rd, R, R' such that 

i) J_S rt I [tail: e] o:d·7rdR 

ii) Safe-pat (a·7r,ad·1rd) 

iii) Safe-comp-env (p) 

iv) Equivalently-extended (p, R, R') 

Need to show: ') & Safe-comp-env (pi) 
(I[tail:e] ad·1rd R = J[tail:e1] ad·1rd R 

Proof: 

Similar to that of Case 3. D 



,-

68 

C[<e1. e2>] 0:·7rpl= 

{
C[<e1. e2>] a·7!"p1,,where($r:J.a·7!") 
[<a1·e11. 0:2·022>] a·7rp21,, 

where 
0'.1 ·7r1 = ( 7r 11) 
0'.2 ·7r2 = ( 7r 12) 
[e1i] a1 ·7!"1 P1 l1 = C [e1] (7r1l) p 1,; 

[e22] a2 ·7!"2 P2 l2 = C [e2] (71"12) P1 1,. 

Case 5: [exp] = [<e1 . e2>] 

G • I iven: ad ·7rd, R, R such that 

i) J_S r:f. I[<e1 . e2>] ad·1l"dR 

ii) Safe-pat (a·7r,ad ·1l"d) 

iii) Safe-comp-env (p) 

iv) Equivalently-extended (p, R, R') 

Need to show: 

if ( $ r:J. 7!"); 
otherwise; 

(C 5) 

Case 2) shows that the induction hypothesis is maintained when ($ r:J. 7!") . 

Otherwise, when ($ E o:·11"), must show that: 

(I[<e1 . e2>] a _d·1l"d R = J[<a1·e1
1 

. a2·e2
2

>] ad·1l"d R') 

& Safe-comp-env (p2) 

Proof: 
Since it is known that ($ E 11"), it is also known that ($ E a·7r), and by ii), 

($ E O'.d·7rd)· Thus there is only one case: 

Case 5.1) ($ E O'.d·7l"d) & ($ E a·11") 
Steps (1) and (2) justify the use of the induction hypothesis in (3). Steps 

(4) and (5) justify the use of the induction hypothesis in (6). 

J_s r:J. I[e1] ad1 ·1l"d1 R (1) 
By a5) and i). 



69 

Safe-pat (7rll,ad1·7rd1) (2) 

By ii) 

(J[e1] ad1·7rd1 R = J[e1i] ad1·7rd1 R) 

& Safe-comp-env (P1) (3) 

By (1), (2), iii) and IH. 

_Ls ti. J[e2] ad2·1l"d2 R (4) 

By a5) and i). 

Safe-pat ( 71" 12, ad2 ·11" d2) (5) 

By ii) 

(I [ e2] ad2 ·7rd2 R = J[e22] ad2 ·11" d2 R') 

& Safe (p2) (6) 

By ( 4), (5), (3) and IR. 

I[<e1 . e2>] ad·(a1 ·7ri, a2·7r2) R 

I[<a1·ei1 . a2·e22>] O:'.d·(a1·7ri,a2·7r2) R' 

By (3), (6), substitution and al). D 



70 

C [prim: <e1 e2>] a·7r pl= [prim: e1] a·7r p1 l 
where 

(C 6) 

[ ei] a1 ·7r1 P1 l1 = C [ <e1 e2>] ($1- , $( $1-, 1-)) p l. 

Case 6: [exp] = [arith-prim:<e1 e2>] 

Given: ad·1T" d, R, R' such that 

i) ..Ls rf. I[arith-prim: <e1 e2>] ad-7rdR 

ii) Safe-pat ( a·1T", ad ·7rd) 

iii) Safe-comp-env (p) 

iv) Equivalently-eztended (p, R, R') 

Need to show: 

(I [arith-prim: <e1 e2>] ad·1T"d R =I [ari th-prim: ei] ad·1T"d R') 

& Safe-comp-env (p1) 

Proof: 

As shown in Case 3), there are three possible cases. 

Case 6.1) ($ rf_ ad·7rd) & ($ ti a·7r)i See Case 2). 

Case 6.2) ($ E ad·7rd) & ($ ti a·7r)i See Case 2). 

Case 6.3) ($ E ad·7rd) & ($ E a·7r) 

Steps (1) and (2) justify the use of the induction hypothesis in (3) . 

..Ls rf. I[<e1 e2>] $($_L,$($_L,_L)) R (1) 

Safe-pat ( ($..L, $($_L, _L) ), $($_L, $($_L, _L))) 

(J[<e1 e2>] ad·1T"d R = J[ei] <Xd"7rd R') 

& Safe-comp-env (pi) 

By i) and a6). 

By defn. of P 

By (1), (2), iii) and IH. 

I[arith-prim: <ei e2>] ad·1T'd R = I[arith-prim: ei] ad·1T"d R' 

(2) 

(3) 



71 

By (3) and substitution. D 



72 

Case 7. [ ] G· · exp = [if:<e1 e2 e3>] 
iv en· , • ad-1rd R R h th t ") , , sue a 

~-..Ls ti. I[if : <e1 e2 e3>] aa·1ra R 
u)Safe ( ... -pat a ·7r,aa·1ra) 
iu )Sa-1 . :1e -comp-env (p) 
iv) E . quivalently-eztended (p, R, R') 

Need t o show: 
(J[if :<e1 e2 e3>J .,,,.,,, R = J[if:<$e11 e22 e3,>] a•·"d R') & 

Safe -comp-env (p4) 

: s shown in Case 3) there are three cases. Proof: A 

Case 7.1) ($ rf. ad·7ra) & ($ rf.' a·7r)i See Case 2). 

Case 7.2) ($ E ad·7rd) & ($ rf. a·7r)i See Case 2). 

Case 7 3) ( · $ E aa·1ra) & ($ E a·7r) 

-

(C 7) 



73 

Steps (1) and (2) justify the use of the induction hypothesis in step (3). Steps 

( 4) and (5) allow us to then show that the compiler's object code will satisfy the 

invariant for all possible values returned by the interpretation of the predicate, in 

steps (6) and (7). Steps (10) through (15) show that the environment invariant, 

Safe-comp-env (p4 , [ide] ) is maintained. 

J_s ti. J[e1] $J_ R 

Safe-pat ($J_, $J_) 

(I [e1] $J_ R =I [ e11] $J_ R') 

& Safe-comp-env (p1) 

By i) and a7). 

By (1), (2), iii) and IR. 

(1) 

(2) 

(3) 

J_s ti. I[e2] o:d·7rd R ==> 

((J[e2] o:d·7rd R = J[e22] O:d·7rd R') & Safe-comp-env (p2)) (4) 

By ii), (3) and IR . 

.ls ti. I[e3] o:d·7rd R ==> 

((J[e3] o:d·7rd R = J[e33] ad·7rd R') & Safe-comp-env (p3)) (5) 

By ii), (3) and IR. 

I[e1] $J_ R i= false ==> (J[e2] O:d·7rd R = J[e22] 0:d·7rd R') (6) 
By i), a7) and ( 4). 

I[e1] $J_ R =false ==> (J[e3] ad·7rd R = J[e33] ad·7rd R') (7) 
By i), a7) and (5). 

I[if < R --I[1'f:<$e11 e22 e33> 11 
ad"7rd R' (8) : e1 e2 e3>] ad·7rd JJ 

By (3), (6), (7), al) and substitution. 



74 

b-type E {lambda, fix } (9) 

By a7). 

b-type - lambda (10) 

Given. 

(pa2npa3) [:; pa2 & (pa
2
npa

3
) [:; pa3 (11) 

By (C 7). 

V [ide] 

(p4 [ide]) -/=unbound :=;,. 

((Binding-type (p4 [ide])) =lambda) :=;,. Safe-lambda-exp (p4, [ide] )(12) 

By (4), (5),(10) and (11). 

b-type = fix (13) 

Given. 

V 0:·7rinh E dom pa
4 

0:•7rinh E dmn pa2 V a·'Trinh E dorn pa3 (14) 

By (C 7). 

V [ide] 

(P4 [ide]) -/=unbound :=;,. 

((Binding-type (p
4 

[ide] )) =fix ) =? Safe-fix-exp (p4, [ide]) (15) 
By ( 4), (5), (13) and (14). 

Safe-comp-env (p4) 
By (12) and (15). D 



C [C.Xid . body): e] 0'.·7r p 1, = 
[ C.Xid. body1 ) : ei] a·7r p4 1, 

where 

75 

[bodyi] 0:1 ·7r1 P 1 i1 = C [body] a·?T" P2 l 

p
2 

= .Xi. { ( [ [] ] , ..l, 0, lambda), if i = [id]; 
p i, otherwise; 

p3 = .Xi. {pi, if i = [id] j 

P1 i, otherwise; 
[ei] 0:2·7r2 p4 i2 = C [e] (Pat-fun (p1 [id])) p3 i . 

Case 8: [exp] = [(.Xid. body) :e] 

Given: O'.d·7rd, R, R' such that 

i)..Ls f- ![().id. body):e] ad·7rd R 

ii)Safe-pat ( 0'.·7r, O'.d·7rd) 

iii)Safe-comp-env (p) 

1v)E · 1 ' quiva ently-eztended (p, R, R ) 

Need to show: 

(I[(.Xid. body):e] O'.d ·7rdR =l[(.Xid. body1):ei] O'.d 0 7rdR') 

& 

Safe-comp-env (p4) 

Proof: 

As shown in Case 3), there are three cases. 

Case 8.1) ($ f_ ad·7rd) & ($ rt a·11")i See Case 2) . 

Case 8.2) ($ E ad·7rd) & ($ rt a·11"); See Case 2). 

Case 8.3) ($ E ad·7rd) & ($ E a·11") 

(C 8) 

Steps (1) through (7), following, justify the use of the induction hypothesis 

Which shows that the compilation of the lambda body is safe. Steps (2) through 

(7) show that the environment given to the compilation of the lambda body is 



76 

safe. Steps (8) through (10) justify the use of the induction hypothesis, showing 

that the compilation of the argument [e] is safe. 

J_S ti. ![body] o:d·7rd R( [e] /[id] 1 (1) 

By i) and a8) 

(p2 [id]) i= unbound (2) 

By (C 8). 

b-type =lambda (3) 

Given. 

V a ·71" E P ..l C a ·71" ' -
(4) 

By defn. of _l_. 

Safe-lambda-exp (p2, [id]) (5) 

By (2), (3), (4) and iii). 

V [ide] 

(P2 [ide]) i= unbound ==> 
((Binding-type (p2 [ide])) =lambda) ~Safe-lambda-exp (p2, [ide]) (6) 

By iii) and (5). 

Safe-comp-env (P2) (7) 
By iii) and (6). 

(![body] O'.d·7rd R( [e] /[id] 1 = J[body1] ad·'Trd R'[ [e] /[id])) 
& 

Safe-comp-env (P1) (8) 
By (1 ), ii), (7) and IH . 

..Ls 't. I[e] (ui=i( [id] i•J[(.Xid.body) :e] ad·'Trd R)) R (9) 
By i) and a8). 

Safe-comp-env (p3) 

(I[e] (Ui::1( [id] i•J[(>.id. body) :e] ad·1rd R)) R = 

I[e1] (Ui::1( [id] i•J[(>.id . body) :ei] ad·1rd R')) R') 

& Safe-comp-env (p4 ) 

(10) 

By iii) and (8). 

(11) 



77 

By (9), (8), (10) and IH. 

I[(,\id. bo ) dy :e] ad"7rd R = J[(>.id. body1) :ei] ad·1fd R' 
By (8), (10) and substitution. D 



78 

C [(fix· [f .X . [.( . id. body]): e] a·Tr p L = 
where fix: [f la·71'" .\id . bodyi]): ei] a·Tr p4 L 

[bodyi] a ·11'" . 1 I ~I L1 = C [body] a·Tr p2 t, 

{ 

([(fix : [f .Aid . body])] ,pa, 1,fix ), if i = [f]; 
P2 === Ai. ( [ [J] , ..l, O, lambda), if i = [id]; 

P i, otherwise; 

pa === Apat. { rec-p if pat = a·Tr; 
unbound otherwise; 

P3 === Ai. {Pi,. if i = [id] or i = [f]; 
rec- _ P1 i, otherwise; 

p --( [e] • C [(U~= 1 (Uu (fix: [f .Xid. body]))):e] a ·Tr p L 

[
e ] - P1 [id] )1211 

1 0'.2·7r 2 P4 L2 = C [e] rec-p p3 t,. 

Case 9. [ G" • expJ = [(fix:[£ ,\id. body]) :eJ 

iven• a i) J.. • d·7rd, R, R' such that 

.. S fl. ![(fix: [f >.i·d ]) ] R 11) S . body : e aa·Tra 

afe-pat ( ••• ) 0:·71'", 0:d·11'"d) 
111 s fi . ) a e-comp-env (p) 
lV E . quivalently-eztended (p, R, R') 

Need t 0 show· 
(I . 

[(fix· [f >. . · id. body]) :e] ad·Trd R -

![(fix · [fl , . & · a·7r Aid. bodyi]) : ed 

(C 9) 

Safe-co mp-env (p4 ) 
fl The case showing that C safely coropi!es recursive functions depends upon 

rst p . roving th t all · f t" d fi ·t· Piled a finite unfolding• of a recursive unc 1on e m 1on are coro-

safely Th. f h · d · h th · 1s makes use of one of the other cases o t e m uction, t e proof 

ess10ns are safely handled. However, the number of such unfoldings 
at A-expr . 

I I 



79 
needed at 
rn b compile-time to produce the final result at run-time is unbounded, and 

ay e infi · 
add ' t• nite if the result is an infinite list. For this reason, the compiler is 

l lOnall 
irn . Y proven safe when it receives the least upper bound of these approx-

ations th 
Thi ' e unfolded equivalent to the finite fiz expression actually compiled. 

de s .least upper hound only exists in a special domain of syntactic expressions 
scribed and used nl · hi h · · 'fi d b th · Ch o Y m t s c apter; it is not spec1 e y e grammar m 
apter 2 whi 

to b ' ch only constructs finite expressions. In Section 3.2, C is shown 
e monotonic d · · · d · hi h th k 't 'bl to an continuous using this omam, w c en ma es I poss1 e 

construct I 
th a emma showing that C produces a synthesized pattern no higher 

an that di 
splayed by I when I evaluates an application of a recursive function. 

Lelll 
llla

3
.2.1: rec-pC[e]IJ[(u~1 (Uu (fix:[f ,\id. body]))):e]ad'1rdR 

Proof: 

rec-p _ [ 
C - e] • C [(U~1 ( Uu (fix: [f ,\id. body]))): e] a·7r PL 

ase 8 h -
he s ows that for any finite unfolding u of [(fix: [f ..\id. body])] , which 

conies a . 

[ 11 
simple lambda expression, 

eJJ • C [(U. 
~ u (fix: [f ..\id. body])):e] a ·tr p L 

[e] I/[( U. . 
It . u (fix: [f ..\id. body])): e] ad·7rd R. 

Is show h 
[ ] n t at for any finite unfolding u, 

~e •C[(Uu (fix:[f ..\id. body])):e] a·7rpL 

[e] • C [(U. 
b u+1 (fi:x::[f ..\id. body])):e] a ·7rpL 
Y 0 hsery' 

ing that the patterns inherited by the compilation of the extra unfolding 
are at least J_ · d b h 'l t' f ' thus preserving the patterns inhente y t e comp1 a ion o u 
Unfold' 

[ 
Ings. A similar observation shows that 

e] If[( ~ Uu (fi:x:: [f ..\id. body])):e] ad·7rd R 

[e] I/ rr( U. 
U. u+1 (fix: [f ..\id. body])):e] ad·7rd R. 

I 
I 
' 

I 
I 
I 



80 

By Theorem 3 1) C . . . al d · , is a continuous function , an so 

C[(U~1(Uu (fix:[f Aid. body]))):e] a·7rpt 

LJ;;:1 (c [(Uu (fix: [f Aid. body])):e] a·11' pi) 
From this 

' 
C [bodyi] a·11' p' l 

-
uoo 

u::::1 (c [body2] Q•7r p' i) 
Where [-\id. bodyi] = [(u~ 1 (Uu (:fix: [:f Aid. body])))] 

[Aid . body2] = [(Uu (:fix: [:f Aid. body]))] 

and 

Pat-fun (P1 [id]) =Pat-fun (p2 [id]) 

Where ( P1 ::::: C [bodyi] a·11' p' t )l2l2ll 

P2 === (LJ:,1 ( C [body2] a·7r p' t) )l2l2ll 
[Aid. body1 ] = [(u~1 (Uu (:fix:[:f Aid. body])))] 

By (c 9), 
[Aid. body2] = [( Uu (fix: [:f Aid. body]))] 

Pat-fun (P1 [id]) = 
[e] • C [(U~1 (Uu (:fi:x:: [:f Aid. body]))):e] a·7r Pi) 

and 

Pat-fun (P2 [id]) = 

ThLJ;;: 1 ( [e] • C [(Uu (fi:x:: [f Aid. body])):e] a·7r Pi) 
us, 

[e] •C[(U~1 (Uu (:fi:x::[:f Aid. body]))):e] a·7rpt) 
::::: 

LJ;;:1 ( [e] • C [(Uu (:fi:x:: [:f Aid. body])):e] a·7r Pi) 

[e] IJ[(u~1(Uu (:fi:x:: [:f Aid. body]))):e] ad·11'd R 



81 

forms an upper bound for the patterns displayed during the interpretation of all 

finite approximations ( unfoldings) of [(fix: [f >.id. body])] , so it must be at 

least as high as [e] • C [(u~= 1 ( Uu (fix: [f >.id. body]))): e] 0::"1i p 1, 

since this is their least upper bound. Thus, 

[e] •C[(u~= 1 (Uu (fix:[f ,\id. body]))):e] 0::"1ipl 

c 

[e] •I[(LJ~ 1 (Uu (fix:[£ >.id. body]))):e] ad'7rd R 

Proof: 

As shown in Case 3), there are three possible cases. 

Case 9.1) ($ rf. ad'7rd) & ($ rf. a·7r); See Case 2). 

Case 9.2) ($ E ad'7rd) & ($ rf. a·7r); See Case 2). 

Case 9.3) ($ E ad'7rd) & ($ E a·7r) 

D 

Steps (1) through (11) justify the use of the induction hypothesis in showing 

that the body of the lambda expression is compiled safely. Steps (2) through 

(11) show that the environment given to the compilation of the lambda body is 

safe. Steps (13) and (14) justify the use of the induction hypothesis in showing 

that the compilation of the application argument [ e] is safe. 

1-s rf. I [body] ad·7r d R[ [(fix: [f >.id. body])] / [f]] (1) 

By i) and a9). 

(P2 [f] ) f. unbound (2) 

By (C 9). 

(Binding-type (p2 [f] )) =fix (3) 

Given. 

Safe-fiz-ezp (p2 , [f] ) (4) 

By (2), (3), ii) and Lemma 3.2.1. 

V [ide] 

(P2 [ide] ) f. unbound ==> 
(Binding-type (p2 [ide] )) =fix ===> Safe-fix-exp (p2, [ide]) (5) 



82 

By ( 4) and iii). 
(6) 

(P2 [id]) -1.. -r- unbound By (C 9). 
(7) 

(Bindin -t 9 ype (P2 [id])) =lambda Given. 

(8) 

y 0'.·7r E p ' ..l c Q:•7r By defn. of J_. 

(9) 

Safe-lambd a-exp (p2 [id] ) By (6), (7) and (8). 

y [ide] 

(P2 [id ] (B ' e ) i= unbound ==> 
inding-t ype (P2 [ide] )) =lambda) 

~Safe-lambda-exp (p2, [ide]) (10) 
By (9) and iii). 

(11) 

Safe-co mp-env (P2) 
(l[bodyJ By (5) and (10). 

![bod ] 0:d·7rd R[[(fix:[f .Aid. body]):e]/[f]) = 

Y1 o:d· R'[ [ & "d (fix: [f I<>-" ,I.id. body1 l) : e J / [f la·?rlll 
(12) 

Safe-co mp-env (pi) 1-s ~ 
1 

I By (1 ), ii), (11) and JH. 

•I I •I If [( U:;"=
1 

( u. (fix: [f ,I.id. body] ) )) : e] a•·" d R) R (13) By i) and a9) 
(14) 

Sa.r. ;e-co mp-env (p3 ) 
I[eJ ( By iii) and (12). 

I[e,J rl •I[(U::"=1 ( u. (fix: [f ,I.id. body] J )):•I a•·"• R) R ~ 
& [el I[ [{U:;"=

1 
( U. (fix: [f la·'lf ,I.id. body1l) )) : •1J a•·"d R') R' 

Sa.r. ;e-co mp-env (P•) (15) 
I[( By (13), LeJilllla 3.2.1), (14) and III. 

fix. [f . >.. d 1 · body]) :e] etd·1f'd R = 



83 

![(fix: [fla:·7r .Aid. bodyi]):ei] ad·1rd R' ) and substitution. D 
By (12), (15 



84 

(C 10) C[fix:[~i·d~~~~~~~~~~~~~~~~~~~~-
where el] ,,.,,. P '= [fix: [idla·11" eil] a ·11" p

3 
i
1 

[ ei] o:1 ·11"1 p I l1 = C [e] a ·7r p2 lj 

P2 == ' · { ( [£ix: [id e]] pa 1 fix ) 
Al. "f . ' ' l l 

• 1 i = [id] ; 
P i, otherwise· , 

pa == .Xp t { 1- "f a . 1 pat = a·7rj 

{ 

.unbound otherwise; 

P3 ==.Xi. pi, . if i = [id] ; 
PI i, otherwise . 

. Case 10• [ 
Gi-ve • • exp] = [fix: [id eJ] 

n. o:d ·7!" R R' i).l d, ' such that 
S f/. I [fix. [. ii) s 

1 
• id e]] ad·7rd R 

aJe-pat ( iii) s 0: ·7r,O:d·7rd) 

afe-co iv) E . mp-env (p) 
quivale ti n y-eztended (p, R, R') 

Need t 

(
I o show: 

[fix: [id & •l J a,.,,., R = I [fix: [idla·11" •ill ad·11"d R') 

Safe-comp-env (p3) 

As show . Case 

10 

nm Case 3), there are three possible cases . 

. 1) ($ f/_ Case 

10 

a,.,,. d) & ($ </. a ·11" ); See Case 2) . 

. 2) ($ E Case 

10 

a,.,,.,) & ($ ¢ a·11"); See Case 2). 

·3) ($ E o:d·7rd) & ($ E a·1r) 
iug t:teps (l) through (7) justify the use of the induction hypothesis in show-

at the · . 
•llvir compilation of [•] is safe. Steps (2) though (7) show that the 

onment . given to the compilation of [e]. 



-Ls~I[e] ad·7rd R[ [e] /[id]] 

(P2 [id]) =J unbound 

(Binding-type (p2 [id])) =fix 

V 0'.·7r E P, ..L C a·7r 

Safe-fiz-ezp (P2 [id] ) ) 

V [ide] 

(P2 [ide]) =J unbound ==> 
(Binding-type (p2 [ide] )) =fix 

Safe-comp-env (p2 ) 

85 

By i) and alO). 

By (C 10). 

Given. 

By defn. of J_ . 

By ( 4) and ii). 

( [ide]) 
Safe-fix-exp p2 d ... ) 

====?- By (2), (3), (5), an 111 • 

By (6) and iii). 

(I[e] ad.7rd R[ [:fix: [id eJ] /[id] J = ] ]) 
J] ; [idla·71'" 1[e1] ad·7rd R'[ [fix: [idla·7r 8 1 

& Safe-comp-env (p1) By (1), ii), (7) and IR. 

. J] ad·71'"d R' . 
I[tix: [id e]] ad·7rd R = J[fix: [1dla·7I'" e1 By (8) and substitution. 

Safe-comp-env (p3) ···)and (8). 0 By 111 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

----· 



86 

C [f:e] a·7r pl= 

{ 

Reached-Limit if (pa a·tr) == unbound & v-count 2: l'. 
Compile-Binding if (pa a ·tr) == unbound & v-count < l, 
Mark-With-Pattern otherwise; 

where( [(fix : [f .Aid. body])] ,pa, v-count,ftx) == p [f]; 

Reached-Limit is [(fix:[£ .Aid.body]) :e] a·tr P 1,; 

Compile-Binding is 
[(fix: [f la·7r .Aid. bodyi]): ei] a ·tr P4 l 

Where 

(C 11) 

[body1] a 1 ·7r1 p1 l 1 = C [body] a·tr P2 l fix ) if i == [£] ; 

{ 

([(fix : [f .Aid . body])] ,pa1,v-count+l, ' 

p
2 

:::: .Ai. ( [ []] , ..l, O, lambda), if i == [id] ; 
otherwise; 

pi, 

pa1 = Apat. { rec-p if pat . a·trj 

pa otherwise; 

PJ :::: .Ai. {Pi, if i = [id] or i == [f]; 
P1 i, otherwise; body] ) ) ) : e] a·7r p l 

rec-p = [e] • C [(U~=l( Uu (fix: [f .Aid. 

:::: (P1 [id] )1211 
[ei] <l'.2 ·7r2 p4 l 2 = C [e] rec-p P3 l 

7ark-With-Pattern is 
fi<l'.·7r: ei] et·7r P1 l 

Where 
[ei] a1 ·7r1 p1 lt = C [e] (pa a·tr) Pl 

Case 11 [ : exp] = [ f : e] 
Gi""Ven· , 

• ad"1r d R R such that 
i) .l ' ' 
.. S rt. f[f:e] ad·1rd R 
11) Sate. ( 
••• J' pat et·7r, ad·7rd) 

111) Safe-comp-env (p) 



87 

iv) E · ') quiva/ently-eztended (p , R, R 

1\:r h · h are exhaustive: "••d to show each of A,B and C.below, w Jc ') (A) 
(l[t :e] o:d"7rd R =/[(fix: [f Aid . body]) :e] ad-7rd R 

& Safe-comp-env (p) 

if (pa O: ·Jr) = unbound & v-count ~ "i 

(l[t :e] o:d "7rd R =/[(fix : [f/a·tr Aid. bodyi]) :e] 

& Safe-comp-env (p4) 
if (pa O:·Jr) = unbound & v-count < "i 

(l[t:e] o:d"7rd R = /[f/a:·tr:ei] etd"7rd R') 

& Safe-comp-env (p1 ), otherwise 

l>i-oof: 

A h ssible cases. ci.s shown in Case 3), there are t ree po 

Case 11.I) ($Ff ad"7rd) & ($Ff a·tr); See Case 2). 

Case 11.2) ($ E O'.d·7rd) & ($ FJ a·tr); See Case 2). 

Case 11.3) ($ E O'.d ·7rd) & ($ E a·tr) There are three cases: 
Case 11.3.A. 

(p [t] )J1 === [(fix: [f Aid.body])] 

E . 
<Juiva/ently-eztended (p, R, R') 

By (C 11). 

By iv). 

(I[ J) ] etd·7rd R) t:e] o:d"7rd R =/[(fix: [f Aid. body :e 

& Safe-comp-env (p) By (l), (2) , and iii). 

(B) 

(C) 

(l) 

(2) 



88 

Case 11.3.B 

The argu . 
then ment Is that for Case 9.3, with one exception. When pat =f. cMr, 

Pai :::: pa h" h . 
' w Ic Is part of the safe environment p. 

Case 11.3.c 

J..s ft I[ n 811 
( [e] 1 1[(U~1 (Uu(fix: [f Aid. body]))):e] ad·1l"d R) R (l) 

I[e] ( [e] If[( oo 
I[e ] Uu==1 ( Uu (fix: [f Aid. body]))): e] ad·1l"d R)R = 

By i) and all). 

1 
( [e] l/[(U~1 ( Uu (fix: [f/a·7r Aid. bodyi] ))) : ei] ad·7rd R')R' 

~ Safe-comp-env (pi) (2) 
Since <l'.·?r h b . . . ft . 

i as een seen before m the compilat10n of the outer x expression 
n Which [ . 

i . f] Was originally bound, (pa a·7r) =f. unbound. Note that the given nval'lant ... ) 
Ill shows that the pattern bound to a·7r in the environment p is safely 

Passed on to 
the compilation of [e]. 

By (I), iii), iii) and IH. 

By (2) and substitution. D 



I 

~ 

89 

c [id] Q•7r p l = 

{ 

V . "f b t pe - lambda; t > . ar1able i - Y - b d & v-coun - i, 

Reached-Limit if (pa a·7r) == unbound & v-count < i; 
C ·1 B. d. 'f (pa a·1r) == un oun ornp1 e- in 1ng i 

Mark-With-Pattern otherwise; . ] . 
h b t e) == p [id ' W ere( [binding] , pa, v-count, - YP 

Variable is 
[id] Q·7r P1 l 

Where 0 b-type), 
. { ( [binding] , ( a·7rUpa )n7ro' ' 

P1 ::::: ..\i. if i = id; 
p i, otherwise; 

Reached-Limit is [binding] a·7r P "i 

Compile-Binding is 
[tix : [idla·7r e1 ]] a·7r p3 " 

Where 

[:fix: [id e]] = [binding] 
[e1] a1·7r1 p 1 1,1 = C [e] a ·7r p2 "i ) 

t + 1 fix ' 

{ 

( [fix : [id e]] , pa17 v-coun ' 
P2 ::::: ..\i. if i = [f] ; 

p i, otherwise; 

Pa1 === ..\pat · 
{ 

..l if pat == a·7ri 

· unbound otherwise; 

p3 ::::: ..\i. {pi, if i = [id] i 
P1 i, otherwise. 

Mark-With-Pattern is [idja·71'] a·71' p " 

Case 12: [exp] = [id] 

Gi'V'en: ad'1T' d R R' such that 
. ) ' ' 1 

-ls rt. ![id] ad-7rd R 
ii) s ~ 

aJe-pat ( Q·7r, ad '11'd) 

-

(C 12) 



90 

iii) Safe-comp-env (p) 

iv) Equivalently-extended (p, R, R') 

Need to show: All of A, B, C, D. 
(I [ · d] ') & 5 le comp-env (p1) 

l. O:d·7rd R = J[id] ad .. 7rd R aJ' • 

if b-type == lambda 

(I[id] O:d·7rd R = J[fix: [f e]] ad·1rd R') 

& Safe-comp-env (p) 
if (pa 0:·7r) =unbound & v-count 2'.: Lj 

l[f:e] O:d·7rd R =![fix: [f e]] ad·1rd R' 

& Sa/e-comp-env (p3) 
if (pa 0:·7r) == unbound & v-count < Lj 

(![id] O:d·7rd R = J[idla·7r] ad·1rd R') 

& Sa/e-comp-env (p ), otherwise 

Proof: 
ossible cases. 

· As shown in Case 3), there are three P 

Case 12.1) ($fl. ad·7rd) & ($rt a·7r); See Case 2). 

Case 12.2) ($ E ad·7rd) & ($ rt a·7r)i See Case 2). 

Case 12.3) ($ E o:d'7rd) & ($ E a ·7r) 

There are four cases: 

Case 12.3.A 

(Pi [id]) -/=unbound 

(Bi d" 
n mg-type (p 1 [id]))= lambda 

(A) 

(B) 

(C) 

(D) 

(1) 

By (C 12). 
(2) 



-- ----

91 

'P such that Equivalently-extended (p', R), Extension-of (p, p'), V R,ad·7rd ' 

uc t at [E] = [(,:\id. body): e] V [E] s h h 

: = ( [idJ; where 1 Si< n) • C [EJ a·1' p' t 

~·.-Upa) = ( [idJ ;+I where 1 Si< n) • C [Ej a·1' p' ' 

(a.·7rUpa)nrro C ([id] n where 1 ~ i ~ n) • C [E] a·7r P
1 

L 

Safe-lambd a-ezp (P1, [id]) By (1), (2) and (3). 

y [ide] 

(3) 

(4) 

(Pi [ide]) 
(( 

. # unbound ===} 

Bindin t g- ype (P1 [ide] )) =lambda) 
=> Safe-lambda-exp (p1, [ide]) (5) 

By iii) and ( 4). 

Safe-co mp-env (pi) 

Case 12.3.B 

(p [id] )!1 = [fix: [id eJ] 

Equival l ent Y-eztended (p, R, R') 

By iii) and (5). 

By (C 12). 

By iv). 

(I [id] O'.d·7rd R =![fix: [id e]] ad·'Trd R') 

& Safe-comp-env (p) By (1), (2), substitution and iii). 

(6) 

(1) 

(2) 

Case 12.3.C 
the The argument is that for Case 10.3, with one .xception. When pat i a·1', 

n pal == pa h. h . r . t p ' w 1c is part of the sa1e env1ronrnen · 

-



I 

I 
I 

~ 

--- -
92 

Case 12.J.D 

A.t this · 
ex Point, [id/a·?T] has been introduced correctly in the surrounding fix 

Pression. th. l . 
Q • ' Is abeling ensures that it will refer to the outer binding properly. 



I 

f 

l 

93 

Chapter 4: Further analysis of conditional expressions 
Thi 

Ch s chapter presents some improvements upon the equation for if given in 
apter 2 whi h . 

and ' c 18 very simple but not powerful enough to handle some common 
UsefuJ PrograTl"'I..-....: t 1 F · · · ' t t' t 1 a· d fi t u.u.uing S Yes. unctions wr1tten 1Il l era lVe S ye are JSCUSSe 

rs ' and then fun t" hi h 'all fi 't l' t p · all th t ar c Ions w c process potenti y m e JS s. m y, e wo 
e co:rnbined. 

Section 4.1: 
Iterative functions 

A. functio · · . 
n JS Jn iterative style if it can be written as 

~ · ~:<p:z f:z F:g:z>]. (1) 

Where [ ] 
"t • p ' [f] and [g] are primitive functions or the composition of prim-1 Ive fi . 
i Unctions. Like iterative loops functions written in iterative style can be 
lllple:rnented . ' 

R using tail recursion rather than a stack. 

or example, the f:unct1'on [ 11 d fi d Rev11 , e ne as 

i:f :<nil?:head : z 

head:tail:z 
Rev:<tail:head:z <head:head:z . head:tail:z>>>]. 

(2) 

construct . h 
Plet s a reversed sublist, [head: tail: z], that eventually contams t e com-

e reve 11 • 
rse of list [head:z]. The factorial function [Fact2JJ, written as 

-



I 
I 

if :<zero? :head:z 

head:tail:z 

Fact2:<dcr:head:z mpy:<head:z head:tail:z>>>]. 

ll:luJtipiies [h 
becozn ead: z] by [head: tail: z] , an accumulated value which eventually 

es the factorial of [head: z] . 
Consider th . 

[<2 !)] e compilation of an application of [Fact2] to the argument 

Patt · Compilation of an iterative function's application must synthesize a 
ern for [z7l . . 

lJ which 1s a solution to the equation 

~E·c~~.------~~~~~~~~~~~~~~~~ 
[z] C ·args] a·?r Pl= (4) 

( [ [p :z] a ·?r' pl u 
z] • C [f :z] a ·?r p' l n [z] • C [F :g:z] a·?r p' l). 

subs ~he function • has been defined operationally, and so its codomain is a 
e of ratio al 

llJ.ost n patterns. The object of a search for a fixpoint of ( 4) is the 

llJ.ust Powerful (most strict) member of a set of candidate fixpoints. This set 
contain th 1 . 

A. e azy pattern, as that may be the only possible solution. 
t first 1 

g00d g ance, the incomplete sublattice from Chapter 2 appears to be a 
set of ca did 

llot t n ate patterns. Unfortunately, a simple unbounded search will 
erzni 

e\>en. 'f nate because an infinite number of cyclic patterns must be explored, 
1 the ac r 

search Ye le ones are ruled out. One possible approach is to restrict the 
to expl . 

dist 'b oration of a limited number of patterns. Given the unpredictable 
ri Uti 

latr on of the possible solutions in the lattice and the immense size of the 
lee o 

sue ' ne cannot argue that this naive approach is likely to terminate with any 
cess. 

-



95 

Probl:ortunately, some additional information can be brought to bear on the 

(rat· Ill. ( [z] • C [p: z] 0:·7r' p l) U ( [z] •· C [f: z] a·7r p' l) can only be a cyclic 

to :;:~) or finite pattern, since [f] is a primitive function and the outer call 
IL 11 inherits t• 

( [zTI a ra ional pattern. In addition, [z] • C [F:args] a·7r pl ~ 
11 e C [p. zTI / 

th · 11 0:·7r P l) U ( [z] • C [f: z] a·7r p' l). Instead of constraining 
e search t . 

co t . s rategy directly, it seems reasonable to develop a fi.nite lattice which 
11 a.ins ( [ ] 

thi z • C [p:z] a·7r1 pl) U ( [z] • C [f:z] a·7r p' l) as its top element; 
s Pattern i th b 

'I'hi s e est that can be hoped for, and so is called the target pattern. 
s lattice h 

Pe :£ can t en be searched, exhaustively if necessary; an algorithm that 
r orms thi . 

s search is discussed later in this chapter. 
Such a fi . 

the IUte lattice is developed by constructing a homomorphism H from 
COlllplet . fi . 

this h e in IUte lattice P to a finite lattice P finite,n,.,,· In order to present 
0 lllozno hi rp sm, the following terms are introduced: 

- A. . 
n irrational pattern is an infinite pattern that cannot be finitely and ex-

Plicitly 
_ represented as a cyclic graph. 

A. full . 
Y repeating pattern is a rational pattern that can be represented by 

a cy li 
c c graph containing cyclic references which refer only to the entire 

Pattern A. 
· n example of such a pattern is 

fiz).7r.($J_ ' 7r). 

- A. . 
Partially repeating pattern is a rational pattern which can be represented 

by a cy li . L' b . c c graph containing cyclic references which may reJ.er to su -patterns 
Within th . t" tt . e entire pattern. An example of a partially repea mg pa ern is 

(j_ ' $jiz).7r.($7r' 7r)). 

- A. finite tt · h t 1 A pl f Pa ern can be represented wit ou any eye es. n exam e o a fi . 
n1te pattern is 

(j_ ' $J_). 

-



96 

- An b . 
n- ounded pattern is a fully repeating rational or finite pattern whose 

Illaximum cycle length is less than or equal to n. For example, 

($..L ' ($..L ' ..L)) 

is 2-bounded but not I-bounded. Similarly, 

fiz>.7r.(..L ' (7r ' (..L ' 7r))) 

is 4-bounded but not 2-bounded. 

Defi •t· 
ni Ion: A finite pattern p represents the truncation of a pattern q, written 

as ( Trunc q ) 'f · · h d · h n , i p and q are identical except t at at some no e m t e represen­
tations f 0 

P and q within the bound n, p contains ..L p where q contains a pattern 
above .lp. 

'1' Put Very simply, the desired homomorphism H selects n-bounded patterns. 
he effect th . . .t'. p 

at this bound n has upon the selection of patterns 1rom finite n 
ca b ' ,1r 

n e more easily understood if the domain of patterns is partitioned as follows: 
1) Irrational patterns 
2) Rational patterns 

a) Fully repeating patterns 

i) n-bounded fully repeating patterns 

ii) fully repeating patterns with bound greater than n 

b) Partially repeating patterns 

c) Finite patterns 

i) n-bounded finite patterns 

ii) finite patterns with bound greater than n. 

t ][maps all patterns in 2.8..i. and 2.c.i. to themselves. All others are mapped 
0 fi . 

IUte truncationa of themselves. A more formal definition follows: 

-



97 

Defl "t• 
n1 ion: H : p x INT --+ p = 

>. p n. 

irr t · [? a zona . p --+ Trunc p n; 

fully - repeating? p --+ 

n - bounded? p --+ p; Trunc p n; 

partially - repeating? p --+ Trunc p n ; 

n - bounded? p --+ p; Trunc p n 

Definition· p . h . f d JN 
· finite,n ,1r IS t e image o Pun er H, some n: T and some 7r: P. 

Dsing truncation, it is possible to form a finite approximation to all infinite 
and fi . 

nite structures within P, as shown in the following theorem. 

'l'heore 4 111 .1: Pfi ·t is a finite lattice. ni e,n,1r 
Pi-oof: H . 
h · maps Infinite patterns either into themselves or a pattern whose depth 

as the fi "t b 
d ni e ound, n. H maps finite patterns either into themselves, if their 

epth is s all 
m er than or equal to n, or into a truncated pattern whose depth has a fi . 

nite hound .• 

'l'heore111 4 
.2: ( Trunc 7r n) C p 7r in P. 

Pi-oof: Since ?r's truncation is formed by substituting J_ p for some pattern equal 
to or hi h • 

g er than J_ p in 7r, ( Trunc 7r n) is under or equal to 7r in P. 

]/ Theorem 4.2 makes it easy to see that different finite lattices formed by 

from 7r with different bounds n have different expressive powers, which can 
be giv . 

en an ordering based upon the size of the bound used to construct each 

one. For example consider a very simple lattice 7r with bound 2 (written 
as pfi . ) ' . . f . fi •t nzte,2,1r

0 
• It is possible to see the begmmng o an m m e sequence of 

Pattern . 5 approximating fizA.7r.($7r , 7r) from below but never actually reaching 

fi;c>.7r.($7r ' 7r). The interesting infinite patterns of Pfinite 2 7r are included in th , , 0 

ose of Pfinit and in addition there are new cyclic patterns, including fi,;c ,\ e,J , 7ro ' 

7r.($($J_ ' j_) , 7r), an approximation to fizA.7r.($7r, 7r). 



98 

. It is now possible to discuss techniques for sifting through candidate patterns 
in any p . 

finite,n ,7r m order to find a solution to the equation 

[z] •C[F· ] . args a: ·7r p l = 
[z] • C [p:z] 0:·7r' pl U 

( [z] • C [f:z] a:·7r p' t n [z] • C [F:g:z] a:·7r p' t). 

(4) 

Truncation permits the construction of a set of "weaker" patterns from the 
target t 

pa tern, called the weaker aet for this pattern. This set becomes the set of 
latt· . 

Ice points immediately beneath this initial pattern. If no element of this set 
sat' fi 

Is es the equations, then each may in its turn be used to create a subsequent 
set of ev . . . 
h en weaker patterns, and the process may be contmued until the lattice 

as been searched completely, at which point J_ p is the only possible solution. 
The a.I . · 

gonthm used to construct lattices of finite patterns from the top element 
downw d 

ar scan be expressed as follows: 

If a pattern 7r has m leaf and interior nodes in its representation, then there 
are a total f h o m possible elements of the weaker set for 1r, one at eac node. m 
copies of · d · d i- 11 · 

7r are created each of which has been altere at a uruque no e, 10 owmg 
these th ' ree rules: 

- the weakening of $ ( 7r'J , 7r2) is ( 1r1 , 7r2) i 

- the weakening of ( J_ , J_) is J_; 

- the weakening of $J_ is J_. 

If, during the creation process, the sub-pattern at this unique node cannot 

be altered by one of these rules (if it is J_, fi;>r example), then it is not included 
alllon th . 

g e Weaker set for 7r. 

A· 
simple example follows: 

Suppose the target pattern is $($J_ , $J_), 



99 

- initial set is { ($.1_ , $..l_)i $(.1_ , $.1_)2, $($.1_ , j_)J }; 

- set for ($.1_ ' $..l_)i is { (.1_ ' $.1_)11, ($.1_ ' .1_)12 }; 

- set for $(.1_ ' $.1_)2 is { (.1_ ' $.1_)21' $(.1_ ' .1_)22 }; 

- set for $($.1_ ' ..l_/J is { ($.1_ ' .l_)Ji, $(.1_ ' .1_)32 }; 

- set for (.1_ ' $.1_)11 is { (.1_ , i/111 }; 

- set for ($.1_ ' .1_)12 is { (.1_ ' .1_)121 }; 

- set for (.1_ ' $.1_)21 is { (.1_ ' .1_)211 }; 

- set for $(.1_ ' .1_)22 is { $.1_221 }; 

- set for ($.1_ ' .1_/J1 is { (.1_ ' .1_)311 }; 

- set for $(.1_ ' .1_)32 is { $.1_321 }; 

- set for (.1_ ' j_)i11 is { J_ }; 

- set for (.1_ ' l_Ji21 is { J_ }; 

- set for (.1_ ' .1_)211 is { J_ }; 

- set£ $ or J_221 is { J_ }; 

- set for (.1_ ' ..l_/J11 is { J_ }; 

- set for $J_ • { J_ } 321 IS • 

Weakening a cyclic pattern, 7r, is a slightly more complex process. The 
Pattern · fi . 

Is rst unrolled until truncation prevents further expansion. Cycles in-
terrupt db . . 

e Y the truncation are replaced by J_ at the pomt the expans10n crosses 

the bound n. This ensures that all possible cyclic patterns within n nodes from 
the root ·u ( 1 

WI appear in the weaker set for 7r. For examp e, the weaker set 
for th 

e Pattern fiz A 7r.($.1_ , 1rJ when n is 4 must include patterns such as 
fi~ ..\ 71" ($.1_ 

• , ( J_ , ( J_ , 7r))).) Next, m copies are made, one for each node in the 
CJrclic tre · d · d d" e representing 7r. Each copy 1s altere at a uruque no e accor mg to the 

rules Presented, unless the sub-pattern present at the node is either J_ or a cyclic 
referen A . li ~ . 

ce. new rule to generate weakerungs for eye c reierences is added: 

- the weakening of cyclic reference is .l_. 
All po .b 

ssi le cyclic patterns immediately below 7r, as well as the truncations of 
all fi . . 

nite approximations of 7r, have been accumulated at the end of this process. 



100 

f Weakening is a simple and efficient way of identifying all possible paths 
rom the t f 

op o the lattice down to the lowest element in the lattice. Weakenings 
Produced fr 

om a pattern form a set of incomparable patterns, however a set 
of weak d 

ene patterns can include patterns that appear in other sets. These 
du Ii 

~ cates represent lattice nodes with out-degree of two or higher, and can 
easily be r 

emoved for the sake of efficiency. 

4·1.1· It · · erahve style equation 

The following equation is the equation for if from Chapter 2 modified so 
that it ac 

conunodates iterative style. 

The compilation of the second branch of the if expression requires some 
e.x:planat · · · 
. ion. Instead of a simple compilation of the expression [F: g: z] , this 

simple com ·1 t" · · · h 1 t f th k PI a ion is embedded m a loop which tests eac e emen o e wea er 
set for th . . 

e target pattern, recursively creatmg and testmg weaker sets for each 
of these 1 k · f h t e ements until one succeeds. Success occurs when the wea emng o t e 

arget Pattern inherited by the compilation of [g:z] is an equivalent pattern 

to [z] • C [F: g: z] C¥.·7r p' "' thus providing a solution to Equation ( 4). J_ will 
succeed h 

w en all other patterns fail. 

. New-w produces a set of weakened patterns from its argument pattern, and 
is not ex Ii · · 1 d" d P c1tly described here beyond the algorithm previous y 1scusse . 



101 

c [• if:<p:z f · where (B . ."z F:g:z>] a·7r pi 

( 
. z.ndmg-type (p [F] )) == fix 

Bmdm t ( ' 
(
$ E g- ype P [z] )) ==lambda 

0'.·7r) ' 

[if: <$e1 where 1 e22 Fja·7r: e33>] a·7r p3 i 

[e1 1 ] 7r [e22] 11"1 P1 i = C[p:z] $1.pi 
[e33] 2 P2 i = C [f :z] a·7r Pl i 

(.X cw. 11"3 p3 {, = 

(fiz .A w ' ...... cw copy. 
[g:z] a·1l"p1i, 

'1i if cw=() & (New-w copy)=(); 
(New-w copy) (New-w copy), 

if cw=() & (New-w copy) f (); 
[et] 7rt Pt i 

where [et] 7rt Pt i == 
C[g:z] (cwll)pi, 

if (Pat-fun (Pt [z] )) == (cwll); 

'11 (cwl2) copy, 
) cw otherwise 

Where cw) ( 7T" new, ( N ew-w 7r new)) 

7r new = (Pat-fun (p2 [z] )) 

(The pr . . 
Ch OJ<ction functions Binding-type and Pat-fen have been defined in 

apter 2 T . the - hese functions select eleroents of the values bound to variables in 

compile-t· . ime environment.) 

4.1.2 • . Example 
$1_: The following application of [Fact2J is compiled with the strictness pattern 



102 

[C:fi:x--:::[F:--------------------____, 

..\z. 

i:f :<zero?:head:z 

head:tail:z 
F : <dcr:head:z 

:<a . <mpy:<head:z head:tail:z> . <>>>>]) 
<b . <>>>] 

[z] • C [ze ? 

( [z] • C ro. : head: z] $..i Pinit 3 = $($..l ' ..l), 

[zero?:head:z] $..i Pinit 3) LJ ( [z] • C [head:tail:z] $..l P1 3) 

::::: $($J_ ' j_) LJ $(..i , $($.1. , ..l)) n 7ro 

A.t . ::::: $($J_ ' ($.1. ' j_) ). 
this Point th · · · tt · t t d ' e initial weakening of the target pa ern 1s es e : 

[<dcr:hea . 
•C [ d · z mpy: <head: z head:tail: z>>] 

F:<dcr·h ] · ead:z mpy:<head:z head:tail:z>> $..l P1 3 = 

$($j_ ' ($J_ ' ..l) ). 

[z] • C [ 
F:<dcr:head:z mpy:<head:z head:tail:z>>] 

A.s 

$($J_ , J_) u $($.1. , .1.) u $(..l , $($.1. , ..l)) n 7ro 

::::: $($J_ ' ($J_ ' j_)) 

$..l P1 3 = 

[z] • C [F. 
[<d · <dcr: head: z mpy: <head: z head: tail: z> >] $.1. Pl 3 = 

CJ:'·h 
· ead:z mpy:<head:z head:tail:z>>] 

•C [F. <d . ] $..l 3 · cr:head:z mpy:<head:z head:tail:z>> Pl ' 
the final 

result of compilation is 



103 

[(:fix: [F'~/$;--:.1.-----------------__, 
Az . 

if · <$ . zero?:head:z 
head:tail : z 
F/$.1.: <$dcr: head: z 

=<$a . <mpy:<$head:z $head:tail:z> . $<>>>>]) 
<$b . $<>>>] 

Section 4.2: 
List mapping functions 

Functions . hi 
of th . In w ch [p: z] is the application of [nilj to some composition 

e Prunitive f . ,,. 
of unct10ns 11headj and [tailj are a very common and useful way 

constru t• 
lll . c Ing new lists in lazy languages. A well known example is the Lisp 

apPing function s· ·1 1· t . f t• .d d h . . th £ · Illll ar M mappmg unc 10ns are consI ere ere written m 
e ollowing form: 

~~:<p: z nil M:F:g:z>j. / 
---------J 

'l'hi . 8 
can be p · · r. •t t• r. t• · th erceived as similar to the syntax given lOr I era ive lUnc 10ns m 

e Previous t • . ,,. -1 11 rr 11 • • • • fu . sec Ion. [t] is the constant funct10n 11n1 11 , 11g11 is a primitive 
llction 

Us or the composition of primitive functions, and [M] may be primitive or 
er~defined. 

A.s an ex l r. • rr 11 amp e, consider the vector increment lUnct10n 11Vine11 , 



I 
I 

I 

I 

I 
I 

104 

[Vine~=:------~~~~~~~~~~~~~~~~~~ 
,\z. 

if:<nil?:head:z 
nil 

<ine:head:head:z . Vinc:<tail:head:z>>>]. 

[Vine] IS • rewntten so that the substructure of [z] is named explicitly: 

[Vine =----~~~~~~~~~~~~~~~~~~~~~~~ 

,\[lat]. 

if:<nil?:lst 
nil 

<inc:head:lst . Vinc:<tail:lst>>>]. 

So far thi [ta. ' s analysis has not permitted us to mark the recursion on 
l.l:lst] T'. 

app · lle if equation presented in Chapter 2 causes any variable that 
ears 

tak on only one branch of the if to inherit a pattern of _l_p, as the meet is 
en of . 

by Variables appearing in both branches, and the initial pattern inherited 

a 'Variable is d b h · hi t' · · d 'f h co assume to e J_ p. A c ange m t s equa 10n is reqmre , I t e 
nstruction of [l t] . t b d . . . . t t Th" h he d s Is o e ma e stnct m its mner s rue ure. is c ange can 

eveloped fr h 1 . . to l . om t e current equation in the fol owmg way, usmg an example 
c ar1fy th e problem s . 

Pro Uppose a call to [Vine] inherits the patternfix>.Jr.($1_, tr). The [nil] test 
Pagates · :£ :n t . in ormation only about the outer structure of its argument, and does 

o JUstif . 
fro y any marking of the inner structure. However, the pattern mherited 

ll1 both b . , . 
b ranches becomes _l_p so no informat10n about [1st] s mner structure 

ec0 ' llles av ·1 b . ai a le to the analysis of the express10n that constructs [1st] . 

• 



/ 

I 

I 

I 

I 

I 
I 

105 

Fortunat 1 h 
• .r e Y, t e presence of a lrnil ?71 test provides us with some useful 1ntorn-. t. IL 11 

4 ...... a ion ab t ir 
al ou ILlst]. The following theorem permits the analysis of such 

oop to use o 1 th 
Patt . n Y e pattern propagated by the recursive branch, so that the 

ern inherited by [1st] becomes $.fizl\tr.($.1_, tr). 

l'heore 
on list Ill 

4
•
3 In a list mapping function application containing a [nil?] test 

to [ [
1
st]' [1st] 's inherited pattern is the Join of the patterns propagated 

1
st] by the analysis of the predicate and the looping branch. 

Proof: 
in·t· The non-trivial case occurs when the loop inherits a list pattern. When 

l la.lly 
p . entering a loop at runtime with a [nil?] test on [1st], there are two 

oss1bilities· 'th . 
· ei er [lst] is nil or it is non-nil and has some mternal structure. 

If the 1i ir • ' • • 
t Ir st IL 1st] is empty on first entermg the loop, then the express10n bound 0 1L1st] lll 
an ust have produced this value. But, if it did so, then it did not execute 

y Code b "ldi . 
d" Ul ng up the interior of the list. Thus, no unnecessary runtime l'\>ergen . . 

ce Is introduced by mar.king this code, because it wasn't executed. 
If [1st 11 h · h · · · t 

P .H as some internal structure at run time, t en it is appropria e to 
ropa t 

ga e a pattern that specifies strictness within this structure. • 

4.2.1: 
List Illa · fi • • PP1ng unction equation 

hi The following equation is the equation for if from Chapter 2 developed for 
gher ord f: . . . 71 

a er unctions and modified so that 1t accounts for [nil? 11 tests on an rgu ' 
lllent. The essential alteration is derived from Theorem 4.3. 



106 

c [if.< . · nil?. . Where (B . ... p:z nil M:F:g:z>] a·7r p L 

(B. di.ndmg-type (p [F] )) =fix, 

(
$ m mg-type (p [z] )) =lambda, 

E a·?T) 

[if :<$e1 . wh 1 e22 e33 >] a·7r p4 L 
ere 
[e1i] 7r [e

2 
1 P1 L1 = C [nil?:p:z] $J_ p 1, 

[ 3
2] 7r2 P2 L2 = C [nil] a·7r p1 1, 

e 3] 7r 3 P3 L3 = C [M:F:g:z]a·7r p1 1,; 

( [binding2], (pa1Upa3) ,0, b-type2) 
if b-type2 = lambda & i = [z]; 

P4 = .Xi. ( [binding2 ] , (pa2npa3) , O, b-type2) 
if b-type2 = lambda; 

( [binding
2

] , pa
4

, v-count2 + v-count3 , b-type2) 

Where if b-type2 = fix ; 

( [binding ] b ) · ( [b. 1 , pa,, v-count1 , -type1 ~ P• 1 

( [b ~nd~ng,J , pa,, v-count,, b-type2 ) ~ P2 i 
inding3] ,pa3, v-count3, b-type3) = p3 i 

pa
4 

= .Xpat. { (pa3 pat) if (pa2 pat) =unbound; 
(pa

2 
pat) otherwise. 

4.2.2. E • xample 
Consid th 1· · f [V" ] "' er e compilation of the following app 1ca1Jon o 1nc ' 

ith the st . rictness pattern fiz A 7r.($J_ , 7r) : 

[Cfi:x:· [v· · inc 
AZ. 

if :<nil?:head:z 
nil 
<inc:head:head:z Vinc:<tail:head:z>>>]): 

<<a <b . <c . <>>>>>>]. 



107 

[z] • C [nil?:head:z] fix.X7r.($..L, 7r) Pinit 4 

= $($..L ' ..L). 

For the . rest of this example, 
Vtncsyn = ((Pat-fun (p [Vine])) fix"A7r.($..L, 11")). 

( [z] • C [nil?: head: z] fix .X7r.($..l , 7r) Pinit 4) U 
( [z] •C [<inc :head:head:z . Vine: <tail:head:z»J fix>.,...($.L' ") p' 

4
) = 

$($J_ , j_) u $($($..L , ..L) , ..L) LJ ((..L , vincsynll) · ..l) 

= $($($J_ . vincsynll) . ..L) . 

vincsyn 11 ~ = $($..L , vincsynll). 

(5) can b · e wntten as fix A7r .$($..l , 7r)· 

Since (fi ' ) z A7r .$($_l' 7r) n 7ro) := $fiz_\7r.($_l' 11"' 

[z] • C [Vine: <<a . <b . <c . <>>»>] fix .\7r.($..l ' 11') Pinit 4 == 

$ ( $ fiz ,\ 7r. ( $ J_ , 7r) , ..l) . 

'I'he r ul es t of the compilation is 

[C~i:x:: [Vinc!fiz.X7r.($..L , 7r) 
z . 
if :<$nil?:head:z 

<$<$a . 

nil 
<$inc:head:head:z . 
Vinc!fix.X7r.($..L, 7r):<$tail:head:z»>]): 

<$b . <$c . $<>>>>>>]. 

(5) 



I 

I 
I 

108 

Section 4.3: 
Combining iterative and mapping functions 

'I'he combi · · 
us t nation of the two equations presented for if in this chapter permit 

o analyze f . 
unctions such as [Rev] , which both tests its list argument and 

accuniu/ate 
3 the reversed result. 

4.3 l· It · · erat· Ive mapping function equation 

The following t• . h . d r . t• 1 . that th equa ion is t e equat10n presente 1or itera ive oops, except 

inh . e target pattern is produced slightly differently. The Join of the patterns 
ented b [ 11 • 

int h y Z11 durmg compilation of the predicate and second branch are 'or'ed 
o t et 

to b arget pattern. Maak selects the sub-pattern of [F] 's synthesized pattern 
e Protected th . h . 

onl ' en Surround builds up a surroundmg pattern t at contams 
Y ..L, and ·n . . 

is so w1 not affect the Join. The mechamsm used to create this pattern 
cozn Ii 

th p cated by the fact that the user is permitted to specify the sub-list rather 
an b 

a.r e restricted to a limiting syntax; thus the trajectory (location within the 
guznent t . . . 

ree structure) of the sub-list must be determmed at compile time. 



I 

~ 

109 

C[it:<nil~?~-~-~-:-~~~~~~~~~~_:_~~~~~~~ 
where (B ' .d .. p.z f:z F:g:z>] a·11" pi, 

( B. z.n mg-type (p [F] ) ) == fix 

(
$mdmg-type (p [zJ )) =lambda 

E 0'.·7r) . ' 

[if:<$e1 2 where I e 2 Fla·71": e33>] a·11" p3 i, 

[e1i] 71" [e22] 71"1 PI L = C [nil?:p:z] $_l_ p L 

[e3] 2 P2 L = C [f :z] a·11" p1 i, 

(,\ c~ . 11"3 p3 /, = 

(fi~ ,\ '1i ' ·"'cw copy. 
[g: z] a·1!" P1 L, 

'li if cw=() & (New-w cow)=(); 
(New-w copy) (New-w copy), 

if cw=() & (New-w copy)-::/(); 

[et] 7rt Pt 1, 

where [et] 7rt Pt L == 
C [g:z] (cwll) p 1,, 

if (Pat-fun (Pt [z] )) == (cwtl); 

'1i ( cwl2) copy, 
) cw otherwise 

Where cw) ( 1rnew, (New-w 11"new)) 

M~;k _ (Pat-fun (p2 [zJ)) U (M..,k [p:zJ ((Pat-fun (p [FJ )) a·11") [zj) 
where - >. I exp I " [Iv] . (Surround [ ezpJ ( S e/ect-part-of-11" I expJ ) ) 
71' 

Se~ect-part-of-7r = 
'Ii. A [exp] . 

([exp] ll) = [head] '-> (>. a ·1'· trLll (>Ii ( [expJ 11)), [exp] = [lv] -t 11" 

Surround = (>. a·1'· trl2) (>Ii ( [expJ 11)), 

A '1i · A [exp] core. 
[exp] = [lv] -t core, ( I exp] 11) = [headJ -> (('Ii ( [exp I 12) core), .L), 

(_!_, ('11 ([exp] 12) core)). 



4.3.2: E xample 

110 

PP ication of [R ] . .1 d . . as foll ev is comp1 e with the strictness patternfix>.rr.($1- , rr ) An a i· 

ows: 

[(fix:[R~e-v~,\~~~~~~~--------------------------~ 
. z . 
l.f . < · 1 · ni ? :head : z 

head :tail : z 
Rev : <tail :head:z . 

<<a <<head:head:z . head:tail :z> . <>>>>) 
. c>>> . <<>. <>>>] . <b < 

[z] • C [n. il?:head:z] $...L 2 Pinit = 

$($1_ ...L) 
( [z] • C [ . ' . 

( [zJ • ;il?: head :z] $1- P<nit 2) U 

$($}head:tail:zJ jiz>.1'.($1-' 1') Pl 2) = 
' ...L) LJ (...L ' (fix ,\11".($..L ' 11") ' ..L)) n 7T"o 

Fo = $($1- ' (fix.\7r.($...L' 11") ' ..L)). 

r the rest of . (Afa

8

k [ tins example, rev syn = ((Pat-fun (P [Rev])) Jiz ,1.,,.($1- , t<) ). 

head· ] At . . z revsyn [zJ) = ( revsynll , 1-). 

this · [ <t . pomt, the first weakening of the composite pattern is tested: 

ail·h C [ · ead:z · <<head:head:z.head:tail:z> · <»>] • 

Rev · <t . ] · ail:head:z . <<head :head:z.head:tail:z> · <>>> 

$( fiz A7r.($...L ' 7r) P1 2 = 
revsynll ( Art ' jiz>.,,.(U , ") , 1-)). 

er co . mp1lat · [zJ 
0 

wn of [tail :head:zJ, 
fi , C [Rev: <tail: head: z. «head: head: z. head: tail: z>- <» > J 

;i: Mr.($1_ 
((-L '7r) P1 2= 

' revsynll) ...L) 
Afte ' . 

r com il . p a hon of [head: head: z] , 



111 

ev:<ta1l:head:z <<head:head:z . head : tail:z>.<>>>] [z] • C [R . . 

fix A7r .($1.. 7r) 2 _ 
$( ' P1 -

A $($1.. , r ev synl l ) , 1..). 

fter com ·1 . pi ation of [head:tail:z], 

[z] • C [R ev:<tail:head:z . <<head:head:z . head:tail:z> · <>>>] 

fix A7r. ($.1_ ) ' 7r P1 2 = 
$($($1.. 'revsynll) , (fiz>..7r.($1.., 7r), 1..)) . 

Since 

revsynll -- $($.1_ , revsynll), 

W•C[R ] ev:<tail :head:z . <<head :head:z . head :tail:z> · <>>> 

fix A7r ($..i $ . ' 7r) P1 2 = 
(revsy ll 'I'h n ' (fix A 1f'. ( $ J_ , 1f') , l.)) . 

Us 

[<tail. h C · •ad : z · <<head:head:z . head:tail:z> · <>>>] 
• [Rev · <t . · 1 > <»>] · ail:head:z . <<head:head:z . head:tai :z 

[ ] 
fix A?r.($1.. ' 7r) P1 2 = 

z • c [ ] Rev:<tail:head:z <<head :head:Z · head :tail:z> · <>>> 

fix A7r ($..l ) ( 
6

) . ' 7r P1 2. 
lllay be . written as fiz A7r.$($1.. ' 7r)· 

'I'hus 

[z] •C[Rev:<<a. <b. <c>». «>. <>»] 

($fi 
fix A7r.($..l ' 7r) Pinit l = 

x A7r ($ Af . .l , ,,. ) , (fiz ,\,,.. ($.l , ,,. ) , .L)) 
ter co ·1 . mp1 at10n, the result is 

(6) 



[ (f. [ ix: Revlfiz A7!". ($ .1_ 11") 
AZ . ' 

if :<$nil?:head:z 
head:tail:z 

112 

Revjfi:i:A7!".($1- , 11"):<$tail :head:z 
<$<$a . <<$head:head:z . head:tail:z> $<>>>>) 

<$b . <$c>>> . <$<> . $<>>>] . 



113 

Chapter 5: C ompiling higher order functions 

So far th ' e co 'l der, list . mpt er presented here has been designed to improve first or-

d onented progra Th' h eveloped ms. IS c apter presents an additional compiler C" 

from C whi h. . functions T . ' c IS an extenston of the same approach to higher order 

Ch 
· his extension · ·1 . . apte 

2 

is more eas1 y understood if the equations presented in 

r are fi t he seen t rs re-structured, so that the additional mechanisms needed can 

0 develo fr Piler, C' . P om these equations in a natural way. The restructured com-

. ' which does t . . into C" W no compile higher order functions is further transformed 

be co .. 

1 

e then discuss some restrictions upon the source expressions that can 

mp1 ed, and rel t C' t C" . Th a e o , with some examples. 

e techniqu d' correct es IScussed here have been implemented, but no proofs of 

ness are provided. 

Section 5.1.· From C to C' 

f)'ing~:y few changes are required. The essential point is that the syntax speci-

e source exp · · c · · I bd · Were ress10ns m 1s no longer appropnate, es am a express10ns 

constrained . C lo disc m hapter 2 to appear only as part of an application. In order 

uss an e t . 
stru t x ens10n of C to higher order functions, it is useful to first con-

e as direct! yntax that can be used by both C' and C", so that the equations are 

y compa bl · h no ra e . However, the constraint is still present, 1n the sense t at 

guarantees . eJcpres . are made about C"s behavior on programs wluch return lambda 

s1ons as val N ues. ow that 1 b · all 1 d l' cation . . am da expressions are no longer syntactic y re ate to app 1-
' it is m I r 'tt' th Patter ore e egant to have some explicit roechaillsm ,or transmt mg e 

n synth · h ·1 tio estzed by the compilation of a lambda body back to t e compt a-

n of the a r . d' h b of ar PP 1cat1on of that expression. This is done by expan mg t e num er 
guments · 11 h · h 't d Patt gwen to C to five· the additional argument fo ows t e ID en e 

ern and ' ·1 · f each"" serves .., the synthesized pattern produced by the compt atton o 

pression. 



114 

5.1.I: N ew Daisy s e : :~ yntax and compiler domains 

expr I $ 
expr ··- expr 

constants 

exp 

··-canst I 
[]I 

( exprs ) I 

Prim:(e e) I 
head:e I 
tail:e I 
if:(e e e) I 
.\ id. e I 
fix :[id e] I 
e:e I 
id I 
bottom 

rs .. 

nil 

lists 

primitives with 2 arguments 

head application 

tail application 

conditional application 

lambda expressions 

recursive Junction and data definitions 
Junction application 

identifiers 

infinite loop 

··== e exprs I e . e I empty 

The com ·1 st · PI er do · 
nctness ma.ms are virtually unchanged. Instead of propagating 

p patterns 1 h 
atterns f on Y t rough its second ugmnent and recovering synthesized 

1

nhetited e compiler environment, the compiler now distinguishes between 
. rom th 

s and synth . 
econd a esized patterns by propagating inherited patterns through its 

rgument a d 
c• : n synthesized patterns through its third argument. 

n~D· ' 
(compiler) 

D= EXP x P x P x ENV x INT ; (compilation data) 

7r P= $P + (P x P); (inherited strictness patterns) 

P= $P + (P x P); (synthesized strictness pat terns) 



-- - - --

115 

5.1.2· E . quations for C' 

The first seven t' · d .t' h dd' · of a equa 10ns are essentially unchange , except ,or t ea 11Ion 

new argum ent, u , that follows a "rr. 

~[cons-t=--]~~~~~----------------------------~1 
- 0"" "P '= [$constJ """"pi. (C' 1) 

C' [ ] e Q•7r u P i, where($ rt a ·11") == 

[ e [ [fix : [id exp]] / [ e'] J] 
where [f · [' ix : id exp]] == 

(Binding (p [e'] )) 

if :3 [e'] E [e] such that [e'] EID 
& (Binding-type (p [e'] )) ===fix , 

!~[((fix : [f Aid. body]): exp)/ l•'Jl J a·ir " P ' 
ere [(fix: [f .Xid. body])] == 

(Binding (p [f] ) ) 

if :3 [e'] E [e] such that [e'] == [f :exp] 

& (Binding-type (p [f] )) ===fix , 

[e] Q·11' up " 
otherwise. 

0' [ head: e] Where Q'.·7r u P " == [head: e1 ] a·71" ff p1 L 
[e1] a1 ·7r1 u1 P1 i1 == C' [e] a·(a·71", .L) <7 p i. 

(C' 2) 

(C' 3) 



116 

C' [ thai l : e] a ·11" a- p - [ . l ] w ere [•1] ' - ta1 :•1 a·1' "Pl' 
a1 ·11"1 a-1 P1 t..1 = C' [e] a{l, a ·7r) <T P "· 

if($~ 7r)i 
otherwise; 

C' [ Prim· Where · <el •2>] a·1' <T p , = [prim: e1J a·1' <T Pl ' 

1 
<Ti P1 t..1 = C' [<e1 e2>] ($.l, $($.l, .1))

11 
P "· [e1] a1 · 11' 

(C' 4) 

(C' 5) 

(C' 6) 



0' [• 
if:<e1 -;~~~~~~~~~~~~~~~~~~~~~-

e2 e3>] - [ . a ·11" (J' p " 

117 

(C' 7) 

Wh - if:<$e1 

[ 

ere 1 e22 e33 >] a·7r CT p4 
" 

e1 ] 
e22] a . I P1 L1 = C' [e1] $1. . 

[ 
I a1 ·7r1 (J' 

[ e33] 2 7r2 (J'2 P2 "2 - ' CT p "' 0'.3·7r -C [e2]a·7rCTP1"· 
3 (J'3 p3 l3 - C' [ ' 

{ 

( [bind. - e3] '""'' " P• i; 
P• ~ ~i 1 ":s2l , (pa,npa,) , o, b-type,) 

· ( [b. . if b-type2 = lambda· 
inding ] ' wh . 

2 
,pa,, v-count2 + v-count,, b-type

2
) 

ere if b-type2 = fix ; 

( [ b indin '1 ' pa,, v-count,, b- type,) = P> i 

0' [ 

([binding ] 
p g, 'pa,, •-count,, b-type,) = P• j 

a
4 

= A.pat. { (pa3 pat) if (pa2 pat) ==unbound; 
(pa2 pat) otherwise. 

Aid b · od ] 
[
).. y Q'.•7r (J' p {, = 

Wh id. bod ] 

[

b ere Y• a·'lf (Pat-fun (P• (id])) p
3 

' 

Ody] 1 0'.1 •7r1 (J' I 
P2 ::::: ). • { { [[]J 1 Pl " = c [body] a·'lf " {J2 L 

'· Pi '.l, O, lambda), ifi = [id]; 

P3 ::::: ). • { P ;' • . otherwise; 
i. ' if i = [id] . 

P1 i ' ' otherwise. 

(C' 8) 

The com 'l coinpilatio pi ation of a lambda expression was previously embedded in the 

er n of a fi 
ates a 

8 

z expression. Here, the compilation of the function body gen-

co ynthesized d d · lllpilat· pattern which represents the patterns accumulate uring 

e coin .

1 

. mstances of [idJ. This synthesized pattern JS passed back to 
th ion of all . . 

p1 abon of 811 
application of the Jambda expression· 



118 

Where . 1 e]] cnr " p ' = [fix: [idla·1f •1 lJ a·1f "' P• ' ( C' 9) C'[fix·[·d 

[ e1] rv '-"l •7r 1 0-1 P1 l - C' [ ] 

{ 

I - e a·7r (1 p2 t,· 

P2 == ' . ( [fix: [id e]] 1 fl ) ' .... i. .f . ,pa2, ' x ' 
. 1 i = [id] j 

p i, otherwise· 
' 

Pa2 - .X {a-- pat. I if pat == a·7r· 
unb d ' oun otherwise· 

PJ - '. {pi . ' - .... i. '. ifi=[id]; 
Pl i, otherwise. 

Dat a recu . eq rs1on and · f · ·1 d · h Uation N recursive unctions are now coropi e using t e saro< 

b · ote that · 
ack e:x:pl" . "' is actually rec-p (see Chapter 2), which is now passed 

•I is not synthesized pattern from the analysis of the Jarobd• body. If 

[ 
. ic1tly as a . 

a lambda . . Pattern expression, then rec-p will not be propagated as a synthesized 

can safely be associated with a·'!r in pa
2
. and so 

C' [ f :e] a Where ·7r a- P £ = [tf ] 

[ 

: e2 a·'!r (12 p2 £ 

f1] 0'.1 •7r 

{ 

C' 1 o-1 P1 £1 = if [f] E V; 
C' [[f] a·7r a- P (, 

sf] 0'.·11" CT p t, 

I •2 J .,,.,,. where [ (sf)] = [ f J otherwise; 
[tf] == 2 o-2 P2 £2 = C' [e] (11 (1 p1 £ 

{ [ti] if [f 1] E V; 
[ ( f 1 )] otherwise. 

(C' 10) 

Fun ct· f Ion a li . • 
1

llles b PP cation is straightforward e>:cept that the function m•Y soroe· 

ea ' lll.ay Prod parenthesized expression. In addition, the compilation of a function 

dence. uce an expression that must be parenthesized in order to preserve prece· 



119 

(C' 11) 
C' [id] a:: 

{ 

~ariab;:" P ' = 

C

eached-Lim•t if b-type == lambda· 
om . i 'f ( ' l\,r pile-Bind" i pa a·?r) I unbnund & v-eount > , . 

.i.vJ.ark ing 'f ( - ' w h -With-Patt i pa a·?r) I unboU nd & v-count < , · 
ere ( [b . . ern otherwise· ' 

indin I ' . Var· g ,pa, v-count, b-type) = p [id]; 

[id]1able is 
Q:•71" 

'\V here u P1 L 

P1 - , . { ( [binding] ( ) 
- Ai. ·r . ' a·?rUpa n"'' v-eount, b-type), 

. 1 i = [id]; 
b P i, otherwise· 

.u.ea h ' c ed L. - imit is [b · c indingJ a·?r .L p,. 

omp·l ' 
[ 

i e-Bi d. 
fix:[· I n ing is 

Wh l.d 0::·7r e ] ] 

[ 

ere 1 a ·7t' a-1 p3 " 

e1] 0::1 •71" 1 <r1 P1 " - C [ 

{( 

1- e]a·7rO'P1"· 

P2 ~ .\ . [fix· [i ' i. .f· . d eJ],pa2 ,v-count+l,ft:X), 

pi tlhZ = [id] j 
' 0 erwise· 

P<i2-.A { ' - pat.u (1 if pat = a·7t'' 
pa t) ' p

3 

{ pa otherwise· 
::::: _A· • ' i. p i, if i = [ . d] . 

p . 1 ' 
l\i ' •, otherwise. 

ark-With-P attern i"s [' dj ] ( ) 1 a·7t' a·7t' pa a ·tr p 1, . 

'rh e com 'l as id p1 ation f . f . 11 entifi 
0 

an identifier now includes identifiers as unctions as we 

P 
ers l'op . represe t' d · d tt id agated b n mg ala recursions. Note that synthesize pa erns are 

•ntifler y both Reached-Limit and J.Vlark-With-Pattern, because the 

8

Ynth may repr ·1 d 'th •sized esent a function whose argUJJlent must be compi e wi 

8 

pattern. 



I 

Sect• 120 
lon 5 ·2: n · 

.n.estriction 
13 .t' s upon source expressions e.Lore di scu · sour ssing the ext · ' 

Ce eJcpress· ension of C into C", it is necessary to restrict the 
reqlti ions that ma b . . . 

re that Y e compiled m three ways. Briefly, these restrictions 
- funct · 
- ions are den 

source ned at compile time 
- expression 

fun ct· s are correctly typed ions 
rri are not ret d 
.these urne as values by the entz"re program 

.$ constraints di 
·2·1: Pu are scussed more fully in the following paragraphs. 

nctions lllu 
It is st be defined at compile time. 

lllust b a.ssullled that all fi . . . . . 
e abJ . unctions are denned at compile time, as the compiler 

it' e to identif th . 
"·2.2. l:'I Y eir dennitions in order to annotate them . 

• .CJ~ 

P.r-essfons 
We . lllust be correctly typed. 

ti:o. llish to Use a £ . . 
Ue to con ast, easily understood algorithm, and so would like to con-

tb.e struct a r . . . 
eJcPres . ecursive descent compiler. This means that when compiling 

ff(.~ s1on 
t . (h 

the e~d: t) . <.h 
colllpile L • • <>>):<..\g. add:<head:g head:g> . <»ff, 

of ff 71 r s.L1ouJd b . . 
. [t.u SJrnth . e able to determine the pattern that the appropriate version 
ls d ~ es1zes so th . . . IT 11 

e~ined. '1' . at it can analyze ffh1J before leaving the scope m which 11f11 
hou . his can b d . . IT 11 • 11

d in to e one very simply by passing the expression to which 11f11 is 
lleed the colll "] 

ed. Sin Pl ation of ff (head:t): <h . <>>ff, so that it is available when 
case tb. ce \rersfo . b . d . 

er . ns are created and since a lazy vers10n must e retame m 
ide:nt · e 

18 
no bett · ' · b · d ~ th 

Ifier ff t er option, tbe compiled binding of fftff is su st1tute 1or e 
frll . )J, lea'Vin th . r t' f 

Is coll! . g e original binding of fft1J to be called if an a.pp Jca 10n ° 
for Piled as "f. . 

llla.] (the 
1 

it Were lazy. Thus, the compiler must be able to recogmze a 
strll bound . . ~ . 

ctur -variable of a lambda expression) representmg a 1uncfaon or a 
e~ e contai · . . 

Pressi011 b ning a function, because such a formal is compiled by copying the 
tJie t 

0
Und t · · · · di · t fi reat 0 it in place of the instance of the formal; this is stmc rom lllent . 
gl"Ven a formal that represents any other value. A type checker 



I 

121 is eJc 
Pected t 

lan ° Provide th· · f; . 
guage are is m ormat10n, and programs in the restricted Daisy 

now presum d t b . 
5.2.3: J;\.. e o e polymorpbically typed {5}. 

~·unction 

'l't.· s cannot be returned as values by the entire program . 
.l.lls res tr. . 

ens · iction is d · d 
. Ur1ng that all enve from the fact that the compiler has no way of 

Inherits the . Uses of a returned function will occur in an application which 
'With Printer Patt 

out an ern. The user could of course apply the resulting function 
Y guara.nt . 

One fu~t ee of its safety. 
y c her assu t' 0 tnbinat mp ion made here is that the programmer uses jiz, not the 

or, When . . 

Sect• 
Writing loops. 

•on 5 3 • : .A 
n extension of C' to C" 

Briefi 
........_ Y, the chan . 

a- is n ges introduced in these equations are that 
ow at 

........_ A. ne ree of synthesized patterns rather than just a single pattern 
w com ·1 . 

ea.ch pi er argument ? is added to provide a stack of expre~s10ns, 
of Whi . ' "' 

a.r1>u ch is the argument of a function application. When necessary, an 
0 .tnent · 

inst ls entered into the compiler environment so that it may replace 
ances of 

calls to the formal or part of the formal when required. 

'I' hes 
co.l:Q • e change . dd't' th 
. Piler e . s are Justified in sections 5.3.2 and 5.3.3. In a 1 wn, e 

ls a. tag dn'Vironment is extended to include one more item per entry. This item 
t ' e . 
he ri 'Ved fro · .t' b k hi h permits Colli .1 m mwrmation produced by a type c ec er, w c 

:re P1 er to . r f 
qllired · categorize the bound expression's type. The type mLorma ion 

eJt ls crud · · b d 
Pressio , e, and is interpreted by the compiler as follows: if the oun 

th 
11 8 'Val · · · fi f en the ue is neither a function nor a structure contammg a unc 1011' 

bolt co.tnpiler ·1 s the 
lld eJc assumes it is of type var otherwise, the compi er assume 

Pression' ' 5.3·1: rv s 'Value is of type function. 

e-w coin ·1 
Q11 • Pl er domains 

JJ----+ D· 
' (compiler) 



I 

I 
I 

I 

I 

p 

l 

( 

v 

Pa 

D -
p 

-

PT -

ENv 1 -

122 

EXP x P x PT x ENV' x INT x EXP*· 
' 

(compilation data) 

$P + (P x P); 

(inherited strictness patterns) 

(P x [])+(PT x PT); 

(tree of synthesized strictness patterns) 

V ~ (EXP x PF x INT x BTA G x TTA G) 

+unbound· 
' 

INT. 
(compiler environment) 

' 

EXP* 

PF 

(resource) 

(expression stack) 

- ID+ (ID x P); 

(version identifiers) 

= (P ~ (P1"
0 

+unbound))+ P1"0 ; 

(inherited and synthesized pattern entries in environment) 

- lambda + fix 
(binding tags in environment) 

var + function 
(type information produced by type checker) 

~.J.2 • 
. S.tnth . 

es1zed 'l'he c Patterns are passed around in a stack. 
lll olll ·1 Ore th p1 ation of hi . . e)t an 

0 
gher order functions requires a mechamsm for returnmg 

alll 1 .ne 5Ynth · ff ( p e, it w esized pattern from the compilation of an expression. For 
(,.\~ OuJd be US fr-1 · ..\ b e w to be able to compile 

• (1.. 
Qt, ·41 8ad · ) 

si2 s equa.t· .a . head:b>):<c . <>>):<d . <»J (1 
ed lo.n h . Patter fr andling lambda expressions, (C' 8), received a single synthe-

n om th . . . e compilation of the function and passed this pattern on 

-



I 

I 
I 

I 

to the 
Colll ·1 

e~ PI ation f 
Pressj 0 the argu t hi h · · tb.. 0 ns in a fl men ' w c is sufficient for the compilation of 
ls and rst-order la 

colllpr . nguage. In fact, it was possible to take advantage of 
Q.1t, b . ess Inherited d . 
't Y V1ewin an synthesized patterns into one compiler variable, 
1 ed b g a 5Ynthesi d . . 
e Y a hound . ze pattern as Just another name for a pattern mher-
Jcpres . Variable at th b sion is c e moment when compilation of the binding lambda 
Y dist· 0 ll1Pleted w; 

Inguishj · e extend this approach to compile expressions like (1) 
........_ E t. ng between . h . 

ac.Q colll .
1 

. in ented and synthesized patterns as follows: 
Ch P1 ation no . h . 

apter 2 w m ents a single pattern, a·11', which is used as in 
.......... A. • 

new . 
b variable 

'11.b. Y each co . ' er, represents a tree of synthesized patterns which is returned 
e colll . mp1lation. 

tree P1lation of a 1 
returned b ambda expression now adds the synthesized pattern to the 

apPlic . Y the com ·1 · · · f r-. • th at1on seJ P1 ation of the lambda body. Comp1lat10n o a rnnct10n 
e ar ects the t 'l · f gulllent op pattern on the tree and passes it to the comp1 at10n o 

a stack: · (Much of tbi di · · t all - it · s scussion makes it appear that this tree is ac u Y 
e%at· is, until th 
t . 10ns fo h e equation for cons bas to combine stacks, so that the 
o it r ead . . . 

as at and tad can take them apart For this reason, it is referred M: ree.) · 

the any of the . 
t· y have equations simply return the pattern tree passed to them unless 
10lls ft a specific us r • · h th 

0 r h e ior it. However there are except10ns, sue as e equa-
&.re ead, tajJ . ' . 

.Present ' cons, if, fix and id· these are discussed when the equations 
ed. ' 

123 

I 

$.3 
·3: -4 

l>Plicat· 
C Jon arguments are also passed around in a stack. 

IT OlJ.side 
u ( (,\lt r the follo . 

h • ,\.. Wing expression· 
vll.l ~. <h ' 

it ess the c . (head::f):<b . <>>>):<2 . <>>):<g . <»J (2) 
call. 0

ll1piler h · d fc ff t 1 b llot anal can determine what pattern should be synt esize or ' 

e bound t Yze ffbJ · If it does not know what expression fftJ will eventually 
o Wh b 't 

en the application ff (head: t) : <b> J is to be compiled, t en l 

-



-

I 

Illust ha.It 
e the corn ·1 . 
::Cpress1'0 p1 a ti on of IT <h ( 11 d' 

n for lrt 7J , . IL • head: t): <b» JI and search the surroun mg 
It IL 11 s b1nding. 

seems . 
e::cp s1:rnpler t 

ressj011 i . 0 
carry the binding of ff tJ into the compilation of the 

app 11 Which lrtn 
roPriate . IL 11 may be applied, so that the compiler may produce an 

(2) . . Vers1on at th . . 
'lt ls eas e po1nt at which it discovers an application of ff tJ. In 

rath Y to see th 
er tha11 a . at the compiler requires a stack of application arguments, 

of Ir s1ngle a 
Q<2 . <>::>] rgument. Here, [hJ will eventually be bound to the value 

. A. stack ' and [t] to [<g . <>>] . 
t1.ll:i.e of applic . . h 

a.n a 1i ahon arguments is represented by (, which grows eac e~p Pp cation · 
l'ession ls compiled. It shrinks during the compilation of a lambda 

en\i ' When th . . 
b ronlllent e top expression on the stack is entered into the compile-time 

ou.,.,d so that 't . i· . f't 
•t "ariabl . 

1 
ls available for compilation whenever an app 1catwn ° 1 s 

S 
e ls compiled. 

ect· 
lQll 5,:J,A' c 

~. o111 'I 
'11h P 1 er equations for C" 

oth e first t 
er · Wo equ t' · bl d I' but are ~se u a Ions contain the new compiler vana es tT an "'' 

llchanged: 

124 

Q '11' (J' 

P l ( == ff $const] a·7r tT p t (. ( c" 1) 



C'' [e] 

125 

0'.·7r <7 P l (,where ($ ~ a·?T") == 

[e[[fix:[id expJ]/[e']J] a·?T"O"pl( 
Where. [fix: [id exp]] == 

(Binding (p [ e'] ) ) 

if :3 [e'] E [e] such that [e'] EID 
& (Binding-type (p [e'] )) == fi:x: ' 

!• [[(fix: [f .l.id. body]): exp]/ [e'J l J a·" " p ' ( 
here [(fix:[f Aid. body])]== 

(Binding (p [£] )) 

if :3 [ e'] E [ e] such that [ e'] == [f: exp] 
& (Binding-type (p [f] )) == fi:x: ' 

[e] 0:·7r <7 p l ( 

otherwise. 

( c" 2) 



126 

( c" s) 

otherwise; 

Thee . Pilatio quations for head tail and cons are altered to accomodate the coIIl-

n of Ii ' sub sts of f · ·1 t ' f ·el< . unctions. The trees returned by the comP' •ion ° cons 

h Press1on 
ead s are paired. these pairs are de-structured by the equations for 

and tail. ' 

0" [ "Wh Prim: <e1 •re 92> I a·1' er p ' ( = [prim: e1 J ""' " Pl ' (1 

[e1] 
0'.1 ·71" 1 "

1 
P1 '1 (1 = C" [ <e1 e2> J {H , ${H • 1-) )" P ' ( · 

( c" 6) 



127 

( c" 1) 
C" [ if :<e1 - . e2 e3>] a·7r O' 

lVhe - [if :<$el p' ( [ •1 re 1 e22 e3, > J a·11" ( M eel· elt' "' "') P• ' (, 

[ 
i] <X1·7r e22] Q'. • 1 cr1 P1 l1 (1 = C" [e1] $..L ?. 

[ e3 ] 2 11"2 er O' p " ... ' 
3 cx3 ·7r 2 P2 "2 (2 = C" [ e2] a·Tr u p1 " (1; 

3 CT3 p3 [, ? C" [ 

{ 

( [ 

• 3 ..,,3 = e3] a·Tr u p1 " (
1

; 

bindin ] ( P, "' Ai .s' , pa,npa3) , o, b-type,, var-type
2

) 

· ( [ . if b-type2 = lambda· 
bind· ' Wh ing, J ' pa,, v-count

2 
+ v-count,, b-type,, var-type,) 

er ·r b e 1 -type2 = fix ; 

( [bindi ( [bindi ng2 ]] ,pa2, v-count2, b-type2, var-type2):::: p2 i 
ng3 pa ) · pa _ {' 3' v-count3, b-type3, var-type3 :::: p3 i 

Me 
4 

- >.pat. (pa, pat) i{ (pa, pat) ~unbound; 
et. elts ::::: (pa2 pat) otherwise; 

ffa:>.. 'I!. >..zi 12 

~: == o· ~ o, 11 E P ~ ( ((1 1 ll) n (1 2 ll)), '1f(l1 l2)(l
2 

l2) ), 
( '11(1 1 ll) (12 ll), '1'(l 1 l2)(l

2 
l2) ). 

'I'he equation £ ·r · h or 
1 

must be able to coropile e:x:press1ons sue as 

"nd [if:<p:2 ).a. v ).b. x>J, 

so b lilust d" E o-3 0 return a tree which contains anb {or all a E "' and correspon ing 

t . th . he Ile er than this (C" 7) . . al t to (C' 7) e:x:cept that it contatns 
lV co . , 1s equiv en ' ~hich rne 1Ilp1ler variable (. Note that "' and "' inust h• ve the sani• structure, 

int ans that ·r t ha.v-e the same 
•rua.1 t 1 the two branches return lists, theY Illus 

ree t s ructure. 



128 

0" [>.i d. bod ] 
Wh [,\id. ~ da·tr <T pl ( [ej ,() = [bo:~~] o yi] a·71" ((Pat-fun (p1 [id] )),0-1) p3 t, (1 

0'.1 •7r 
P2 - \ • { ( [ 1 <71 PI [,I ! - C" [b d ] - Al. •I , J_ o " - o y ''"" " p2 ' ( pi, ' 'lambda, (Type [idJ)), if i = [id]; 

P
3 

::::: ). i. { p i, otherwise; 
if i = [id] j 

PI i, otherwise. 

( c11 s) 

Like th 
corn . e correspo di 

Plier anal n ng equations of C and C', (C" 8) requires that the 

a ne yze the bod 
w entry . Y of the lambda eXpression in an enviroJUilent in which 

of th Is creat d 
N e expre . e for the local variable. This entry now contains the text 

ote ss1on who al . . . that thi se v ue will be bound to the local vanable at run 11me. 

e:icp s exp . 
ression 

0 

res
51

on, [ •] , is propagated to the compilation of the lambda 

Prese n the argu . 
t . nt on th men! stack,(. If it is never required, then [•J may st,U be 

his· e stack h · · · 

18 

the w en the compiler has finished compiling the appbcat1on; if 

case it . 
Type ' IS removed. 

{ "'ar r. maps info . 1 . '

1

llnct" rmat10n provided by the type checker into an e ement in 

ion}. 

0'' Wh [fix · [ · el"e · l.d e]] 
I•,] a·tr " P l ( = jf ix : (idla·1' e1l] a·tr '" P' ' (1 

QI ' 7r I <71 P1 t.1 ( - C" [ ] ! 
P2 -. { ( [ • I - e a ·71" O" p2 t, i, ; 

-->. · fix·[ · d '· if· . 1 •l I , pa,, 1, fix , (Type [id] )), 
. i = [id] . . 

Pi oth ' P<1. ' erwise· 
2--\ { ' -. ~Pat <71 • · b if pat = a ·7T'i 

P un ou d 3 ::::::: ). . { . n otherwise; 
i. p i,. if i = [id] . 

P1 i ' ' otherwise. 

(C 11 9) 



129 

( C" 9 . >dJ is e t ar to C 9). The only differences are that now the type 
of [. ) is very simil ( ' 

has b n ered into th . . . een added. e compiler environment, and that the expresSlon stack 

( c" 10) 

C [f :e] a •7r (7' p I" 
[tf·e t~= 

Whe . 2] Q •7r G' (( [t re 2 P2 ' (211) = [•J ___. ( (212), (2) 

i] 7r1 (7' 

{ 

C [~ P1 t1 ( 1 = 
] Q•7r (J' ( [ ] C[sf] pt e ,() 

[e :~" "p' ( [eJ ,() [t~]] "2 u
2 

P ~re I (sf) J = [fl otherwise; 

{

::::: 2 ,,2 ~2 = C [e] (o-dl) (o-d2) p1 t (1 

[f1] 
[ (f i)] if [f i] E V; 

otherwise. 

if [:f] E V; 

Dser d eq - efined f . d" Uation d unct10n application is also vetY similar to the correspon mg 

th efined £ k at it is e or C'. However, C" pushes [•I onto the argument stac 'so 
Con-. • Ventually . . d b [:f] After ~Pilat· accessible to the JambdaexpresSIOll represent< Y · 

th ion f . 
e t 

0 

the fu t' . . _ 1 th argument with 
op el nc ion 1s complete, the compiler anwY•'" e 

ement f · 
0 

the pattern stack returned by the analysis of the {unction. 



130 

( c" 11) 
c [id] Q•71" 

{

Variable (j P l ( = 
~eached-Lim•t if b-type =lambda; Mompile-Bin~i '.f (pa a·1r) =unbound and v-count 2: i; 

W ark-With-P ng 1f (pa a·1r) = unbound and v-count < i; 
here( [b. attern otherwise· 

indin ] ' \>: • g 'pa, v-count, b-type, var-type) = p [idJ; 

ar1able . 
Var. t ls 

[
. Ype ==var 
J.d] --+-

Q•71" Wh <J" P1 l ( 
ere 

P1 :::: ..\i. { ( [bi~dingJ, (a·11"Upa)n"'' v-count, b-type, var-type), 

1f i = [id] . 
' . ' C [ P i, otherwise; 
Fresh (( p [id])ll)] a·7r<Tpl( 

lleach ed-Limit • . t . C is [b indingJ a ·11" (var- type = var -' "• .L) P ' ' ' 

[
otnpile-n· • 
:fi:x: : [. I 1nd1ng is ~h J.d Q •71" ] ] t 

[ 

. •re •1 <> ·11" (var- type = var -' ir, "' ) P• " 

:f 1:x:. [. 
[ 

. ld 
91] o: . e]] = [binding] 

l 71"1 (j 

{ 

l P1 l1 (1 = C [e] a·7r tT p2 "(; 
P, "' Ai. ( [f i~ : .[id el J , pa,, v-count+ 1, llx , (Type [id!))' 

. If i = [id] j 

P 2' otherwise· 

Pa2 .._ ..\ { ' - Pat <J"i if pat = a·11"i 
p . (pa pat) otherwise· 

3 :::: ..\ i. { p i,. if i = [id] . ' 
P1 z h ' 1\1: ' ot erwise. 

at-k-w· 
[ . ith-P tt 
ldlo:·7r] a ern is 0'.·7r (var-type= var--+ <T, (pa a·11")) Pl( . 

Ori . · '.l'h· lllnal! . uld not be fUJICIJOnS· 
Is is Y, it was Msumed that Jarobda bound vaJues co . h. h to 

no Ion "ble .,,ays in w " 
ger the case, which means that two possi 



131 

corn ·1 Pl e va . 
is b nables are n d 

ound t ee ed. If the variable's binding type is lambda and it 

com . 0 a function al . · Piles a . v ue, or a hst containing a function, then the compiler 

1

n (C' ll) e expression to which it is bound, otherwise it behaves 
as · version of th for~: · Fre•h re · · 
~ng its a names mstances of the formal in the lambda expression 

he oth ' 1 s essentially alpha conversion. 
T 

rgument· 't' . 
stack ret er three cases must handle two possibilities concerning the pattern 

or bindin ) y the compilation. Either the returned expression (identifier urned b 

ret g does re . · urned present a function in which case a synthesized pattern is 

so th ' ll.ot at the f t' 'd t'fi d feprese unc 10n argument can be compiled, or the 1 en 1 er oes 

fet nt a funct" · . · d t b Urned JOn, m which case there is no new synthesize pattern ° e 

Sect• ion.,. "·4: E xtended examples 

The folio . 
n --· wing ex 

1 
1 · d The notation ~ exp . amp es become increasingly comP eX 1n or er. 

A.. s· . points to t . all t ·nciuded). 
'lllila s eps m the compilation process; not s eps are 

1 

the r notation d b ---' exp (In . se "'<am r <--- exp' indicates the result produce Y r · 
•nst ples c th ppear· ea.J th ' onstants are not automatically marked wherever eY • ' 
effe t ey are tr t d •t · sy to see the 

c of the ea e as any other expression, so that ' IS ea 

propag t' a 10n of synthesized patterns.) 

~~a -----~~~~~------------------------! 
lllple: [ (.\ l a. head:a):<1 . 2>1 

2 ~ C" [C 
3 

~ C" [ .\a. head:a) :<1 . 2>]] $.l [] pinit 1, [] ::=: ••• 

~ head. ] $ 3 .___ C" [al $ ·a l. IJ Pd[< 1 · 2 >I]"'· ·· 
[aJ $($_i'.H , l.) 0 P' [ [< 1 . 2>1 i "' .. · 

2 ,1-) [] +-- [headp[a/( [< 1. 2 >] $($.l ..L) O JaJJlbda,-var)]' [[<'.
1

·

2 

>II··· 
l : aJ $1. [] ' ' ' ' '-- lna~[a/( I< 1. 2 >I ,$(U,1.),0,lainbda,-var)]' [[< 

1 

· 

2 

>II··· 
head: a): <$ 1 . 2>] $.l [] Pinit 1, [] 



132 

Ex:a rnple· [C ~----------------- -
· head:<). 1 ~ C" [ c. inc:head:c . ,\d. 1>) :<g . h>] 

2 ~ C" (head: <).c . [head : <>.c .. inc:head:c . ).d. 1>) :<g . h>J $.L d p' ( ~ ... 
3---. C" $J_ up' [ i< inc:head:c . ).d . 1>J 

[<).c in g . h>] (] == •• • 
3 ,___ $($j_. J_ c:head:c . ).d. 1>] 

[ <$).c · i'nc ·) O' p l [ [ <g · h>] (] == • • · 
2 ,___ $($j_ J_ . head: c . Ad. 1>] [head:<$;.~ ([$(H, j_) u], (j_ u]) p i[ [<g . h>J (] ~ ... 
l ,___ $J_ [$($_i inc: head : c ).d. i>J 

· inc:head:c • ).d. 1>) :dg . h>] $.L d P' ( [Chead: <$).c' -1( o-] Pl [ [<g . h>] (]::: . .. 

'I'he f, r tn trees ample shows why it is necessary to take the meet of the 
Patte allowing ex 
•turn produced b . . 

ed by Y the compilation of ea.ch branch. Note that• funclion" 

each b 
ranch, but one of these functions does not require its argument. 

£:xa 
[(

. :tnple· 
l.f · . . <p: 1 ). l ea :a. 1> Ab. <2. 2»):<c · <»] a. <h d 

~ C" [Cit: <p . 1 
($j_ $ · >.a. <head: a 1> ).b. <2 . 2»): « · <»] 

2 ~ ' _L) O' p [, ' = ... 

C" [· l.f: <p · 1 ). 2 ,___ [· ($J_, $~) a. <head:a . 1> ).b. <2 . 2»J 
it:<$p·1 >.u P di« . <»I (J ~ ... 

($1_ $1-) a. <$head :a . $1> ,\b. <$2 . $2»] 

1 ~ ' [-1 o-] p [, ( ... 

[(if·<$ . p·1 ' ] ($j_ $ · "a· <$head: a . $1> ).b. <$2 · $2») : <c • <» 

' 1-) O' p [, ' ~~------~------------



-----------

133 

EJCtended example· 
This . exampl ·11 Passed t e 

1 
ustrates the mechanism used to ensure that argurnents are 

0 th t . e corre t b "'ning h' c ound variables. Note the way in which arguments con· 

[[]] igher order f . 
axe not unctions are compiled. (In this exa.mple, constants such as 

contpilaf marked so that it is eMY to see the propagation of patterns to the 

Ion of sub · Whe -expressions.) 
n evaluated th ] ' e example produces the list [<b · 3> · 



134 

[CC\a. . .Xt 
<.;\ · <head·a c. inc:hea;·c (head:f):<2 . <>>>) :<b . <>>): 

1 . <>>] 

-----+ C" [C C.Xa >.t. <A·. <head:a. (head:f): <2. <»>):<b. <»): 

($.l $ c. inc: head: c <»] 
' .l) <r p l /' = 2 ':. ... 

--+ C" [ C.Xa. >.t ($.L, $.i) · <head: a . (head :f): <2 . <>»): <b · <» J 
3 "p ' [[de· inc :head:c . <»] (] =' •• · 

--+ C" [ 
( 

.Xa. ).f < $.i, $.i) " · head: a (head: f): <2 . <>»] 
{ p' [ [<b • <»J [<Ac. inc:head:c · <»J (]"' · · · 

--+ C" [>. 
( 

f · <he d $.i,$.L} a :a • (head:f):<2 • <>»J 
' [[<Ac " .p[a/( [<b . <»J ,.L,O,lambda>•ar)] 

5 • inc: head: c . <» J (] "' ... 
--+ C" [ <head· P[f/( [<Ac.a." (head:f) :<2 . <>»I ($.L,$.L} 11 • 

[a/( [<b . «~~c:head:c • <»J ,.L,O,laJJlbda,funchoP}] 

Por th I , .L, O, lambda, var}] , ( "' .. . 

p' ::::::: e next f, • 
P[t /( [ ew hnes, 

[ 

<>.c . • )] p",,, a/( [<b · inc:head:c . <»J ,.L,O,land>da,funct•OP 

P[f I ( [<Ac· ~»J, $($.L, .L), O, 1anJ>da, var}] , 
[a/( [<b · inc:head:c . <»] ,.L,l,laUJbda,funct10n}] 

6 --. • <» L $ ($.L, .L}, O, lambda, var) i 

C'' [ (head·f) 7 --. • '<2 . <»I $.L " P" ( "' ... 
C'' [ head·f] $ a --. · .L " p'i [ [<2 . <»I (J "' . · · 
C'' [ 9 f] $($.l, .l) <r p' l [ [<2 

--. C'' [ <>.c . . inc:head:c 

<»] (] === ... 

. <»I $($.L, .L} "p" ' [ 1<2 . <»I (J "' ... 



9 

135 

+-- [<$.>ic . · inc·h $($.1_ · ead: c . <»] 
8 ._ ,_L) ([$($1_, 1-) <r), <r) p" /, [ [<2 ] t] 

[<$,\c . . <» ' ... 

· inc·h $($.1_ 1-) · ead:c . <»] 
7 +-- ' ([$($1-, j_) u], u) p" 1, [ [<2 

[

h · <»I (J. · · 

ead:<$>i . $_]_ [$($ c. inc:head:c . <»] 
6 ._ I< 1-, 1-) "1 /' d [<2 . <»I (J ... 

head:<$..X . 5 +-- [ c. inc:head:c . <») :<$2 . <»J $J_ "p" £ ( ••• 

<$head·a ($1_ $.J_) · (head: <$,\c. inc: head: c . <»): <$2 . <>»] 

4 ' U' p" /, ( 
+-- [>it. <$h ... 

($ ead. a ( 
1-,$1-) [1- · · head:<$,\c . inc:hOad:c. <»):<$2 · <>»] 

a ._ I>• "1 p[a/ ( I <b • <» J J, $($1, 1-), o, 1ainbda, var)l , ( ... 

a . .Xt <$2 . <$head. a ( . ) . <>>>] ( · · head:<$AC· inc:head:C . <» : 
2 +-- [C $1-, $J_) [$($J_, j_) J. d] P "( ... 

..Xa ,x <$2 • f • <$head•a (h $' i'nc.·head:C • <>>): 
($ . <>»). · . ead:< AC· 

J_, $J_) [_t_ • <$b . <>>] 
li--_ u]p1,( ... 

[CC.Xa . .Xt <$2. <». <$head:a. (head:d,\c. inc:head:c · <»): 

($j_,$J_) >:<$b · <»):<Ac. inc:head:C · <»] 

U' p /, ( 

'!'his fi "" a naJ exa · d su Value. W mple steps through the colllPj]ation of• ft• apression returne 

Ccessive i hen evaluated, this progra.IIl produces a streal'll of alternating 

ncrem ents of 3 and 80 or ' 
[<3 80 4 81 5 82 6 83 ... >]' 



136 

let [exp] 
[CCtix: [g ->.n. >. p . <head : n . <head:p · d 

) <ine' hea : P 
<3 <>> (g: <inc:head:n · <» : · 

): <80 . <>> ] 

1 -----+- C" [ exp] fix >.?T .($1- , (_L , 7r)) <J p" ( = ... 

For th 
rec-p ~ next few lines, 

- [$($ .L, .L) J_ a-] 

<>»>]): 

Pa.':::::). pat. { rec-p if pat = fix>.11".($.l' (J.' 11")); 
P' "'P[ [ J / unbound otherwise; ( .<inc:b••d:n 

<~ ( [-Xn. -\p . <head : n . <head:p · .g. )] 
inc: head : p <>>>>] 'pa'' O, fix 'function 

<>>): 

p'' 
::::: p'[ [n] /( [<3 

[ [p] /( [<80 . 

p''' 
::::: P"[ [n] I ( [<3 

[ [p] I ( [ <80 

2 

<>>] _L O lambda, var)] 
' ' ' )] <>>] , 1-, O, lambda, var 

< »] , $($_l_, _l_), 0, Jawbda, "ar)] 
<>>] J.. O lambda, var)] 

' ' ' 
~ C" [). n . .Ap . <head : n 

fi <head : p . (g:<inc:head:n 

o»>] 
. c'Mad:P · 

o>) :<1n • <>>] (] :::= ••• 

<»] [<80 . 
3 XA7r .($ .L ' (_L ' 7r)) (]' p' i [ [<3 

~ C" [ <head : n . <head:p . o»>] 
fi>A(g:<inc:head :n . <>>):<inc:bead:P 

4 7r .($.L ' (1- ' 11")) (]' p" i ' = . . . 
~ C" [ . <>>] 

fi Cg:<inc :head:n . <») :<inc:bOad:p 

S 
x A7r .($ .L , (J.. ' 7r)) (]' p'" " ( = .. . ,,, i 

~ C'' [ (.l ' ,,r)) r! p 
g:<inc : head : n . <>>] fix>.11".($.l' 

6 
[ [<inc : head:p . <>>] (] === · · · 

~ C'' 
[g] fi~A?T . ($ 1- ' (_L' 7r)) <J p"'." ·head:P 

[[<inc:head:n . <>>] [<inC· 



137 

6 ~ [g] .fiz-X7r.($.l_ , (.1_, 7r)) rec-p . . d:p . <>>] (]:::::: ... 
P111 l [ [<inc:head:n . <»] [<inc.hea 

5 ~ [ (J. -rr)) [J. O'] p"' /, 
g:< $inc : hea d : n . <>>] fix).-rr. ($1-' ' 

[ [<inc : head:p . <>>] (] == · ·· 

4 ~ [ . . <»] 
(g : <$inc : head:n . <>>):<inc:head.p 

fiz A7r.($ .1_ , (.1_ , 7r )) <r p"' " ( ... 

3+-._ [ 
<$head : n . <head: p . . o»>] 

( ) · c·head.p 
g: <$i nc : head:n . <>> :<in · 

fiz A7r.($.1_ , (.1_ , 7r)) <r p"' l ( ... 

2 +-._ 
[.\n . ,\ $ P · < head: n . <») : ) J_ O'] /, (. • • 

. <head : p (g : <$inc: head: n · _L -rr)) [$($1-, J_ 

<inc : head : p . <>>>>] fixA.1f" .($l.' ( ' 

l +-._ 
[((fix : [g .\n . .Ap . <$head:n · <»): 

<head:p . (g : <$inc:head:n · 0 <»] <. >). <8 
J.nc:head : p . <>>>>]) : <$3 · <> · 

fiz ,\ 11'. ( $ J_ , ( J_ , 7r)) <r p " ( 



138 

Colli . Chapter 6: Conclusion 
a.JJ b Pilers 

een . "ery si ·1 
~ llllpl nu ar to tb 

aYs. 'rh eniented · . ose developed in the preceding chapters have 
llo e res ' in fact C ba b . 

t llse earc}i of W: s een implemented in at least three different 
"ersio adl.er and H b . 

S ns and is b ug es, discussed in the following section, does 
ect· ased upo ~ 

1oq 6 n a Lar more abstract approach to compilation. 
·1: c 

b- Otnp • 
Qq L ar1sons • ~1... g~ies L with other work 

.tQc}i llas dev 
~ \\>ere . . eloped fc 
atio11 [ 1llltia1Jy d a orm of strictness analysis based upon conteztJ, 

tJ:i 8 16] escribed · . 
eol'y . and llJ.o in an intuitive way {18}, then formalized as contin-

be 111 a st recent] . 
apPli Paper Witb Y appeared as projections, a concept from domarn 

eJ( ed t Wadle [38) · al:O.p] 0 a Pr r · A context is in essence a function that can 
tJ:i e, 1I . ogra.zn a d 

at \\>"1J ls a cont ' n tbat transforms the program in some way. For 
~ 1 eii:,, 1 e:x:t that t k 

ti) tL Q.LUate · a es a list and replaces each lazy cons with a cons 
t ~e st · lts first .. 
st. C .l".lctne argument. His somewhat like the compos1t10n of C 

8: onte ss Pattern fi ' fl t~ t Jets are z .-Hr. ($.l , 7r), which is strict in all heads of a at 
eJ( 0 ab a.lso Used t · . · Pte

8 
. 0 rt, all . 0 1dent1fy some expressions that will cause a pro-

~ sion oWing 
ti) a 8 that w·n a compiler to substitute an abort command, and some 

b dlllh~ 1 not b d ~ a-0.r -......,.lly e:x: e required by a function at all, which can be replace 
It] of th Pression T . . . 'ded 

so p e coni . · bis is useful extra information that is not proVl 
tzi 1 l'op Pilers · { 5} 
""' Co Oses an . . Presented bere. Hughes {18) along with Lindstrom 2 ' 

''b llcJlJ . ini tia] ' 
<le.le\\> s1on arrj" context very similar to 7ro. This seems to be a natu-

al'ds" ed at b · · fi. mation W, [17] Y researchers interested in propagating m or 
e~t] <ldJei- . 

Y ft and 1I 
~1. 0.lll h Ughes · · t d differ-
~'et L .("; th create a finite domain of contexts that is onen e 

:.1 ~'er e to 1 ~o a ~ 'Pe e.zne t . h •t ·snot known 
. 'let 0 '"en ii n specifies a context to be used w en 1 1 

it i 0 be Unction · . . ument is left 
s a.I e"a.Iu is stnct in its argument, and so the arg 

t~e 1 \\>a.J's ated lazi]" 0 . entation is that 
a.tt' PossibJ ., . ne of tbe advantages of this repres 

lee · e to ii. d f ]oration of 
is need 11 a fixed point and that a minimum 0 exp 

ed to find . ' . f contexts over fiat 
it. Tbey present a finite domrun ° 



list 139 
s wh ose elem " d " b t" 

contexts) a en ts (omitting ABS and FAIL, which are "absent an a or 
(Note th PPear to correspond to sets of strictness patterns in the following way: 

'•hstitut~: {p I p = fiz ,\rr. (rr , .i)[.l/1']} is the set of all patterns produced by 

g J_ for · STR _ rr m unfoldings of fiz ,\1f.(1', .l)) 

II• "' { {p I p = $ fiz ""- ( .l, ")[ .l I,,-]} u {$fix,\,,-. (.l,,,.)} 

'!'' ::::: { p I p = $ fiz ,\ 1'. ($.l, ")[ .l /,,.]} U {$fix Arr .($.l, rr)} 

- PI lI'nT' _ P = $fix.A7r.(1- , $7r)[1-/11"]} 
ID ::::: { {p IP = $fix.A11".($1-, $11")[1-/11"]} 

- PI }[ ::::: { P = fix A11". ( J_, 7r) [ J./ 11"]} U {fix ,\11" · ( J., 11")} 

- PI T 
20 

{ p = fizh.($.l,1'}[.l/rr]} U {fix,\rr.($.L,rr)} 

linT ~ I P = fix .A7r.(1- , $7r) [1-/11']} 
:::: {p I P = fix .A7r.($J., $11")[1./11']} 

1'hi 
th s domai . fi •te chains in p, so 

e notar n contains single points that represent in n• . as 
l> ( ion used . . t . not as aPress•'" 
. as Pres is certainly very powerful. J!owever' ' " t trictness 
•n ented i . to represen s 

at'bitra. n Chapter 2) because there is no waY . such 11~ ry s b . · f t"'ctness, ~ st · u list 1 tterns o s .... '1ctn s, or subtrees or even regu Bf pa t' n of P 
re . ess in al , th< construe io 
thqUires strj ternate heads or tails. The {act that bain• rather 

an ctness f b resented as c as a . 
0 

successively longer lists to e r<P f these cha.ins 
c._,, b single . eleinents o b e con pomt becomes an advantage, because . ine sublists 
Ut nected u . . strictness in so . 

Ii not in P m a very general way, a.lloWlng · es of their 
st • others S · e arbitra<Y pie< 

'&uni · ome important functions do requir all terininal 
sel''\>e . ents. (F . 1einented a s!Il r in. hi or example, a few years ago l •UlP . al ;d. It"'"' 
•sse . "' ch each . d with a teJ'lll1n . th nt1a1 t piece of information was tagge h inforin•t1on 

at o check th to look at t e "as t e tags, but not always necessarY ed la.Jiguage, 
ll.s g a.gged ) I · stronglY typ en.,,_, · n addition lists are used, even 

111 
• h t ..,,,a,keS the!J'.l 

es QJ. p ' a.lit t a ..,.. 
sent' urpose . . h . ener y d t la\ to groupmg structures. It is t eir g th<Y ,,,ere use 

0 

l!r • "ide . Th< fact th•t . 1 es 
is 

0
u p fu . and di verse variety of prograJllS· .,guinent ""'u 

er nctio te tho" Uciat t n arguments together as well as to ere• ] t create a la.ZY 

0 
th · . d Wis< [11 ° 

e insight that allowed Friedman an 



l~g l~ 
n e strict Just by altering cons. For these reasons, it seems best to Uage 

d 
esse t ' 

esc 'b n ially . 

F . ness in li f ll.lrbairn sis as generally as possible. 
ions with ray [9] discuss the use of versions in compiling higher order 

Uncf and W 

0 

say th ructures, also discussed in Wray's theSIS [41]· Th<Y then 
go on t out list st . 

p at 
or thi s sch st · eme t · li t nctnes 

0 
yield significant results it would be necess•l'l' 

10 

use s 

th s anal . . 
e e.,.. ys1s as well Thi . b . the body of rnaP there is 

~Pres . · s IS eeause 1n 
Uuneti Slon cons (functiun (head list)) (map Junctitm (tail list)) and 

ti on (head I' li · on tree · f 
18 

t)) would still have to be eonstrueled as an •PP ea 

[VV i th al · •d!er 

8 

e standard lazy cons were used- With list strictness an Y"s 

Whole o t 5, for example] it would be possible to deterini"e that (saY) the 
be u put list f . . f conJ could 

Used. R 
0 

map would be required, so a strict ,er

51

on ° 
rn.a owever t d . ore versions of 

P, •aeh . ' 
0 

o this there would have to be even !Il ha with a diffi . £ roation would 
Ve to b erent kind of cons or else strictness in or 

Ile(' e pass d ' 1 k pproprial< 
ion, We e around at run-time to enable m•P to a e • . 

ere believe th d unacceptable in~ 
ase inc at the first alternative maY lea to an . . 

p, 1 ode size b b 'te prolll1s1ng.[9, 
00] ' ut the second scheme app<•'" to e qUI 

'l'hi be 
8 

Work Id . &teat) . has de . ra!Il' that woo 
ll) Y im monstrated that there are interesting pr<>g bl 

such proved b . d siz< unaceepla y 
're c ... , Y versions, which do not increase th<'° ' · •led , and th rober of verSlons 

for each at the user can severdY restricl th< nu 
A..ss functio 'f . . . . ,cial concern· 

of "1 Utne th n 
1 

an mcrea.se 1n code ""° is • sp h bodY 
•p . . at ma . . . ]isl So that t e ~ith is Just th P is defined to produce an infixule , 'b'litie5· er th e con e are two posSI ' 

the e ca)J t 
5 

expression discussed above. f heI . tterD· If 
Patt o ma . . .. h 'ts a eycli< p• 

of "1 ern is fi . P mhents a finite pattern, or 11 "' er! f rsions •p rute th . 1 r e nuJl'.lber o ve 
'••ou Illay be ' en there is indeed a danger th•I a a g iler a large 

tee Produc d ve th< coJl'.IP "'•p 8.nd th e ; this would happen if th< user ga .
1 

to unroll 
•ev e finit . th< coJl'.IP' er 

•raj t' e pattern was a long one, alJoWl!ll! . depends 
itnes. If t bet of ,.rs1ons 

he pattern is infinite, then th• nuJl'.I 



I 

I 
I 
I 

I.I.poll tb 

l\'01.1.Jq b: cycle length of the 

c;ycle allowed t pattern and the user's tolerance· either the compiler 
l!i ' or it w o create a ser· . ' 

o~e\.': 0 u.Jd er ies of versions that referred to each other in a 
a er, if eate a small 

.!.Qou11t the cycle . er number of versions but fail to close the cycle. 
t}i of s is successfi ll 1 

at 1-0 Pace a d u Y c osed, then versions take up a constant 
c:l. ay b n avoid a . 
efillif e "ery 1 n unbounded number of suspensions, a number 

loll of arge When . ii . . . 
S the fu . in ni te lists are prominent data structures rn the 

.. nct1on 
~ct· · .loll 

6.2. c 
'l'Ji • o11tl'ibuc 

i11t e WorJc ion of research presented here 
eract . Present d h 

Press· lll a fi.Uit[i e ere is based upon several straightforward ideas that 
s ll'e. S . ul Way R . 
tl'ict trict:o. . · or example, the domain of strictness patterns is ex-

lless ess in a . . 
Prop Patter ny list or sublist may be represented in the lattice P of 

a~at· ns C . 
l' <:> l.Q • is abl · h t es~t g Patt e to take advantage of this expressiveness wit ou 

( 
0f a t-. erns that 1 th 

<lJJ Ji i.~:O.cti Would cause it to loop indefinitely. For examp e, e 
at earls o.. on need not b 1i "h " way 

e \I: ~ all t · e a st that is consumed in a omogeneous ers· ails 
O loll consum d) · d ropri-lleed · One of e in order for the compiler to pro uce an app 

lllatc4 llot colll ·1 the advantages of the pattern notation presented here is that 
tb_ · Pi e th 1 tl 

Of t-Oe eir tyPe· . e eaves of the source code tree with patterns that exac y 
'1 tree ' instead th b·t ry points 

&.~i];y,, ' ll>here e patterns can be propagated to ar i ra. 
all lllat they ar t . th ompiler to 

141 

I 
I 

&.rb · c}i tb. e runcated if necessary. This allows e c 
a ltrar e depth of th . . h ilation of 

set Y tre e stnctness pattern inherited by t e comp 
Of av . e structu th d termine 

'114 a.ilable re to the depth of that structure, rather an e 
st e e~ Patterns b 

l'eft.l:Q •'1cienc efore compilation. 
Oe s, llla J_ y offered b espec1.ally loons that produce Co.l:Q 'fe tb. Y versions in loops, r . 
a~ . Pile..J . elll Worth . rogram might 0icleq 4 lnt exploring. The central loop m a P 

Si~ eacb. . o a cycle f . . fi uspensions to be 
e sj tilll 0 twenty versions permitting ve s 

cl'e .l-Op]y b e the loo ' bl increase in code 
cited eca. P Were executed causing an accepta e 

f~ ' t}i Use th ' ions a.re not 
llcti e 'flie t e speed of this loop is vital. However, when vers . 

% . e of th . . s of a given 
ls the e Patterns inherited by the set of application . 

Only ·1 the function. 
--------- Pattern that can safely be used to compi e 

--



As has b 142 
each een shown . 

Patte m Chapter 2 thi t b. k " n though es rn inh . , s pa tern can e verY we• e.e 

P•ciaij ented w 1 . 
iofi . Y Poor ob . ou d have produced an efficient version, wiuch produces 

rute li Ject cod r f d d 
sis. e ior unctions that inherit cyclic patterns an pro uce 

Sorn 
cio . e care Illa.in. f must be t k 1 the Pus . 

0 

sourc a en when creating versions. for exaIIlP e, once 

s1bie e expre · l' t •t · b lo g ssJOns includes functions that produce infinite 

18 

s, 

1 18 

ecause t enerate an . fi . f h f f ons of di he res m rule number of versions for anY o I es< unc 

1 

fter ult of th · . . · fi 't nurnber 
of ent w eir application can be consuJiled in an in Jll e 

""' . ays A 
'"1 · co ·1 fi ·1 uJilber is~ ons that . mpi er that terminates must decide upon• •

1 

en 
how . it will i t d . · t t' g question 

llsi Will it n ro uce mto • given prograJll· The in eres in 
ng br generate th . ht b to crea.te a. set 

•ul . Ute fo ese versions? One approach Jlllg e 
'1t1

0 

. rce, and h f 1 A. better 
n is fo t en determine which if anY will be use u · 

lt llJ. und by C hi ' ' tl hen needed· 
"ny ay se ' w ch lazily creates versions on the Y w 

one f em myst . . created for 
a t1 'llnct· enous that C limits the nuJilber of yersions 

"'" ion ·1· gr•- when c " · ed in coIIlP

1 

ing 
the ~ and generates onlY versions a.ctuauY reqtll' gene propag t . F' 't pa.tterns ca.use 
<ep ration a es either finite or cyclic pattern•· 

1

•

1 

e resent of a fini t . s at terns call be 
he ed w"th e number of versions and sine< stnclnes P l:'ecog . 1 a normal ' hich ca.n eventua.llY 
call b lUzed form, cyclic patterns have cycles w . e i ' at wh" h tructed version 

for th ntrodu ic point • reference to • previouslY cons "bl e c ced into . h t it is still poss1 e 

'>e 
0

lllp"J the target code. The probleJil 

18 1 8 

. r lar i er to ns that grow 
it, ger to execute a loop in which it propagates patter 
b Ptede recursive . ttern difi'erent froJll 

et......, Cessor 

1 

· calls, so that each inherits • finlle p• . hiP t <en · t ca . e the rela

110

n' 
hat a functi n also be useful to Jimil verSlons bee••' . . is such 

a se on defi . . b ·1 coIIlP1lat1on 
'.C quenc ruhon and the pattern inherited Y 

1 

s JI' 
() 0 s e of several . h hsS uttl• to 0 et· 

tu UllJma . versions are created where ea.c f p perrnit 
rec . rize . . wer o • •ig . eive and ' vers

10
ns combined with the aPresSJV' po . ation to 

i llJfic Prop . arY apProJClIIl 
IJfu, •nt e t agate patterns which avoid unn«'" f Jil this 
f llJar x ent I UY profits ro 
•ncr ton. A . , and to produce target code which u . such as a 

•on.i Pphcati construct1on, 
oper t" ons which require efficient streaJll . 

1 
to benefit. 

a mg s eci.UY Ul« y 
ystem or circuit simulation, are esp 



143 

Sect' •on 6 .3: A reas for fut . . 
sub The idea) . ure mveshgation 

Ject t strictness co . 
'•rt . 

0 

a reaso mp1ler would produce a.s many yersions as needed, 

a.in c . nable re d' Pilar riteria I source, but would then coalesce yersions accor ing to 

ion o . t can be th 
!let f a f u . e case that the same piece of code results frolll com· 

eren nct10n w h 
•er . ces to th ose applications inherit a variety of strictness pattern•· 

s1on ese ve . 

I rs1 d' t' t >er . · t ma ons can be compiled as references to onlY one " inc 

•ions Y also be . . · of Where th possible to develop techniques for select1Yoly weakening 

code th ere is littl . 
• n at ar e point in introducing extra efficiency, such as sections 

otorio e not often d l'ttl work is Us!y diffi executed. (Determining code that oes I e 

· 'I'he cult probl It is compi! em for prograJJllllers [22].) 
n't ers pr th t Prod Possible esented here do not permit fine-tuning, in the sense a 
Uce to use 

0 

. f f d nother to 
•ersio ne resource in producing versions o all • 

Anoth ns of g . Th" . . . h lb:ed er ar . is is an mterestmg are• for future reseat' · 

1 

Poi ea m w h · h fl d' pattern ••y nts. c ic more work needs to be don• involves n ing 
Ii Patt urrently th necessa.rilY 

Iled. ern wh . ' e compiler maY be forced to pr<>Pagate all un 
. in Ch en its se h . Th technique out-

''% apt arc for a pattern fixed point falls. e 
011t f er 2 (S . 

1 
( {ily) but 

0

ds Urthe ecl!on 2.5) works very well and fails graceful Y sa e ' 
. IIow r Work it f other nieth· 

"nd ••er · s power can't really be compared to that 

0 

•eelll ' it does h di ceding ch•Pters, 
I 

8 

to be an e the examples presented in the pre 

~ n Ill. potential! ~ll.to. l any cas Y a powerful technique- . F b p e f es, finit r k d as strict. or 
e 14 ' Unct· e ists can be detected and should be mar e 

"'••d Ion argu . r t which call ,afelY 
Ptese · Thi ments are often collected by • filllte ts . ' nted s partic . . d to th• colllP'Jers 
U.u, here ular improvement can be easily add• . t t 

th e th ' and th •t is suflicien o 
e co at onJ ere are probably manY more such· ,1.Jso, l . . than 

nstr . Y cyclic . . Jess restric11ve 
I "1nt · patterns are bounded by ,,.,-tluS ts 

b t W introd . •!l'er; oUld b uced by C on synthesized patterns- f on of 
b ng i . e worth h" . . wbeII th• no I ~t it . s intr d w ile mvesbgating what happens 1 th one, 
'• ls W o uced buff er of eug 

Peat . 
0

rth c . · At present, ,,-0 can be seen as • . tails but 
s in ons1deri h t is strict in ri ' 

•n u ng an altered printer pattern t • 

nrnarked t ·1 ai · For example, the pattern 



144 

has fi .X 
a buffe x 71". (h, $($11", $($ir, ir))) 

•trean, t r of length thr . . 
of 

0 

be evaJ ee. Tlus would allow more than just one element of 

3 

a buff; uated at . 
•cc er load a time, but would require that the user accept the joss 

epted b of stream 1 . . 
Y users e ements if any of those elements is 15, • situation 

of most . conventional operating systems. 



145 

Bibliography 

l. s . A.b ram k IU!d J s y. Strictne , ones ( ed SS analysis and poJyroorphicinvatiance. Jn Ganzlllger 

1-23 s.) Pr 985) 2. L · ' ogram• a• Data Objects, Springer, Berlin (October 1 ' 

. A. S ugustsso Yrn.po&ium n. A compiler for lazy ML. Con/. ]lee. of the t984 },CM 

3, A. on L . 
. Bloss and "P and Functional programming, (A.ugust 1984), 21s-227. 

Li&p P. Hud k v . · ACM Con! on 
4 •nd F a · anations on strictness analys!S· · 

. Q unctional P · L. Bur rogramming, (,\.ugusl 1986), 132-142· 

Ord n, C. L H . > hi h r S. er functi · an kin and S. ,\. bra.JllSkY· Strictness analysis or g e 
L. C ons. In S · · 7 (1986) 249-278. 

•rdelli cience of Computer programming ' ' 
Poly ' P. We b t ction and 

6. lllorph· gner. On understanding types, data a s r• ' 
ll. C ism. In Co t . b 1985) 4 71-522· 

a.rtw . mpu mg Survey• 7, 4, (Dece!Il er ' 
\latio right ' J. D ( d . dustrious) eval-
2 n. ACM onahue. The semantics ofl3'lY an in 53_2

6 

Conj . · (August 1982), 
?. 4. · on Lup and Functional programm

1

"9' 

c . Clack 
"nal . and S. L p . froJll strictness 
p Ys1s. In · eyton-Jones. Generating par.UeliSJ!l 

l"oceeding, L. Augustsson, J. Hughes, T. JohnsSon and J{. J{arlsson, (eds.) , 
Port of Work · l Lang•a9" jle· 
C 17, p •hop on Implementation of function• d ha1 rogra.mmj . . 0

( Goteborg an 
8. lllers D . ng Methodology Group, l)Jll«rsitY 

C. C Illversit f 5) 92-131· lack Y 0 Technology, (February, 198 ' 
Proac and S L . a praetical ap· 
c h. In J . · Peyton Jones. Strictness analY

8

"- nJ 

0

!>i • Jo · Lan!J"•9" a 
. l! Put,. A uannaud, (ed.), Functional programm•M S · .-.ger cru rchit . 201 prl• ' 

9

. J n (198S ) ecture; Lecture Not<' in computer Science ' 

· F:.: ' 35-49 ..... rb . . 
l!i>age ">rn and S . for functio•al Jan· 
(,\. '· Proc · C. Wray. Code generation tech!llques ,,.,,.;ng, 

"g" · 1986 A d F ctional p,.ogra 
st , 19

86 

CM Conference on Li•P an un 

), 94- 104. 



10. J . Fairb . 146 . 

· airn p s1ty f . onder d 
11. ° Cambrid an its type system, Technical Report No. 31, Univer· 

}) P ge, Com t L · · Fried pu er aboratory (November 1982). 

In S . man, and . . 
.. Michael D. S. Wise. CONS should not evaluate its a.rgulllents. 

tnin son and R . 
12. g, Eciinb · Milner (eds .) Automata Languag" and program· 

C urgh Uni . , , · V. lial] an versity Press (1976) , 257-284. 

A.nnuoJ d D · S w· th 
. ACM · ise. Compiling strictness into strea!llS· In Fourteen 

llli.n L SIGACT p 
· g angu -SIGPLAN Symposium on Principles of rogra.rn· 

into ages ( J . 13. C streams T , anuary, 1987), 132-143- Revised as Compilingstnctness 
· ech 6) . V. liaU . Report No. 209, Indian• University, (Decelllber, 

198 

. 

lllin. and J T 
g enviro . . O'Donnell. Debugging in a side efl'ecl free prograJ!l· 

guag nment 1 g · Lan 

1 

es and p . B5 ACM SJGPLAN Syniposiuttl on PrograJJllll'ng . 
985) rogra . . 20 7 (June 

lt , 60- 6s mmmg Environments SJGPLAN Notice• ' ' 
l> . , 

· llen.d S er so 
Ytn.p n and J H . f Jl c Jrd A. CM 

ls. " · on p . · · Morns, Jr. A lazY evaluator- Co•· ' · 
r", II rincipleJ f P 1976) 95-103· 

1 

UdaJc 
0 

rogramming Langu•9" (January, ' 
"'"-bd and J. yo . i the untyped 
rn.. a calc 

1 

ung. Higher order strictness analY"s or 
l •ng L u us C . . l I pragrarn· 
6. o •ng . on/. Rec. J Jth A CM SyrnP· on pnnCIP '' o 

~. J uageJ (J · 11: anuary 1986) 97-109 
ll . · liu h ' ' · · 

at10 g es. A al . . tatio• of cont1n· 
lJ ns. In S n ysmg strictness by abstract interpr< . , l '<la . Ab 1 terpretat1on oi 

?. ll i-ative L ramsky and C. Rankin, (eds-), Ab•tract n 

l . J anguag Elli 8 · M: g .,, s Horwood (in press)· . ll. J . ughes B , s ).{arch, 1987· 
J · l>.f. liu · ackwards analysis of functional program ' d 
ones ghes. St . . Jn canzinger an 

i

1

,.. (eds.) nctness detection in non-fiat doJJla.lnS· 
1
985), 

\9 <· !3 , Pro li (October 
· S. b 

5
· grams as Data Object•, Springer, Jler n 

h · Joh 

w~ l ns . " uatioM 
. . '.!' on, S . pecur••o• ,,q 

· l>ress ynthem of Digital D<'ig"' frD"' 
, Camb 'd n ge , MA (1984) . 



20. s · D J 147 
. oh Il nson D eport I . ' aisy refer . · ll. ll nd1ana U . ence manual, Computer Science Dept. fechmcal 

. R' b ruversity Bl . te urtz ' oowngton (in progress)· 

llanki ' M. Na · 
'\\> n, (eds ) pierala. Abstract semantics. In S. AbramskY and C. 

Ood (' . ' Abstract I , ll, n. E' 
1

n press). nterpretation of Declarative Languag"' EJhs !Jor· 

p . Knuth racti . An em . . 
23. 1' ce and E pineal study of FORTRAN progra!ll'· In Software-

. I\ xperien 1 U.o a d ce, ' 105-133 (1971). 

nua.1 n p M' 
L A.CA[ SJ~ tshra. On strictness and its analysis. in Fourteenth An· 

'I &.ngu A CT- SIG . 
<4. ages, M . PLAN Symposium on Principles of Progre,IJU!Ung 

P. J uruch W 
·Land· ' est Germany (January 1987), 144-155. 

not . in. A ' ls, at1on. C correspondence between ALGOL 60 and church's Ja!llbd• 

G. t· omm. A CM p 
1
ndstro 8, 2 (February, 1965), 89-101. 

L..t l\r m. Stat' SIG H '86 ic eval f f Proc. of the . 
19

8 

Sym ua ton o functional progra!ll5· 

26

• n. ~· l96- 2o

6

.p. on Compiler Construction, SJGPLAN Notice• 2t, 

7 

(July 

au.re %.d r. St . 
Jon nctness . I aanzinger 

136 es ( ed ) computation using Jambd• expressions. n 

l) -15 s. p 85) · J 

5

· ' rograms as Data Ob1'ecta Springer, Berlin (October 

19 

' 

· l.t , 
cCa L;,P rthy, P. W . ls, I\. 1.s Prog . Abrahams, D. J. Edwards, f. p. ga.rt, and !J. I. Le"'n. 

· l.t ramme ' . ,, 1973· 
b Ycroft r' Manual, The MIT Press Ca!llbrtdge, "'"'·• 
y • .,_, • Th , _, 

S 

~u.e e theory d _ 11 b need jnto c!l.11· 
c; · Pro an practice of transfornrinS C"" - y-

2a. ence c . of Intl N irt computer ~ 83, B . · Symp. on programming, Lecture oteJ 

. Ni erlin S . );: elson ' pnnger (1980) 269-281· 

0
u · St ' 

rte rict . t pretation· 
l'to <nth A. ness analysis and denotational abstract in er f gr nnuaJ AC pri11cipJes o 

"""'1.in M SIGACT-SJGPLAN SJ""Pasiufll on g Lang 1987) 120-131· 

uages, Munich, West GerfllanY (Janua.rY• ' 



Jo. J 
. '!'. 0'1) 148 

~ onn.eu 
ePort N and C. V. Hall 

1987 °· 223 I · Debugging in applicative languages. Tech. 
31. . ' ndiana U 

J 'h niversity Computer Science Department, June 
• J.. 0']) 

the I on.neu II 
i'Jp 8 . ardware de . . 

lari th Inter . scnpt1on with recursion equations. Proc. of 
3< 9Uage national S . 

· J 'h " and th . YmpoJ:um on Computer Hardware .Descrz'ptz'on 
• J. ezr A /' . 

to · O'Do1111 l1 PP zcatzonJ, North-Holland (April, 1987), 363-382. 
r- lllllents P e . Dialogues· b . r . . 

.(,-% • r0c · a as1s wr constructing programmmg env1-
33 9Uag · 0 f the A C:4r . 

· J e" and p Jl'.L SJGPLAN 85 SympoJium on Programming 
3 . '!1 0 rogram . 
1. 1) · 'Donn.el] mmg Environments (June, 1985), 19-27. 

· .'\ S · Per so al 
!Jel · c}illlidt n communication, December, 1986. 

35 °Prn.e · Denotat · 
· J 11.t, A.11 zonal SemanticJ A Methodology for Language .De-

.~ Yn. and B ' 
g.,.. • Stoy. D aeon, Newton, MA (1986) . 

3 arn_rn. . enotati 6
· 1) '11.g Lan ona/ SemantfrJ: The Scott-Strachey Approach to Pro-

. .'\. l' guage Theo . d ) (1977). t lltne ry, MIT Press (Cambridge, Mass., Lon on oll t>- r . .R 
' Qell.d ecursion e · I Darling-cat · ers0 quations as a programming language. n 

3~ 'ori n and T . . 
· P ", Ca.lllb . urner (eds.), Functz'onal Programmz'ng and its Appl:-

. Wa. r:idge a . . 
t. dler S Illvers1ty Press (1981) 
lo · t · · 

ll o\> rictness · t 
l~t er finit analysis on non-fl.at domains (by abstract mterpre a-

38. e.,.Pt>et . e domains) I . ( d ) Abstract 
P. l:t. ation 

0 
' n S. Abramsky and C. Hankin, e s. ' 

rva,,.11 i Dec/a t. . ) 
ti ~er a. ra zve LanguageJ Ellis Horwood, (m press · 
. oria/ P lld .R. J M ' . Func-
'ri Q 'l'og,,.arn, . · · Hughes. Projections for strictness analysis. 

39. om_ tnzng L Notes 
P. b. Pute,,. Sc. anguageJ and Computer Architecture; Lecture 

~O rva.dl zence 27 4 . 
· S. er. p ' Sprmger, Berlin (1987), 385-407. 

0 b. erson.ai 
h • rv1 co 
~lJ~h ray, A. Illmunication, February, 1987. 

o,.. es, l' new strict d . . I L Augustsson, J . . , l~ · J 0 h ness etect10n algorithm. n · 
Plerti nsson a d K . .1 Work.shop 

en.tau n · Karlsson, (eds.), Proceedings 01 
0

n on F. . b February unctzonal Languages ( Aspenas, Gote org, 



149 

1985) Report 17, Programming Methodology Group, University of Goteborg 

and Chalmers University of Technology, 190-210. 

41. S. C. Wray. Implementation and programming techniquea for functional 

languagea, PhD. Dissertation, University of Cambridge, June 1986. 



Vita 

Cordelia Hall received a B. Mus. in Violin Performance from McGill Uni­

V-ersity in 1978. She earned an M. Mus. from Indiana University in 1980 after 
study ' th 

WI Franco Gulli. From 1980 to 1981 , she created a data base for research 

on patient profiles as a Graduate Assistant for the Indiana University Student 

lieaith Service. From 1981 to 1982 she was an Associate Instructor at the In­

diana University Computer Science Department . Ms. Hall has been a Research 

Assistant at Indiana University from 1982 to 1986, and will be an S. E. R. C. 

Visiting Research Fellow at the University of Glasgow during 1987-1988. She 

has accepted a position as assistant professor at the University of Michigan. 

Ms. Hall is a member of the Association for Computing Machinery. 


	00003196
	00003197
	00003214
	00003215
	00003216
	00003217
	00003218



