STRICTNESS ANALYSIS APPLIED TO PROGRAMS
WITH LAZY LIST CONSTRUCTORS

Cordelia V. Hall

Submitted to the faculty of the Graduate School
in partial fulfillment of the requirements
of the degree
Doctor of Philosophy
Indiana University
Department of Computer Science

December, 1987

Accepted by the Graduate Faculty,

Indiana University, in partial fulfillment of the requirements

of the degree of Doctor of Philosophy.

Doctoral Committee

September 4, 1987

(o S

David S. Wise, Ph.D.

T O I
VA RA A [wedwan~

Daniel P. Friedman

%ﬁ&%

Steven D. Johnson

' (-':::» /)
L - N - ((A

Vernon Kliewer

Fod . ondor

Paul W. Purdom

il

©1987

Cordelia V. Hall

ALL RIGHTS RESERVED

v

Acknowledgements

Several people have given me their time, interest and support (financial and
otherwise) during the process of completing this work.

My thesis advisor, David Wise, provided an excellent working environment
which was both challenging and unusually supportive; it allowed me to experi-
ment and grow. He also helped me finance my education with money from an
NSF research grant for several years. Steve Johnson acted as an advisor during
Wise’s sabbatical year, and afterwards continued to provide interesting and use-
ful discussions as well as tactful support when necessary. I am also grateful to
my committee members, Paul Purdom and Dan Friedman, for the interest they
showed in my work, and to Vernon Kliewer for acting as my outside committee
member.

I learned, and continue to learn, much from John O’Donnell, with whom it
is possible to have useful technical discussions with a minimum of explanation.

His support and interest have been invaluable to me, as has that of the rest of

my family.

v

Abstract
Strictness analysis applied to programs with lazy list constructors

Cordelia V. Hall

Lazy applicative languages are more powerful than conventional languages, in the
sense that they can avoid an unnecessary infinite loop by delaying the computation of
an argument, computing its value only after determining that it is essential to the be-
havior of the program. However, the mechanism used to delay such evaluations requires
time and space, which may be wasted if the program eventually needs the values any-
way. This dissertation demonstrates how a compiler for a lazy applicative language can
identify many arguments that can be evaluated early, while still avoiding any premature

computation of values that might cause a program to loop.

This work has a practical goal: to use strictness analysis to annotate code so that
it retains its original semantics, but runs more efficiently. Unlike other efforts to solve
this problem, both non-flat data and function domains are considered. The essential
tool is analysis of list /record construction; such operations are readily recognizable from
syntax, and occur every time a list of arguments is passed to a function. In practice, the
strictness in fields within those records often follows regular patterns that can be finitely
represented. Of particular interest are programs that manipulate useful structures such
as streams. When compiled using the approach presented here, these programs typically
contain a small number of efficient, mutually recursive loops, causing the exchange of a
small increase in overall code size for a large decrease in space and time consumption as
the stream is produced.

Weak and strong safety become important issues and are discussed at length. Ter-
mination is guaranteed by several factors, including a finite resource which controls the
increase in code size, and a regularity constraint placed upon the strictness patterns prop-
agated during compilation. The compiler is proved to be safe relative to an axiomatic
specification of an interpreter. Limited extension of the analysis through conditional

expressions and to higher-order functions is possible.

vi

Table of Contents

Chapter 1: Introduction
1.1 Applicative lazy languages
1.2 Strictness analysis
1.3 Strictness analysis and lists
1.3.1 Lists with looping components .

1.3.2 Infinite lists
1.4 Brief overview of techniques presented here

1.4.1 Daisy—the source and target language

1.4.2 Demand generated by the printer

1.4.3 Compiling Daisy programs with strictness patterns
1.5 Other work on strictness analysis

1.5.1 Flat domains

1.5.2 Higher order functions

1.5.3 First order functions with data structures

1.5.4 Data structures and higher order functions

1.6 Outline .

Chapter 2: Compiling strictness into streams .
2.1 Inherited and synthesiz—ed strictness patterns
2.2 A lattice of strictness patterns .

2.2.1 Definition of P .

2.3 The compiler
2.3.1 Restricted Daisy syntactic categories

2.3.2 Restricted Daisy syntax .

2.3.3 Restricted Daisy value domains and semantic functions

2.3.4 Compiler domains

13
13
13
15
16
18
18
18
19

vii

2.3.5 Domain of compiler environments 20
2.4 Compiler semantic functions 20
Sl NOBBHIOR . < « 5 w v # % % 5 ¥ % » 4 & 5 B v ow ¥ w a5 B)
242 Compilerzales . . « « « « 5 « ¥ ¥ 5w 5 v ¥ o5 w oww ow s x DD

25 Threeexamples . o o » v o = 5 ¢ ¢ &« ¥ % 0 5 5 5 & 5 5 % & = VS
2.6 Representation of Lp and pattern fixed points 40
2.7 Compiler safety and termination 42
2.7.1 Weak and strongsafety « « o. v ¢ o s ¢ « 5 s « « » 42
LT ABrenmontput « « « 5 o« 6 o5 o6 B s s oE o v e ow o s 0w b
273 Admisgsablevalues . . . « + « « v « 5 ¢ v v 4 = s =+ + =« 43
274 Termination « v v« o v e 0. 44

Chapter 3: C is safe with respect to an instrumented interpreter I 46
31 Outlineofapproach . . « « « « o o s « « ¢ 5 3 ¢ » 2 5 o« » « 40
3.2 C is monotonic and continuous 47
3.3 I — an interpreter that displays demand patterns 5l

331 Notation e e e e e . B2

3.3.2 Interpreter axioms o« . 0 e e o+ oo oo+ B3

Chapter 4: Further analysis of conditional expressions 93
4.1 Tterativefunctions « « « v v « ¢« s 0o 0 0 o000 91
4.1.1 Iterative style equation 100
412Example 101

4.2 List mapping functions« . .+ 0 oo o000« - 103
4.2.1 List mapping function equation« . . . 105
422Example 0 . e e s s e e e e s e e e 106

4.3 Combining iterative and mapping functions 108

4.3.1 Iterative mapping function equation 108

viil

4.3.2 Example

Chapter 5: Compiling higher order functions .
5.1 From C to C'
5.1.1 New Daisy syntax and compiler domains
5.1.2 Equations for C' .
5.2 Restrictions upon source expressions .
5.2.1 Functions must be defined at compile time
5.2.2 Expressions must be correctly typed
5.2.3 Functions cannot be returned as values by the entire program
5.3 An extension of C' to C" .
5.3.1 New compiler domains
5.3.2 Synthesized patterns are passed around in a stack
5.3.3 Application arguments are also passed around in a stack
5.3.4 Compiler equations for C"
5.4 Extended examples

Chapter 6: Conclusion
6.1 Comparisons with other work
6.2 Contribution of research presented here .

6.3 Areas for future investigation

Bibliography

110

113
113
114
115
120
120
120
121
121
121
122
123
124
131

138
138
141
143

145

1

Chapter 1: Introduction

This work presents a source-to-source compiler intended to improve the time
and space behavior of programs written in a class of higher order, statically
scoped languages referred to here as applicative lazy languages. These languages
are lazy (all expressions are evaluated at most once), and they are applicative,
meaning that they have no side-effects. A lazy evaluator was simultaneously
described by Henderson and Morris [14] and Friedman and Wise [11], who pro-
duced an interpreter with equivalent semantics by implementing a traditional
Lisp interpreter with lazy cons. The lazy source language treated here is Daisy,
a descendant of the interpreter presented by Friedman and Wise.

Friedman and Wise assert that cons should not evaluate its arguments [11].
This approach is elegant and powerful, but expensive. The thesis of this work
is to show how to safely compile special cases in which cons should evaluate its

arquments.

Section 1.1: Applicative lazy languages

Applicative lazy languages, such as SASL[36], LML[2], Ponder[10], or
Daisy[20], have many properties worth exploring. They have no side-effects,
a fact which makes them interesting candidates for general-purpose parallel pro-
gramming languages because control-flow problems are removed, leaving only the
problem of reducing data dependencies. They produce values where applicative
order, or call-by-value, languages loop forever. Finally, they permit expressions
to be substituted for equivalent expressions, providing programs which are easier
to reason about, thus supporting automatic proofs of correctness.

Unfortunately, implementations of these languages tend to be slow. “Lazy”
or “delayed” evaluation provides the semantic power of these languages by per-
mitting any given computation to avoid calculating values which are not required
in computing the final value. This is generally implemented by a mechanism sim-

ilar to Algol’s call-by-name, except that instead of computing the value each time

it is required (necessary in a language with side-effects), the value is comp
only once. Usually, this mechanism, referred to here as a suspension, is
plemented in a general way that does not distinguish between values that
eventually be required and values that are never needed.

Suspensions are expensive. They can be regarded as process control bl
that contain a bit indicating whether the delayed expression has been evalus
and if not, a pointer to the environment current during runtime when the
pension was created and a pointer to the code whose evaluation will produce
value represented by this suspension. Each time a value is required from a
pension, that bit must be tested before the extant value can be used (Bloss
Hudak [3] develop techniques for the detection of unnecessary tests). If it
not exist, an expensive context swap is necessary. Environments must be
served until no suspensions point to them. The costs of suspensions are incre
when the expression being suspended itself depends on a suspension.

Suspensions representing values which will be required (with some inte
ing restrictions) needn’t be suspensions at all — the values they represent
as well be computed at once, because they are going to be computed any
If they can be computed at once, then all of the overhead involved in cre:
a suspension is avoided. This is the essential idea that has recently persu

many people to examine siriciness analysis.

Section 1.2: Strictness analysis

Strictness analysis calculates the relationship between a function’s
ments and its result. A function is said to be strict in argument n if the fun:
is | when argument n is L, where L is the undefined element that gene
represents an infinite loop in the domain of S expression values. For exar
binary addition must use both addends to compute its result; it is strict in
arguments when its result is required. However, a conditional expression req
the value of its first argument in order to determine which of its other argun

will be required to produce a result. In general, it is possible to determine v

3

argument will be required only at run-time; this makes strictness an undecidable
problem for compilers.

The relationship between strictness analysis and the safe removal of suspen-
sions is simple. If a function is strict in an argument n, and if the function’s result
will be required by the whole computation, then there is no point in suspend-
ing either n or the function’s result. Moreover, there is no point in suspending
values upon which the computation of the value of n depends. Since the whole
computation would loop if any of these values looped, there is no harm in letting
a loop occur at a different point in the computation than it would have if the
computation had been completely lazy. Of course, if none of these values looped,
then there is no point in suspending them anyway.

The identification of expressions that need not be suspended has some bene-
fits to the use of lazy languages on parallel architectures. Functions, such as add,
may be strict in more than one argument. Since there are no side-effects in the
language and the values of the arguments are known to be necessary to the com-
putation of the final result, these arguments may be evaluated simultaneously by

processors which can be fully committed to their evaluation.

Section 1.3: Strictness analysis and lists

Many lazy languages are descendants of Lisp [27], and list processing is
central to the programming techniques developed by users of these languages.
Strictness analysis produces some particularly interesting results when used to
compile lazy list-constructing programs, due to the variety of ways in which a
list-valued function’s result may be used by a calling function. Unlike the result
of an addition, which is either required or not required by the caller, a function
as simple as cons may require neither of its arguments, its first argument, its
second argument or both arguments, depending upon the use made of its result.
The following four programs (all assumed to be entire programs, executed at
top-level and written in Lisp) illustrate these different uses of the result of an

application of Cons, defined as (lambda (a b) (cons a b)):

((lambda (a b) b) (Cons 1 2) 3)
— ((lambda (a) (car a)) (Cons 4 5))
— ((lambda (a) (cdr a)) (Cons 6 7))
((lambda (a) (add (car a) (cdr a))) (Cons 8 9))

Consider a program in which all four of these expressions appeared and

Produced valyes necessary to the final value, such as:

(add
(add ((lambda (a b) b) (Cons 1 2) 3)
((lambda (a) (car a)) (Cons 4 5)))

(add ((lambda (a) (cdr a)) (Coms 6 7))
((lambda (a) (add (car a) (cdr a))) (Cons 8 9))))

Suppose that such a program is to be compiled so that the arguments to

Cons are evaluated immediately wherever possible, and arguments in whijch
Cons is strict are annotated. There are two choices in compiling the body of
Cons:

1) Cons can be compiled once as if it was strict in neither of its arguments. This
8Pproach has the advantage of keeping the code size small, but the disadvantage
of ignoring the strictness information that can be discovered at compile-time. If

the compiler marked (with $) all of the expressions that it could safely determine

to be evaluated early, it would produce the following code:

(add
$(add $((lambda (a b) b) (Cons 1 2) $3)
$((lambda (a) (car a)) (Cons $4 5)))

$(add $((lambda (a) (cdr a)) (Cons 6 $7))
$((lambda (a) (add $(car a) $(cdr a))) (Cons $8 $9))))

(add’s arguments are grouped by an implicit cons).
However, Cons, the function (lambda (a b) (cons a b)), would remain

lazy, meaning that, wherever called, it creates unnecessary suspensions. The
number of these suspensions is trivial here, but becomes increasingly important

as function definitions grow larger, are executed often and appear in many parts

of the program.

2) Cons can be compiled in as many different ways as there are different uses of

its result. These are the four possible versions of Cons [6,9, 41]:

(a b) (cons a b))

— (lambda (a b) (cons $a b))
(a b) (cons a $b))
(a b) (cons $a $b))

The use of Cons versions has the advantage of making full use of the infor-
mation that can be determined at compile time, but the disadvantage of produec-
ing four definitions of Cons, three more than would otherwise be needed. This

is a disadvantage when Cons is not executed frequently, but the advantages of

versions greatly increase when a version of Cons is often executed.

1.3.1: Lists with looping components
Looping programs may produce values that are not L, but that contain | ag

a component. For example, a program may produce the partial list (1,2, . . .

before looping. This would be represented as (1,(2, 1)), which is distinct from

L. Strictness introduced by compilation could cause a looping element, which
would ordinarily have been evaluated only after the 1 and 2, to be evaluated
before either of the other values, so that the complete value of the interpretation
of the source code would no longer be equal to the value of the interpretation of
the object code, even though eventually both values would loop. In such a case,
the assumption that makes strictness analysis an interesting aid in designing a
compiler—that looping expressions may safely be evaluated at any time during
a program’s execution if they can be shown to be eventually required by the
computation—needs to be examined more carefully.

In fact, if the interpreter is assumed to be truly lazy, then the left parenthesis
of a list value is printed before any attempt is made to determine the first element
of the list, since it doesn’t need to know the value of the head of the list to
determine that it is printing a list and that a left parenthesis is needed. Any
analysis that shows that the first element of the list will be needed and that
asserts that this information justifies the earlier evaluation of this element may
cause the interpretation of the compiled code to loop without printing anything—
not even a left parenthesis. Unfortunately, the problem of determining when the
compiler is justified in marking this first element is in general undecidable.

Two kinds of safety may be defined (and were proposed by O’Donnell [33]):

1) Weak safety means that the interpretation of source and compiled code is
equal when the interpretation of the source code is not L and does not

contain .

2) Strong safety means that the interpretation of source and compiled code

produce the same element in the lattice of values.

It is also possible to weaken the definition of strong safety so that programs
may be proven equal if their results printed on a terminal screen are identical on

a non-null prefix, which may be infinite. These definitions will be discussed in

more detail in Chapter 2.

1.3.2: Infinite lists
Infinite lists can represent objects such as a stream of electrical impulses in

a circuit design [19], or the infinite dialogue between user and machine that is
e et sfn programming environment [13,30] or operating system [32]. They

have also been useful in developing hardware description languages [31]
Infinite lists present special problems to a compiler designer bent upon using

strictness analysis to improve lazy programs. Unfortunately, it isn’t possible both
to preserve the semantics of programs that produce them and to annotate every
element of the list which may eventually be required because the order in which
these list elements are produced is very significant — the user expects to see
the initial elements before seeing elements farther down in the list, and certainly
€Xpects to see them before the end of the list appears. The basic assumption
driving the application of strictness analysis to applicative lazy programs is vio-
lated when applied to infinite lists, because they are not L, yet their components
(speciﬁcaﬂy their recursively defined tails) cannot be evaluated in any order if

an interesting approximation to their complete value is to appear on a terminal

screen.
In order to preserve the behavior of infinite lists, the compiler avoids marking

code that generates their tails, a technique that will be discussed in more detail

in Chapter 2.

Section 1.4: Brief overview of techniques presented here

1.4.1: Daisy — the source and target language

Daisy is an applicative statically-scoped lazy language developed from the
original Lisp interpreter. Delayed evaluation is achieved by altering only the be-
havior of cons, a few list predicates, and list accessing functions such as car and
cdr. The interpreter itself continues, as does the Lisp interpreter, to use eager
evaluation, causing all function arguments to be evaluated regardless of whether

they are required. By delaying the evaluation of its arguments, cons provides

8

the only laziness required to produce normal order semantics. Functions receive
a single argument, which may be a list. Often, the function treats sub-structures
of this argument list as if they were distinct arguments; it is this convention

which guarantees that evaluation of function arguments (sub-structures) will be

delayed until the argument value is required by the computation.

1.4.2: Demand generated by the printer

Consider a program such as (cons 1 2). It is clear that both argument
values will eventually appear in the resulting value (1 2). However, the
interpreter, as described, produces only a cons cell containing two suspensions.

What mechanism causes their evaluation?
It is assumed that an external device (the printer) demands the entire value

of whatever expression it is given, and that it is this device that produces the
final result of the evaluation of any program. From this point on, the interpreter

will be referred to as if it was composed with the printer.

1.4.3; Compiling Daisy programs with striptness patterns

The compiler presented here, and in a preliminary description of this work
(12], attempts to predict at compile time the values that the printer will require
at run-time, by propagating abstractions of the printer’s demand throughout the
compilation of sub-expressions in the code tree. These abstractions are referred
to here as strictness patterns. A stream is used here to refer to a finite or infinite
list; this does not prevent a stream from being a tree (or, in the case of datg
recursion, a graph.)

The initial demand pattern used here is itself recursively defined, although
regular, and can be represented with a finite graph. The compiler is shown to
Propagate this demand with strictness patterns which are either of finite length

or are rational (a term proposed by Hughes [18]), in order to guarantee that the

compiler terminates, a precaution that was independently taken by Hughes in

Specifying contexts [18].

9

In addition to marking cons arguments that can be shown to be necessary
to the computation of a program, the compiler often unrolls loops. In fact, there
is an interesting relationship between the propagation of regular patterns and
stream-producing functions, which are typically recursive. A function version is
a pairing of the code representing the function and the pattern propagated to the
compilation of the function’s application. As a stream-producing function appli-
cation is compiled with a regular pattern, the compiler encounters the recursive
call within the body of the function with a strictness pattern that may itself be
regular, depending upon the relationship between the original pattern and the
code forming the function body. If the pattern propagated to the compilation of
the recursive call is an unfolding of the original pattern, then the recursive call
can be compiled as a call to the new version created by the compilation of the
original application. If it is not, the function code and the pattern propagated to
the compilation of the original call may often be unfolded together, creating new

versions during this process, until the unfolded pattern is finally an unfolding

of the original pattern. This whole process produces a finite-state automaton

formed by versions which refer to each other in a cycle.

Section 1.5: Other work on strictness analysis

Interest in strictness analysis has steadily grown since Mycroft [28] first used
abstract interpretation to determine strictness for flat domains (programs pro-
ducing atomic values) in 1980. Recent work has centered upon higher order
functions in both the typed and untyped lambda calculus, and first order func-

tions on non-flat domains. This body of work is described briefly here; detajled

discussion of especially relevant work appears in Chapter 6.

1.5.1: Flat domains
Clack and Peyton-Jones [7,8] provide a useful clarification of Mycroft’s work

on flat domains, and provide measurements of the degree of parallelism achieved

by applications of an algorithm similar to that of Mycroft.

10

1.5.2: Higher order functions
Work on strictness a,nalysis of higher order fUHCtiOHS is directed towards a

variety of problems. Like Clack and Peyton-Jones, Maurer’s work [26] is mot;-
Vated by an interest in exploiting possible parallelism in functional languages.
Maurer extends Mycroft’s result to typed higher order functions, by representing
Strictness information with special lambda expressions. He achieves terminatjon
using a cutting mechanism that approximates information that might otherwise

be derived from the non-terminating analysis of certain expressions, such as an

application of the Y combinator.
Wray, and Hudak and Young have produced algorithms for analyzing higher

order functions. Hudak and Young [15] develop an algorithm for performing
higher order strictness analysis in the untyped lambda calculus, based upon a
set-theoretic description of strictness. Wray [40,41] extends Mycroft’s result with
an algorithm that annotates strict expressions in lazy higher order combinators.

Kuo and Mishra [23] assert that strictness analysis of programs in the un-
typed lambda calculus is elementary (however, they make no claims concerning
the strictness of composite structures) and that strictness analysis can be shown
to be a particular case of type inference for the typed lambda calculus. They
describe a practical system that performs both type checking and strictness anal-

ysis.

Nielson [29] develops a theory of abstract interpretation for the typed lambda
calculus, which is shown to also be suitable for strictness analysis. This work o
aimed at constructing a general theory for the analysis of functional programs,
since, as Nielson observes, otherwise the correctness of strictness analysis muyst
be independently shown for each functional language.

Burn, Hankin and Abramsky [4] use abstract interpretation to analyze higher
order functions in the typed lambda calculus. Abramsky [1] extends these results
to polymorphic types, showing that strictness analysis for polymorphic functions

can be efficiently reduced to strictness analysis for the typed lambda calculus.

11

1.5.3: First order functions with data structures
This is a particularly interesting problem, and is the focus of the work pre-

Sented here. Various techniques have strong and weak points.
Wadler [37] is able to determine certain kinds of list strictness, such as
Strictness in all heads and tails, all tails or just the outer structure of the list.

Whﬂe thjs a,pproa_ch is useful in a.nal)'Zing some finite liStS, the te<:hn1'que does

hot handle infinjte lists, since some tails must remain lazy.
Kieburtz and N apierala [21] use abstract interpretation to develop total in-

terpretations, which can be used by a compiler without risk of non-termination,
A tota] interpretation is then developed for strictness analysis; however, tota]
interpretations apparently yield less strictness information than that of Wadler

[37] on finite lists, and an interpretation presented for unbounded data structures

s not tota),
Hughes [18] analyzes a first order functional language containing only vari-

ables, function applications and case expressions, using a simple domain of con-

texts, which carry strictness information. He proposes this work as a potential
basis for further work on practical strictness analysis. He then presents a the.

Oretical framework for strictness analysis of a slightly more powerful language,
using continuations to represent contexts [16]. Wadler and Hughes [38] present

another theoretical treatment of contexts as retracts, or projections for analysis

of a monomorphic first order language.
Lindstrom [25] proposes a domain that contains typing information as well

as strictness information for finite lists. This domain is shown to be useful byt

does not represent patterns that are internally strict but externally lazy. Infinite

lists are described as an open problem.
1.5.4: Data structures and higher order functions

Hughes [17] compares two approaches to strictness analysis
Upon abstract interpretation, which he calls “forward” analysis, and the other

. One is based

12

: . : i strictness of an ex ression to de-
Involves reasoning from information about the P

: « w ” analysis. H
i § an S1S. € argu
duce information about a sub-expression, or “backwards hf gues

that backward analysis is likely to be more efficient than forward an

that it can be extended to provide strictness information about lists and higher-

alysis and

order functions in typed languages.

Section 1.68: Outline

Chapter 2 presents a lattice of strictness patterns, and then demonstra.tes
the use of these patterns in a series of equations, with short examples, deﬁm-ng
a simple recursive descent compiler. A restriction is placet-i upon thf: express.lve
Power of certain propagated cyclic patterns in the compiler equations, which
Permits the compiler to handle streams. Three more complex examples follow,

demonstrating the advantages of version cycles. The compiler is shown to termi-

nate and to propagate only rational patterns. ing that the strict

Chapter 3 proves that the compiler is safe by demonstrating aal te st }:m e
Niess patterns propagated by the compiler are ;?_lvtra.ys SR .0 r.zqut.c a.lot to;e
displayed by a suitably modified interpreter. This 1nterprete:'. is 1t I::n ; oc1 ;
Daisy interpreter, except that it displays a pattern re};re.:sen' u:gr r:te(:man ’
the printer upon the value of the expression currently being interp X

Th tion compiling conditional expressions in Chapter 2 is expanded in
€ equation

Chapter 4 ¢ handle conditional expressions written in iterative style and with
er 4 to han) N y
nil? tests the chapter includes examples of its application to some well-known

functions. : . i
T ts an extension of the compiler discussed in Chapter 2 to
apter 5 presen

higher o der functions. :
: Ch . these results to recent results of other researchers in the
apter 6 compares

. t me interesﬁng
1 th contribution of this WOl‘k, and suggests so
’ marizes e

Possibilities for future study.

13

Chapter 2: Compiling strictness into streams

Section 2.1: Inherited and synthesized strictness patterns

Strictness patterns have two roles. When the strictness pattern is deter-
mined from the enclosing evaluation context (such as the exhaustive evaluation
of a Program’s result), it is an inherited pattern. Strictness patterns can also be
created during the analysis of a function application. When a is bound using a
A-form, a may occur several times in the form’s body and inherit several patterns,
Possibly pieces of the pattern inherited by the application. Some combination of
these patterns forms a synthesized pattern, which becomes the pattern inherited
by the argument. For example, if the entire program to be evaluated is ((lambda
(2) (head (cons a [1))) (coms 1 b)), then the pattern synthesized by com.

Pilation of the lambda expression permits (cons 1 b) to be strict only in its first

argument,

Section 2.2: A lattice of strictness patterns
Strictness patterns can be defined as elements of a complete lattice that
contains both finitely representable and infinite limit points. The set of usefy]
strictness patterns is reduced to those patterns that can be represented by a finite
8raph, with or without cycles (cf. rationals, as opposed to irrational numbers),
All functions in the source and target language are regarded as taking one
argument. This argument is similar to a Lisp S-expression (see Section 23.3). If
the argument is a list, then different fields within it may be regarded as the funec.-
tion’s arguments and the entire structure is then called the argument collection,
For this reason, the definition of a strict function is expanded to include binary
trees and specify an indez for each part of the argument collection in which the
function is strict. Consider the conventional labeling of a binary tree with root
labeled ‘1’, right children sucessively labeled with ‘1’ and left children labeled
With ‘0’. The index of each node in this tree is the number represented by the

14

conc s .
atenation of bit labels along the path from the root to its location. The

f : .
ollowing displays the indexing of a tree:
1 2(4eey Bevs)s 8{B.rsy Toor 1+

In th s L.
e following definition, (n ac) selects an argument at index n in the argument

collection ac.

gument a at index n of its argument

D . .
efinition: A function fis strict in an &
collection ac if (n ac) = L = fae = L

at any indexed sublist is to be evaluated by a suitably

value for the
a function is strict at any other

A list marked with $

modi y
odified lazy interpreter using call-by-
necessarily imply that

For example, the evalua

marked field. Strictness at

a g .
given index does not
tion of

index of its argument.
(cons $(cons b c) d)

4 but strict in the external structure of the pair

[24])-
in a given sub-expression W

ked. For example, the program

is lazy in the the values of b,c,

<b :
c> (cf. Landin’s stream construct
hen the sub-

s, an expression is strict
are mar

In other word

ex : o
pression and all containing structures

(cons (coms $(cons 2 p) nil) nil)

1s not strict in a, but

(cons $(cons $(cons $a b) ail) nil)

1s strict in a.

15

2.2.1: Definition of P

Let $P = {$x|r € P}, let + connote coalesced sum,
Then the domain P may be defined by the reflexive

and let us require all

lifting to be explicit [34].
equation,

T: P=$P+(PXP)—L

subject to the homomorphic collapse required by the following two rules:

RULE 1. » C $n.

Strictness strengthens a pattern.
RULE 2. $$7 C $.
PROPOSITION. $m = $$.

Strictness is idempotent.

P is a complete lattice [35], with 2 top element,

ﬁz)\vr.$(7l', 7I'> e TP

§(5L,5L)"

‘l‘ “.
$J_,$J_> $<—L9$-L>
s(sL,L) (52

Mell) (LD $(5 1)

"'(_L,_L) $L

\/

L

Figure 1. Partial lattice P of strictness patterns
ig .

16
is the printer pattern

An Important element of P

m = $fizAr.($7, 7) # Tp.

Which cap be abstractly represented as the finite cyclic graph:

;) t

The meet, join, and equality of two such patterns, represented as finjte cyclic
8Taphs, can be finitely computed (derived similarly to taking the intersection of
Tegular €Xpressions.) In the equations that follow, all patterns belong to the set

of finitely Tepresentable elements in P, which form an (incomplete) sublattice.

Section 2.3: The compiler

The compilation of a program inherits the printer pattern, m;, which is
strict only in the outer structure and the heads of all trees and sub-trees. This
Strictness Pattern implies a leftmost-outermost evaluation order, and allows the
compiler to find strictness in programs that generate trees as well as flat streams,

A function defined in a fiz expression will be compiled into one or more

Versions — jniti ally one of a set of identical function definitions that is uniquely
associated with a strictness pattern, and compiled accordingly. Identifiers bound

M a fiz expression will be treated similarly, as they may represent recursively
deﬁned streams. However, identifiers bound in a lambda expression will not be
converted into versions. Instead, they will form part of the mechanism for syn-

thesizing patterns by passing on an accumulation of all their inherited patterns,

Which when complete is treated as a synthesized pattern.
The join of cyclic synthesized patterns might produce a pattern higher in
the sublattice of P than mo (see (C 12) below), so any synthesized pattern is
‘feated by taking the meet of any least upper bound with the printer pattern
tself. Some restriction of this kind is needed to avoid marking recursive calls

that create the tajls of infinite lists; however it is also possible to Propagate s

' 4

ontaining several marked tails, as long as one

similar initial pattern with a cycle c
d here for the sake of simplicity.

mo will be use

remains unmarked in the cycle.
ns with mo guarantees that mp is an upper

The meet of synthesized patter

b
ound for all patterns synthesized du
pattern, synthesized patterns are the o

in this way, because only they represe

ring compilation. Aside from the printer

nly patterns that need to be controlled
nt potentially new cyclic patterns that

may c 1 1
y cause recursive versions to be created as the patterns are unrolled during

compilation.
in this way is that some list con-

One consequence of restricting patterns

structors may not be marked as fully as possi
lists but not on the surrou
wil
xcept for conditional expressions,

ble, and that strictness marks may

a -
ppear inside sub nding list expression. The effect
produced by this is that the interior marks will affect the efficiency of the list

evaluation when the sublist is evaluated. E
whi :

hich contain marks that may not affect executed code because both branches
me, interior marks indicate that

y one is executed at runti

are compiled while onl
ression will in fact even

th i !
N — tually require the value of the
marked expression.

The compiler builds u
ironment. It receives a

p strictness information about identifiers and func-

n in
ted for any given function or

t' . . .

ions in a compile-time env teger resource that bounds
the number of different vers
identifier. This limit is essential, even W

terns, because it is still possible to construct a pat
number 0 o be created, all of which are

jons that can be crea
hen versions inherit only rational pat-

hological function that, when

co 1 3 i i
mpiled, causes an infinite f versions t

associated with unique rational patterns-

t can be recogil references to extant versions

Function invocations tha zed as

co i
nsume no additional resources:

The abstract compiler presented here marks onl

Daisy is a strict interpreter

y strict cons arguments, as

2.3.1: Restricted Daisy syntactic

id € IDE ;
ec EXP;
const € CONST.

2.3.2: Restricted Daisy syntax

e = expr | $expr
expr ::= const |

[l

(exprs)|

prim:(e e) |
head:e |

tail:e |

if:(e e €) |

(Aid. e) : e |

(fix :[id X id. e]):e |
fix :[id €] |

id:e |

id |

bottom

eXprs ::=e exprs | €.¢€ | empty

Expressions su

source and target language: Syntactic

. sie
sub-expressions, so that they are €&

becomes [prim:<el 02>] .
2.3.3: Restricted Daisy va

A;
S=A+(SxS)+(5—5)

rrounded by double br

T

Jue domains and

18

categories
(identifiers)

(syntactic expressions)

(constants)

constants

nal

lists

primitives with 2 arguments
head application

tail application

conditional application
lambda application
application of a recursive function
data recursion

function application
identifiers

infinite loop

ackets are syntactic expressions in the

expressions will often contain numbered

to discuss. For example, [prim:<e e>]

semantic functions

(atoms)

(structures)

19

Johnson presents a denotational semantics for Daisy [19]. However, de-
notational semantics can say nothing about the order of evaluation—early or

delayed—upon which this work focuses.
it might be possible to formally argue the

If the reader were willing to absorb a

formal operational semantics for Daisy,
relative performance of the compiler’s source and object code. No such semantics

is presented here.

Colon is an infix apply operator occurin
p’s list. A function argument is either an

g between function and argument;

angle brackets construct lists, like Lis

atom or a list. fix expressions can be alternatively read with an (understood)
outermost \ and infix period wrapping the bracketed structure.
2.3.4: Compiler domains
C) == Db
(compiler)

EXP <« P x ENV x INT ;

D =
(compilation data)
T: P _ $P+(PxP)
(strictness patterns)
p : ENV = V—»(BEXPXPF « INT x BTAG) + unbound;
(compiler environment)
Lo INT;
(resource)
v 14 _ ID+(IDxP)
(version identifiers)
BEXP = [+ [(fix :[idl A id2. el]):e2] + [fix :[id €]]
pa: PF - P — (Pro T unbound)) + Proj
(inherite d and synthesized pattern entries in environment)
inhe
Pﬂ'o = {WEPIWEWO};

BTAG = lambda + fix

20

(binding tags in environment)

The following functions are projections on environment entries:
Bz'na'z'ng = Ae.e|l
Pat-fun = e. el2]1
Bz'na’z'ng-type = Ae. e[2]2]2]1

The compiler is given a syntactic expression, a strictness pattern, a com-

Piler environment that performs some bookkeeping, and a natural number that
limits the number of versions to be created for any one function. The domajp

of strictness patterns, of which Pr, is a subset, has already been defined, byt

the domain of environments has interesting structure which is described in more
detail in the following section.
2.3.5; Domain of compiler environments

The compiler environment allows the compiler to predict the scope in which

€Xpressions will appear at run-time. An entry for a given identifier contains a
Syntactic expression (either a particular fiz expression encountered during com-
Pilation or g dummy expression [[1]), inherited and synthesized pattern infor.
Mation which may either be a pattern or a function from patterns to ki,
a version count, and a tag indicating that the identifier was bound in either 5

lambda expression (lambda) or a recursively defined fiz expression (fix).
The domain of environments, ENV , contains only environments with pat-

tern entries that are at most m if simple patterns, and that, if functions, map

elements from P into P,,, a sub-lattice of P whose top element is .

Section 2.4; Compiler semantic functions
These equations describe an operational semantics for the abstract compiler.

EXampIes appear after some of the equations. These examples present the code

21

(the other parts of the tuple are omitted) produced by the compiler when it
receives an expression, inherited pattern, environment and resource. The envyi.

fonment is assumed to be the initial environment, but the expression, inherited

Pattern and resource will be described. The pattern
$fiz Am.($7 ,)

is the pattern to be initially propagated by the compiler, however the examples in
both this and the next section use a variety of patterns. (Note that this pattern

contains a mark outside the scope of the fiz expression defining it; this is not the

Same pattern as

fizAw . $(8m,7),
which represents a pattern with marked tails.)

2.4.1: Notation

The following notation is introduced:
Q-7 represents a strictness pattern, 7, that may or may not be prefixed with

—_—

8. If § is the prefix, then a = $, otherwise a is the null string.
A single vertical bar indicates concatenation of an identifier with a strictness

pattern; this forms a new name defined locally within each rule.
)

— Unsubscripted L stands for Lp. '
(8 € a-7) denotes a strictness pattern in which a strictness mark is concate-

nated to some structure or sub-structure.
The insertion of strictness marks during the compilation process is idempo-

tent, and expressions marked by the programmer may be compiled.
[el [[a] / [€']] refers to the substitution of [a] for all instances of [e'] in

[e] .

The compilation of the distinguished expression bottom is as follows:

C [bottom] aurr p o = [bottom] c-m p ¢ .
Note that the compilation of [bottom] contributes no new pattern to any

entry in the compiler environment.

22

2.4.2: Compiler rules

(c1)

C
[const] ampt= [$const] a-m p ¢

C .
onstants cannot cause an infinite loop, sO they can always be safely marked
rked.

Cl[e]] a7 p L,Where o) =
p 1, where (§ ¢ &) = (c 2)

([el [£ix:[id expl] / [e']1] a7 Pt
where [fix:[id expl] =
(Binding (p [e']))
hat [e'] € ID

if 3 [¢'] € [e] such t
1)) =1fix,

& (Binding-type (p [¢

[el [(£ix:[£f Aid. bodyl) : exp] /[e']11] amp L

where [(fix:[f Aid. bodyl)] =
(Binding (» [£]))
if 3 [o'] € [el such that [e'] = [£:exp]
& (Binding-type (o [£])) = fix ,

[e] arpt
otherwise.

uired in order to ensure that lazy references to renam d
(&

This rule is req
hich no longer exist— it i1s necessary

fix :
expressions do not refer to names W
Essentially, €0

ove the source code.

for : ilati
bookkeeping purposes- mpilation stops once the propagated

strictness pattern cannot 1mpT

(€3)

C [head:e] ampt= I[head:e1]] amp1l
, =C[e] a-{a-m, L) pe.

where [e1] a1°m1 p1t

)

23

c ﬂtail:e]] ampi= [tail:e;] ampyt
where [o1] oym; py 1 = C[e] (L, a-7) p .

(€ 4)

Patterns inherited by applications of [head] or [tail] are injected into a

list pattern to eventually be inherited by a list. For example, if ezp =

[head:<head:<a . b> . tail:<c . d>>]
then C [ezp] $fizAm.($7, 7) p 4=
[head:<$head:<$a . b> . tail:<c . d>>].
If exp =
[tail:<head:<a . b> . taili<c . d>>]
then C [ezp] SfizAm.($7 , m) p 4=
. $a>>].

[tail:<head:<a . b> . $tail:<c

C [<e1 . o] arpL=)
{C [<e1 . e2>] a-m p ¢, where ($§ ¢ o) if (§ & m);

[<ai-e1; . az-02;>] a ps ¢, otherwise;
where

aj-m = (w[1)

az-my = (w]2)

[e11] g7 p1 11 = C [e1] (wl1) p &5
[e2:] az-m; py 12 = C [02] (712) p1 ¢

(€5)

The compilation of cons passes the head of its inherited pattern to the
compilation of its first argument and then the tail of the inherited pattern to the

compilation of its second argument. Preorder traversal is implied by an inherited

Pattern under m, (Note that when 7 doesn’t contain a strictness mark, the

Second compiler rule is executed.)
For example, if ezp =

[<head:<a . b> . tail:<c .

then C [exp] $fizdm.($7, 7) p 4=

d>>]

e e
R —

e ——

24

[<$head:<ga . b> . tail:<c . d>>].

Cc lIPrim:<91 e2>ﬂ amTpL= ﬂprim:elﬂ ampy L (C 6)
where
Helﬂ @1°71 p1 41 = C [<el e2>] ($L ,8($L,1)) pe.

Primitives (arithmetic and logical) are strict in both arguments.

For example, if exp =
[2dd:<head:<a . b> tail:<c
then G [ezp] §1 pa=

Hadd=<$head:<$a . b> $tail:<c . $d>>].
Note that a slightly different strictness notation for lists is introduced

[<$x $y>] is strict in both [x] and [y] — the meaning is the same

. d>>]

here.
2 [<8x . g<sy . $<>>>] .

(c)

C[[i:f:<e.1 2 e3>] awp

= ﬂif:<$011 62, G33>:u QT P4 L
Where
neilﬂ Q1w py 1y =.C [e1] $L p ¢
[e2,] QM2 p2 13 = C [e2] a7 p1 ¢
ﬂ633ﬂ a3y p3 13 = C [e3] a-m p1 ¢; -

([binding;], (pa;Mpas) ,0, b-type;)
if b-typez] lambda;

o s

i ([binding,] , pa,, v-count; + v-counts, b-type,)
wh if b-type, = fix ;

€re '

([binding,], pay, v-counts, b-tz/pez>) = pz:
([[binding;;ﬂ , Paz, v-counts, b-types) = p3 .
a, =)\ (pa; pat) if (pay :pat) = unbound;
o (pa, pat) otherwise.

25

A conditional expression is strict in its predicate, but not in any of the paths

of the predicate’s result. Each branch of the if may safely be compiled using the

Pattern inherited by the if application as long as the leading $ is stripped off the

CO.mpiled code when the new application is assembled and returned. This per-
mits the predicate to be evaluated before either of the two branches, and allows
the selected branch to be as efficient as possible. The new environment returns
the meet of the patterns inherited from either branch by a variable bound in
lambda expression, or the appropriate entry. (The compilation of conditiona] ex-

Pressions receives special attention in Chapter 4, where a more powerful equation

is developed and presented.)

For example, if ezp =

,Iif¢<same?:<head:<a . b> tail:<c . d>>
<head:<d . e> . d>
<b .]
then C [ezp] ($.L, 81) p1=
[if:<$same?:<$head:<$a . b> $tail:<c . $d>>
<$head:<$d . e> . $d>
<$b . $c>>].
C[(Mid. body):e] ampi=
[(Aid. body;):e1] a-m ps ¢
where
ﬂbOd}ﬁﬂ ay-my pp t1 = C [body] a-m p2 ¢
([t1],L,0,]lambda), ifi= [id];
. otherwise;

P2 =/\z'.{
pi,
if i = [id];

P3 = Ai. { P i’, L
p11, otherwise;
[e1] az-m; pa iz = C [o] (Pat-fun (p1 [id])) ps v

(c8)

26

Lambda applications demonstrate the need for the compiler environment,
p- Initially, an entry is created for the identifier [id], which includes a (mean-
1ng1ess) syntactic expression, an initial inherited pattern, a version count (again
Mmeaningless), and a tag which indicates that [id] was bound in a lambda
environment. As the compiler explores the body of the lambda expression, the
Pattern inherited by [id] is updated. When analysis of the body is complete,
the identifier has inherited a composite pattern which becomes the synthesized

Pattern for this lambda expression. The projection funtion, Pat-fun, retrieves

this pattern so that it can be propagated to the analysis of [e].

For example, if exp =

[(Aa. <head:a . head:a>):<b . c>]
then C [ezp] ($L,8L)pl=

[(Aa. <$nead:a . $head:a>): <$b . c>]

C [(fix: [£ Xid. bodyl):e] arpi= (C9)
[(£fix: [f|a-w Aid. bodyil):e1] a-m pst

where

ﬂb°dY1ﬂ aj-my py ¢ = C [body] a-m p2 ¢ .
([(£ix:[£ Aid. bodyl)],pae,1,fix), if i= [£];
ps = Az J ([01],L,0,lambda),
) if 1= ﬂidﬂ 3
P, otherwise;

. if pat = a-7;
PO Apad, {'ijcbgund otlzl)erwise;
/\z-{pi, if i= [id] or i= [£];
P11, otherwise;
rec-p = [e] o C (U, (Us (fix:[f Aid. bodyl))):e] amw p.
= (p1 [id]){21

Helﬂ azmy pg Lz = C [e] rec-p p3 ¢

27

The compiler constructs a synthesized pattern rec-p by recursively defin-
Ing the result of the analysis of the A body. This pattern is then inherited by
the argument [e]. U is defined and discussed in Chapter 3. (Section 2.6 on
the Implementation of the compiler discusses the significant problem that arises

when pattern bindings are not maintained as explicitly labelled objects by the
Compiler.)

For example, if ezxp =
[(fix: [£
Alst.
<add:<head:1lst head:tail:1lst>
- f:tail:1st>]):a]
then C [ezp] fizAw.($L , x) Aid.unbound 1 =
[(fix: [£-p1
Alst.
<$add:<$head:1st $head:tail:lst>
. f-pl:tail:1lst>]):a]
Where p1= fizAw. (8L , «).
[2a] then inherits the pattern $fizAr.($L,).

Cﬂfix: [id 0]1’ aTpL= [[fix: [idlar GJJH a-T p3 L1 (C 10)

where
ﬂelﬂ aymy py ¢ = C [e] ampz
([tix:[id el],pa,1,fix),

P2 =)i, if i = [id];
p i, otherwise;
& if pat = a-m;

pa =) "
P unbound otherwise;
/\z._{pi, if i = [id];

p3 = : :
P11, otherwise.

This equation permits the construction of recursively defined lists.

28

For example, if exp =
[fix:[1 <a . 1>7]
then O feap) (8.1, (1L, fiedm(SL ,)} Nid.unbound 1 =
[fix: [1-p1
<$a .
fix:[1-p2
<a . fix:[1 <a . 1>]>]1>]]
and C fezp] ($1, (L, fiedm.(8L ,))) did.unbound 2 =
[£ix: [1-p1
<$a .
fix:[1-p2
<a . fix:[1-p3 <$a . 1-p3>]1>1>]]
where
Pl= (R, (L, fizdr.($L , m)));
P2= (L, fizar.($L , T));
P3= fiz Ax.($L 5 T

In the first example, the compiler can make only the first two elements of

the output stream strict because the number of versions is too small to permit

it to discover the recursive loop. When it is allowed one more version, it is able

to make the entire stream strict in its heads. A resource of three or more would

still produce the result from the second example

29

_—

Clf:e] amrper= (€ 11)
Reached-Limit if (pa o)
Compile-Binding if (pa o)
Mark-With-Pattern otherwise;

where([(fix: [f A\id. bodyl)],pa,v-

— unbound & v-count > ¢;
— unbound & v-count < ¢;

count, fix) = p [£];

Reached-Limit is [(£fix: [f \id.bodyl):e] a:m p ¢}

Compile-Binding is
[(fix: [f|a-r Aid. bodyy]):e1] o pat
where

[bodyi] ay-m prta=0C [body] o p2 ¢ o
([(£ix:[£ Aid. bodyl)] ,pay, v-count + 1,fix), ifi= [£];
. 1,0,lambda
Pz = Xi, ([0, a) e [l
pi otherwise;
9
- rec-p if pat = a'T;
A pa otherwise;
i [oh i [ori= [
p1t, otherwise;
rec-p = [e] oC [(L1(Uu (£ix: [£ Mid. bodyl))):e] cm p L
= (p1 [id])i2(1

le1] az-my pst2 = C [e] rec-p p3t

Mark-With-Pattern is
[fla-r:eq] omp1 e

where
[o1] cz-my pra = Clol (P P

SIS

e function applications can be

There are three possible Ways in which recurstv

compiled.
ular function has been exhausted and

— If the version count for this partic
the combination of this function call and the strictness pattern

inherited has not been seen before, then s the expression

currently

the compiler expand

30

once, guaranteeing that the lazy call refers to the correct name, and stops

exploring the source code.
If the version count for this .pa.rticular function has not been exhausted and

the combination of this function call and the strictness pattern currently
inherited has not been seen before, then a new version is compiled. The

current compiler environment is updated so that the function mapping an

inherited pattern to a synthesized pattern for each version created so far

Dow has an entry for this new version.
Otherwise, the compiler is currently compiling a version whose compilation

originally inherited the pattern propagated to the current function applica-
tion. In this case, the synthesized pattern for this function is already known

and can be retrieved from the environment entry for this function to be used

in compiling the argument [e]. See the previous examples.

31

C ”:id]] T pL= (C 12)
Xarlable if b-type = lambda;
Ceachfad-leit if (pa) = unbound & v-count 2 4;

ompile-Binding if (pa a-m) = unbound & v-count < ¢;
Mark-With-Pattern otherwise;

where([binding] , pa, v-count, b-type) = p [1d] 5

Variable is

[[id]] QT py1 L
where

T4 [binding] , (a-wUpa)mo, 0, b-type),

P1 = Ai. if ¢ = dd;

p i,otherwise;
Reached-Limit is [[binding]] T p L
Compile-Binding is
[fix: [id|a-T e1]] amp3t

where

[fix:[id el] = [binding]

[e1] a1:m p1t1=C [e] e p2 &

t+1,fix),

' ([£ix:[id el] , pay, v-coun
Pz = \i. ifi= [2];

p i,otherwise;

pba; = Apat. - if pat = =
unbound otherwise;

- =/\i.{pi, if i = [id];

pyi, otherwise.

Mark-With-Pattern is [id|

Identifiers may be recu
(but in cases which

treated like recursive data
or they may be bound in

being inherited is comb

of instances of the identifier in a

rsively bound to 2 value,

a lambda expression,

ined with the pattern a

an] ampl

in which case they are
are similar to the discussion above)
in which case the pattern currently
ccumulated by earlier compilation

See the previous examples.

]Jambda body-

32
Section 2.5: Three examples

The following is a simple and common program, in which a filter passes on

certain elements of its argument stream.

[C£ix:[¢ A1.
<head:1 . G:tail:tail:1>]):
(fix: [F)x.
if:<eq?:<head:x 1>
<head:x . F:<tail:x . head:x>>
<(fix:[Bad Ay. Bad:y]):head:x
. F:<tail:x . head:x>>>]):
<1 . 0>]

[F] produces a stream of alternating 1’s and Lg. [G] selects odd elements of
[F]’s result, avoiding the divergent elements. The compiler produces the following
compiled expression, given fizAx.($7 ,), the initial environment Aid.unbound,

and the resource 5;

[(£fix: [G-po Al.
<$head:1 . G-pO:tail:tail:1>]):
(fix: [F-p1 Ax.
if:<$eq?:<$head:x $1>
<$head:x . F-p2:<$tail:x . head:x>>
<$(fix: [Bad-p4 Ay. Bad-p4:y]):head:x
. F-p2:<$tail:x . head:x>>>]):
<81 . $0>]

where [F-p2] =

33

ﬂ(fix:[F—p2 Ax.
if:<$eq?:<$head:x $1>
<head:x . F-p3:<$tail:x . head:x>>

<(fix:[Bad Ay. Bad:y]):head:x
. F-p3:<$tail:x . head:x>>>])]

and ’IF -pSH —

[(£ix: [F-p3 Ax.
if:<$eq?:<$head:x $1>
<$head:x . F-p2:<$tail:x . head:x>>

<$(fix:[Bad-p4 Ay. Bad-p4:y]):head:x
. F-p2:<$tail:x . head:x>>>])]

and where
PO =ﬁz/\7r.($7r ,)
Pl = $fizdm.(my , (L, 7))
P2 = fizAn.(L , (m , 7))
P3 = fizdw.(my , (L, 7))
P4 =m,

The versions of [F] produce a stream that is alternately strict and lazy in
its heads, and [G] is strict in all elements it accesses, but produces a stream
strict in all heads and lazy in the tails. Notice that three patterns, those patterns
which distinguish between versions of [F], have

fiedm (L, (L, 7))
as their greatest lower bound. If no versions of [F] were produced here, it would
not have been possible to find strictness in [F] . Versions [F-pi] and [F -p3]
are similar and could be coalesced into one version inheriting the meet of the two

Patterns. [Bad-p4] produces a synthesized pattern that is L. The effect of this

34

pattern would be obvious if [Bad-p4] was applied to an expression using list

syntax, such as [<a . b>] .
e hard to read using the fiz notation defined so far,

The following examples ar
f rec is that it is a recursive

so rec will be used instead. One of the advantages 0

mits all versions to be gathered i
as are actuals, rather

binding function that per nto the same scope,
Formals are grouped together,

producing less object code.
ed compilers replaces fiz

than pairs of formals and actuals. One of the implement

with rec.
is introduced. Predicates

f with more than two branches
may be marked, but since the mark is covered by the tail

't be evaluated until the branch in which it appears
destructured into a flat list of

In addition, an i
following the first one
of the if argument, it won
is selected. Function formal arguments are now

bound variables, however the corresponding actu
The functions [odd?], [[number?]] ; [[identifier?]] , [Fn], [Ares], [Body] ,

[Formals] and [nil?] are all assumed to produce the synthesized pattern $.L.

[eq?] and [same?] are treated as in (C 6)-
even Fibonacci numbers, seeded with

als are written as dotted pairs.

The first is a function that prints the

t : i
wo values from anywhere 1n the series.

35

[Ala b].
rec:[[h Addall Skip]
<
h =
<a . <b . Addall:<h . <tail:h>>>>

Addall = \[a bl.
<add:<head:a head:b> .

When compiled with the pattern fiz (L),

compiler produces the following output;

Addall:<tail:a . <tail:b>>>
Skip = A[stream].
if:<odd?:head:stream
Skip:<tail:stream>
<head:stream . Skip:<tail:stream>>>
>
in
Skip:<h>]]

and a resource of 4, the

36

[Aa b].
:ec: [[h-p2 h-p3 Addall-pi SkiP‘Pi]

h—P2 =
$<$a . <$b Addall-p1:<$h-p2 . <$tail:h-p3>>>>

h-p3 =
$<a . $<%b . Addall-pi:<$h-p2 . Btedl 1h-pddva2
Addall-pi = Al[a b].
<$add:<$head:a $head:b> .
Addall-pi:<$tail:a .
Skip-pl = A[stream] .
if:<$0dd?:head:stream

Skip-pl:<$tail: stream>
<$head:stream . Skip-pi:<$tail:stream>>>

<$tail:b>>>

>
in
Skip-p1:<$h-p2>]]
Pl = fiz Ar (8L,)

P2 = $fizAw.(8L , m)
p3 =$(L , $fizdm.(SL, ™)

eads of its stream argument, and passes this

p2] - [Addall-pi]] inherits the same
e inherits the cyclic

[Skip-p1] is strict in all the h
ture [h-
[n] are created because on

while the other’s inher

pattern to the recursive data struc
pattern. Note that two versions of
Pattern passed on from [[Addall-piﬂ
in its head but inherits the cyclic pattern in the tail.

The second function compiled using rec is 2 simp
fiers, head, tail, cons, quote

ited pattern is lazy

le interpreter. Its language

is restricted to constants, identi (written as A),

& .
nd functions of one argument.

[Alinput]. EVAL:<input - <[1>>]

37

where [EVAL] =

[MAlexp env].
if :<number?:exp
exp
identifier?:exp
LOOKUP:<exp . <env>>

APPLY:<Fn:exp -
<env>>>

<EVAL:<Args:exp - <env>> .
>]
and [APPLY] =
h [A[£fn args env].
if:<nil?:args
[error]
same?:<Ahead fn>
head:args
same?:<Atail fn>
tail:args
same?:<Acons fn>
<head:args - tail:args>

identifier?:fn
<env>>>

APPLY:<EVAL:<fn o

EVAL:<Body:fn -
<MKENV:<Formals:fn . <args - <env>>>>>

<env>> . <args -

>]

38

and [LOOKUP] =

ﬂA[exp env].
if:<same?:<exp head:head:env>
tail:head:env

LOOKUP:<exp . <tail:env>>
>

and [MKENV] =

[A[formals actuals env].
if:<nil?:actuals
env
<<head:formals . head:actuals> .
MKENV:<tail:formals . <tail:actuals env>>>

>]

When the interpreter is compiled with the pattern $1, and the resource 3,

the fOHOWing output is produced;

[Mlinput]. EVAL-p1:<$input . <$[1>>]
where
Pl = $1

39

where [EVAL-p1] =

[Alexp env].
if:<$number?:exp
exp
$identifier?:exp
LOOKUP-pi:<$exp .
APPLY-pi:<$Fn:exp -
<$EVAL-pl:<$Args:exp -

<$env>>

>]

and [APPLY-pi] =

[A[fn args env].
if:<$nil?:args
[error]
$same?:<$Ahead $£n>
head:args
$same?:<$Atail $£n>
tail:args
$same?:<$Acons $£n>
<head:args - tail:args>
$identifier?:fn
APPLY—p1:<$EVAL-p1:<$fn .
<$args - <env>>>
EVAL-pi:<$Body:fn -
<MKENV:<Formals:fn
<env>>>>>

. <args -

>]

<env>> .

<env>> .

<

<

&

&

<env>>>

<OPO>>

<

<

<

<

<

<

<

<

<

<
KOIOODIOO>>D>

40
and [LOOKUP-p1] =
[A [exp env].
if:<$same?:<$exp $head:head:env> A
tail:head:env b
<$tail:env>> .O>>

LOOKUP-p1:<$exp .

>]

and [MRENV] =

[A[formals actuals env].
if:<nil?:actuals <
env <
<<head:formals . head:actuals>
MKENV:<tail:formals .
. <O>>

<tail:actuals env>>>

[EVAL-p1] is strict only in its first argument, and [APPLY-p1] is strict only
in its first wo arguments. [LOOKUP-pi] is strict in all of its arguments. [MKENV]

Is never reached by the propagation of a strict pattern, so it remains unchanged.

Section 2.6: Representation of Lp and pattern fixed points

The equations shown here are not directly executable with conventional

binding mechanisms. For example, in analyzing the expression

[(fix:[£ An. £:n]):3]
the compiler would find within equation (C 9) that rec-p is bound to “the value

of rec-p” and loop indefinitely. Actually rec-p = Lp, but conventional bind-
ing machinery denies us the ability to detect this case. However, the compiler
Maintains a table of pattern bindings, permitting it to detect such a binding.
Since only rational patterns arise here, every potential divergence manifests itself

41

I such a cycle. Therefore, any binding that would diverge because of indirect
self-dependence must cycle through some binding in the table. It is the second

Visit to such an entry in the table (of bounded size) which determines that the

value of rec-p is Lp.
The fixed points of synthesized patterns are constructed using the following

fiz €quation, which corresponds to (C 9) as follows:

C[(fix:[£ Aid. bodyl):e] awpi= (c9)
[(£fix: [f|la-mw Aid. body;]):e;1] a-m ps ¢
where

l[b°d}'1ﬂ a1 my p1 3 = C [body] a-m p2 ¢ .
([(£fix:[£ Aid. bodyl)],pa,1,fix), ifi= [£];
P2 =)\, (ﬂ[]ﬂ ,..L, O,Iambda),
if 1= [id];
P, otherwise;

pa=pg [ecp if pat =aem;
unbound otherwise;

py =il Pn ifi= [id] or i= [£];

P11, otherwise;

rec-p = (py [id] /21

[e:] Q272 pg L3 = C [e] rec-p p3 .

The fixed point rec-p is initially represented by a distinguished pattern, inter-
Preted as Lp if its value is required before the entire fiz expression has been
compiled; this distinguished pattern is bound to the synthesized pattern in the
table of strictness patterns when compilation of the lambda body is finished.
Since the value of rec-p is often not known when a recursive function application
is compiled, the compiler currently makes another pass to annotate the argument
of this application. (Subsequent passes may further improve the compiled code,

a.lthough the examples presented in this thesis have been compiled using only

two passes.)

42

Section 2.7 : Compiler safety and termination

2.7.1: Weak and strong safety

Any implementation of a lazy list-processing language that improves perfor-
Mance only through an analysis of strictness sacrifices some semantic strength
when Printing a list containing Lg. The problem is that some element of a list
may be Lg and it might occur in a position that has been analyzed as “strict.”
Thus, an enveloping portion of the list may “diverge” (i.e. evaluate to Lg), even
though 5 truly lazy implementation would have no difficulty with the structure
of the envelope. In the simplest case, Landin’s ($_Lg . v) (where v is a value in S
higher than Lg), this divergence causes the printing operation to lose even the
Outer left Parenthesis, since it is assumed that the printer is as lazy as possible
and will note the fact that the object being printed is a list before attempting
to print the list’s contents. For this reason, weak safety as defined in Chapter
Lis as much as can be expected in a compiler unless a special analysis is done

In order to establish the order in which elements within a list will be printed, so

that some troublesome cases can be avoided.

2.7.2: Stream output |
Aa b.

A more complicated case, such as F:($§Llg $1), where F

(85 (8a . ())), would cause the loss of the output prefix (1’.
This problem is inherent in streams, but streams create yet another problem.
In some special cases, the printer will not print some prefix of the output even

though nope of the elements are Lg. For example, a stream of natural numbers

€an be created by the following expression:
[F:0 where F = An. <$n . F:inc:n>]
It can also be created as follows:

[F:0 where F = An. <$F:inc:n . n>]
Which, of course, has no printable prefix. Traversal of the stream of naturals con-
?

Structed the second way, with recursion in the left of the resulting list, will cause
)

the loss of the initial parentheses produced by traversal over a lazy expression.

43

(This could be avoided if the printer pattern was weakened so that it was strict
only in every other head, rather than strict in all heads, but an infinite series of
Parentheses appears meaningless enough to permit the use of the stronger pat-
tern.) For these reasons, it seems best to define an admissible answer and show

that for such results, the printer produces the same output as the traversal of a

lazy €xpression.
From this point on, a statement that C is safe means that C is safe when its

interpreted source code produces admissible values. If the user isn’t interested in
Seeing the preceding elements of a list that contains Lg, or in seeing an infinite

series of Jeft Parentheses, then C produces useful results even when its interpreted

Source code is not admissible.

2.7.3; Admissible values
Any resulting stream structure, which would be fed to the printer/output

deViCe, must be “maximal” in the domain of streams. Lg cannot occur anywhere
Within jtg result. This stipulation does not require that the result be isolated (e.g.
the stream of ascending natural numbers is maximal, but not isolated.)

In addition, it is desirable to exclude values that contain an infinite series of
left Parentheses (assuming the printer makes a preorder traversal). The follow-

ing definition identifies values that contain an infinite unbroken sequence of left

Parentheges.

Deﬁnition: A stream s is head-infinite if preorder traversal of s requires traversal

of an infinite number of head fields, without any tail fields, in some sub-stream

of g,

Suppose a preorder traversal of a stream outputs an ‘H’ every time it tra-

Verses a list car, a “T° every time it traverses a list cdr, and an ‘A’ each time it
?

finds ag atom. The traversal of a head-infinite stream would eventually produce

0 Infinite sequence of ‘H’s.

Deﬁnition: A stream is head—ﬁnite if it is not head-infinite.

44

A stream that is head-finite contains no infinite sequence of left parentheses;
lf‘LS doesn’t occur in the stream, then the printer must eventually make progress

and prodyce output during its traversal of the value produced by interpretation
of the compiler’s object code.

Deﬁnition: An admissible value is maximal in S and head-finite.
This definition permits certain kinds of infinite lists to appear in the head

of a list, unlike the previous definition [12] which, as Wadler [39] pointed out,

€xcludes them!

Theorem 2.1: The compiler preserves meaning.

Outline of proof: Strictness patterns are propagated in a leftmost-outermost

Manner, so that by structural induction over the compiler rules a strictness pat-

tern wil] pe compiled with the appropriate expression. |
C’orollary; In its preorder traversal of a program’s result, a printer proceeds ez-

actly as far interpreting source code as interpreting object code when it prints an
2dmissiple value. ‘
2.7.4: Termination

Strictness patterns can be represented by graphs of list structures suggested
by their notation (angle brackets become parentheses, Lp and $ become dis-
tnguisheq tokens). All finite patterns can thus be represented by finite graphs.
Infinite c¢yclic patterns contain only finite patterns and one or more infinite repe-
titions of either a finite pattern or a cyclic pattern. The repetitions within these

Patterns cap also be represented by a cyclic graph containing a pointer to the
Structyre representing the repetition. Infinite acyclic patterns contain at least

one infinjte pattern that is not cyclic; and so cannot be represented by either

finite or cyclic graphs.

Deﬁnitiom Rational strictness patterns are those patterns that can be repre-

Sented by finjte graphs.

45

Lemma 2.2.1: The compiler propagates only rational patterns.

Proof by structural induction on the compiler rules. There exists a finite repre-
Sentation for the initial inherited pattern, mo. Rules 1-4, 6-8, and 10-12 propagate
3 pattern that is at most finitely increased in length. Rule 5 is distributive, and
thus PTopagates a pattern no longer than that it receives. Rule 9 defines rec-p
both as the pattern to be finally synthesized by the compilation of the fiz ex-
Pression and as the synthesized pattern to be passed up during compilation of a
Tecursive call. Thus rec-p may be written as the join (or meet) of rec-p (inherited
by the local lambda variable during compilation of a recursive call) and a pat-

tern 7 inherited by the other instances of the local lambda variable within the

fiz €XPpression, or the rational expression

fiz A rec-p. m U rec-p .

O

Lemma 2.2.2: The compiler executes a finite number of rules.

Proof: Rules 1 through 10 recursively invoke the compiler on proper subexpres-
sions or not at all. A simple induction on the structure of the expression shows

that j terminates in a finite number of steps. Rules 11 and 12 decrement the

Tesource to limit the possible expansion of the source code. Thus the compiler

applies the rules finitely often.]

Theorem 2.2: The compiler terminates.

Proof Finite cyclic graphs may be compared or combined in finite time. Thus,

meet, join, and environment-lookup all terminate. By Lemmas 2.2.1 and 2.2.2,

the compiler terminates. Il

46

Chapter 3: C is safe with respect to an instrumented interpreter |

This chapter shows that C is safe relative to a series of rules specifying the

behavior of an interpreter I which is strict and which derives its lazy semantics
from a lazy cons [11].

Section 3.1: Outline of approach

An abstract machine, or instrumented interpreter (composed with a printer),
is postulated that associates the interpretation of an expression with a stream
of patterns representing the successive demand made upon its value, displaying
those patterns as it interprets the code. The compilation of each piece of code
is then proven to inherit a pattern no higher in P than the one displayed as the
code was interpreted. For'example, on page 52, the interpretation of equation (1)
provides a trace of the evaluation of a simple expression; the second column is
the stream of patterns displayed. In many cases, the pattern propagated by the
compiler is far below that displayed by the interpreter because all cyclic patterns
are forced to be no higher than the printer pattern 7, in the lattice of strictness
patterns. In fact, the equations presented here are even less powerful than they
might otherwise be because all patterns inherited by identifiers, not just cyclic
patterns, are bounded by the printer pattern for the sake of simplicity. This
bound can easily be relaxed in future compilers.

The proof is a straightforward structural induction over the compiler rules,
complicated only by the interpreter axioms, presented in Section 3.3.2, the in-
variants needed to constrain the compiler environment, and an extra proof and
lemma needed to show that the compiler handles recursive function applications
correctly. The lemma requires that the compiler be a continuous functional on
CEXP, a special domain of syntactic expressions. CEXP contains only the finite
€Xpressions specified by the grammar EXP , except that it uses the least upper
bound of an infinite chain of code unfoldings to represent a recursive function def-

inition, rather than the finite fiz expression presented in Chapter 2. However, the

47

structural induction deals only with finite approximations to the infinite program
represented by this least upper bound, not to the non-isolated bound itself.
The following notation is used in several sections of this chapter.

— If a syntactic expression [e'] is a subexpression of another expression [e],
then this relationship is denoted as [e'] € [e] .

— [e] [n] is the nth character in the string of characters, excluding strictness
marks, that form [e] . Strictness marks are decorations on characters, and
cannot be indexed. The predicate (Marked? [e] [n]) indicates whether a
character is decorated with a strictness mark.

— Strictness patterns may be partitioned into two sets— those which contain
strict marks and those which do not. ($ € a-7) identifies patterns that do
contain a strictness mark.

Lg € z denotes a value that either is Lg, or contains Lg as a component.

In other words, z contains 1Lg = lg € =

Section 3.2: C is monotonic and continuous

CEXP is a domain of syntactic expressions with the following structure:
— Target code has at least as many strictness marks as source code, so it is no
lower than the corresponding source code, and
— A recursive function definition is represented as a chain of successive finite

unfoldings of that expression.

The function U producing successive unfoldings of a recursive function def-
inition is defined as
U:INT x EXP — EXP

where

U0 [(fix:[f Aid. body])] = [Mid. bottom].

48

Un+1 [(fix:[£ Aid. bodyl)] = [Mid. body']
where [body]' = [body] (U n [(fix:[f Aid. body1)])/ [£]].

For example,
U1l [(£fix:[f A1. <head:1 . f:tail:1>])] =

[A1. <head:1 . ()1. bottom) :tail:1>]

U2 [(fix:[f M1. <head:1 . f:tail:1>])] =
[A1. <head:1 . (1. <head:1 . (\1. bottom) :tail:1>):tail:1>]

Un [(fix:[£ M\id. bodyl)] is frequently written as

Up [(£fix:[£f Aid. bodyl)].

More formally, CEXP is ordered as follows:

: [E], [E'] € EXP — {[(fix :[id1 X id2. el]):e2] }
[E] C [E]

([E] [¢/8] = [E'] [¢/9]) &
(‘l]’i éu]ch t}{{atﬂo < s < |[E]|, (Marked? [E][n]) => (Marked? [E'][n])

\

3 [exp],j,k such that [exp] € EXP, 0<j <k,
[E] = [(T; [exp]):e2] and [E'] = [(Ux [exp]):e2]

(A similar unfolding function can be defined for data-recursive definitions, but

since such expressions do not yield synthesized patterns, they are not interesting

enough to be discussed further here).

49

Theorem 3.1: C : D — D is monotonic and continuous.

Proof: D is now defined as CEXP x PAT x ENV x INT . BEXP, which
contains syntactic expressions bound to a particular variable during compilation,
is redefined to contain the least upper bound of a chain of approximations to a
recursive function definition, rather than the finite fiz expression given in Chapter
2,

C is shown to be monotonic and continuous on each of C’s four arguments,

if the other arguments are held constant.

Lemma 3.1.1: C is monotonic and continuous in its first argument.

Proof: The compiler adds or verifies the same number of strictness marks when
it is given two expressions which are identical, except that one contains strictness
marks not present in the other. An approximation contains no more strictness
marks, when compiled, than a higher approximation. Thus, the compiler pre-
serves the relative positions of elements in its domain, and so is monotonic.
Vi>o, (Cle]: am pe)l1C (C(UE, [e])] amp)il

as C is monotonic in its first argument. Thus

UZ: ((C e]i e p 1)l1) T (C [(UR: [)] am p)il

as | |2, ((Cle]; com p ¢)]1) is the least upper bound for all the (C [e]; a-m p ¢)|1,
while (C [(ug2, [e]:)] o-m p ¢)ll is an upper bound.

L_I;?S1 [[e]]i = Uoo (C [[eﬂi T p L)U, as C does not remove strictness marks.
- e 1=1

(C (U2, [o])] arp)l T (CUZL((C [e]i am p)I1)) @ p)11,
as C is monotonic in its first argument. [J;=1((C [e]i em p ¢)l1) is a fixed point
for C’s first argument, since the compiler does not derive any new information
from the marked code that would allow it to introduce a new strictness mark
°T unfolding, and simply verifies the marks already present (strictness marks are

idempotent in compiled expressions as well as strictness patterns). Thus

(C [(uge, [e])] e p o)1 E L2 (€ [e]: a-m p ¢)l1)

50

Lemma 3.1.2: C is monotonic and continuous in its second argument.

Proof: V [exp] a'w pt, (C [exp] ampt)l2]l=a-m,
so C is trivially monotonic and continuous in its second argument. []

Lemma 3.1.3: C is monotonic and continuous in its third argument.
It is assumed that the environments being considered are consistent

Proof:
with the expressions being compiled; for example, they are defined upon all free
variables in [e] and their definition is consistent with their use.

The domains of integers and tags stored in environment tuples are flat. The
infinite chain representing a recursive function definition is only copied, and so

does not change during a particular compilation. Therefore, the only interesting

ordering is that produced by strictness patterns.
The compiler successively combines a fixed set of patterns determined by

the compilation of [e] with a-m, with the inherited patterns for a given variable
in some p; and pii1, pi C pit1, in a chain of ¢ environments thus preserving
their relative ordering. (Patterns may also depend upon other inherited patterns
present in an environment, but this still preserves the ordering.) A similar argu-
ment shows that the relationship between environments ordered by the pattern
function, pa, is also preserved.

The function pa is simply a bookkeeping mechanism necessary to a compiler
that processes a finite representation of a fiz expression; since the compiler dis-
cussed here processes an infinite piece of code, only patterns inherited by lambda

bound variables need now be considered.
(C o] arm (URyp:) e)i20201 T |, ((C [e] a pi i)i2(211)

by an argument similar to that of Lemma 3.1.1.
21pi) ¢)2(2]1

L2, ((C [e] a- pic)l2[2[1) T (C [e] a-m (UZ
by the following argument, initially. similar to that of Lemma 3.1.1, since
To see that

C only maintains or adds information to an environment.
((C [e] am pi¢)[2]2]1)is a fixed point for C, note again that the

(> o]
i:]
compiler only maintains or adds information to an environment, so it 1s only

51

flecessary to show that the compiler does not produce an environment higher
after compiling an expression with | [2,((C [e] a-r p; t)1202]1). The only
Way in which the compiler can add new information to this environment is by
Propagating o.xr through the analysis of [e]. Let a be the combination of meets
and joins specified by the compiler rules of all the patterns inherited by instances
°f a given variable, [id] , during the compilation of [e] with a-r.

Let the pattern already initially present in p;, (p; [id])|2/1, be b;. Then
(((c [e] a-x pi 1)|2]2]1) [id])l2[1is a U b;. Sincea U UZ;b; = | |2, alU b,
C does not add more information to U:l ((C [e] a'm pic)l2]2]1). []

Lemma 3.1.4: C is monotonic and continuous in its fourth argument.

Proof: v [exp] a-r p ., (C [exp] a-m pi)]2]2]2]1 =y,

S0 Cis trivially monotonic and continuous in its fourth argument. []

By Lemmas 3.1.1-4, C : D — D is monotonic and continuous, proving Theorem
3.1. N
It is interesting to note that this theorem holds even when there is no finite
Tesource controlling the number of versions created, and irrational as well as

Tationa] Patterns are propagated; of course, under these conditions the compiler
Might ne terminate.

Section 3.3: I — an interpreter that displays demand patterns

Strictness patterns were introduced earlier so that the compiler could propa-
8ate strictness information approximating the behavior of the interpreter. Here,
aXioms describing part of the behavior of the interpreter itself are presented. This
interpreter produces an extra result that describes the strictness pattern it used
to evaluate an expression; this result can be regarded as a window through which

Varioysg strictness patterns can be seen as they move by during the interpretation

Process,
The domain equation for this modified interpreter 1s

52

I: CExP IENV — VAL x P

Where

YTy € P

ReIENY - 1p_, [VAL + unbound]
Note that the interpreter axioms are written as if its domain equation

Specified the displayed pattern as an argument, as in

I: CEXPx p IENV —, VAL

The following example demonstrates the behavior of I:

When interpreting the program

add:<head:<1 . 2> 3> (1)

1 _noves through steps (i) through (viii) during its interpretation

o I[add:<head:<1 . bottom> 3] fizdr.$(r , m) R
(32) I[<head:<1 . bottom> 3>] $($L,$(8L,1)) R
(z-zz) I[head:<1 . bottom>] $L R
(w) If<1 . bottom>] $($L,1) R
) 1 §1 R
(vi) I [bottom] & R
(1) Ifeas) $(8L L) R
(‘viii) I[3] $.1 R

3.3.1: Notation
Some notation is required when it is necessary to discuss the patterns dis-

Playeq by I during a series of steps in the interpretive process, or when a pattern

displayed during the interpretation of a particular expression must be identified.

For €Xample, it is useful to be able to discuss the pattern displayed by the inter-

Pretation of [<1 . bottom>] when the entire program being interpreted is (1)

This Will be denoted as:

53

[<1 . bottom>] ¥/ [add:<head:<1 . bottom> 3>] agmy R.

The corresponding compiler pattern is written as

[<1 . bottom>] e C [add:<head:<1 . bottom> 3>] a-r p ..
The compilation of a lambda expression often involves the creation of a series
of envi1‘011meni:s, each with a possibly updated entry for the bound variable. In

fact, there are at least n new environments created, where n is the number

of references to [id] in the body of the expression. Occasionally, it will be

flecessary to discuss the pattern inserted in the environment entry created when

the compiler has just seen the ith instance of this bound variable. This is written

as:

([id] ; where 1 <i < n)e C [exp] a-m p .

3.3.2: Interpreter axioms
In 8eneral, these axioms relate I’s behavior on expressions to its behavior on

sub~expressions, rather than specify I completely. I may display one of several

Possible patterns when interpreting a piece of code, even though the resulting

Value wil] pe probed in the same way. For example, the interpretation of the

€Xpression [<1 . 2>] could display the pattern $(8.L , $L), or the pattern
8o » Mo); it is assumed to make no difference here, since 1 and 2 are atomic.

(a1)

4 Heﬂ’ ad.7rd’ R’
(Ls & I'le] agms R) & (3 € aama) =
(Iﬂ-eﬂ agmg R = I[$e] aqma R).

54

ExPlanation: The interpreter is strict in the outer structure of any value con-

tain; ; : : .
dning some 'nner structure in which it is also strict, since it must traverse the

o) .
uter Structures to reach the inner ones. For this reason, for all patterns contain-

108 a Strictness mark, the interpreter produces the same result whether or not

the Pattern is prefixeq by a strictness mark. Since this is the case, the interpreter
will Tequire the oyter structure of the resulting value, and so its behavior will
not cha.nge when the expression producing the value is evaluated early.

The following five axioms are closely related to the correspondingly num-

bereq €Quations in Chapter 2.

(a3)

v [£], Qd'ma, R, such that [E] = [head:e],
(‘LS Qfﬂhead:e]] agmg R) & ($ € agms) =
(Iﬂhead:e]} ag'mg R =1I[e] $-($-m4, L) R).

¥ [£], Camq, R, such that [E] = [tail:e], (ad)
(LS # Iftai1:e] agorg B) & (8 € agms) =
(I[tail:e] qgur, £ = I[e] $-(L,$-7a) R).

v [z, Jd @1y, agemy, R, such that [E] = [<el . e23], (a5)

(J'S ¢1[<91 : e2>]} ad-(a1-7r1,az°7"2> R) =
(‘LS Qlﬂeﬂ} a1-m R) & (Lg & I[e2] az-m R).

L [IEB’ *d'7Tq, R, such that [E] = [prim:<el e2>], (a8}
(is 4 I[prim:<e1 e2>] ag-ma R) & (8 € ag-ma)
= (Lg &€ I[<e1 e2>] $($L,8(SL,L))R).

55

V [E], ca-md, R, such that [E] = [if:<el e2 e3>], (aT)
(Lg g I[if:<el €2 @3>] ag-ma R) & ($ € ag'ma) =
(Lg ¢ I[e1] $L R) &
(((I[e1] $L R # false) & (Lg & I[e2] aa'wa R))
Vv
((I[e1] $L B = false) & (Lg & I[e3] @a'ma R))).

V [E], agmy, R, such that [E] = [(Aid. body):el, (a8)
(J-S g I[(Aid. body):e] ag-md R) =
(Lg & I[body] ag-ma R[[e]/[id]])
& (Lg & Ife] (Uf ([3d];#I[(Xid. body):e] aamd R)) R).

Explanation: If the interpretation of a lambda application doesn’t contain Lg

then the interpretation of the lambda body doesn’t contain Lg and it displays
the original pattern, ag-rq. The interpreter can be thought of operationally
as displaying the appropriate pattern each time it evaluates an instance of the

bound variable, for which [e] is substituted. The patterns displayed during

this distribution of the evaluation of [e] can also be regarded as one pattern

displayed during only one evaluation of [e] —this one pattern is the least upper

bound: of those displayed when the interpreter evaluate
bound variable within the lambda body.

d the instances of the

V (5], agre, R, such that [E] = [(tix: [2id. bodvl)iel, (29)

(Lg & I[(fix: [£ Mid. bodyl):e] adTd R) =
(Ls 951[[b:dy]] a:-m R?[[(fix:[f \id. podyD)]/[£]]) & -
(Ls & Ife] ([e] #I[(LS%1(Tu (fix: [£ Aid. bodyl))):e] aa-ma) R).

Explanation: If the interpretation of 2 fiz application doesn’t cont

‘the Interpretation of the lambda body doesn’t contain Lg and it

displays the

56

Origing] Pattern, @d'7T4. In addition, the interpretation of the application ar-
8ument doesn’t contain |¢ and it displays the least upper bound of all of the
Patterns displayed whep the interpreter evaluates a possibly infinite number of
ul’lfc’ldings of the fix expression. This pattern may be higher than the patiern: ae-

Fually displayed by the interpreter during any particular application evaluation.

HOWever, it is reasonable to assume that the interpreter displays this pattern

after COnsidering the following argument:

Assume that an oracle determines the precise number of applications of 4

feeded by the interpreter, and consider the pattern displayed by the inter-

Preter a5 jt evaluates [e]. The least upper bound presented in (a9) is equal
°r higher in P than this pattern only because it includes patterns that have
been inheriteq from applications of U that were not interpreted in pro<.iuc-
ing the fina] answer. This is distinct from the interpretation of expressions
't required, causing the interpreter to display L.

Whose vayes — |
oking at the problem can be shown using the following

Another way of lo
exanlple:

[Cix, [f A1st.
f:<nitr, 104
nil
<add:<1 head:1st> . f:tail:1st>>]):
<12 33]

i 1d
The Oracle would produce four unfoldings of [£], and the interpreter wou

' t
dlspla}’ $<$.L,$($_L,$($_L,_J_>)) when evaluating [<1 2 3>]. If the argume(r;
Were extended to [{<1 2345 6>ﬂ , then $($J_,_L) would become correspond-

ingly €xtended ¢, $($_L,$($_L,$($_L,$($.L,.L))))- However, no harm is done if

i <1 2 3
¢ ‘terpreter 1s said to display this pattern when the argument was [<1 I

: b
“cause there s no more structure left to be made strict after the 3 has been

Seen,

57

v
HEH, XTa, R, such that [E] = [fix:[f e]], ad0)

‘LS el[[fiX![f el] agr B) =
('LS QI[IGH A4y R[Tlfia;c: b GJB/Hfﬂ D

E . :
q xplanatmln If the interpretation of a data recursion, or recursively defined
ata str Ucture, doesn’t contain g, then the interpretation of the structure itself

doegp § s
€sn’t contain ‘LS and the pattern it displays is the same as the original.

R, such that [E] = f:e], (all)
11 P hegond chal

3 [E] Such that (R [£]) = [(£ix:[£f Aid. bodyl)] =E) & 2
(Ls ZI[e] ([e] 0[(u, (U, (£fix: [£f Mid. bodyl))):e] aa-ma R) R).

E . b4 i
thxplanatlom If the interpretation of a function application doesn’t contain Lg,
. 'ien the interpreter doesn’t contain L g when evaluating the argument, and it

t . .
hen dlsplays a pattern that is the least upper bound of the patterns displayed

wh y ;
° the Interpreter evaluates the lambda expression bound to f.

The
°Tem 3.2: ¢ ;. safe with respect to I

The Proof is a structural induction on the compiler rules, with an induction

h) '
yPOthesls which relates the interpretation of the code produced by the comp iler

to the ;
¢ 111terpretation of the source code.

i . i de
se nduction hypothesis is that interpretation of the compiler source co

and N
“ompiler object code produce equal values when: -
_— ;
‘nterp Tetation of the source code produces a value that doesn’t contain Lg

=t ., . : ints, and
he c°’~'11Plle-tlme environment satisfies certain constraints,

58

" the compilation inherits g pattern that is at most equal to the pattern dis-
Played by the interpreter.

(ASsume for the purposes of simplifying the proof that all variable names
are uhique.)

The forma] inductive hypothesis is:

V Eexpﬂ ’ ad.ﬂ-d’ a_7r’ p, L, R, R',
*Ueh that [oxp] € CEXP, oo, cgomy € P,p€ ENV, o
tEINT, R,R' € IENV and Equivalently-eztended (p, R, R')

let ﬂexplﬂ a ! o' ' be CEOXPH ampeL in
g R
Safe~pat (a-r, @q-my) & Safe-comp-env (p) & (Lg & I[exp] aa-ma R)

= ,
(Iﬂexpﬂ Qg-mg R = Iﬂexp’ﬂ ag-mq R') & Safe-comp-env (,0)

) . Cycli
In the fOHowing deﬁm'tions, dom f = {[id] : ID | f [id] # unbound} , .Ycllc
n-isolated elements in the sub-lattice of finitely representable ele-

- i i itely representable.
» Meaning that they are limit points which are finitely rep

fquivale"tly-eztended (p,R,R') =
Mp= dom R — dom R'

Exter,;
d enszon-of (p,p’) =

59

Safe-pat (avm, g-my) =

(Cyclic agmy & a-m T (ag-malimy))
Y

(= Cyclic agmg & ar T ag-mq)

Cyclic patterns propagated by the compiler must be no higher than the
Printer pattern; all patterns propagated by the compiler must be no higher than
the corresponding pattern displayed by the interpreter.

mnv (p) = T
v [[ide]] .

(o [ide]) = unbound v

(o ﬂide]]) # unbound &
((Binding-type(p [ide]) = lambda) => Safe-lambda-ezp (b, [ide])) &

((Binding-type(p [ide]) = fix) = Safe-fiz-ezp (p, [ide])))

Identifiers may be bound in either a lambda or a fiz environment;
Ve compiler forms each environment entry assuming only these cases ex-
ist, The syntactic expressions containing an identifier are [(Aid. body):e],
[(£ix. [£)id. bodyl):e], [fix:[id el], [£:e] and [id]. An environment

Must be shown to be safe whenever the compiler creates a new identifier binding.

60

Safe-lambda-ezp (p, [ide]) =

V R, Q- 0g T, Ly p'

such th.at Safe-pat (a-?l',ad'ﬂ'd)’
Equivalently-extended (p', R),
and Eztension-of (p,p')

V [E] such that [E] = [(Aide. body) :]

1M

pa C (([ide] », where 1 <i<n)e C [E] a p' L)

(Uz, ([ide] ;¥ I[E] aama B))

Where (p [ide]) = (binding,pa,0; b-type)

nd in a lambda environment, then the compiler

If the identifier [ide] is bou
was compiled during the

€lvironment created when the nth instance of [[ide]l

COompilation of [body] contains an inherited pattern W
than the pattern displayed by the interpreter when it interprets the application

f
Of the lambda expression to [[e]] :

hich must be no higher

61

Safe-fiz-exzp (p, [ide]) =

v R1 Q-T, 0d-Td, L, P’

such that Safe-pat (a-m,cq-ma),
Equivalently-exztended (o', R),
Eztension-of (p,p')

V [E] such that [E] = [(£fix:[ide expl):e]
gpa aw) T [e] WI[E] aama R)

V [E] such that [E] = [ide:e']
gpa am) C [e] 1] [E] aqma R)

V [E] such that [g] = { [£ix:[ide expl], [ide]}
anw L agqmyg

where (p [ide]) = (binding, pa, v-count, b-type)

If the identifier is bound in a fiz environment, then it either represents a

function or a data structure, depending upon whether it originally appeared in

[Cfix:[f Aia. bodyl) :e] or [fix:[id el] .
y the compilation of an application of

If it represents a function [£f],

then for every safe pattern inherited b .
[£], the environment must be shown to contain a safe synthesized pattern that

can be inherited by the compilation of the application argument. If the identifier

Tepresents a data structure, then no synthesized pattern is involved, and the given

. b
safe relatiOnshjp between the compiler pattern a-m and the interpreter’s displayed

Pattern ag.m, is enough to show that recursively defined data structures are safely

Compiled.

Base case:

Assume that the entire program being compiled dofs not represent a value
that contains | . The compiler initially inherits the printer pattern, while the
S.

62

interpreter initially displays fiz Ar.$(r , =), a pattern which is above the printer
pattern my in P. The initial compiler and interpreter environments contain no

entries.

C [const] a7 p 1= [$const] a- p ¢ (C1)

Case 1: [exp] = [const]

Given: a7y, R, R' such that

i) Lg & I[const] ag-mg R

i) Safe-pat (o, ag-my)

iii) Safe-comp-env (p)

iv) Equivalently-extended (p, R, R')

Need to show:
04 I[const]] ag-wg R = I[$const] agq-ma R') & Safe-comp-env (p)

Proof:
The interpretation of a constant always terminates, so marking a constant is
always safe.

(I I[const]] ag-mg R = I[$const] aa-ma R') & Safe-comp-env (p)
By iii) and (C 1). []

63

Cle] ar p i,where ($ & a-m) = (€ 2)
[el [fix: [id expl]/ [e']1] ampe
where [fix:[id expl] =

(Binding (o [#]))

if 3 [e'] € [e] such that [e'] € ID
& (Binding-type (p [¢'])) = fix ,

[e[[(£fix:[£ Aid. bodyl) cexp] / [e']1] emp
where [(fix:[f Aid. body])] =
(Binding (p [£]))

it 3 [e'] € [e] such that [e'] = [£:exp]
& (Binding-type (p [£])) = fix ,

—

¥ otherwise.

Ci‘se 2: [[exp]] = [e] where ($ o4 a-)
F'}lven: ag-mq, R, R' such that

1) ‘LS & I[[GII ag-mq R

11) Safe-pat (a-m, g-mq)

Tli) Safe-comp-env (p)

1v) Equivalently-eztended (p, RR')

W, which are exhaustive:

Need to show each of A, B and C belo
(] argemy R = I[of [£ix: [id expl]/ [eT1] ™ R') & Safe-comp-env (p)(A)
if 3 [o'] ¢ [o] such that [¢'] €D
& (Binding-type (p [])) = B

(Tle] agmy B = Ifol [(gix:[£ M- podyl) :expl / [¢11] aa-ma BY) (B)

& Safe-c()mp_env (P)

64

if 3 [o'] € [e] such that[e'] = [£:exp]
& (Binding-type (p [£])) = fix ,

(Ie] agmy R = I[e] ag-wq R') & Safe-comp-env (p)

otherwise
Case 2.A
(b [e])1 = [fix:[f expl] By (C 2).
Equivalently-e:ctended (p, R, RI) By iv).

(I[e] aqg-mqg R = I[e[[fix:[id expl]/ [e']1] cama R)
& Safe-comp-env (p)

By (1), (2), and iii).

Case 2.B
(b [e])1 = [C£ix:[£ Aid. bodyD)] By (C 2).
EQUivalently-eztended (p, R, R') By iv).

! . RI)
(ITe] agemy B = I'fe[[(£ix: [£f \id. body]) :exp] / [¢']1] aama
& Safe-comp-env (p)

By (1), (2), substitution and iii).

Case 2.¢
. ! . -env (,0)
(I[[e]] @gmqg R = I[e] aqmq R') & Safe-comp

By iii).

(1)

(2)

65

C3
F[[head:e]] am p .= [head:e;] T p1 ¢ (¢3)

where [e1] a;-m py ¢y =C [e] a-(am, L) pe

Case 3: [exp] = [head:e]
Given: ag.my, R, R' such that

i) 1s & I'[head:e] ag-myR

i) Safe-pat (e, agmq)

1ii) Safe-comp-env (p)

iv) Equivalently-eztended (o, R,R")

Need to show:
(I[[head:e]] gy R = I[head:e;] aama R') & Safe-comp-env (p1)

Proof: .
. or may not contain $. However
The interpreter and compiler patterns may ° ey
one case ($ ¢ agmy) & ($ € a-m), is excluded by ii). Thus there are the following
three other cases:
Case 3.1) ($ ¢ aqmy) & ($ ¢ a-m) See Case 2)
Case 3.2) (8 € ag-my) & ($ ¢ a-m) See Case 2).
Case 3.3) ($ e aqmy) & ($ € arm) ' N
Steps (1) through (5) justify the use of the induction hypothes;s }i) i (1)
i truct of the compiler
Steps (2) through (5) show that the corresponding substructures

i : afe.
a0d interpreter patterns in (C 2), line 2, are s

(1)
LS € I[e] $(3my, 1) R By i) and a3).

(2)
Safe-pat (a-, $74) By i),

66

Safe-pat (L, 1) (3)
Sefe-pat ((aom, L), ($74, L)) (4)
By (2), (3) and defn. of P.

Safe-pat (a-(a-m, 1), $($7a, L)) (5)
By (4) and defn. of P.

(I[[e]] aq'mqg R = I[e;] aqmq R') & Safe-comp-env (p1)- (6)
By (1), (5),.iii) and IH.

Iﬂhead;e]] ag-mg R = I[head:e;] aqmq R'
By (6) and substitution.]

67

. L4 L
C [[tail:e]] aTpL= [[tall:el]] o 72—51 o] e
where [e;] a;-m p1t1=C [e] -

Case 4: [exp] = [tail:e]]

Given: ay.-my, R, R' such that

i) Lg ¢ I[tail:e] agmaR

i) Safe-pat (o, cg-ma)

iii) Safe-comp-env (p)

1v) Equivalently-eztended (p, R, R')

Need to show:

R') & 5afe-comp-env (Pl)
(I[tail:e] agmwy R = I[tail:er] @a'™d

Proof:

Similar to that of Case 3.]

68

Cl<el . e2>] awrper= (C 5)
{C [<ei . e2>] a-m p ¢,where (§ & a-m) if ($ ¢ m);
[<ai-el; . az-e2;>] a-m pa o, otherwise;
where
ay-m = (w]l)
Q2T = (7l'l2)

[[611]] Q1T P1 L1 = C [[81]] (7'!'1,1) P L
[[022]] QM2 P2 L2 = C [[e2]] (7!'1,2) P1 L.

Case 5:[exp] = [<el . e2>]
Given: ag4-mq, R, R' such that

i) Lg ¢ I[<e1l . e2>] aa-maR

ii) Safe-pat (cc-m,q"mq)

iii) Safe-comp-env (p)

iv) Equivalently-extended (p, R, R")

Need to show:

Case 2) shows that the induction hypothesis is maintained when ($ ¢).
Otherwise, when ($ € a-r), must show that:
(I]<e1 . 02>] agma R = I[<ai-ei! . 0-022>] ag-mg R')

& Safe-comp-env (p2)

Proof:

Since it is known that (§ €), it is also known that ($ € am), and by ii),
(8¢ ag-mq). Thus there is only one case:

Case 5.1) ($ € ag-ma) & (8 € @) |
Steps (1) and (2) justify the use of the induction hypothesis in (3). Steps

(4) and (5) justify the use of the induction hypothesis in (6).

1
lg & Ife1] ag-mar R . (1)
By a5) and i).

69

Safe-pat (7|1, ogy-may1)

(I[[el]] Qd1Td1 R = Iﬂeil]] Qad1°Td1 R)
& Safe-comp-env (p1)

Lg & Ife2] agzmaz R
Safe-pat (7]2, gz maz)

(I[[eZ]] ad2:mTd2 i = I[[e22]] Qaq2-Td2 R’)
& Safe (p2)

I[<e1 . e2>] ag-(ajm,azm) R =

If<aj-ely . a3-23>] ag-(aj-m,aszms) R

By (1), (2), iii) and IH.
(4)

By a5) and 1).
(5)

By ii)

(6)
By (4), (5), (3) and IH.

By (3), (6), substitution and al). []

70

C [prim:<e1l e2>] a-m p ¢ = [prim:e;] a-m p; ¢ (C 6)
where
[e1] c1-m1 p1 1 = C <ot €2>] ($L,3($L, L)) pe.

Case 6: [exp] = [arith-prim:<el e2>]
Given: a4.7y, R, R' such that

i) Lg & I'[larith-prim:<el e2>] agmaR
ii) Safe-pat (am,aqg-mq)

iii) Safe-comp-env (p)

iv) Equivalently-eztended (p, R, R')

Need to show:
. . 1
(I [[arith—prim;<e1 e2>] agmg R = Ifarith-prim:e;] aq-mg R')

& Safe-comp-env (p1)

Proof:
As shown in Case 3), there are three possible cases.
Case 6.1) ($ ¢ ag-mg) & ($ & a-m); See Case 2).
Case 6.2) (3 € agms) & (8¢ a-m); See Case 2).
Case 6.3) ($ € ag-mq) & (8 € @) N
Steps (1) and (2) justify the use of the induction hypothesis in (3).
1
Lg & If<e1 e2>] $($L,8(5L,L)) R (1)
By i) and a6).
(2)
Safe-pat (($.L,$($L,1)),$(3L,8(5L,1)))
. < ! By defn. of P
(I|I<el e2>]] Q4 Td R —— IIIG]]] ad-Td RI) (3)
& Safe-comp-env (p1) i
By (1), (2), iii) and IH.

. s . 1]
I[[arith-prim:<ei 02>] aama B = I[arith-prim:e;] aqmq R

71

By (3) and substitution. []

72

Clif:<e1 o2 €3>] ampt
= [if:<$el; €2 e3;>] am pat
where
Hell:ﬂ Q1T p1 L1 = 8 [[61]] $Lpu;
l[622B Q2T P Ly = C [19211 a-T P1 L
[[93311 a3-my p3 13 = C [e3] a-m p1 b
([binding,], (pazf‘lpas) ,0, b-typez)

1 = lambda,
Pa = i, if b-type, b tupe
([bindingz] , pas, v-countz + v-counts, 0-¥YP 1)
if b-type, = fix;
where 1 ype, !

([bindings] , pa,, v-counts; b-type) = P2

3 3 it = z
([[b:l.ndn.ng;;]] , Pas, v-counts, b typesi) =p;nboun a:

- (pay pat) if (paz P&
pay = Apat. { (pay pat) otherwise.
\
Case 7: [exp] = [if:<el €2 03]

Given; aq-my, R, R' such that
i)‘LS € I[if:<el o2 e3>] @d'Td R
ii)Safe-pat (a.w,ad-ﬂ'd)
iii)Safe-comp-env (p)

iv) Equivalently-extended (p, R, R')

Need to show:
(ITif:<e1 o2 €3>] cta'ma

!
B= I|[if:<$e11 022 03;>] @d'™d R &

S.
Proof: As shown in Case 3), there are three cas€

Case Ta1) ($ & agma) & ($ ¢ a-m); See Case 2)-
Case 7.2) ($cagmy) & (5 ¢ a-T); See Case 2)-
Case 7_3) ($ € ad"’rd) & ($ € a-T)

73

Steps (1) and (2) justify the use of the induction hypothesis in step (3). Steps

(4) and (5) allow us to then show that the compiler’s object code will satisfy the

invariant for all possible values returned by the interpretation of the predicate, in

steps (6) and (7). Steps (10) through (15) show that the environment invariant,

Safe-comp-env (py, [ide]) is maintained.
lg &Ife1] $L R
Safe-pat ($.L,$1)

(I[e1] $L R = I[e1,] $L R')
& Safe-comp-env (p1)

By (1), (2), iii) and IH.

Ls ¢ Ife2] agmg R =
(ITe2] agmy R = I[e2;] @dma R') & Safe-comp-env (pz))

By ii), (3) and IH.

Lg ¢ Ie3] agmg R =
(I[e3] ag-wg R = I[e33] adma R') & Safe-comp-env (p3))

By ii), (3) and IH.

Ile1] $1 R # false = (I[e2] aama R = I[e2;] agma R')

By i), a7) and (4).

Iﬂel]] $LR = false = (I|I93]] oagmq R =I[[e33]] gy R')

By i), a7) and (5).

IIIi:f:<31 02 e3>] ag-ma R _—_—I[[if:<$311 e2; e33>] agmq R'

By (3), (6), (7), al) and substitution.

By i) and aT).

(1)

74

b-type € {lambda, fix } (9)
By aT).
b-type = lambda . (10)
Given.
(PayMpay) C pa, & (pa,Mpay) C pas (11)
By (C 7).
V [ide]

(P4 [[ide]]) # unbound —
((Binding-type (p4 [ide])) = lambda) = Safe-lambda-ezp (ps, [ide])(12)
By (4), (5),(10) and (11).

b-type = fix (13)

Given.

V aminn € dom pay

QTinh € dom pa, V aTipp € dom pag (14)
By (C 7).
v [[ide]]
(p4 l[ide]]) # unbound —>
((Binding-type (ps [ide])) =fix) = Safe-fiz-ezp (p4, [ide]) (15)

By (4), (5), (13) and (14).

Safe-comp-env (pa)
By (12) and (15). L

75

C [(Aid. body) :eﬂ T pL= (C 8)
[(Aid. body;):e;] a-r ps ¢
where
[IbOdyll] a1-my py 4y = C [body] a-m p2 ¢
([C1],L1,0,lambda), ifi= [id];
pi, otherwise;
p3=)‘i.{pi, if i = [id];
p1i, otherwise;
[o1] 2y py 12 = C [o] (Pat-fun (o1 [14])) ps .

P2 = At

Case 8: [[exp]] = [(Aid. body) :e]
Given: ay-my, R, R' such that

i)Llg ¢ IT(Mid. body):e] agma R
ii)SGfe-pat (e, cqemq)

iil) Safe-comp-eny (p)
iV)EQUivalently-eztended (p, R, R')

Need to show:
(I[(Aid. body) :e]] agq-md R = Iﬂ(Aid. bOdy:[) 391]] aq-Td R)
&

Safe-comp-eny (ps)

Proof:

As shown in Case 3), there are three cases.
Case 8.1) ($ ¢ agmy) & ($ ¢ a-m); See Case 2).
Case 8.2) ($ ¢ agmy) & ($ & a-m); See Case 2).
Case 8.3) ($ € agmy) & ($ €) | . |
Steps (1) through (7), following, justify the use of the induction hypothesis
Which shows that the compilation of the lambda body is safe. Steps (2) through

(7) show that the environment given to the compilation of the lambda body is

76

safe. Steps (8) through (10) justify the use of the induction hypothesis, showing
that the compilation of the argument [e] is safe.

_LS ¢ Iﬂbody]] gy R[{Ie]] / ‘[id“]

(1)
By i) and a8)

(p2 [id]) # wnbound ¥
By (C 8).

b-type = lambda Y
Given.

Y arwe P, | Canr ?
By defn. of L.

Safe-lambda-ezp (p2, [1d]) a

By (2), (3), (4) and iii).
v {[ideﬂ

(p2 ‘[ide]]) # unbound =
((Binding-type (p; [ide])) = lambda) = Safe-lambda-ezp (p2, [ide]) (6)
By iii) and (5).

(7)

By iii) and (6).

(IToody] agory R[[e] / [1d]] = I[body:] aama R[]/ [a]])
&

Safe-comp-eny (p2)

Safe-co -e (8)
mp-env (p1) By (1), ii), (7) and TH.

LS # Ie] (Up,([1d] ;aI[(Mid.body):e] aema R)) R (9)

By i) and a8).
(10)

Saf€~co p—
" o By iii) and (8).
(I7e] (Wi [d] ;uI[(\id. body):e] cd'Td R)) I'Z = :
Tea] (ur,([ad]:nI[(rid. body):er] xaTd R)) R)

& Safe-comp-env (p4)

(11)

o

IT(A\id
id. body):e] aq'ma R = I[[(Ald bod
By (8);

By (9), (8); (10) and IH.

yl):el]] aqd-Td R
on.]

(10) and substituti

78

C M(es
[I(fhif(if' Aid. body]):e] ampt=
V[E'here ix: [f|a-r Aid. body;]):e1] T pat
body
: az.[f?f{) 1 01 = C [body] o pz
ix:[f \id. body])], pa,
p2 = ;. J ([01],1,0,lambda),
if i = [4d];

otherwise;

1,fix), ifi= [£]

P,
Pa = Apat. { o if pat = oT;
.unbound otherwise;
P3=Ai.{pz,_ if i= [1d] ori= [£];
egp p1t, otherwise;
= el o C[(UgZ(Uu (gix:[£ Aid. bodyD)))
= (p1 [id]){2]1

[
w p4 tz = C [[e] rec-p p3 L

o] ampl

CaSe
9:
.y [exp] = [(fix:[f Aid. bodyl):e]
iy n: ag-ry, R, R' such that
i) SS € I[(fix: [£ Aid. bodyl):e] @dTd
i afe-pat (-, og-ma)
i l)) Sefe-comp-ens (p)
v o
Equwalently-eztended (p, R, R")

R

?Teed to show:

Iteim; .

11[[3(‘ Ff Aid. body]):e]] aqgmd B =
fix: [f|a-r Aid. body1])=91]] og-md R')

Sa
fe-comp-eny (p4)
ecursive functions depends upon

Th
e case showing that C safely compiles T

a recursi ion are com-

ve function definit

ﬁrst
Ty
Proving that all finite unfoldings of
induction, the proof

piled
safely. This makes use of one of the ot

that)
eXpressions are safely handled. However,

her cases of the
the number of such unfoldings

79

time to produce the final result at run-time is unbounded, and
d the result is an infinite list. For this reason, the compiler is
a, 143

dltlona‘uy Proven safe when it receives the least upper bound of these approx-

Imat;) .
&tlons, the unfolded equivalent to the finite fiz expression actually compiled.
bound only exists in a special domain of syntactic expressions

ed only in this chapter; it is not specified by the grammar in

leeded 4¢ compile-
M2 be infinjte i

This least Upper
described and us

h . .
“Pter 2, Which only constructs finite expressions. In Section 3.2, C is shown
Otonic and continuous using this domain, which then makes it possible

to be on
¢ , .
1(: Constryct a lemma showing that C produces a synthesized pattern no higher
t : .

0 that displayed by I when I evaluates an application of a recursive function.

femmag.a 1, rec-p C [o] 0T [(US2, (Us (fix:[£ Aid. bodyl))):e] aym R

Proof:

rec-p — [e] s,

C (U, (£ix:[£ Aid. bodyl))):e] am p ¢
w8 Shows that for any finite unfolding u of [(fix:[f Aid. bodyl)], which

ec i
[omes & simple lambda expression,
;ﬂ *CUU. (Lix:[r Aia. bodyl)):e] ampt

'ﬂeﬂ 'I[(v, (fix:[f)\id. bodyl)):e] aa-mi R.
1S showy that for any finite unfolding u,

Cﬂe}] *Cl(u, (fix:[f Aid. body])):e] a-m p¢
[e] o ¢ [(Tut1 Cfix:[£ Aid. bodyl)):e] ampe

b . ,
¥ Observing that the patterns inherited by the compilation of the extra unfolding

are . . —
at least L, thus preserving the patterns inherited by the compilation of u

Unfo]g;
Oldmgs' A similar observation shows that
:M (U, (fix:[e r54. bodyl)):e] cama R

le] d (/o (fix:[f)id. bodyl)):e] as'ma R.

80

By Theorem 3.1), C is a continuous functional, and so

Cﬂ(ufill(lf., (fix:[f Aid. bodyl))):e] am pt

=

Uff;] (cl(w., (fix:[£ Aid. bodyl)):e] aw p)
From this,
¢ ﬂboleﬂ Q- p’ L

-
=

U:ll (c [body,] a-r p' L)
Where [Aidq. body;] = [(US2,(Us (fix:[£ Aid. bodyl)))]
[Mid. voay,] = [(U, (fix:[f Aid. bodyD))]

and

Pat-fun (o1 [14]) = Pat-fun (pr [1d])
Where P1 = (C [body;] a-r p' ¢)|2]2[1
' 1
P2 = (U3, (C [bodys] a-m o' 1))i212]
[Aid. bodlylﬂ = (U, (U, (fix:[f Aid. bodyl)))]
[Mid. body,] = [(Us (£ix:[f id. bodyD))]
By (co),
Pat-fun (b1 [id]) =
[e] *C (U2, (U, (£ix:[f Aid. bodyl))):e] e p¢)

u=]

and

Pat.fyp, (p2 [id]) =)
Uz, (le] s C [(U, (£ix:[f Aid. bodyl)):e] amp
Thuys

[¢] *C (U, (U, (fix:[f Aid. bodyl))):e] e p¢)

)

u=]

=

U'Zl (ﬂe]] o C[(U, (fix:[£f Aid. body]l)):e] amp D)

o] urp(uge (U, (fix:[f Aid. bodyl))):e] aama R

u=]

81

forms an upper bound for the patterns displayed during the interpretation of all
finite approximations (unfoldings) of [(fix:[f Aid. bodyl)], so it must be at
least as highas [e] o C [(Le2,(Us (£ix:[£ Xid. bodyl))):e] a-rpe
since this is their least upper bound. Thus,

[e] e C (U2, (U, (fix:[f Aid. bodyl))):e] ampe

C

[e] lI[[(L_IZ‘;](Us (Lix:[f Xid. body]))) o] agmy R]

Proof:

As shown in Case 3), there are three possible cases.

Case 9.1) (8 & ag-my) & ($ & a-); See Case 2).
Case 9.2) ($ ¢ agmy) & ($ & a-m); See Case 2).
Case 9.3) ($ ¢ agmy) & ($ € amr)

Steps (1) through (11) justify the use of the induction hypothesis in showing
that the body of the lambda expression is compiled safely. Steps (2) through
(11) show that the environment given to the compilation of the lambda body is
safe, Steps (13) and (14) justify the use of the induction hypothesis in showing

that the compilation of the application argument [e] is safe.

LS & Ibody] ag-my R[[(fix:[£ Aid. bodyl)]/[£]] (1)
. By i) and a9).

(2 [£]) # unbound (2)
By (C9).

(Binding-type (,02 {[fﬂ)) = fix (3)
Given.

Safe-ﬁ:v-ezp (Pz, [[f]]) (4)

By (2), (3), ii) and Lemma 3.2.1.
v [[ide]]
(b2 [ide]) # unbound =
(Binding-type (p, [ide])) =fix = Safe-fiz-exp (p2, [ide]) (5)

82

(P2 [[id]]) # unbound i
By (C 9).
(Bmding-type (p2 [1d])) = lambda (7)
Given.
Vare P, 1 Can 4
By defn. of L
Safe-lambda-ezp (Pz [[id]]) (9)
By (6), (7) and (8)-
v [[ide]]
(F; [[ideﬂ) # unbound =
(inding. type (p2 [ide])) = lambda) = Safe-lambda-ezp (25 [ide]) (10)
By (9) and i)
Safe-comp-eny (py) (11)
By (5) and (10)
I
E“[[Ebody]] agmg B[[(£ix: [£ Mid. podyl):e]/ [£1] =
. °dy1] agemg R'[[(gix: [Flam Mid- bodyl]):e]]/[[fla-r]]])
Safe-COm (12)
P-env
(Pl) By (1)’ 11), (11) and IH.
0 3
S&rI] A ;0 ma B) R (12)
[[e]] “:e]] lI[[(L];.?._._.l(Uu (£ix: [f Aid. bOdY])))]] adBﬂ;il) and 3,9)
Safe~com (14)
p-e
nv (p3) By iii) and (12)-
I =
Iﬂe]] ([[e]] .I[[(Uf;] (Uu (fix:[f Aid. body]))):e]] od-Td R) R R R
l[el]] ([e] I, (U (fix: [£am Aid. bodY1]))):e1]] agmd B)
(15)

Sa
fe-comp-env (pa)

IT(s4
[[flxi[f Aid. bodyl):e] aa'Td R =

83

I T
[(£ix: [£|oor Aid. bodys1):er] aamd B

By (12), (15) and substitution. []

84
(10)

C [Ifix: [id e]l] amTpL= [[fix: [id|a-7r 91]]] o p3 Ll
where
IIelﬂ Qy-my pP1 L1 = C IIe]] T P2 Ly
i e ([ix:[id e1],pa,1,fix ¥

= ik ' if i = [id];

p i,otherwise;

L if pat = a'™;

unbound otherwise;
Py = ,\,-.{pi, if i = [id];

p1t, otherwise.‘"”///

pa = Apat.

Z?se 10: [exp] = [fix:[id el]
riven: ay.mq, R, R' such that
T.)‘LS € I[fix: [id e]] ag'ma R
11) Safe-pat (a-m, ag-mq)

Tli) Safe-comp-env (p)

) Equivalently-eztended (p, R, R')

Neeq to shows
Tetx: 11 ol] ayg-wg R =I[fix: [id|a-T e1]] adTd E')
& Safe-comp-env (p3)
As shown in Case 3), there are three posSible cases-
Case 10.1) ($ ¢ ag-ma) & (8 & a-m); See Case 2)-
Case 10.2) ($ € agema) & (8 & a-); See Case 2}
Case 10.3) ($ € agmq) & (e a-T)
y Steps (1) through (7) justify the use of t
8 that the compilation of [e] is safe. Steps

enwvy .
Vironment given to the compilation of IIe]] *

hesis in show-

he induction hypot
show that the

(2) though (7)

85

Ls & Ife] agmy B[[o] / [1d]]

0B At By i) and a10).

(Binding-type (py [1d])) = fix By (C 10)-

e 1 Given.

oo cap (5 Pl) By defn. of L.
By (4) and ii).

v l[ide]]
(e l[ide]]) # unbound =

(Bindin,g.
g-type (p; [ide])) = fix = Sefefize? (p2 [ide])

By (2), (3), (5); and ifi)-

Safe.
fe COmp,en,v (Pz)
By (6) and iii)-

(Ie] o
]]I[[:i]m R[[£ix: [id 1]/ [3d]]=
&1 Sad"’rd RI[[[fix: [id|a.1r el:Hl / I[idlomrﬂ])
afe-comp-env (p1)
By (1), ii), (7) and -

agd-Td R

Itix
[
id e]] ag-mq R =1I[fix: [id|a-m e1l]
By (8) and

substitution.

Safe.
By iii) and (8)- [

I 86
c [[f:e o-

Rei he:{_ﬁf E | - (c11)
Comuil l.mlt if (pa a-m)
Marlf’-l‘;;-.Blnding if (pa a-)

ke g ith-Pattern otherwise;
e([(fix:[f Mid. bodyl)],pa,v-co

— unbound & v-count 2
— ynbound & v-count < L3

unt, fix) =P [£1;

Reach s e
ed-Limit is [(fix: [f \id.bodyl):e] e p b

?[(OfT:lle'Bi“ding is
‘Ehere. [f|a-m Mid. body;]):ei] a:m pal
bo
dy1] ay-my py 1 = C [body] am P2t
([(£ix:[£ Aid. body])] , pay, v-count + 1,fix), ifi= [£1;
P2 = i ([r1],L,0,lambda),
' if = [4d];
P, otherwise;
Pay =)\pqy, | rec-p if pat =T
pa otherwise;
p3=>\z’.{f’i,. if i= [1d] or i= [£];
rec.p — p11, otherwise;
= o] ¢ O [(Us(Ts (gix:[£ Aid. bodyD)
= (p1 [1d])l2]1

[[91

)):e] emp L

M "
ark-With-Pattern is

f|CX-‘"-.
Where o1] am py e

[y
] a1my py oy = Ce] (pacm) Pt

i,

Ca

Gy Loxpl = [£:]

1) 1 n;, ad.ﬂ-d’Rﬂ R’ S’UCh that
- SEI[f:e :

1) Safe] aams B

i) pat (eem, agma)

Safe'comp-env (p)

87

RI
lv) Equivalently-e:ctended (p,R,R")

Need ¢, sh
([ﬂf:

tive:
o are exhaus A
d C.below, which R') (A)
B an .
ow eachﬂ;)ff.A.,[f A, pedylen] wpe
o] QdTg B = I[(£ix:
& Safe-comp-env (p)

t2y;
if (pq Q) = unbound & v-coun ;

(I[If:

) (B)
R

: aq-md

I[(fix: [fla-r Aid.body;]):e]

Qﬂ Camy R = ix:

& Safe-comp-eny (ps)

i<y
if (pa Q!'?l') = unbound & v-coun ’

(C)
Qg T, R')
(I[If:eﬂ Qgmry R = I[[fla-?rtelﬂ d*7d

wise
& Safe-comp-env (p1), other

PPOofg

ow. i ses.
ossible ca.
in Case 3), there are three p
As sh n in

.m); See Case 2).
ase 11.1) ($¢ @) & ($ ¢ a 7")).’ See Case 2).
e 11.2) ($ e *a'ma) & ($ & a-m);

es:
re three cas
Case 11.3) (5 74) & ($ € avr) There a (1)
ase " E ad'
11).
Case 11.3.4 sl S i
(0[] N1 < [(fix:[f Xid.body
By iv).
!
E’quivalently-eztended (p,R,R')

g R)
J):eﬂ Qq-md
(I[[f-e]] Ty R = I[(fix:[£ Aid. body

2 d* d —

nd iii).
(p) BY (1)7 (2)’ “
& Safe-comp-env

e ——————

88
Case 11.3.8

he ar
u : a ’
then . gument is that for Case 9.3, with one exception. When pat # a-m,

a] = * .
P4, which is part of the safe environment p-

s & I7e
(] (Le] 01{(U, (0, Cesx: 12 Atd. bodyl)):e] aems B) Z (1)

I[Ie]] ([Ieﬂ (s By i) and all).

Iﬂelﬂ (l[u=1(Uu(fix:[f Aid. bOd}'J))):eﬂ ag-mg R)}Z -
) Seﬂ IIII(U?:JU:: (fix: [f|a-r Aid. body;]1))):e1] aqmy R')R'
; afe-comp.env (p1) @)
Slnce Q-

in Which 7 has been seen before in the compilation of the outer fiz expression
i [£] was originally bound, (pa a-w) # unbound. Note that the given
shows that the pattern bound to a-r in the environment p is safely

the compilation of [e] -

1 .
"Variant jjj)
Passeq on to

By (1), iii), iii) and IH.

1t
I Xamg B = I[ffa-w:el]] aq-mq R

By (2) and substitution. L]

89

Clid] a-x e
Variable if b-type = lambda; 2 & vcount2 4
Reached-Limit if (pa oom) = unbound il
Compile-Binding if (pa a-T) = unboun
Mark-With-Pattern otherwise; -

Where([[binding]] , pa, v-count, b-type) = P [id] 5

Variable is
[id] ar p, .
Where
([binding] , (a-erJpa)ﬂWo,O, b-type),
p i, otherwise;

Reach'id-llimit is [binding] a7 p &

Compile-Binding is

fix: [idla'ﬂ' e]II r L
1 a-T p3
Where

[£ix: [1q e]] = [binding]
o] X1y p1 g =0 [[e]] aT p2 b
_ ([fix:[id el],pay,v-co
P2 =)¢, ifi= [£];
p i,otherwise;
Pay = \pas, { = if pat = @™

unt + 1, fix)’

unbound otherwise;

Ps:)‘,‘_{pi, if 1 = [id];

p1t, otherwise.

M

ark-With-Pattern is [id|een] ™ Pt

Case 12; [exp] = [id]
FIVen: aq:my, R, R' such that
1) ‘LS g I[[id]] gy R

i-
! Safe-pat (cm, aq-mq)

(€ 12)

90

1ii) Safe-comp-env (p)

iv) Equivalently-e:ctended (p, R, R")

Need to show: All of A, B, C,D. .
(Tid] agery B = I[id] ag-ma R') & Safe-com?
f b-type = lambda

(T13d) agomy R = [[gix: (£ 1] eama B)
& Safe-comp-env (p)

if (pa @) = unbound & v-count > t;

1
Iﬂf:e]] a4-mg R = I [fix: [£ e]l] aa'Td L
& Safe-comp-env (p3)

lf (pa Q’?l') = unbound & v-count < L

!
(I[[idﬂ ag-mg R = I[id|a-w] aama B)
& Safe-comp-env (p), otherwise

Pro of:

. As shown in Case 3), there are three possible cases:
Case 12.1) ($ ¢ agmg) & ($ & am); See Case 2)-
Case 12.2) ($ agmy) & ($ ¢ a-T); See Case 2)-
Case 12.3) (3 ¢ agmy) & ($ € a-m)

There are four cases:
Case 12,34

(oy IIid]]) # ynbound

(Binding-type (P1 |Iid]])) — lambda

(1)
By (C 12)-

91

VR '
1&a'ma, p' such that Equivalently-eztended (p',R),Eztenszon-of (p,P')s

V [E] such that [E] = [(Aid.body) te]
pa = ([id]; wherel _<_i<n)oC’[[E]] amp L

&
(a-wupa) = ([id] i+1 where 1<i<n)e C [E] e ple
&
(Q'WUpa)ﬂﬂ-o C ([id] » where 1<i<n)e C [E] o™ ple (3)
Safe-lambda-ezp (p1, [1d]) (4)
By (1), (2) and (3)-
v [[ide]]
(o1 .[[ide]]) 2 bl
(Binding. type (p1 [ide])) = lambda) = Safe-lambda-ezp (P1) [ide]) ()
By iii) and (4).
SGfC-COmp_env (pl) (6)
By iii) and (5)-
Case 12.3.B
i 1
(P I[ld]])l]. = [[fiX:[id 6]]] ()
By (C 12).
Fauival @)
ently-ezxt '
extended (p, R, R) a0
(I
IIld]] Qq-my R =I[[fix: [id e]]] ag-Td RI)
& Safe-comp-env (p) ‘
By (1), (2), substitution and iii).
CaSe 12'3-C
hen pat # '™

. W
The argument is that for Case 10-3; with one exception-

Pay = pa, which is part of the safe environment P

92
Case 12.3.p

At this point, [Iidfa'ﬂ'ﬂ has been introduced correctly in the surrounding fiz
expresSjon; this labeh'ng ensures that it will refer to the outer binding properly.

93

iti Xpressions
her analysis of conditional e
Chapter 4: Further
This Cha
Chapter 8
0d ysefy)
ﬁrst

ion for if given in
e uathH
improvements e 1 ndle some common
me 1 o ha
Pter presents so but not powerful enough 0. style are discussed
» Which is s BB tions written in iterative
ing styles. Func
programmmg §

two
i Finally, the

i ite lists.

hich process potentially fin

» and thep functions whie

are C()mbined.

€ction 4.1; Iterative functions

itten as
if it can be wri
function is in iterative style if it ¢

@ |
. if:<p:z f:z F:g:2>].

prlm‘
1

be
Q tyle can
in iterative s
i itten in i
loops, functions wri
. o)
Unctiopg, Like iterative a stack.
5 r than
implemented using tail recursion rathe

defined as
i Rev
or €Xample, the function [Rev],

(2)

:tail:z>>>].
i :z . head:tai
head:tall:z . P

: -

Rev:(tall:hea :

, om-
ntains the c
1, that eventually co
’ d:tail:zj,
COnstructs a reversed sublist, [hea
Plete

itten as
2], wri

ion [Fact

] . The factorial functio

cverse of Jjst [head:z].

. e ——
. S ——

94

(3)

if:<zero?:head:z
head:tail:z

£1:2353] .
d:tail:z
head:z mpy:<head:z hea
Fact2:<der:heaq:

Multiplies [head: 5
ecomes the facto

COnsider the
[<2 1],

Patter, fior

ll-z)
Il
ra

uation
[2z] which is a solution to the eq

(4)
[[zﬂ ‘CEF‘&"-'SSB e Pl :g:2] amrp').
[=] zﬁﬂméﬂﬂﬁ"fjpf <IN [] ¢ C [F:g:2]

Z| o ‘Z) a-r

. domain is a
d so its co .
. an
defined operatlonauy’f a fixpoint of (4) is the
. il T .
The function o s beeThe object of a search djdate fixpoints. This set
et of rationa] P&tter_n:.) member of a set of can
Ost Powerfy] (most stric
st ontain the 1
At firsy glanc

80o(d set of candj
ot t

d
t be explored,
i tterns mus

ite number of cyclic pa

. infinite

“IMinate because an in

“Ven jf

Search t
distrjbu
lagg;,,

Subs

ag i lution.
ssible so
ERIEN - onl(!y - 2 appears to be a
: tha -
iy lete sublattice from Chap
i ete
e, the incomp

. strict the
ach is to re
{. One poSSible appro s unpredictable
. d out. iven
the acyclic ones are rule d number of patterns. G
; limited n
© xploration of g

i f the
i ense size o
ice and the imm
lutions in the lattice
tion of the possible solu
€, one ca

o inate with an
n is li to termina y
not a ive approach is likely

t this nai

t argue tha

95

Fortuna'tdY> Some additional information can be brought to bear on the
(ratiOnal) °.C(IP=Z]] anm' p)U([z] e C’][f:-z-ﬂ a-p' 'l,) can only be a cyclic
to] ; or ‘ﬁmte pattern, since [f] is a primitive function and the outer call
Dherits 5 rational pattern. In addition, [z] e C [F:args] arp. C
t(h[[:ze;riﬂp:zﬂ ar’ pu) U ([z] o C[£:2] amp'). Instea.d. of coxfstra.in.ing
Contys “a str ategy directly, it seems reasonable to develop a finite lattice which
thi: :::i (EZH *Clp:z] an' pt)U([z] eC[f:z] am p') as its top element;
This Iat:rn 1s the best that can be hoped for, and so is called the targe;t pattern.
1Ce can then be searched, exhaustively if necessary; an algorithm that

Perfq By
Tms this search is discussed later in this chapter.
Such 5 finite lattice is developed by constructing a homomorphism H from

the C 5
Omplete Infinite lattice P to a finite lattice Pﬁm’t e,nx" In order to present

is h . .
omomorphlsm, the following terms are introduced:
0 irrationgl pattern is an infinite pattern that cannot be finitely and ex-

Phcxtly Tepresented as a cyclic graph.
o Fully Tepeating pattern is a rational pattern that can be represented by

* cyelic 8raph containing cyclic references which refer only to the entire

Pattern, A, example of such a pattern is
ﬁ.'t/\1l'($-1- ’ 7!')-

. S artially repeating pattern is a rational pattern which can be represented
b a ¢Yelic graph containing cyclic references which may refer to sub-patterns

Within the entire pattern. An example of a partially repeating pattern is
(L, $fizdm.($7 ,).

Af nite Pattern can be represented without any cycles. An example of a

finite pattery B
(1, 8L).

96

— An . " !
n-bounded pattern is a fully repeating rational or finite pattern whose

Maxs
AXlmum cycle length is less than or equal to n. For example,
(8L, (8L, 1))

1S 2-bounded but not 1-bounded. Similarly,

fizdw. (L, (7, (L, m)))

18 4-boundeq but not 2-bounded.

Deﬁnition; A finiie

g pattern p represents the fruncation of a pattern q, written
S (Trune qn)
'

o if p and q are identical except that at some node in the represen-
aions of P and

q within the bound n, p contains Lp where q contains a pattern
abOVe ‘LP-

P .
, ut very simply, the desired homomorphism H selects n-bounded patterns.
€ effect that this b

& ound n has upon the selection of patterns from Pﬁnz’t o
2 be more easily un

derstood if the domain of patterns is partitioned as follows:
1) Irratjona) patterns
2) Rationa) patterns

a) Fully repeating patterns

1) n-bounded fully repeating patterns
ii) fully repeating patterns with bound greater than n

b) Partially repeating patterns
¢) Finite patterns

1) n-bounded finite patterns

1i) finite patterns with bound greater than n.

Hm&PS all patterns in 2.a.i. and 2.c.i. to themselves. All others are mapped

0 .
nj ; -
te truncations of themselves. A more formal definition follows:

e e o y

a7

Apn.
irrational? 2= Trunc p m;
Fully — repeating? p —»
n — bounded? p —» p; Trunc p n;
Partially — repeating? p — Trunc p n;
" = bounded? p — p; Truncp n

Deﬁnition: Pﬁnit e,n,» 18 the image of P under H, somen : INT and some r : P,

Using truncation, it is possible to form a finite approximation to all infinite

and fipjte structures within P, as shown in the following theorem.

Theorem 4.1: P fnite n.» is a finite lattice.

PI‘Oof; Hm
has the finite bound, n. H maps finite patterns either into themselves, if their

depth is Smaller than or equal to n, or into a truncated pattern whose depth has

a ﬁllite bound. .

aps infinite patterns either into themselves or a pattern whose depth

Theorem 4.2: (Trunc r n) Epmin P.
Proof: Since #’s truncation is formed by substituting Lp for some pattern equal

o or higher than Lp in x, (Trunc = n) is under or equal to 7 in 2.

Theorem 4.2 makes it easy to see that different finite lattices formed by
from » with different bounds n have different expressive powers, which can

be 8iven ap ordering based upon the size of the bound used to construct each
one. Fop example, consider a very simple lattice 7 with bound 2 (written

" . . o ﬁ ’t f
nitezs x,)- It is possible to see the beginning of an infinite sequence o

as p 6
Patterns approximating fiz Aw.($m , m) from below but never actually reaching
Rz Ay, ($7 y ™). The interesting infinite patterns of Pﬁnz’te,z,xo are included in

and in addition, there are new cyclic patterns, including

those o Pﬁnz’te 3
19, Mo

ﬁz/\".'<$($-]- » L),), an approximation to fizAw.($7 ,).

98

It is now Possible to discuss techniques for sifting through candidate patterns

in b . .
i Pﬁnz’te,n,ﬂ. 1n order to find a solution to the equation

[z] *C [F:args] —— (4)
[z] *C[p:z] an' po U
([z] *Clf:2] axp' vM[z] o C[F:g:z] amp' o).

Trllnca.tion permits the construction of a set of “weaker” patterns from the

target Pattern, called the weaker set for this pattern. This set becomes the set of

lattice Points immediately beneath this initial pattern. If no element of this set

Satisfieg the €quations, then each may in its turn be used to create a subsequent

Set of evep weaker patterns, and the process may be continued until the lattice

hag been searched completely, at which point Lp is the only possible solution.
The algorithm used to construct lattices of finite patterns from the top element

d
°Wawards can be expressed as follows:
If 5 Pattern 7 has m leaf and interior nodes in its representation, then there

A€ a tota] of m possible elements of the weaker set for 7, one at each node. m

“OPies of 7 are created, each of which has been altered at a unique node, following

these three rules:
— the weakening of $(my , mp) is (m1 , m2);
~ the weakening of (L , L) is L;

~ the weakening of $1 is L.
If, during the creation process, the sub-pattern at this unique node cannot

be altereq by one of these rules (if it is L, for example), then it is not included

a,
Mong the weaker set for .

A simple example follows:

Suppose the target pattern is $($.L , $.L),

~—

99

initial set js { (5 $L)1 8(L, $L)s, $(SL, L)5 };

set for (8L $L); is {(L, $L)11, (8L, L)1z }
St Hor 8(L, §1)is { (L, $L)u, 8(L, L)nz }

)

)

— set for $(8.L L)sis { ($L, L)a1, $(L, L)s2 };

—_—

~—

_—

o

Set for {1 . $L)11is { (L, Ly }
set for ($ | Lhizis { (L, L)iax }
set for (| | $L)2ris { (L, L)ans ks
set for $(L)22 is { $L251 };
set for ($L y L)31 is { (L, L) K
set for $(1 | L)sz is { $L321 };

set for (1 » Lris { L };
set for (1 » Lizris { L }
set for (1 | Lannis { L }
set for $125, is {4k

set for (L, L)317 is { Lk

— set for 813, is {L}
i . Th
Weakening a cyclic pattern, m, is a slightly more complex process e

ion. Cycles in-
Pattern is first unrolled until truncation prevents further expansion. Cy
t

i nsion crosses
“fTupted by the truncation are replaced by L at the point the expa

the bOund n. This ensures that

the

for the

Pattern fiz A x.($L i
($1L L, 4L 7))).) Next, m copies are made, one for each node in the
. , :)

fiz) T .
epresenting 7. Each copy is altered at a unique node according to the

Cyclic tree p

To0t will appear in the we

all possible cyclic patterns within n nodes from
aker set for m. (For example, the weaker set

) when n is 4 must include patterns such as
T
b

is ei lic
Tuleg Presented, unless the sub-pattern present at the node is either | ;): adcyc i
; i i i ed:
Teference. A new rule to generate weakenings for cyclic references is a

All Possj

. is L.
— the weakening of cyclic reference is)
ble cyclic patterns immediately below 7, as well as the truncations of

nite approximations of 7, have been accumulated at the end of this process.
X1ma, ’

s e s S i S iy i

100

Weakening is a simple and efficient way of identifying all possible paths
from the top of the lattice down to the lowest element in the lattice. Weakenings
Produceq from a pattern form a set of incomparable patterns, however a set
i Weakened patterns can include patterns that appear in other sets. These

dup licates Tepresent lattice nodes with out-degree of two or higher, and can

Nacia
3sily be Temoved for the sake of efficiency.

Sl Iterative style equation

The fOHOWing equation is the equation for if from Chapter 2 modified so
that jt accommodates iterative style.

The compilation of the second branch of the if expression requires some
“*Planatiop, Instead of a simple compilation of the expression [F:g:z], this
Simple compilation is embedded in a loop which tests each element of the weaker
Set for the target pattern, recursively creating and testing weaker sets for each
of these elements until one succeeds. Success occurs when the weakening of the
target Pattern inherited by the compilation of [g:z] is an equivalent pattern
to [z] «c [F:g:2] a-r p' ., thus providing a solution to Equation (4). L will
Slcceed When all other patterns fail.

New-y Produces a set of weakened patterns from its argument pattern, and

1S not explicitly described here beyond the algorithm previously discussed.

p‘wwv)

101

Clif.
w}[tfxp:?, f:z F:g:z>] ampt
"; (Binding-type (p_[F])) = X,
(Binding-type (p [2])) = lambda,
$ e o)

—
=

[if:<$
where el; e2; F|a-m:e33>] am p3t
%:;1]] 7 py ¢ =C [p:2] $L Pt
2] My ppo=C[f:2] aTp1l
933]] ™3 p3 L=
cw.
(fiz X .\ cw copy.
i Hg:z]] a-mT P1 by
if cw = () & (New-t copy) = (s

¥ (New-w copy) (New-¥ copy)s
if cw = () & (New-¥ copy) # ()
[ec] e pe ¢
where [e;] m pt t =
Clg:z] (cwll)p
lf (Pat-fun (pt
¥ (cwl2) copy,

[])) = (ewlD);

) c,u; otherwise-
where cw) (Tnew, (New-w Tnew))
7Il'.new —

(Pat-fun (pz [2]))

d Pat-fun have been defined in

type an
d to variables in

(The projection functions Binding-
of the values boun

Cha; -
Pter 2. These functions select elements

the ‘
compile-time environment.)

pattern

4.1 2
ple
ed with the strictness

The following application of [Fact 2] is compil

$1.

102
[Ctix: (g
Az,
if:<zero?:head;z
head:tail:z
F:<dcr:head:z ; k
<mpy:<head:z head:tail:z> . <>>>>])
:<a | <b . <>>>J}

=] * C[zero?: heaq z] $L pinie 3 =8(8L, L),
L4 : Pinit . cq . $_L 3
(ﬂzﬂ o C ﬂzero?:head:zﬂ $L pinit 3) u (ﬂzﬂ oC [[head.tall.zﬂ L1)

=381, L)us(L, 8sL, L) Nm
=881, (51, 1)).

i is tested:
*his point, the intjal weakening of the target pattern i

At

l[<dcr:head:z mpy:<head:z head:tail:z>>] ‘
o :tail:z>>] $L p1 3=
ﬂFchr:head:z mpy:<head:z head:tail:

BBL, (51, 1y,

s, 3 =
HZ]] .CHFchr:head:z mpy:<head:z head:tail:z>>] $L p1
SOL, Lyusse, yusL, s6L, L) nm

=881, (3L, 1
A ()

i1:2>>] $L p1 3=
[[zﬂ 'CIIF:<dcr:head:z mpy:<head:z head:tail:z>>]

<dcr:head:z mpy:<head:z head:tail:z>>] £1. i B
il:2>>)
s HFKdCr:head:z mpy:<head:z head:tail:z> ﬂ

the fina] result of compilation is

— W..___...__, e A

103

[Ceax: rpg
Az,
if1<$zero?:head:z
head:tail:z

F7$J-:<$dcr:head:z ,

) <mpy:<$head:z $head:tail:z> . $<>>>>1)
i <$b . $<>55]

-y
Stion 4., List mapping functions

. Unctions jp which [p:z] is the application of [nil] to some composition
Ol the

Primitive functions [head] and [tail] area very common and useful way

of ; .
COnstructjng new lists in lazy languages. A well known example is the Lisp
Mapn; . . .
*PPing function, Similar list mapping functions are considered here written in
th

¢ fouowing form:

. if:<p:z nil M:F:g!z>ﬂ- ‘/

Tllis C) .
an be Perceive
e .
PrevlouS section.

Unctj
tion op the composi
User-deﬁned.

d as similar to the syntax given for iterative functmr'ls. in
[£] is the constant function [nil], [g] is a primitive

tion of primitive functions, and [M] may be primitive or

®an €Xample, consider the vector increment function [Vinc],

104

[[Vinc =
Az.
if:<1111'-l?‘:heaa.d:z
nil

<inc:head:head:z . Vinc:<tail:head:z>>>].

ﬂVincﬂ 1 rewritten so that the substructure of [z] is named explicitly:

Hvinc =
A[lst],
if3<Ilil’.":ls'!.:
nil

<inc:head:1st . Vinc:<tail:1st>>>].

o far, this analysis has not permitted us to mark the recursion on
Htail:lstﬂ - The if equation presented in Chapter 2 causes any variable that

4Ppears °n only one branch of the if to inherit a pattern of Lp, as the meet is
t Ny . .
aken of Variables appearing in both branches, and the initial pattern inherited

Y a Variable s assumed to be Lp. A change in this equation is required, if the

construction

b of [1st] is to be made strict in its inner structure. This change can
: deVeloped from the current equation in the following way, using an example

t :
° Clamfy the problem.
Suppose a call to [Vinc] inherits the pattern fiz Ar.($8L, m). The [nil] test

propaga'tes information only about the outer structure of its argument, and does

Dot jllstify any marking of the inner structure. However, the pattern inherited

from both branches becomes Lp,sono information about [1st]’s inner structure
)

€Comeg available to the analysis of the expression that constructs [1st] .

P ———

——n

105

: me useful
ides us with so
ly, th sence of a Hnil?ﬂ S its the analysis of such
Ortunate the pre .
Inf ' by,t [1st]. The e sive branch, so that the
n) »
IOI‘IIIa.thIl abouy . ttern propagated by the recu
2 loop ¢, Uuse only the pa .
;,,-/\7r.($J- %
Pattern Inherited by [1st] becomes $f;
Theol'em 4.3 In

" list ﬂlst]] y [1s
to Elstﬂ by the

g i eSt

Proof; The —
I'Iu’tia_u

Poss;j bi

. hen
S

lities: either
If the list IIlst]]

to [Ilst]] must have

any code buﬂdin

time
ecessary run

f the list. Thus, no unn

interior o

g up the in

divergence is introg

If Hlstﬂ has S
Propagate a patter

i te
. °

B) ‘f.] u

i .

v g ed-

| |
ithi is structure.
ifies strictness within th
n that spec

1 tion
D List Mapping function equa

d for
2 develope

ion for if from

: v is the equation

he following equation is

higher

) 1 e
In

4.3.
heorem

: ived from T

ent. The essential alteration is derive

106
T ————
3£1ft<ni}?:p:z nil M:F:g:2>]] ampt
ere .(Bmding-type (p [F])) = fix,
(Binding-type (p [2])) = lambda,
$ e o)

| -
=

’ ﬂif:<$ei e2 3 ’
| Whene 1 02 @33 >] aw pat
%911]] mpr=C [nil?:p:z]] $§Lpe
[[322]] T2 p2 Lz =C][nil]] o p1l
e3;3] 75 p3 13 =C [[M:F:g:Z]] aT p1 b
(([binding:], (pall_lpag,) y 0, b-types)
if b-type, = lambda & 1= [z];
pa= i | ([bindings], (paT1P%) 0 b-typez)
if b-type, = lambda;
([bindingz] , pas, v-countz + v-counts,
if b-type, = fix ;

b-types)

where

([[bindin51]] , Pay, v-counti, b-type;
([binding,], pa,, v-countz b-types) = P2°
([binding;] , pas, v-counts, b-types) = P3¢
(pas pat) if (paz pat) = un
(pa, pat) otherwise.

):pll

bound;

bay = Apat.

4.
Consider the compilation of the following application of [Vinc],

with .
the strictness pattern fiz A m.(3L)

\
H(fixz[Vinc
Az,
1f:<nil?:head:z
nil
: i1: .z>>>1) ¢
<< <inc:head:head:z - V1nc:<ta11-h°ad %
a . <. <. o]

A

J
i

S S

e B et s .ttt i

107

2] s [nil?:head:z] fiz Ar. (8L,) Pinit 4
=§($L, L1).
For the rest of this example,
Vinesyn = ((Pat.fun (p [Vinc])) fizAm-(8L >)
(HZ]] oC [[nil?:head:z]] ﬁz/\ﬂ'.($_l_ i 7"> Pinit 4) U
([[z]] oC[<inc:head:head:z - Vinc:<1:a:i.1:h'ead:z>>1 o
$($L , L) u $($(5L , 13, 1yu (L vinesynl) -
= $($($L . vincsynll) - 1) i

ﬂﬁzkw4$i.,f>9'4):

Vinesyn|l = $($.L , vincsynll):

(5) can be written as fiz Ar .$(5L)
Since (fiz Ar §(8.1 , x) 1 70) = $fizd-(8L 0 7

m) Pinit
l=] ®C [Vinc:<<a . <b . <c - o>>>>] ﬁzAw&$J.,)

$($ﬁz/\7r.($_l_ y M 5 L)

The result of the compilation is

\!///T

[Cfix: [vinc|fiz Ar (8L , 7)
Az,
if:<$nil?:head:z
nil
<$inc:head:head:Zz -
jl:hea
Vinc|fiz Ar.(8L , 7r>:<$ta11
<$<$a . <$b . <§c . $<>>>>]

d:z>>>]):

108

S : . Ld
Sction 4.3: Combining iterative and mapping functions

The Combinatjon of the two equations presented for if in this chapter permit
us to

Analyze functions such as [Rev] , which both fests its list argument and

Qce
“Mulates the reversed result.

3.1; Tterative mapping function equation

The fOHOWng €quation is the equation presented for iterative loops, except
.that the target Pattern is produced slightly differently. The Join of the patterns
‘Illherited by [[zﬂ during compilation of the predicate and second branch are ‘or’ed
110 the target pattern, Mask selects the sub-pattern of [F]’s synthesized pattt.-:rn
‘o be protected, then Surround builds up a surrounding pattern that contains
.only L, ang So will not affect the Join. The mechanism used to create this pattern
Is compﬁcated by the fact that the user is permitted to specify the sub-h"st f'ather
thap be Testricted to 5 limiting syntax; thus the trajectory (location within the

; ile time.
argument tree structure) of the sub-list must be determined at compile time

109

vC;lElf:<nil?:p:z fiz Fig:z>] ampt

ere (Binding-type (p [F])) = fix,
(Binding-type (,0 [[z]])) = lambda,
($ e a-) '

_—
=

&l};f;:jeil 02, F|a-7r : 933>]] a-T p3
[[911]] ™ P11 L= 0[[ni1?:p=z]] $Lpe
[02:] 73 py o= C [£:2] amp1 e
633]] T3 p3 L =
cw.
(fiz X W\ cw copy.
lg:z] e p1e,
if cw = () & (New-v copy)

v (New-w copy) (New-‘w Copy)’
ifew= ()& (New-w copy)

lee] e pe e

where [e;] m ptt =

if (Pat-fun (pe [2])
¥ (cw|2) copy,

otherwise
) cw cw) (Tpew, (New-w Trnew))

where

AT. X [[ezp]] core.
lexzp] = [lv] — core
([[effp]] 1) = [head] — (<J(_‘I,((

\

= [

();

C [g:z] (cwil) P b) = (cwll):

((Pat-fun (P [¥]))

Tocw = (Pat-fun (pz [21)) U (M0sk B3] (000 ofer [ex]
fﬁ:ﬁ-e= Alezp] m [[lv]].(Surround [ezP] (Select-part
Select-part-of-r =
)\‘I’-l/’\ [[ez;ﬁ] ;
lezp] = [lv] — ™ e \y([[ezp]] 11));
Surround =

[[e:cp]] 12) core), L)

@ ([exp] 12) core))-

e

o) [])

)

110

4‘3.20 E
¢ Example
rictness pattern fizAm. (3L,)

An T
application of [Rev] is compiled with the st

as follows:

[C£ix: (Rev Az,
if:<nil?:head:z
head:tail:=z
Rev:<tail:head:z .
<<a <b<<head:h°ad’z _ head:tail:z”> - O>>>)
. . Led>> L KL . <>>>]].

[z] « ¢ [nil?:head:z] $L pinit 2=
$(SL, 1).
(ﬂ(z]] 'C [[nil?:head:z]] $.L pinit 2) U
2] o c [head:tail:z] fizdm. (8L ™) P1 2)
$(SL, 1)U (L, (fisdm(8L, ™) Ly N
YL GeAneL,) L
rest of this example, revsyn™ =

(Mask
[[head:z]] revsyn [z]) = (revsynll L)
posite pattern i

=

((Pat-f'un (p [Rev]) ﬁz/\1r.($_1. ,)

At thi
1 . |
S point, the first weakening of the com s tested:

[<;aERZ:head:z ' <<head:head:z.head:tail:z> o] e
TOABLIARINE <<haad:head:z.head:tail:z> . o>
$(revf$)‘w.<$J_ ; X} pr 2=
Aftey co ?nll , (fizAm. (8L, ™) 1))
mpilation of [[tailzhead;z]] ,
ead:tail:z>.<>>>]]

E[:z]] A:"j$[[_iev: <tail:head:z.<<head .head:Z-1
((L y Tevs ,nW) p1 2=

After comun: ! .ll) » L

pilation ot [[head:head:z]] 4

111

[z2] sC[r
eviL i1 -
tail:head:z . <<head:head:Z . head:tail:z>.<>>>]]

$<ssﬁ%r'<$L , ™) p1 2=
o (8L, revsyn|l) , L).
[IGr]] compilation of [head:tail: z]
2| ¢ C [Rev: ; . gk
iz [Rev:<tail:head:z . <<head:head:z - >3]
$($<$W.($-L y T) p1 2=
L1 y Tev
Since swnll), (fiz Am.(3L ™) 1))
(6)

Tev
Synll = $($1 | revsynll),

head:tail:z> :

[z] « C

Rev: 3
fiz) II ev:<tail:head:z . <<head:head:Zz - head:tail:z> : <>>>]]
$(r m(3L,) p1 2=

evsynll
hus ’ <ﬁzAW'($‘L’ 7")) —J-))
[<tail:neag
oC [[Re :z . <<head:head:z - head:tail:z> . <>>>]]

V:<taj
tail:head:z . <<head:head:Z - head:tail:2> . o»]
o>>]

2] o CJTIZAW.(%_ y M) p12=
ev:<tail:head:z . <<head:head:Z head:tail:Z” -

g T
m
3y be written as fiz Ar.$($.L ,).

fiz Am$(S.L , m) 1 $fihm. (875 ™ = sfizhm. (8L, ™)

Thyg

[2]
(8
[Rev:<<a . <b . <c>>> - <> . >]

<$ﬁ2!)-\ﬁz/\1r.<$-]_ ? 7r) Pinit L =
7T.<$J_) 7l'> y (ﬁ:c/\w.($_l_) 1l') ’ -L>>

Afte
T compilation, the result is

s,

112

[(fix: [Rev|fiz Am.($.L ,)
Az,
1f:<$nil?:head:z
head:tail:z .1 .head:Z -
Rev|fiz Ar.($.L , m):<$pail:he oy . GEIIOB]
<<$head:head:z - head:tall.z :
| $<Ba . <$b . <Se>> . <8O . $<>>>].

113

Ch g OF ‘
apter 5: Compiling higher order functions

has been designed to improve first or-

So far
, the compiler presented here
compiler C"

presents an additional

der i
y lSt 1
oriented programs. This chapter
ach to higher order

deve]
oped from L
functions. Thj C, which is an extension of the same appro
' se i > .
xtension is more easily understood if the equations presented in

pter 2 ar
efi
rst re-structured, so that the additional mechanisms needed can
estructured com-

be seen

Piler, C,,t :ovjl:’ciog from these equations in a natural way. Ther

into O, We the (::S not compile higher order functions is furt

be Compiled n discuss some restrictio ressions that can
, and relate C' to C", with some examples.

The
echni .
niques discussed here have been implemented,

her transformed
ns upon the source exp

but no proofs of

COrr
e
ctness are provided

Sect‘
ion 5.1: From C to '
ntial point is that the syntax speci-

as lambda expressions

tion. In order

Ver
y fi
ew changes are required. T he esse

fyin

8 the source expressions in C is 10 longer ap
as par
functions,
nd C", SO that th

propriate,

¢ of an applica
ful to first con-

Were .
to disccounszt?;ned in fnlapter 9 to appear only
Struct g synt extension of C to higher order
directly comax that can be used by both C'a

parable. However, the constraint i

o
Buara,
ntees "
are made about C'’s behavior on

it is use
e equations are

s still present in the sense that
programs which return lambda

€x s
PTessions as values
NOW '
t . i
hat lambda expressions are no longer syntaCtlcaﬂy related to appli-
ransmitting the

Ca,tioll
t m
mbda body back to the compila-

Patter
ns .
ynthesized by the compilation of ala
is done by expand

tion
of th ;
€ application of that expression. This i
al argument follo

produced by the compi

o 1t 4 "
s more elegant to have some explici echanism for t
ing the number

he inherited

lation of

of ar
gumen .
Pattery, ts given to C to five; the addition ws
an
d serves as the synthesized pattern

eXpression

S————

114

5.1.1
.1: New Daj
aisy syntax and compiler domains

€=
ex.I; fiﬁ'(_pr | $expr
-
constants
<eXprs)i nil
Prim:(e &) | lists
head:e | primitives with 2 arguments
tailee | head application
ifi(e e o | tail application
A8 | conditional application
fix :[iq J | lambda ezpressions
ee | recursive function and data definitions
id | function application
bottom identifiers
infinite loop
€Xprs

=
exprs | e.e | empty
The
compiler .
domains are virtually anchanged- Instead of propagating
gume i
ler now distinguishes between

atterns t

Strict
ness

Patterns only through its second ar
compi
ting inherited P
d m-gument.

p&tte n
Tns fro h he
m t i Vv en
e compiler environm t, t h
hroug its

inheri
ted a
nd :
synthesized patterns by propaga

Secon a
argume
nt .
and synthesized patterns through its thir

C!.
D — D;
(cornpiler)

NV x INT;
n data)

D=
EXP xP xPX E
(compilatio

T
y P_
‘ $P + (P X P);
(inherited strictness patterns)

o .
- p_
$P + (P x P);
(synthesized strictness patterns)

115

5.1.2; i
L.2: Equations for C'

o
The first seven equations are essentially unchanged, except for the addition

of

& New argument, o, that follows o7

¥ e
’[[Co\nst]]a.-,r TPpbL= [[$const]] amopl (

(c'2)

Cl
[e] an o p 1, where ($ € a:T) =

([of [£ix: [id expl]/[e1] am o P*
Where [tix:[3d expl] =
(Binding (p [']))
if 3 [o'] € [el such that o] elID
& (Binding-type (¢ [#7)) = fix

J [el[C£ix: [£ Mid. body]):exp]] / [e'] 1] am P L
where [(£ix:[f Aid. bodyD)] =
(Binding (p [£]))
at[o'] = [£:6%2)

if 3 [e'] € [e] such th
& (Binding-type (p [£1)) = fix ,

ﬂeﬂ QT o p L
\ Otherwise‘.”//

C! [[he ,
wh ad:ell amT o pL= ﬂhead:elﬂ o ag Pl
ere [e;] ay-m o9 p1 1 = C'[e] @

116

C' [tail
.8 y
where [Ieﬂ Ha TaTpL= [[tail:el]] aT o Pl
1] aym o1 p1 L1 = C: HGH a-(_l_, QT

yap

(¢’ 5)

ot [<e1

where
Q1 = (7)1
g = (wizg

[e1,]
ay-m oy py 1 = C' [el] (rl1) o P b

f [[<el. .e’2e>2]]>0[.7r S
] ar o p i, where ($ ¢ am) if (8 ¢ m);
otherwise;

<«
1-e1
1. Qo
2-022>] a-w oz P2 b

[e2,
| azmy 03 p2 12 =0C' [e2] (wl2) o p1l

C'[
Prim:<
el e2>] ar o pt= [[prim:ell] o

Where

“01]] «a
1'Ty 01 py 1y = C' [<el e2>] (8L, 3

qop1lt

($L, Lo Pt

IR
e PR

e L 117
o' 15
[[1f.<81 e2 93>]] amTopl (Cl 7)

where— [if:<$e1; o2, e33>] T 0 P4t

[e1
[[02:]]% Zml o1 p1 11 =C'[e1] 8L 0P
e3;] a:::? oy py g = C'[e2] @ T P1 b
3 03 p3 13 = C' [e3] a:m o p1 LS
([binding,], (pazMpas) 0 b-typez)
if b-type; = lambda;
([binding,] , pay, v-countz + v-counts, b-types)
if b-type; = fix ;

Py =)i

Where
([bindi
{ %ﬁii*““““ , pay, v-county, b-typez) = P2 1
11‘53]] ypaz, v-counts, b-type3) = p3 i
Pay = Apat. { (pag pat) if (pa pat) = unbound;
(pa, pat) otherwise.

! [[)‘- !
- voer ar 71 @9
Wi o B0y} v (Pat-fun (px [19]) ps ¢
ﬂb°dy1]] — '
— 101 p1 1 =C [[body]] amop2t
2= i, { (01,,0,lambda), ifi= 1]
i b otherwise;
p“:/\i.{m, if i = [id];
p11, otherwise.
d in the

sion was previously embedde
he function body gen-

Th :
€ compilation of a lambda expres
ated during

COm .
Pilat;
ion of a fiz expression. Here
ts the pattern

nthesized
pression.

erates
a g
Synthesized pattern which represent

Com o
plla,t'
ion of all instances of [id] - THS ¥

the
compilats
pilation of an a,pplication of the]ambda €X

118
(c"9)

! [If-
ix: [id
el] ar o pu= [fix: [id|a-T 01]] am a1 pst

where
[e1] 1m0y p '
Sl [o] o 7 p2 4
—)\ ix¢ L4
pr oy | ([Ei: i e1], pap LX)
) if 1= Hldﬂ :
p i,otherwise;
pa, =
2 = Apat. { T3 if pat = o™;
s '"’nbo’“nd otherwise;
3=Ai.{pz, ifi= [1d];
)

P11, otherwise.

Da_ta
recu)
®Quation, N trslon and recursive functions are now compiled using the same
. No i
e that o, is actually rec-P (see Chapter 2), whic sed
is of the Jambda body. If

h is now pas

b
ack explicitly a.
le] is i s a synthesized pattern from t
amb ; :
Pattern and o da expression, then réc-P will not be propa.gated as a synthesmed
can safely be associated with e-m in Paz:
(¢’ 10)

C’l
Whl[f:e]] T o _
ere pu= [tf:ez] a2 p2 b

[£1]

C!é:'ﬂj o1 p1 L1 =

o [£] awrope £ gl €V
II [[Sf]] aroptl

o, where [0] = [f
[t£] =2 T2 03 p2 1 = C' [e] 01 [[d]]p1 L
{ [2] if [£1] €V

[(£1)] otherwise.

otherwise;

cept that the functio® may some-
the compi function

der to preserve

Fun .
Ct10n . .
application is straightforwa.rd, ex
lation of a

pI'CCC—

tim,
€s b e
a
parenthesized expression: In additi

Ma,
¥ pProd
uce
dence, an expression that must be parent

hesized in or

119

/
o (C 11)
ﬁld]] T TPL=
Variable : = lambda;
if b-type =12 ’ .count Z &
Reached-Limit lf (Pa a.7r) ?é unbound & v count < i

Compile'Binding 1f (pa a-1r) # unbound & v-

Mark-With-Pattern otherwise;

Where() = p [id];

[binding] , pa, v-count, b-type
vfll‘iable is
1d]] a.7r o pl L
Where
-typeé
< [blndingﬂ . (a.wupa)ﬂﬂ'o,v-count,b yp)7
P1 = A1, if 1 = [id];
p t,otherwise;

Reached-Limit is [binding] am L P4

COmpile-Binding is

fix: [iq
: T . L
Where | 91]]] QT 01 P3

le] Q1) oy py 4y = C [e] o P1 Y

([£ix: [id el],pa2; p-count + 1,fix)
P2 =)\,

if § = [[1(1]] ’
p i, otherwise;
Pay = \pgs. ! 1 if pat = a'™;
" | (pa pat) otherwise;

Pa:,\i.{Pi, if i = [id];

P11, otherwise.

g L.
Mark'With-Pattern is uid'a."rﬂ o (PG o 71') P

. r
: es iden are
The compilation of an identifier 1 clud . ed patterns

as j s y
P ldentlﬁers representing data recursions:
ro . e
id Pagated by both Reached-Limi .
ent; m
ntlﬁer may represent a function whose argi

s .
Yithesizeq pattern.

120
ect; ,)
fHon 8.2 Restrictions Upon source expressions
Befoz-e i

SCUssing ¢} extension of ¢ into C", it is necessary to reStI:ICtt- t:se
JtPressions that may be compiled in three ways. Briefly, these restrictio
at
ﬁlnctions ar

Source expressions are Correctly typed
g functjons are not returned ag

values by the entire program
OBStraints are discussed

€ defined 4¢ compile time

'1.' F']

tions Mmust pe defined at compile time.
5 ASsumeq that a]] func
Mgy be ab

tions are defined at compile time, as the compiler
€to identjfy their definitions in order to annotate them
5-2.2.
~ HXp Tessions Mmust be correctly typed.
tinue

O use 5 fast

d like to con-
» €asily understood algorithm, and ZO tw 011111611 compiling
: that w
construct & recursjye descent compiler. This means
the e g
Pressxon

l¢ At o
th °ad:): ¢p

e

Co

:8> . <]
« $33)1<)g. add:<head:g head:g>)
pj]

of ¢ Pller shoy]q .

iate version
ble to determine the PRl appr:I;:‘::;ich [£]
®Sizes 50 that ;4 can analyze [h] before leaving the -S::I:o which [£] is
tled, Is cap be done very simply by passing the ex:risis: is available when
e “ompilation of [(head:£):<h . <>>], sO.t ’ ust be retained in
Ce Versions are created, and since a lazy Verswxilsljubstituted for the
degge, C 18 20 better Option, the compiled binding of l{ﬂed if an application of
”‘fﬂ Iftl < [z) Ieaving the original binding of [£] to be c be able to recognize a
fol. 13 coxnpﬂed as if it were lazy, Thus, the compiler must n‘:ing a function or a
" € boupgq Variable of a lambda expression) r?przs;piled by copying the
i cOntajm‘ng a function, because such a formal is cal- this is distinct from
SSsiop boung t0 it in place of the instance of the formal;
l‘ea, Inen ¢ g],v

ker
A type chec

e.

0 a formal that represents any other valu

i
® eXpecteg 121

a A i
[g€ are s information, and programs in the restricted Daisy

Dow
5. Presumed ¢ ’
2.3, Funct o be polymorphically typed [5].

Th;

eIlSurI' ng

iOns ca
nno
ot t be returned as values by the entire program.
1) at
wnhents €p 'au
] Tint
1th0u ¢ - . e
uar
e fu‘
¥ Comp,; Tther ASSUMption mad)
na.tor, when gl Ima e here is that the programmer uses fiz, not the
1ng loops.

§ rest
d from the fact that the compiler has no way of

uses of
a re . . g
turned function will occur in an application which

T patter
ant 1. The user could of course apply the resulting function
ee of its safety.

Section &
€
NS gy Y) the ch&nges %
1S Doy, Introduce

4 €e of ;
lew Synthesized patterns rather than just a single pattern

each of

a'rglun
in

d in these equations are that

Ompijler
ar .
gument, (, is added to provide a stack of expressions,

Wh-lch 4
is th
ent is opg € argument of a function application. When necessary, an
Dtered j : ; ,
stances of cal] ed into the compiler environment so that it may replace
s
to the formal or part of the formal when required.

These

is i Pilep . are justified in sections 5.3.2 and 5.3.3. In addition, the

a
the Co > deriveq from j
s Mpjlep to cat Information produced by a type checker, which permits
r 7 e 1 . .
°d is Crude 8orize the bound expression’s type. The type information
sSiOn)

I'onment ;
nt " 5 s
Is extended to include one more item per entry. This item

“Xpy ;
e » and js interpreted by the compiler as follows: if the bound

h § v, 3
et alue jg neithe . - .
co r a function nor a structure containing a function,

bo
5 i Xpr.
.3.1:

mpﬂer
€Ssiop’ Sumes it is of type var, otherwise, the compiler assumes the
n :
ew S value is of type function.
c .
Cn Ompijler domains

D— I
(compiler)

122
D :
. EXP x P x PTx ENV' x INT x EXP*;
o P (compilation data)
= $P + (P. x P);
(inherited strictness patterns)

)
L)
&
Il

(P x []) + (PT x PT);

(tree of synthesized strictness patterns)

V— (EXP x PF x INT x BTAG x TTAG)

.
- BNy _
My INT : (compiler environment)
= (resource)
Exp
g v (expression stack)
= ID+(IDxP);
(version identifiers)

ba .
: PR ~
- (P — (P, + unbound)) + Pxy;

(inherited and synthesized pattern entries in environment)

B
(binding tags in environment)

“ 4
I var + function
(type information produced by type checker)

5 3
b .2. E;
v ynthesizE '
1 lttel ns are passed around in a StaCk.

€ COm . 2 .

fors th Pilation of higher order functions requires a mechanism for returning
n :)

© Synthesized pattern from the compilation of an expression. For

(1)

exa
m lo
lccy, ¢ Woul
((/\Q') d be useful to be able to compile
Cn head-'a - head:b>):<c . <>>):<d . <>>]
g lambda expressions, ((," 8), received a single synthe-

! s
atter
n .
from the compilation of the function and passed this pattern on

' the o 123
: mpllation of the ar
thig and]ons n a g
Q. COmpress
T, b viewl-ng)
a bOund va

gument, which is sufficient for the compilation of
rst-order language. In fact, it was possible to take advantage of
inherited apnq synthesized patterns into one compiler variable,
Synthesized pattern as just another name for a pattern inher-
o Tiable at the moment when compilation of the binding lambda

0 1 comp

Dguish; feted, We extend this approach to compile expressions like (1)
~ Ea,ch ng between i
Cha'pter

g, 2.

w Va.riablc’

herited and synthesized patterns as follows:

lation oW inherits a single pattern, a-r, which is used as in

ach 7, represents a tree of synthesized patterns which is returned
The Co compﬂ&tion.

retlu-ned b
&Dp]l'Ca Y the ¢

the n Selects the

Me
¢ Stack__ 'n.t_ (Much

lls

ambda expression now adds the synthesized pattern to the
ompilation of the lambda body. Compilation of a function

) oo of
top pattern on the tree and passes it to the compilation o

tio

of this discussion makes it appear that this tree is actually

» unti] the

to j § for heaq
s 3 tree,)

an

i i nless
they ha"e e “Quations simply return the pattern tree passed to them u
tio
g

quation for cons has to combine stacks, so ’that the

; o d
and tail can take them apart. For this reason, it 1s referre

* Speci : the equa-
Pecific use for it. However, there are exceptions, such as q

cad, ¢a; . . . the equations
i presente » tail, cons, if, fix and id; these are discussed when

53,3,

PDhcation arguments are also passed around in a stack.

(o) .
S1de
T the \
3 followmg expression;

L, (2)
Ullless the <k (head:£):<h . <>55):<2 . <>3):<g - <]

“ompj thesized for [£f],
cannot Mpjler can determine what pattern should be syn

“ : ill eventually
¢ "rze [6]. 1t it does not know what expression [£] wi
0

. iled, then it
€n the application [(head:f):] is to be compiled,

124 h the surrounding
nd searc

f[<h . (head:£):<h>]a £ the

Mugt hajy e cornpﬂa.tion ol [<h . ilation o

’) compiia
expreSS].O or Hfﬂ ’S bindlng') f [[fﬂ into the roduce an
It Boe arry the binding o he compiler may p
Seemg s1 €r to ¢ t the
expres « . hI?I; Hfﬂ may be applied7 SO tha.
31011 n w C
Pproy .

a " i H.
] y ich it discovers an application o [

t it p int at C
()’:: il . See that the com

an a singl
% ea |

verstn &

alue
to the v
bound

h] will eventually be

€ argument. Here, [

>
], ang [£] to [<g . >3]
of

h
ws eac
hich gro

ts is represented };npﬂation of ala

. . umen i o N

s o -;rdg It shrinks during th

a1~')plicat1'on is Compiled,

)¢} a
ld . 1S

A Sta-Ck
tillle

expression, Whep,
flvl‘r()n

h 1 t itS
ayv 8-118. an i tion o

' enever apphca.

e .1 ti

a i Compl a

ble fO onw

1 i Inpiled.

2 "
°mpiler equations for C
other .s W

equ&tion
e unchange 2

t are
d ¢, bu
iables o an

compiler variab

in the new

S contain

)]
£ L
”const]} N T Beonat] sop s

125

ol [[e]] T o p . ¢, where ($ ¢ a.ﬂ') =
(([ol[fix: [1a expl]/[e']1] &m P ¢
Where [fix:[id expl] =

(Binding (p [o']))

if 3 [e'] € [e] such fhat
& (Binding-type (p [e 1))

{ [ol[Ctix: It Aid. body]):exp] / [
Where [(fix:[f \id. bodyD)] =
(Binding (p [£]))

if 3 [o'] € [e] such that [¢'] =
& (ginﬂding-type (o [£])

:81] aT o pL C — C
‘1] aur (o = ——>(),(0'1l1)) p1t 1
w}lere l[el]]aal .(7,-11 o (Pl 4 (1= ol [[e]] a- (o™

v 1
P1<J—, o

['] € ID
= fix ,

/]]]]] a.yrdPLC

[£: exp]

)::ﬂx7

,L)JPLC'

yortl

(C" 2)

Heﬂ a.7r o p L C
otherwise.

126
(c" 8)

on [[
<
cn E(i 1 92>]] o p C
e L =
<a1.91 ’ ez)]] aT o .
Where - az-e22>ﬂ ap7rL C’Where ($ ¢ o) if ($ ¢ W)a
i (0'1,02> p2 L2 (2, otherwise;
e = o

[e1,]
\[[822]]\:21;1 71 p1 1 G = O o] (mll) o Pt ¢;
2 03 pzia (=C" [e2] (r]2) o p1t L

ate the com-

altered to a.ccomod

by the com
y the equd

The
€quatj
ions for head, tail and cons are
pilation of cons

Pilat;
st
s of functions. The trees returned

suh
. '
Pressions are .
aired; .
paired; these pairs are de-structured b

he

tions for

aaptG

cn
A [[Pri
here

91]]
Moy py
1 ¢ =C"[<el e2>]

m:<el
92>]] aroptl C = [[primielﬂ o

@L,$wl,iﬁapb¢

7
12 o

cn [[if:<el 82 e3> arr o pt 6

(3
o2 03) Pa
= [if:<Se1; 02, 03;>] am (Meet-elt.s 2

Where -
[[611]] Ty 01 py 4y g = C" [e1] $1 0;p/71 f 15
[[622]] 2Ty 03 py 1y (= C" [e2] T o p1 (L
*%] aymy oy p3 13 G5 = C" [e3] & b typez,var-tyl’e'z)
([binding,], (pa,rpss) 05

-typez)
: = lamb a, -t €9 var
Py =)¢ (0 if li-typez o sl v-counts, b-tyP
bindingz y POy, U- '
if b-typ€2 = fix)
Where

= p2 J
(Hbindingz]] , pa,, v-county, b-typea, var-tyl’e:*) = p3

binding;] , pay, v-counts, b-typ 83;) — unbound;
{ (pas pat) if (pa; PO

Pa; =)\Pat. (pa2 pat) otheIWiSC;

Meat.

elta =
ﬁ:c/\‘Il./\lllz. . 219)),
n2 5 0% e n) & 4
ke ?\I!Fl(lg (211), w2

gsions S
ile expre
The €quation for if must be able to comp

ad O muyst return a tree which contains & 7)a excep

. Jent to (
b ¢ 03 Other than this, (C" 7) is equwalelrlld o
a
the New compiler variable (. Note that 02 urm lisks,
Which Means {}q4 if the two branches €

Ing
®Tnal tree structure.

128
R B

C" [Aiq. body] a-r o pu([e],C) =
whep, Mid+ Bodys] ar ((Patfun
b
u odY]]] 0y -y 71 p1 4 Cl C" [[body]] amTo p2 b C
if 1= [id Is

P2 =)i, ,(o[Ee]] ,L,0,lambda, (Type 1) otherwise;

R Ai,{Pi, if i = [id];
P11, otherwise.

the

" equires that
Like the corresponding equations of C and &y ’ ;o:ment in which
°Mpiler ap 4] da expression in an 0¥’ t
yze the body of the lambda €xP the tex

& ne
W entry s created for the local variable. This

(o1 [3d])s) P2+ &

entry BOW contai
iable at runt L

of

ﬂeﬂ may Still be

Not

€

that thlS eXpressmn, IIe]] 1s propagated to
ion; if

eXpre .
SS . re ui
101 on the argument stack, (. If it is never reqd

prQSe
thy At on the stack when the compiler bas fin1s
8
1S the Case, it is removed. Ker into 3 element 11
Type Maps information provided by the tyP€ chec
al‘ functlon}
(c” 9)

.\

ll

¢ = [gix: [1d]eT e1]]

[
] 0!11r1a]plblcl_cn[[e]]aﬂ-apzté',)
([£ix:[id e]]],paz,l,ﬁx , (Type ﬂld]])

p2 = A .
"y ifi= [id];
P i, otherwise;
p2\z\pt{ if pat = T3
unbound otherwise;

P3 — . 2
3\)\2.{‘”, if i = [id];

P11 otherwise.

129

The only differences are that now the type
n stack

d that t

(C" 9) .
1S v s
] 5o ery similar to (C' 9).
entered i
into the compiler environment, all he expressio

h
as beep, added

’\
(C" 10)

of[[

C [[f:e]] .
wherﬂtf:ezﬂ OC{)‘II"LU-C .
[t,] ; 2 p2 ¢ ((G211) = [e] — (lez),ﬁ)
101 py1e -
Cle C)1-1 (g ==
C%si]] ropu(fel,0) HEIET
[e2] “C:h: i p[[é <f[[)e]]]] ’C)[[]
™2 03 py o re [(s£)] = [£ otherwise;
[es] < P2 12 (3 = C o] (a1l1) (0112) P1 ¢ G

(£, .
Uehy St i,/ A

Use
r-deﬁn
ed function application is also very similar t

e
Quatiq,
n d
efined for ¢'. However, C " pushes

at it .
¢ nt
ompila.tion fu&lly accessible to the]Jambda eXprés
o
the function is complete; the compile
y the analysis ©

e to
p elem
€n
t of the pattern stack returned b

C s
ﬂld]j am o p, ¢

Varj
able
eached-Limit ?f b-type = lambda;
if (pa) = unbound and p-count 2 &
— unbound and p-count < 4

Com -
arlzl‘l;-i?}:nding if (pa o) =
-Pattern otherwise;

Whepr
e([bind;
ing] , pa, v-count, b-type, var-type) =P [id];

Val‘iable iS

v
W-type — var
i —
4] aor 4 .
Where 1 &
P = i, (Hbil}dinsﬂ , (c-wUipa)limo, v-count, b-types var-typeh
if i = [id];

o E[Fre \ p t,otherwise;
((o [1d])]1)] amap ¢

Reached_
1) pes

Limit i .
it is [binding] a-m (var-B¥Pe= var — @

Co
Mpile.Bj
[£ix. [:dBlnding is

Where e ©,1] v (var- 01) P3 e

type = var et Gy

ﬂfix

t[4

e, Qljrlej-]] = [binding]
1 P14 Cy=C[e]amo Pt

([£ix: (10 o1],pay, -count + 1A% 1 (FF° [14]))

Py =
= Al,
e P, OtherWiSc; ’
2=
Apat, { E'l if pat = a-™;
pa pat) otherwise;

p3 = A % p . -
z, 1,_ if i = [id];
P11, otherwise.

Ma,
k-w;
[iq S

a-r] apattel‘n is
‘T (var-type —var — % (Pa a‘ﬂ')) pl C

nd values could

Ori .
Thig . o elly, it w
as assumed that Jambda bou
two possi e

18
no]g
n
ger the case, which means that

131

is lambda and 1t

then the compiler
ise it behaves

Com &
plle vari
riables
are needed. If the variable’s binding type

is b
Ound
to
a fun :
ction
value, or a list containing 2 function,
erw

cOIn <
plles
a versio
n
of the expression to which it 18 bound, oth
mbda expression

as j
n (CI
fOr . 1 1)' FT'
In.l . e‘gh ren o
ng its —— ames instances of the formal in the la
concerning the pattern

The
other th
r
ee cases must handle tWO possibilities
d expression (identiﬁer

urne

e a synthesized pattern is
d, or the identi
pattern to be

sta
L ck returned b
blndi y the com 11 t .
ng) pilation. Either the ret
jon, in which cas

I‘etu
so that
the function argument can be c0111Pile
new synthesized

dOe
s represent a funct
fier does

ot
I‘ep
rese
returned nt a function. in whi
. , 1IN W ch case there is no

Sec
tio
n 5.4,
H Extended eXamples

Th
¢ follows;
win
exp Pointsgt examples become increasingl
O .
steps in the compilation process; t
— €eTP-

ar

exp' indicates the result produ
atically marked ¥
that it 18 eas

n
A

€se
€Xa,
mple
stead the s, constants are not autom
rea .
ted as any other expression s0

effe
et of
the
pro a
Npagatlon of synthesized patterns.)

in

Exa

1 Mmple; [(ia. headsa)stl 2]
s ‘a): .2

I (O

3 : C:' [[heaé .head:a) :<1 . 2>]] $.L (] pim't =

3'\6[["[[&ﬂ $<$i]] 5L] PL[[[<1 .2>]]]=...

; A $($L,l>’[]“ (et 22ll="
o a

1 ﬂh"*‘:;[: a/]]< [[$<L1[]. 2] ’$($L,J->,0,lambda,var)] JI<t-2 >)
e [[(,\af)[;/ef [<1.2>] ,$($_L,J_),O,lambda,val’)] L[[<t-? >]]

ad:a):<$1 . 2>] $1 [] pim’t o [

132

Ad. 1>):€8 - h>]

Ex
am
Ple: [(head:<)\c. i
. inc:head:c -
h>]] $.|.pr£:,,,

1 —
C" [(n
*\ﬁ(jnuhe::é;;AC. inc:head:c . M. 1) ¢
— $.LU' c. inc:head:c Ad ‘1> B 4
C" [<Xe pul<g - w2l ¢ S ﬂ
o $($J: ficzhead:c . Ad. I;ﬂ
[<$xc. i, Yopu[[<g - Bl 67
2 $($_Llnc:h9ad:c Ad 1>]]HC]—_
sl Vo
o L L) (8084, 0 b4 o) o (16 w] -
B $| [$<$—L- inc:head:c . Ad- 1>] :
[(head:<g) , L) ol pe[l<s - n] (=
c. inc:head:c . Ad: 1>) <$5 .

3

n>] $,LJpL§

o take the meet of the

t
function is

The
follows
W]n
g example shows why it s necessary
pranch. Note that 2
its argurnent.

Patt
€rn t
rees
pr
oduced by the compilation of each
does not require

I‘etu
I‘ned b
Y each b
ranch, but one of these functions

E
(erPle:
:(p:1 A
a. <
1*C"' ¢ head:a . 1> AP <2 . 2>>):<¢c - >]
if:<p;
(8L $P'1 An. <head:s . 17 A% o , PR]
2 ¢ L) ope(=...
"[if:<p.
R [<$—L,$PL; Yu. Shandia » 1 AD @ . 2]
if:<$p:1 /\UPL[[[Q;)] 7] = v
($1.8 a. <Shead:a . $1> AP 52 . $27]
) y$L) [La]ped..-
g1> Xb. <82 - go>>):<¢]

~—
[Cis.
1<§f$"‘1 Aa. <$h
Sl o it ead:a -

ended example:

Thi
§ eXa,m .
ple illustrates the mechanism used t

o ensure that arguments are

pa.ssed

to th

taip; € corr

n ect i

g higher order f bound variables. Note the W&y in which arguments o

er .

unctions are compiled. (In this example, constants such as

erns to the

]
a.re no
t mark
ed b 3
so that it is easy to see the propagation of patt

cOm s
Pilat;
]On
of sub-expressions.)

Wh
€n eVa.lu
at
ed, the example produces the list [<P - 3]

134

e S

(si,$_L) opi[[<p . <>>] [<Ac. 1m€

TP C" A2, <head:a . (head:£):<2 - "’;E
($‘L’$-L) o pla/([<b . <>>]],J_,0,lamb '
t[[¢Ac. inc:head:c . <>*] (]=+*

4

5
~
C'ﬂ<head:a . (head:f):<2 .

p[f/([<\c. inc:head:c - <>>] ’J"O’lain . ,
[‘/([<b . <> ,_L,O,lambda, var)] ¢ (="

For
[
p[f/(H<)‘C- inc:head:c . <>>}],—L’)}
o [2/([<b . <>>]],$($_L,L),o,lambda,val‘ .
p[f/([[</\c. inc:head:c . <>>]]"L’1’lam”
[2/([<b . <>5],8(8L,L),0,lambda V"

~ P
C'ﬂ(head;f)Kg . <>>]] $_J_Jp'LC"'

7
e o] =

[head:£] §1 & o' o [[<2 -

8
\Cl' <>>]] C]:"'

[£] $(81,1) o p' o [[<2 -
<>>] §(8.L, L) 77

IIL[

9

~S On
B [[<)‘C- inc:head:c .

he n -
ext few lines, 0,la mbda, funt

K

var)]

ction)}

uncti0n>]

[[(2 .

H((Aa' Af, <head:a . (head:f):<2 - <»3) <0 -
SAe. inciheadic . <>
1 :<b . <>>):
\;C’l ﬂ’(()\a' Af. Ciandes . (headif): 2 . <>>>)
<Ac. inc:head:c . <>7]
<$‘L7$-L>O'p1,<_—_,,,
2 :<b - <]
T C"[a. g, chead:a . (head:f):<2 - <Z]>i)...
($‘L’$-L> o p[[<\c. inc:head:c - <]
3
~—~ v <O ks
C" [Xa. . <head:a . (head:f)'f2 :head‘]l . <] e

e 135

B
[[<$é\<c$.iin6:head:c) <>>]]
, L) ([8($L, L) ol,o) p" ¢ [1€2 - o] (-

8 ——
e e o S
, L) ([8($L, L) ol,0) p" ¢ [[<2] (-

¥
[heaq:
:<$)c. inc:head:c . <>>]

$1
[8(8.L, 1) o] p" o [[<2 - <] ¢
o] $L7 ple e

. P
d.
5 [I :<$Xc. inc:head:c - o>):<82 .
<$head:
($1 :a . (head:<$)c. inc:head:c >>):<82 -]
7$_L> o pll LC
o]

. <
Shead:a . (head:<$Ac. inc:head:C ° o>):<82 -
<$_L,_L) 0,la mbda,var)] Lo

($.L
L) [L o] pla/([<b - <>

4
— [xs

3

[Aa.

<$2)‘f<> <Shead:a . (head:<$Ac- snc:head:® 2k
2 [>>] ($L1,8L) [$<$_L,J_) 1Loalpt ..o

(A

<$;. Af. <$head:a . (head:<$/\c. inc:head:c o)

(S_L é <>>>):<$b . <>>H

L) [La]lpel..
.c o)

1 ~—
[COa.
<$2 | <’1f <$head:a . (head: <$Ac.

(3_1_ $ >>:<8b . <>>):<Ac. inc:he ad:c ,]
Lopu¢

Thj

s fina]

* Valye, V;Xample steps through the compilati
hen evaluated, this progr®™ pro

Ces
lve
in
crements of 3 and 80, or

a5 5

[

n

4

5

6

let

: g An. A 2 ’ :

!
. <>>):<8o . <>>H

1“ﬂ con

Fbrthe ne

Pec.
¢-p = [$($_L’_L) 1 d]
g = pat. { Fec-p if pat = fiz A ($L s

P =
p[[[g]] /(IIAI‘[, Ap. <head:n . <headzp ‘

A [n] /(<3 . <>>] ,J_,O,lambda,val')]

m
p =

2\>CH
3\>Cu

\ C"
\ OI'

iy

o)

lexp] —

<8=<inc:head:n . o)

lexp] fizAm.($.L, (L,) opLé="

xt few lines,

(L, ™)

. >):
unbound otherwise; (g:<inc:hea aq o <)

<j - *
e Y

[Ip] /(<80 . <>>] _1,0,lambda, va~

[[n 0, Jambda; var)]

[[]
[[p] /</([<3 . <] J$(SL, L) da,var)]

[<80 . <>>] ,1,0,lamb

i <>>>>ﬂ
nc:hea '

[An. A .
- Ap. <head:n . 2k ' S

<head:p . (g:<i .head:n -
:p . (g:<inc: 1 [<80 -
ﬁzA’lr-<$_L,(_L,7r>>aplb[<3.<>]][[
[[<head:n . <head:p - dep - <>>>>]]
(g:<inc:head:n - <>>):<inc:h°a .

ﬁzAﬂ’.<$_L’ <__L : 7\’)) JPHLC="'
o]
H(8=<inc:head:n . <>>):<inc‘h°ad'P

ﬁIAW,($_L’ (.L . 7l'>> O'PI',lfC:"' ;
op *

)
[[8!<inc:head:n . ())]] ﬁzA?r.<$,L, (J—y ’ﬂ')

[[[<incihead:p e] e

cn [Ig]] fiz A (3L, (L) o oM
:)) L. d:
[[<inc:head:n . <] [¢inc:he? d

137

6
— [eg] fizAr ($L , (L, m)) rec-p
p" ¢ [[<inc:head:n . K2

[ﬂ<inc:head:p ; <>>H d

ﬁﬂ:Aﬂ'.($_]_ 5 s 7r)> o™i & us

S~
[<$h°ad:n . <head:p -

.ﬁzAﬂ',(s_]_ , (.L ’ Tr)) . p'" g Ease

e
ﬂkn. Ap. <$head:n .

sy,
I[((fix:[g An. Ap. <$head:n -

;?nc‘head:p L oo>>>]):<83 -
TAT($L | (L,) opel

— IIg:<$inC:head:n . <>>]] ﬁz/\vr.($l_, <—|— , T

T .
ﬂ(83<$inc:head:n s <>>):<inc:h33d'P ‘

~ <head:p . (g:<$inc:head:n .
“inc:head:p . <>>>>] ﬁzkflsi-’(i’

<head:p . (g:<$inc:head=n ;) <80 -]
)

]] [[<inc:head:p : <>>]] C],

) (Lol

]

<>>>>H

. . d: .
(g:<$inc:head:n . <>>);<1nc.h98 P

<>>);))[$<$L’J) La]ebe

o)

138

o Chapter g, Conclusion
mpjq
s vy, .
§ bEen illlple oy “Milar to those developed in the preceding chapters have
m » '
s, T “ted; I fact ¢ has been Implemented in at least three different

e Versj(,n N Wadler and Hughes, discussed in the following section, does
s an] . . 1
Sect‘ - based Upon a far more abstract approach to compilation

o :
Mmp arisons with other work

Velopeq , form of strictness analysis based upon contezts,

;) ' i,
th S[1 6] an d descnbed !N an intuitive way [18], then formalized as contin
eOry .

St recently ap

ain
a Pap ° Peared as projections, a concept from dom
applfed ¢ T with

adler [38]. A context is in essence a function that can
thy, T " Program
o . s
Wit&t 1 €va] onteyy that take a list and replaces each lazy cons with a c:l;
b Uate ; - e
¥ the - ts first argument. H is somewhat like the compo
% o ct

e . i ds of a flat
& Olltexts Ss P&ttern ﬁ.’L’/\ﬂ'. ($.L y 7'_), which is strict in all hea
Ay ¢

. s e a pro-
©ah %0 used to identify some expressions that will caus
Xpre, . Por t, '
Wity “eion, | M.
a .
a wil]
by b v ®Xpreg

: ., For
» and that transforms the program in some way.

d. and some
8 2 compiler to substitute an abort Commanb, eplaced
L er
10t be required by a function at all, which can
y
QISQ of tb

; . '« not provided
e Slon. Thjg is useful extra information that 1s not p
Pr Op compile

. :th Lindstrom [25];
Ty Se TS Presented here. Hughes [18], along with Lin
¢ S an it '
j o information
[rived at by researchers interested in propagating I

tu-
. to be a na
al context very similar to mp. This seems to

q]
frog, .. 0 H
0111 P
i the 4, Bap faciot
' fiele 1 be used w
alolle b 8tvey, ™Ment specifies a context to

. t is left
N € ey, Hhetion Is strict in jts argument, and s0
Qlwa

iffer-

. ranted d
t]S Oneﬂte
Ughes €Teate a finite domain of contexts tha known

s t
) tation is tha
tbe » f‘ated Iazﬂy. One of the advantages of this represen alomtion -
Iatt . OSSIbIe to § . hat a minimum of exp
©ls Deeq nd a fixed point, and tha
€de

flat
. texts over
to fing it. They present a finite domain of con

139

BS and FAIL, whic

‘Sts wh
0
Se elements (omitting A

COntext

S

(Note th) appear to correspond to sets of strictness

Sllbstitu:'t {p I p = ﬁ$ AW(W,_L)[J_/TI’]} is the set Of a]_l pa.ttel'
i

g L for 7 in unfoldings of fiz Avr.(ﬂ',_l.))

;TR\E {plp = $ﬁz,\7r.(_L,7r)[J_/7r]}U{$ﬁ”’\7"'u"”>}
Gt {plp = $fizAm.(3L,m)L/mI}V {$ﬁm-<$l’“>}

o pis = 8 iz (L, $m)[L/}

e wle = 8 iz Am.($.L, $m)[L/7I}

j fplp = ﬁx/\w.(J_,w)[_L/r]} U {ﬁz,\vr.(l,ﬂ')}
T : {Plp = fizrm(sL,m[L/m}Y {ﬁzkf-(“’”}
iy P17 = fedm (L snlL/e]
= {p|p = fiorm.(8L,$mIL/7]}

Thj . sin P
the nof:-doma‘in contains single points that represe? nlt: :8: Pressive as

. 10n useq is certainly very powerful. oweve'r, it is DO po s gt ctness
b e iI::esented in Chapter 2) because there is 2° il :Z? ctness) Y
B! stl’ict:ery s.ublists’ or subtrees, or €vel regular p&ttel::;e const etion of
I‘equires s,s In alternate heads or tails. The fact s ted a8 chains rathe
thay, L Strictness of successively longer ists to be represed e psins
Caq 1, 2 single point becomes an advant28® because eleme? o sublists
byy P c.oflnected up in a very gener&l way) allowing strictrfeszry ol (heir
& &rgultl; Others. Some important functions do requir® arb::i a small germi®
STve, , ents. (For example, a few years 880 imple‘rnen it R was
“Ssent; Which each piece of information Wa$ tagg® i ¢ in rmatio?

ary to Jook 8 od 189 guage,

t O ¢
h&t heck the tags, but not always necess strongl}’ o
i a,kCS the

Wa,
B gentz: t&gged_) In addition, lists aré used, €Ve" o " that
t Siipong grouping structures: It is their g that they ¥
to group fO & Wide and diverse variety of programs- he fa:hose . ment yalues
try Unctiop arguments together a3 well as 0 zre‘::iese | to create 1azy

cia.l ¢
© the insight that allowed Friedman 27

140

an
Bua,
ge
essentially J
ust .
by altering cons: Fo

escrib

e Stric

. tness in li

. Fmrbajrn ss in lists as generally as PO bl

ction and Wra, - ss1ble.

80 op ¢ § Without list y 9] discuss the use of versions in mpiling highe
0] Say that Structures, a-]-SO diseusSe

ts it would be pecessary to

pody ©of map there is

d in Wray

F()r
this
sche
me to yield significant resul

strict
IlesS
analysis as well. This is b
. ecaus
head list)) (map func o
as ant &ppﬁca‘

e in the

the

eXpress;
(fu €ssion ¢

Nction - (fUnction
t h . (
10n treq if(thead list)) would still have t0

a, € Sta

S 85, fo ndard lazy cons were used- With list gtrictn

r example| it would be

Whol
& out
Put list
of map would be required; 50
evenl more

€ useq
« How
T, to dO thiS there Would haVe to be
trictnessi fo ation wou d

Mmq
P, ea
Ch w'
1t -
v t0 be h a different kind of co™*
pa. ,
ssed around at run-time 0 en

&ctio
n, W
e beli
eve that the first a.lternative m
d schem¢€ app

possible to
. g of O™

or else 8
a
ay lea

Cre
ase |
i 1Oe In code size. b
0] , but the secon ears 10

' i 8reat)
In Sue Y improy
“Teate Cases, anzd ry versions, which do not increase the '
Or each fup h.at the user call severely restrict ber of Vvers
ction if an increase i code siz€ is a SP®
infinite Jisty 5© that
wo PO

8§
of um
m € that map j
s defined to produce an
ve. There e I
clic P”’ttem'

ap
th Just
the atthe call to mons expression discussed abo
ap ®In is fingt ap inherits a finite pattern; or i ;nherits acy .
reso Illay b e, then there s 4 el of vchIOIlS
Urce e produced s indeed 8 d2®
one, 8l

m,
e
pattern was & long
then the qumb®”

ger tha
ve the comp

.
es. [
f the pattern is infinité,

e 141
Youyq il lengyp,

e of the
Wele) al Owed ¢, # Pattern and the user’s tolerance; either the compiler

Teate a gep; :
HOW@V , Woulq Creat S€ries of versions that referred to each other in a

€a
€ cyele SMaller numbper of versions but fail to close the cycle.

18 su
¢cessfully closed, then versions take up a constant

avoid
ery | an unbounded number of suspensions, a number
arge

hen Infinite lists are prominent data structures in the

e
u .
Sect' ncthn

8
¥ Cong

"ibut‘
iIlt e Wor O of esearch presented here
Cragy .

Presen ted s

8 . g mtful Way, R .
trictne Uctnes . " 10T example, the domain of strictness patterns is ex-

Ss I any J: ' ' :
proDQ&&t patterns ¥ list or sublist may be represented in the lattice P of

1 ' -
pressiv Ta 1s based upon several straightforward ideas that

€rns thi:t ble fo take advantage of this expressiveness without
would cause it to loop indefinitely. For example, the
“eed not pe a list that js consumed in a “homogeneous” Way
* One of ¢ c:nsumed) In order for the compiler to produce an aprI‘OPI’f-
&dVantages of the pattern notation presented here 15 that

¢ leaves of the source code tree with patterns that exactly

Req
a4
of o the;

the, Tt

tre

d n
ot
colhpile th

‘(I . pe,' iﬂstead bitrar points
%ilyy Whepe th the patterns can be propagated to arbitrary

e . o
R thit Illﬂtch the Y are truncated if necessary. This allows the compiler

T

d . .
3 Set of Y tree - €Pth of the strictness pattern inherited by the compilation of
i, . termine
8 The adlab]@ Patte "€ to the depth of that structure, rather than dete
r o
re%s e clellc_y ns before compilation.
be offer

Con, ' Make ¢ ed by versions in loops, especially

N) . m might
Intq Worth exploring. The central loop 11 & progra e

Joops that pr oduce

) vV iting fl jons
ti e th cle twenty ersions, penmttmg ve suspens: . N
! X { co
S le : €re e Ccuted, causing an acceptable increaseé in t
d of his lo 1 re no
-y bl this | op is vital. However, when yersions &

n © Patterns inherited by the set of appbcatwns;
¥ Pattern that can safely be used to compile the 11

a given

nction.

142

As |
as b
een Sh
own 3
in Chapter 2, this pattern call be
yersion which

Each
Patte
Il inheri
er i
ited would have produced ient
an € cien

eSpecia.H
ic patterns a

¥ poo
r obj
ject ¢
ode for functions that inherit cycl

nf..:
S.
once the

r example,
te liStS, it is

se functions

number

So
e
C&r
e
must b
e
taken when creating yersions:
oduce infini

Oma;
aln
of g
ource
ex 2
pressions includes functions that Pr
any of the

Pogg;
S1bl
et
o
gene
rate .
an infinite number of version$ for
in al infinite

Qca
Use
of g; the

ir -
application cafl be consume in
ust Jecide uP°" a finite pumber
. question

Tent
wa,ys
. A .
compiler that terminates ™
The interestmg

Vers.
10
S~k 1S that it wi
ow will introduce i -
e into a g1ven prograt™
pproac jght bet

llsing

solutio

a get

will ;
1t
gene
nrl.lte force ar:‘e kliase versions’ One 2
1 y Bk
ms found by ¢ then determine which, if 380 wi
a 1 :
T Y seem myS; W‘hlch lazily creates yersion y whe? peedec:
: Progranlll erious that C limits the number 0
he and pro d in coﬂlplliﬂg
pagates either finite or €¥°¢

en.
erat:
&tl
on
of
a fini
nite number of yersions, &
)

ncty o
n whe
n
C generates only versions actt
lic patterns- inite P?

¢
] at wh'
3 .
e - ch point a reference to a P
Ve Omp; : !
T Piler to ex The probleﬂll it
o
cute a loop in which it PfOP"‘gates &
ite p2 t

A
ltg ger to 1
ec“ .

rsive calls. so th] .
) at each 1nher1ts a
:ons because
i]atio? js such

limit ver
heited BY 1 e
pere € little to ©
r 0 P

fo € ing
T ro
t du
ced into the
target code.

e
hetwe eCstor)

Rt + 1t can al
U g g Unctiop so be useful t0
T Quence of efinition and the patte™” in

sulmn&riz several versions are create
e .
, versions COmb' p
ined with the ex

necessaf)’

Teea:
q o ce]v
3 i € and
1 c pPr
Moy .ant ext entop&gate patterns which avol
E o A , and to prod ich ful
o plicat; produce target code ully
cations which . o g, 508 % i
require € cl

op
er&t'
lng
s
ystem or circuit sirnulation,

ent gtreat?
are €5 ecially JiketY

143

ecti
on ¢
.3
¢ Are
a
s for future investigati
jon

Th
e ide
al stri
rict
ness compiler would produce
as

Sub.
Ject to
a
re
would then coalesce yersion

f code rest
ness patterns.

ne distinct

Jts from com-

aso
na
ble resource, but
¢ |
)

la. It
can be
the case that the same piece
ety of strict

n
of
efe a fu
Ten ncti
ce. on wh
Y S oS . .
ers to theSe —_ € aPPhcatlons inherit a var
S10
ns can be compiled 25 references to only
ques for selectivel weakening

her
e there ;
e is little point |
e point 1n introducing extra officiencys ©
that does little work 18

Certn:
2 tadn crite
llatio <

1o
Versioz; . Mmay also b
:f £ t: e possible to develop techni
a
nmilc‘)rious:y&c;ieﬂ;1 ot often exccuted. (P
h cult problem for p.rograrnmel's [22]'
permit fine-

., the s€0%° that

e co
mpj
pile
rs presented here do 1ot
o no

t
pOSS'
ible
to
use one reso i
urce 1n producing
for futd

¢ involVes n

opagate ant

Ce
Verc:
ersions of
g . This i
1S 1S 1 1
an interesting ared

nOth
€r
area 1
a in .
which more work needs to be

ed
la.z polnt 5. C
urrently, the c)
ompiler may pe forced 0 pr

. Y pa
lineq inttern When j
Vithe, Chapter 5 ei=ay
od, t furthe, (Section 2.5) work o
work its power can’t SI‘::;Y be ¢
in the Pr

d point fails

y well and fails 8
to that

an Owey
N S to es handle the exampl
&x Y p
am 0y ¢
ple ases, fini
, finite lists can b
e detecte and S
cted by &
qed 1o P8 &

be
. Thi
s
P&rtic g
ular improvement can be easily &
h. Alsos it i o

L &nd th
ere are probably many M07°
d by M0

be
potent'
ially a powerful technique

y Ty
Nct;
10n
ar
guments are often colle

Dl‘esent
e
ensure

th
& at
Co Onl
st . Y cycli
Taing jp,¢ ChC_ patterns are bounde
on synt esiz

b w
g, ould
by “Ming i ¢ be worth
r i, S inteody while investigating
Qpea WOrth ced. At
ts § consider; present, 7o ©*°)
ering an altered printer at 3 e

an
unm
arked tai
tail. For examples the patte™”

144

fiz Avr.($7r,$($7r,$($7l',7r))>

re than just
he user accep

ts is 1§ 2 sit

one element of 2

t the 105

gation

h
ag a blIffer

Streg
of

of len
gth
three. This would allow mo
uire that t

m tq
be
evalua
ted at a time, but would red
osé elemen

a buﬁ-
er load
of stream elements if any of th

Pteq
by
users
of m
ost conventional operating systems:

145

Bibliography
n Ganzinge’

ariance:
1985),

x 8§
Abr
amsk
Y. Stri
ictness analysis and polymorphic inv
'n(October

and J
One
123, s (eds.), Progr
grams as Data Objects, Springeh Ber
e 1984 ACM

nf. Rec. of
4),218—227-

L
v An
gu

s s

ym -

POsium on, LA compiler for lazy ML Co

isp and F ' |
unctional Programming: (Augt

. Blo
S8
and P
. Hud 3
ak. Variations on strictness analySiS-
1986), 132—142-

G
‘L. g
urn, C
. L. Hankin and S. Abramsky

Orde
r fu
Nctio
ns. In Sci
n Science of Computer Programming)

L
+ Cay
deni
y P
Wegner. On understanding
(Decernber 9

Po]
Ymo
. tphis
m.
In Computing Surveys 7,4
) ’
(and indus

of 1azy

. Ca
I'twri
ght, J
. Donahue. The semantics

Uatj
on,
253\264ACM Conf. on Li
. 1sp and Functional

. Cla_
ck
. &nd
7‘ocysw. In 1, i L. Peyton-Jones
eed,. ’ u ;
dzng3 of WguStSSOn, J. Hughes, *-
o
rkshop on Implementd ctiondl an
versity ©

pOrt
17
) Progr&mmi
n
g Methodology Group»
) 92-131-

al
Merg
Unj
versit
y of Technology (Februar}’, 1985);
al gis—2

C
. Cl&
Prog k and 5.
. i P
eyton Jones: Strictness
ro rammind

ch
« In
m J.J
Dut oua
R Architectnnaud’ (ed.), Function®
ure; Lecture Notes i Comp
Jan-

Begs
n
; (1985), 35
’ —-49.,
.o fOr funct

and S
Wray. Code generation technlque
d Functional prog

roc
’ 1986) CM Conference O™ Lisp 0"
» 94-104

(]

. F i
a-lrb&irn

8y
&ges. P

(
A“Bus»c

10,

11,

12,

13,

15

1g,

17
8

146

1, Univer
_ . .1 Repor? No
J. Fa.lrb&irn. Ponder a.nd its type system’ TeChnlC:l 1982)'
i r
S Cambridge, Computer Laboratory B Jluate its 378 ments
P Friedmanp and D. S. Wise. CONS should 1ot €* uages Progre™
ng
In 8. Mich&elson and R. Milner (eds.), Automata;La
my . -28

ﬂlg, Ed]nbul.gh University Press (1976), 257 2 eams Fourteenth

. Hall and p. g Wise. Compiling strictness into Stf iples f Progré™
- D, 1S€. 1nc. 1
Annua] ACM SIGACT.SIGPLAN SympOSfum on Pﬂc L piling strictnes

. & . as [0)

.nllng L&nguages o f— 1987), 132-143. Revfcd ! (December, 1986)

latg Strea.ms T , h. R ’t No. 209 Indiana Univers! ¥ free program‘

- leéch. Report INO.) g ffect)

C.v Hall anq 3 T. O’'D 1l. Debugging in & 865 eprogr ing L2
. onnell. .

. " mon June
e ®OVironment, 1985 ACM SIGPLAN SymPOSIZN Notices 20 (
fuages and Programming Environments SIGPL M

985), 60-63. cont. B grd AC

8 ' ~103.

. Henders()n and J. H. MOI'riS, Ir. A la.ZY eVa.lllathnuary’ 95)
Pymp. on Principles Of Progmmming Langudg&’ sis fOr the untYfm

; . an rog™
1 Hudak and J, Young. Higher order strictness) nciple fP
“ubd Calculys Conf. Rec. 13th ACM SymF: ’ tin
Min ’ : : contl

gLang“ages (January 1986), 97-109. . 1-preta g 0
R, i M ’ a stract inte tgrp’"etatwn
Uat - Hughes. Analysing strictness ds.), AbsT In
0 .)y
ep. 1S Abramsky and C. Hanki® . g 1 198
il Languages, Ellis Horwood; (it P al rogra®™® il and

A J. M. H - Of function F Gaﬂzinger
R 3 ughes. Backwards analys i dom"'ins' b 1985)1

A . -fla . (Octo

oy - Hughes. Strictness detection it nO;‘ ingers Beri? (

€s ’ prl :
112~13§eds.), Program.s as Data Ob]ect-97 ' Equatwns.
By from Recursi®
. D, signs 0

J \
M.I. Pohnson, Synthesis of Dlg’tal De
" " Tess, Cambridge, MA (1984)'

2,

2,

2, D

%,

%,

2,

2,

%
W

147

$.D
B0, Toho
s : .
on, Daisy reference manual, Computer Science De

(in progress).

Re
Port In]
diana University, Bloomington
In S

R K;

A leburt
Hankin (% M. Napierala. Abstract semantics
, edS.) Declarative L

, Abstract Interpretation of anguage®

» (in press).
n soﬁware/

rﬂctice
i Ky and Ezperience, 1, 105-133 (1971). "
0 | -
yg) AC&AI;d P. Mishra. On strictness and its analysis: 1% Fourteen® ~
: SIGACT—SIGPLAN Symposi™ on Principles of
7), 144-155

an
gUages
» Munich, West Germany (January,
oL 60 and Church’s Jam

b0,
. Lang;

llOtation . A correspondence between ALG

+ Com g9-101.

g, Proc. of the SIG-

p ogram . 7 (July

Q. 1.
. lndstro
LAN 86 m. Static evaluation of functional r g
.S'IGPLAN Notices 2%

1986)

m. ACM 8, 2 (February, 1965),

S
» 196 2ymp_ on Compiler Constructio™
=206.
: Ganzinge!

My,
Urer .
Strictness computation using Jambda €*

Ones

1 ed]

36‘155. (eds.), Programs as Data Objects gpringehs ©°
M. L. Levin-

M
cC
L; a-ﬂ’.hy ‘) and)
18p 1) P W Abrahams, D. b Edwards, . P. Haf M B 1973
a,mbridgf?, e

Press,
call-by

" Mye

By, % T .

; Yaly he theory and practice of tranSfOfmmg 1
ecture Notes

S
C;ence

N

o Pr
°grammer’s Manual, The MIT

e, P7‘o
¢. of Intl. Symp. on Programmin!];

83, Be.:
erlin, Springer (1980), 269-281-

ielson
* Strictness analysis and denotatio®
[GPLAN 5™

A
min nnual ACM SIGACT-S
8 Languages, Munich, West Germany

by
Ourte
enth
Togy

I o 148
ReDOrt *inel] and

b C.v. Hajj, Debugging in applicative languages. Tech.
: 198?' 223 Ind;
1,

ana UlliVersity Computer Science Department, June
Ly
)

tﬁe '[FI QeH. ardw&re desCr]'

n e"natz-onal Sympo

. J. Ulez'r
T. 0) 4

Ption with recursion equations. Proc. of
stum on Computer Hardware Description

Pplications, North-Holland (April, 1987), 363-382.

S, ' i&IOquS: a basis for constructing programming erfw-

*/ the ACU SIGPLAN 85 Symposium on Programming
J_ o, .

34. T O gmmmlng E

nvironments (June, 1985), 19-27.

. Persona] P

. 8 unication, December, 1986.
Vel hamjq,
Me

De-
nt “Nolationgy Semantics, A Methodology for Language De
. Sto

Bacop, Newton, MA (1986) .
97-Q

36 min
: 9
D an
vy T
ur ing-

tQ Her_ .) In Darlmg
K Ursion “quations as a programming language.
cation ersoll

. P 0-
eno ationg] Seman tics: The Scott-Strachey Approach t097;')
1 .
QUQge T}leory’ MIT Press (Cambridge’ Mass-’ LondOﬂ) (

: ts Appli-
37‘ : O&Hlb y S Tlu'ner (Cds.), Functional Programming and i
P. W& rldge U

i ad,, nI'Versity Press (1981) .
tlon " . Stn‘ctness

interpreta-
4 er fin; analysis on non-flat domains (by abstract mAb.stract
p. lon) d (in press)'
W& C’Claratwe [anguage-!, Ellis Horwood,
T ang R, j - analysis. Func-
in "ogray, . M. Hughes. Projections for strictness Notes
. e
C, mm Nguages and Computer Architecture; Lectur

c: 407,
e, ez 274, Springer, Berlin (1987), 385-407

* Pagye
3 Wy ay, o €Ommyp; cation, February, 1987.
* 4

-
x ustsson,
0 w Strlctness detection algorithm- In L. Aug

Dle

S 7. ’f %7&3/50P
en lnd 1(K&I’ISSOI] (eds.), Lroceeains
tatl.on ?

February
on Funct:’ona[Languages (Aspenas, Goteborg,

149
1985) Report 17, Programming Methodology Group, University of Goteborg

and Chalmers University of Technology, 190-210.

41. S. C. Wray. Implementation and programming techniques for functional

languages, PhD. Dissertation, University of Cambridge, June 1986.

Vita

Cordelia Hall received a B. Mus. in Violin Performance from McGill Uni-
Versity in 197g, She earned an M. Mus. from Indiana University in 1980 after
Study witp Franco Gulli. From 1980 to 1981, she created a data base for research
On patient profiles as a Graduate Assistant for the Indiana University Student
Healtp Service. From 1981 to 1982 she was an Associate Instructor at the In-
diana University Computer Science Department. Ms. Hall has been a Research
Assistant at Indiana University from 1982 to 1986, and will be an S. E. R. C.
ViSiting Research Fellow at the University of Glasgow during 1987-1988. She
has accepted a position as assistant professor at the University of Michigan.

Ms. Hall is a member of the Association for Computing Machinery.

	00003196
	00003197
	00003214
	00003215
	00003216
	00003217
	00003218

