A Syntactic Theory of Sequential State

by

Matthias Felleisen
Department of Computer Science
Rice University
Houston, TX 77251

and

Daniel P. Friedman
Computer Science Department
Indiana University
Bloomington, IN 47405

TECHNICAL REPORT NO. 230

A Syntactic Theory of Sequential State
by
Matthias Felleisen and Daniel P. Friedman
Revised: January, 1989

This work was supported in part by an IBM Fellowship Award to Matthias Felleisen, and by the National
Science Foundation grant number and CCR 87-02117.

To appear in Theoretical Computer Science.

s3a1e lsitasgped Yo wroml’l sibostir? A

el

onafslis naidttads
wranmy ragme’) te menssged
timmvinll solf
gy XT ,Lm;!:uugﬂ
ba
gembabd T Isiagt]
|u5_m'.['ulq-lﬂ avrming RL UG B 1
whervinll spmibinl’
SN Ml medgoedoo skl

e O THOYAH JATMHDAT

91848 Isitaonpa? W posdT nhsiny s £
w
nambair] - lainst] Los measllsd asidbisl
enel yusimal bewivsl

Lognide¥ sz wd Prss woninlln® weidbash o1 brewd qkﬂmﬂﬁ_uﬂ! wa gl Jywg i bokovygen sy e widT
FLIRD-T8 317000 s woilomn snsvy 1o dsbuvet] suasiss

e s O A den) al eeque oT

A SYNTACTIC THEORY OF SEQUENTIAL STATE

Matthias Felleisen™
Department of Computer Science, Rice University, Houston, TX 77251-1892

Daniel P. Friedman!
Computer Science Department, Indiana University, Bloomington, IN 47405

January 2, 1989

Abstract

The assignment statement is a ubiquitous building block of programming languages. In
functionally-oriented programming languages, the assignment is the facility for modeling
and expressing state changes. Given that functional languages are directly associated
with the equational A-calculus-theory, it is natural to wonder whether this syntactic
proof system is extensible to imperative variants of functional languages including state
variables and side-effects. In this paper, we show that such an extension exists, and that
it satisfies variants of the conventional consistency and standardization theorems. With
a series of examples, we also demonstrate the system’s capabilities for reasoning about
imperative-functional programs and illustrate some of its advantages over alternative
models.

1 Assignments in Functional Languages

The assignment statement is a ubiquitous building block of programming languages. In
imperative Algol-style languages, it generalizes and incorporates the capabilities of store,
load, and move instructions from assembly languages. For modern, mathematically oriented
programming languages, the assignment constitutes an abstraction of a different kind: it
provides the means for modeling state variables and signaling state changes. The abstraction
hides recurring programming patterns that would otherwise render programs unreadable.

For an illustration of our claim, we briefly compare the representation of an object in two
different function-oriented languages: one with, the other without assignment. Consider the
following program fragment:

let ...
TransManager = let TransCounter = 0 in
: function (TransType)

*Partly supported by NSF and an IBM Fellowship.
Partly supported by NSF.

if TransType is counter
then TransCounter
else
begin TransCounter := TransCounter + 1;
BODY
end

TransManager(tl)

The variable TransManager is initialized to a function whose scope contains the assignable
variable TransCounter with initial value 0. On every subsequent call to TransManager
for performing a proper transaction, the routine increases TransCounter by 1 with an
assignment. The number of past transactions can be checked with a special transaction.

In a language without assignments the above program fragment would have to be rewrit-
ten into something like:

let ...
TransManager = function (TransType, TransCounter)
if TransType is counter
then TransCounter
else
(BODY, TransCounter + 1)

let (result, NewCounter) = TransManager(1,0) in...

The manager routine now takes the current value of the counter as an additional argument.
Upon completion of the transaction, TransManager returns a pair whose first component is
the proper result of the transaction and whose second component is the increased counter
value. All calls to TransManager require a modification to the end that the current value of
TransCounter is passed as an extra argument, and that the pair of results is disassembled
in the desired way.

The functional programming style exhibited in this example has two major problems.
First, from the software engineering perspective, there is a loss of modularity and security.
In the first program, the variable TransCounter is hidden in the scope of the manager
routine. Its value is only accessible through appropriate calls to TransManager and is only
changed upon calls to the routine. The functional version, however, has no such protection
mechanism. The state of the counter is exposed, visible and modifiable throughout the
program. The responsibility for maintaining the correct value is now distributed over the
entire program.

Second, from the programming language perspective, the important drawback of the
functional programming style is the accumulation of recurring programming patterns. Pa-
rameter lists as well as function calls must be changed uniformly: functions need additional
parameters in order to account for the state of the world when called, function calls need

2

additional arguments to pass along the current values of the state variables and receive ex-
tended results to account for the altered state variables. The repetitive occurrences of such
programming patterns clearly call for an abstraction that hides the details. The assignment
is this required abstraction.

Unfortunately, the introduction of assignment into a functional language not only solves
but also creates a problem. The advantage of a functional programming language is that it
automatically comes with a powerful, symbolic reasoning system: the A-calculus or a variant
thereof. This connection provides an abstract understanding of programs and is the basis
for algebra-like program evaluations, transformations, and verifications. The problem with
imperative extensions of functional languages is that the A-calculus no longer corresponds to
the extended language, and that it is consequently impossible to reason about imperative-
functional programs with the calculus.

In a companion paper [6], we solved the same problem for a functional language with
imperative control operators. More specifically, we derived a calculus-like system from
the abstract machine semantics and analyzed to what extent the system satisfies Plotkin’s
criteria of a programming language calculus. In this paper, a revised and expanded version
of an earlier report [5], we apply a similar method to a functional language with assignment
and develop a calculus-like equational theory for it.

In the second section, we briefly outline the general aspects of Plotkin’s work on the
correspondence of functional programming languages and calculi. Next, we define a A-cal-
culus-based programming language with an expression-oriented assignment construct. The
major results are collected in Sections 4 through 7. First, we derive a rewriting semantics
for the extended language that does not rely on the store. Second, we design the extended
A-calculus from the rewriting system. Third, we prove variants of the Church-Rosser Theo-
rem, the Curry-Feys Standardization Theorem, and the Plotkin Correspondence Theorems.
Section 8 is devoted to examples. The last section summarizes our development and ad-
dresses some open problems.

2 Programming Language Calculi

The basis of our development is Plotkin’s work on the correspondence of programming
languages and calculi [21]. The motivation for this work was the well-known observation
about the mismatch between the call-by-value evaluation rule and the original §-axiom
for the A-calculus; the result was the A-value-calculus for reasoning about call-by-value
programming languages. The central message of Plotkin’s work, however, is much broader.
Tt says that calculi and logics must be constructed for or fine tuned to given programming
languages. Indeed, the relationship between languages and calculi is determined by a pair
of general semantic criteria, which should be applicable to a wide class of languages and
equational theories.

For a programmer, a programming language is a set of syntactic phrases and an op-
erational semantics. There are two distinguished sub-categories of phrases: programs and
values. The set of observable values is a collection of values on which equality is decidable.
The operational semantics is a partial function from programs to values. If the function is
undefined on a program, we say the program diverges; otherwise, the program converges to
a value. A calculus is a congruence relation on a set of syntactic phrases. It equates pro-

grams and program pieces. In addition, a calculus usually satisfies a syntactic consistency
property.

A calculus for a specific programming language is supposed to capture behavioral equal-
ity among syntactic phrases. Hence, the calculus should have the same syntactic domain
as the language, but it must also account for the language semantics. For this semantic
comparison of languages and calculi, it is crucial that each can be interpreted as a form of
the other.

The semantics-based congruence relation is called operational equivalence [19, 21]. Op-
erational equivalence expresses the idea of two terms being indistinguishable by the machine
and hence by the programmer. More specifically, two terms are operationally equivalent
if one can replace the other in any program without changing the result: both variants of
the program either diverge or converge, and if one converges to an observable value, the
other converges to the same observable value. The calculus-based function from programs
to values is the standard reduction function. It associates a program with a unique value
from the set of all the values that the calculus equates with the program. The standard
reduction function is a specialization of the Curry-Feys standardization procedure for cal-
culus equations. Given (certain) equations in a calculus, the standardization procedure
shows how to construct standard derivations for these equations. Since these derivations
are unique, they map programs to unique values.

Equipped with these basic definitions, we can now state Plotkin’s pair of correspondence
criteria for languages and calculi. First, the calculus-based semantic function must be
the same as the original language semantics. After all, we want to use the calculus to
evaluate programs in an algebra-like manner. Second, equivalence in the calculus must
imply semantic equivalence so that we can reason about the behavioral equality of programs.
Since operational equivalence equates all non-terminating programs, we cannot expect that
a calculus captures all operational equalities.

Plotkin’s criteria work out well in the purely functional framework. For imperative
extensions, however, we must generalize some of the notions. In the case of imperative
control operators [6], there are two different equivalence relations: one for evaluating pro-
grams, one for proving equivalences. Although this complicates the calculus, it is still an
improvement over the current practice of reasoning with the machine. Furthermore, as we
shall see below, the calculus may also require a larger, syntactically richer language since a
programming language may not necessarily be able to express all intermediate evaluation
states. In a sense, these complications are the price that must be paid for adding imperative
constructs.

3 A with assignment abstractions

The practical starting point of our work was the programming language Scheme [25]. For
our purposes, Scheme is essentially an applicative-order language with first-class proce-
dures, an assignment statement, and some primitive, algebraic constants and functions.
The applicative-order character of the language imposes the important restrictions on the
language evaluator that procedure arguments are evaluated only once before the evaluation
of the instantiated body, and that assignments to a procedure parameter are only visible
in the particular instantiation of the procedure body. These restrictions are reflected in

our semantics. They seem to simplify some of the development, but we believe that similar
results can still be established for different settings.

We model the core of our programming language with A, the term set of the AK-34-
calculus [2] and the A,-calculus [21]. It contains basic and functional constants, variables,
A-abstractions, and term juxtapositions. Constants represent built-in primitive data types
and their functions, e.g., natural numbers (0, 1, 2, ...) and the successor function (succ).
Variables are placeholders or parameters. We interpret A-abstractions as parameterized
call-by-value procedures. Juxtapositions denote procedure applications.

A is an entirely expression-oriented language. Adding an assignment statement to such
a language confronts the language designer with a problem: if added naively, the language
is suddenly divided into two major syntactic categories, namely commands and expressions.
We avoid this by using a new kind of expression: the o-capability. Its syntax is (cz.M)
where r is a variable and M is an expression. Though it resembles a A-abstraction, a
o-capability is not a binding construct—its variable is usually bound by some enclosing
A-abstraction. Instead, a o-capability is a procedural object that abstracts the right to
assign a variable a new value. When applied to a value, it assigns the o-variable that value
and evaluates the o-body to yield the result of the application.

The alert reader may have noticed that we used “variable” in two different senses. First,
there is the usual notion of a variable as a placeholder for some arbitrary, but fixed value.
Second, there is the concept of an assignable variable, which ultimately stands for some
value, but it may stand for different values at different times. This second notion is a
generalization of the first. Since both kind of variables play the role of a parameter for a
procedure body, we treat them as one set of variables. But, to distinguish their different
nature, we subscript non-assignable and assignable variables with A and o, respectively.

Definition 3.1 (A,) The improper symbols are A, (,), ., and . Vars is a countable set
of variables; z,. .. ranges overs Vars. The set of variables is also the disjoint union of non-
assignable variables, (z) € Vary), and assignable variables, (z, € Var,). Const (c € Consi)
is the set of algebraic constants, a disjoint union of functional (f € FuncConst) and basic
constants (b € BasicConst). The term set A, is defined inductively as:

M:=c|z)|(Az.M) | (MN) | z, | (02,.M).

A stands for A, restricted to constants, variables, applications, and abstractions.

When we write programs in A,, we follow the usual A-calculus conventions [2]. We omit
parentheses from applications and abstractions if they can be reconstructed. Applications
associate to the left, A-abstractions extend to the end of the program or some other enclosing
parenthesis. In addition, we drop subscripts from variables in unambiguous contexts.

The sets of free and bound variables of a term M, FV(M) and BV (M), are defined
as usual: the only binding construct in the language is A-abstraction. Terms with no free
variables are called closed terms. In order to avoid the issue of free and bound variable
interference, we adopt Barendregt’s [2] convention of identifying (= or just =) terms that
are equal modulo some renaming of bound variables and the hygiene condition which says
that free variables are assumed to be distinct from bound ones in the various terms of

mathematical discussions. Substitution is extended in the natural way and we use the
notation M[z := N] to denote the result of substituting all free variables z in M by N.

The operational semantics for A, is a partial function from A,-programs to values.
Programs are closed terms, which avoids the need for an external interpretation function
for free variables. Values are basic constants or procedural objects, i.e., functional constants,
abstractions, and capabilities. The former represent some final answer, the latter only make
sense when applied to arguments. Once bound to a value, non-assignable variables always
represent the same value. Hence, we include these variables in the set of values. Assignable
variables, on the other hand, only indirectly represent values and do not count as values. To
abstract from the concrete set of constants, we assume that the set of constants is equipped
with a partial interpretation function

§: FuncConst X BasicConst — Closed-A-Values
that specifies the semantics of constants.

Definition 3.2 (A, -programs and -values) A program is a closed term. Constants, non-
assignable variables, A-abstractions, and o-capabilities are collectively referred to as A,-
values: U, V, W, ... stand for values.

Convention. (Unnestable terms). Once we have decided to use a term M as a complete,
independent expression, e.g., a program, we write

&M

to indicate that this expression is not to be nested any further. The device is purely
notational and has no semantic significance. End

We define the operational semantics via an abstract machine model. For the core lan-
guage A, the abstract machine is usually a state transition system that manipulates states
with instruction-, environment-, and, possibly, control stack-components [11]. From our
previous work [6], we know, however, that this machine can equally well be specified as a
contextual rewriting system on just A. The rewriting system proceeds by partitioning a
program into a (-value- or é-redex and an evaluation context before each transition step.
A redex corresponds to the next instruction, the evaluation context to the rest of the in-
structions. After the partitioning, the program is transformed according to the redex, and
the process repeats until a value is reached.

For A,, we must extend the rewriting system to cope with assignable variables and
o-capabilities. The usual way to model such facilities is to introduce a set of locations for
representing assignable variables and a store for mapping locations to their current value.
In a rewriting system, the connection between an assignable variable and its location is
established at the time of procedure application. Instead of replacing the parameter by
its value, the rewriting system substitutes a location in all positions where the assignable
variable occurred and remembers the value of the location in the store. Upon encountering

a location in the control string, the machine derives the current value from the store; an
assignment becomes a simple, functional update of the store component.}

Putting all of this together, we can now formalize the abstract machine for A,. The CS-
machine manipulates pairs of control strings and stores. A control string is a A,-expression
where all free variables are replaced by locations. Letting [range over the set of locations,
we define the set of control strings (M, N, ...) by

M:a=c|z)|(Az.M) | (MN) |z, | (c2.M) | 1] (cl.M).

The set of CS-values comprises constants, non-assignable variables, abstractions, capabil-
ities, and o-capabilities with locations in the variable position; U and V range over CS-
values.

A store is a finite map from a set of locations to a set of values. Dom(6) denotes the
domain of the store ; if 8 is a store, ! a location, and V a value, [l := V] is the same
store as @ except at [where it is V. To hide the details of the storage allocation process,
we identify isomorphic stores. Two stores 6; and 6, are isomorphic if there is a bijection
between their domains:

@: Dom(6;) — Dom(8;),

and if for all / € Dom(#6,),
P(61(1)) = 62((1)),

where % is the natural extension of ¢ to terms. In other words, one store is equivalent to
another if the contents of the first store is relocated in different locations in the second.
Moreover, if #; and 6, are isomorphic, /; and I, locations outside of their domains, and V
a value without reference to either Iy or ly, 61[l; := V] is isomorphic to 6;[l; := V]. As a
consequence, it is arbitrary which location we choose when extending a store.

For a transition step, a control string is partitioned into a CS-evaluation context and a
redex. CS-redexes are terms of the form (fb), (Azx.M)V, (Az,. M)V, I, or (¢l.M)V. An
evaluation context is a control string with a hole. The hole approximately corresponds to a
program counter and the instructions in the hole are to be executed next. Since applications
are the only syntactic construction that requires evaluation, the hole can only be nested
inside of applications. Furthermore, in the presence of side-effects, we must have a fixed
evaluation order to get deterministic results. Hence, we choose that all applications to
the left of a hole must have been reduced to values before the instructions in the hole are
considered. This determines an evaluation order from left to right. We let [] represent a
hole and let E[] range over evaluation contexts:

E[J==[11(VE[D | (E[]M).

If E[]is an evaluation context, the term E[M] is the result of filling the hole with the
term M. It is easy to verify that the partitioning of a program into a redex and a context
is unique.

For the original development of the calculus [5], we derived the machine from the CESK-rewriting
system, a variant of Landin’s SECD-machine [11], which is closer to a realistic interpreter. At the same
time, Mason [12] published a CS-like store-program rewriting system for Lisp-like languages and used it for
proving properties of imperative programs.

A machine evaluation for a program M starts in an initial state (M, 0); final states are
pairs of CS-values and stores: (V,). There are five clauses for the one-step CS-transition
function, one for each kind of redex:

(Elfal,0) <> (E[6(f,0)],6) (CS1)
(E[(A2x.M)V],0) <> (E[M[zy:= V]),0) (CS2)
(E[(A\20.M)V],0) S5 (E[M[z,:=1]],8[l:=V]) wherel¢g Dom(6) (CS3)

(E[0),8) <> (E[B(1)],6) ' (CSa)
(E[(cl.M)V],8) <> (E[M],0]l:=V]) (CS5)

The first two clauses are the transition rules for the subset A. Naturally, they do not
utilize the store. The third clause specifies the behavior of an application whose procedure
abstracts over an assignable variable. The machine picks an arbitrary location not in the
domain of the current store and replaces all occurrences of the parameter with the location.
The store is updated to include a binding for the new location to the argument value.
Picking a fresh location upon every application of a procedure guarantees that assignments
to a parameter variable are invisible outside of the instantiation of the procedure body.
This is the call-by-value rule for languages with assignments. The fourth rule specifies the
machine behavior for location-redexes: the location is simply dereferenced in the current
store. Finally, an application of a o-capability proceeds as described above: the location’s
value is changed to the new value and the evaluation proceeds with the o-body.

In order to clarify the abstract explanations about the CS-machine, we trace the evalu-
ation of the program

&(Ap-(Ad.(p0))(p0))(Az.(02.2)(Ay-2)).

In a syntactically more elaborate language, this would be written as

let p = (Az.begin z := (Ay.z) result z) in
begin p(0); p(0) end,

where begin A; B end stands for (Ad.B)A with d not free in B. The evaluation trace of
this program (with the initial store p) is:

((Ap-(Ad.(p0))(p0))(Az.(02.7)(Ay.2)), bo) (1)
25 (Ad.(Az.(07.2)(Ay.2))0))((Az.(0z.2)(Ay.z))0), bo) (2)
E5, (Ad((Ae(o3.2)(Ay.2))0)) (0.l)(Ay.lh)), Bolly := 0]) (3)
G5 (Ad((Az(02.2)(Ay.2))0))h, bo[lr = (Ay-ln)]) (4)
G5 (A ((Az(o2.2)(Oy.2))0)(Ay-h), olls = (Ay.11)]) (5)
S, (e (oz.z)(Ay.z))0), Bollz = (Ay.l1)]) (6)
G ((ola12)(Ay-d2)), Boll == Qgln)][l2 := 0)) (M
5, Ly, 601y := Ayl := (Ay.l2)]) (8)
G5 (Aguda), Bl == Oyl == (Ay2)]) 9)

8.

The trace illustrates several points about the machine evaluations. First, the two distinct
calls to the procedure p cannot affect each other. As mentioned above, every call to p
allocates a fresh cell for the parameter z and thus the assignment in (3) during the first
invocation of p has no impact at the second invocation. Second, the result state represents
a circular structure, i.e., the final CS-value (Ay.l;) refers to the location /3, which in turn
refers to the very same value. Third, the location [; is irrelevant for the evaluation from
transition (6) on through the end. More precisely, the location has become unreachable
through a static trace from the control string component and can therefore no longer affect
the evaluation. Such locations are usually called garbage; the others are relevant locations.
Garbage locations cause problems in practical implementations where they require garbage
collectors as well as in program equivalence proofs as we shall see below.

Equipped with the CS-machine, we are now ready to define the operational semantics
of A,. We call the function eval,. It abstracts the details of CS-machine evaluations. For
pure A-programs and values without reference to the final store, this is straightforward. The
result is simply the value-component of the final state. The extension to the full language is
more difficult due to the illustrated potential for self-referential final states. Therefore, we
only provide a partial definition and parameterize eval, over a yet-to-be-determined unload
function U.

Definition 3.3 (eval, |, eval,) The partial function eval_|j maps A,-programs to final
answers iff there is a (possibly empty) CS-reduction sequence from the corresponding initial
machine state to some final state:

eval, \y(&M) = U(V,0) iff (M,0)Z2" (V,6).

The partial function eval, maps A-programs to A-values iff there is a (possibly empty)
CS-reduction sequence from the corresponding initial machine state to some final state:

eval (&M) = V iff (M, 0) 57 (v, 0).

The operational semantics is the major source of intuition for a programmer. In order
to test ideas about a program, he submits the program to eval and observes the result. If
the function fails to distinguish between programs, the programs are freely interchangeable.
This idea is the basis for the operational equivalence relation. Operational equivalence is
omni-present in the work of a programmer. For any kind of program transformation, e.g.,
for making a program shorter, faster, better looking, etc., the operational semantics of the
program must be preserved: the two versions must be operationally equivalent. Because of
this, it is desirable that the relation satisfy some key characteristics:

1. that it preserve equality on basic constants since these constitute the ultimate program
answers;

2. that it respect the ordinary evaluation process: after all, the program user relies on
the machine for running the program;

3. that it be a congruence relation, i.e., that equals can be substituted for equals in all
contexts; after all, to be reusable, verifications and transformations of program pieces
should be independent of the context.

Beyond this, the operational equivalence relation should be as large as possible so that every
desirable equality can be expressed

The formalization of operational equivalence depends on the notion of a context. A
context is a A,-term with exactly one hole in an expression position. More precisely, let []
again be the hole and let C[] range over contexts. Then, contexts are defined by

Cl 1==[11xa.Cl 11 (MC[]) | (C[M) | o2,.C[].

Clearly, contexts are a generalization of evaluation contexts. The term C[M] results from
filling C[] with M; if M contains free variables, they may become bound by the fill oper-
ation.

Given the notion of a context, we say that terms are operationally equivalent if there is
no context that completes both phrases to programs, and that produces observably different
results for the two programs on the evaluator.

Definition 3.4 (~,, ~,) Two terms M, N € A, are operationally equivalent, M ~, N,
iff for any arbitrary A, context C[] such that C[M] and C[N] are programs, eval, y
is undefined for both, or it is defined for both and if one of the programs yields a basic
constant, then the value of the other is the same basic constant.

The definition of ~, is adapted mutatis mutandis for the operational equivalence relation
on pure A. Instead of eva!c,u it uses eval,; all terms and contexts are restricted to A. The
resulting relation is denoted by =,.

It is well-known that the by-value operational equivalence relation satisfies the above
criteria on the sub-language A [21]. For the extended relation, we need to prove this fact.

Proposition 3.1 =, is the largest consistent equivalence relation on A, that respects equal-
ity on the set of basic constants and that is also

o compatible: M ~, N implies C[M] ~, C[N] for all C[], and

e evaluating: M ~, N implies C[M] has a value iff C[N] has a value for all contezts
C[] that close M and N.

Proof. Morris’s corresponding proof [19] relies on clever techniques by Béhm (3, 2:254-
260] for the separation of normal forms. The proof of this proposition is similar, but much
simpler, because we can rely on the separability of observable values. Thus, assume the
opposite. Then there is a relation ~pg that satisfies the antecedent, and that relates two
terms M and N that are operationally distinct: M#,N. Consequently, there must be a
context C[] such that C[M] and C[N] are programs, the value of both exists, but the
values are distinct basic constants. But then C[M] ~g C[N] even though eval,(C[M]) =
by # by = eval,(C[N]). This implies that ~p is not a conservative extension of equality on
basic constants contrary to the assumption about its character. This generates the desired
contradiction and concludes the proof. O

On the negative side, we have two aspects. The first is rather general and concerns the
relationship of operational equivalence on A versus A,. Since reasoning with operational
equivalence on functional languages is well-established and is at the heart of proof systems
(17, 20, 21], we would hope that =, is a conservative extension of ~,. Unfortunately, but
not surprisingly, this is wrong.

10

Proposition 3.2 =, is not a conservative eztension of ~,,.

Proof. In A, we can prove that

Ap.((Ad.p0)(p0)) =, Ap.(p0),

or, with syntactic sugar,

Ap.(begin p(0); p(0) end) =, Ap.p(0).

In essence, pure A-procedures cannot affect the store, and the result of their application
cannot depend on the calling history. But this no longer holds in A,. When evaluated,
the following expression produces a procedure that first returns some value as a result, and
that diverges on subsequent calls:

let z = (Az.2) in (Ay.z(0z.z)(Ad.(Az.22)(AZ.2T))).
It follows that the context
E[] = [l(let z = (Az.2) in (Ay.z(oz.z)(Ad.(Az.z2)(A2.27)))

can distinguish the above two terms with respect to ~,. O

The second negative aspect concerns the use of the CS-transition function for proofs of
operational equivalences. Because of the garbage problem, it is rather cumbersome to prove
some simple, intuitive operational equivalences. Consider the program

PE (Az.(02.M)1)0),

where z is not free in M. This phrase is clearly operationally equivalent to M. In order to
prove this, we compare the CS-evaluation of P and M in an arbitrary evaluation context
E[] and an arbitrary store 8. After a few transition steps, the evaluation of P reaches the

state
(M, 0]l := 1)),

where [is the location that was allocated for z. If we can now prove that [is indeed
garbage, we know that P and M are operationally equivalent. In trivial cases, such an
auxiliary proof may be a reasonable task, but for larger, more complicated programs, it is
infeasible to require both proofs.

From the description of the negative aspects of our current system, our goal should be
clear. We intend to derive a programming language calculus for A, that is a conservative
extension of the A-value-calculus, and that consequently allows the re-use of many program
proofs from the functional fragment. In addition, the calculus should avoid the garbage
problem so that the programmer need not supply auxiliary proofs about the garbageness
of locations. In the next section, we tackle the second problem by reconsidering the CS-
rewriting system. From there, we proceed to develop our calculus.

11

4 Replacing the Store by Program Sharing Relations

The strategy for developing a semantics for A, without the garbage problem is straightfor-
ward and based on our previous experience on developing calculi: we incorporate the store
into the program component of the machine. The role of the store in the CS-machine is
characterized by the transition rules (CS3) through (CS5), which extend, use, and modify
the store. The crucial rule is (CS3). It replaces all bound variables of a A-abstraction by
a new, distinct location and thus gradually builds up the store. All future references to
a bound variable are resolved via the store. It follows that a deeper understanding of the
store requires a closer look at the nature of bound variables.

At this point we must recall the a-congruence convention about bound variables in terms.
According to this convention, the name of a bound variable is irrelevant. Abstractions like
Az.z and Ay.y are considered the same. This actually means that the programming language
is the quotient of A over =,. From this perspective, a A-abstraction is an expression together
with a relation that determines which parts of the expression are equivalent. The relation
is displayed by occurrences of the bound variable.

A unification of our ideas on the role of the CS-store and the nature of bound variables
directly leads to an abstract view of the store. The intention behind the replacement of
bound variables by unique locations in the bodies of A-abstractions is to retain the static
a-equivalence for the rest of the computation, i.e., as a dynamic sharing relation for term
positions,? even after the Az.-part has disappeared. From this argument it follows that an
integration of the store into the control string language necessitates a new kind of syntactic
phrase for expressing this dynamic relationship.

The most natural solution is a labeling scheme. Instead of placing a location into the
program text and the value in the store, the value could be labeled in a unique way and
placed into the text as a labeled value.®> With respect to the transition rules, we would like
to replace (CS3)

(E[(Azo.M)V),0) Z5 (E[M[z, := 1]}, 8]l := V]) where I ¢ Dom(6)
by
E[(Az,-M)V]+— E[M[z, :=V']] where [is not used in the rest of the program.

V! is the labeled version of the value V.

With the labeling technique it is indeed possible to re-interpret lookups and assignments
as term manipulations. The emulation of a variable lookup apparently strips off the label
from the labeled value since the value already sits in the right position. The effect of an
assignment is more complicated. In the extended term language, a o-application looks like
(ocU'.M)V when it is about to be evaluated. The assignable variable has been replaced

2Modeling the store as a sharing relation was already mentioned by Landin [10], but, apparently, he
never formalized the idea. Indeed, as Stoy seems to stipulate [24:253,284], the store function in denotational
semantics represents Landin’s sharing relation, and, furthermore, a direct realization of the sharing relation
idea for the SECD-machine would have led to a true store component.

3Both Ait-Kaci and Nasr [1] and Sethi [23] have used similar labeling schemes for terms in related contexts.
The latter modeled the code of programs with gotos and labels through circular terms with term labels; the
former used term labels for a generalized version of records and the unification of such records.

12

by a labeled value; all other related variable positions carry the same label. When it
is time to perform the above o-application, all these occurrences of I-labeled values U
must be replaced by /-labeled values V. To implement this, we introduce the labeled-value
substitution M[e! := V!]. The result of M[e' := V] is a term that is like M except that all
I-labeled subterms are replaced by V. The assignment transition is now definable as

E[(cU'.M)V] — E[M][¢' := V'].

Unfortunately, the new semantics for assignments and lookups has a minor flaw: thus
far, it cannot deal with circular or self-referential assignments. When the label [appears
not only in the rest of the program E[M] but also in the assigned value V, the equivalence-
positions in V' are not affected by the labeled-value substitution. For an illustration, con-
sider the program &(Az.(oz.z)(Ay.z))0. Its evaluation on the CS-machine yields the final
state (Ay.l, {{ — Ay.l}). A term evaluation according to the above rules proceeds as follows:

(Az.(0z.2)(Ay.z))0 — (600" (Ay.0") — (Ag.0").

The last term should represent this circular structure and in some sense it does: an in-
terpretation of the label [requires that the position occupied by 0' is in the same sharing
equivalence class as the entire expression (Ay.0')". However, a lookup that simply strips off
the label produces a non-circular object, namely, (Ay.0"). For a correct simulation of the
CS-machine within a rewriting system, we need to alter the lookup rule so that it unwinds
a circular term another time:

E[V'] — E[V[e := V]].

For the above example, the modified rewriting system produces (Ay.(Ay.0")"), which is the
correct final answer.

An intuitive argument for the correctness of the new transition rules is based on the
following invariant: every outermost occurrence of a label is associated with the correct
current value. When the label is taken off, some inner occurrences may become outermost,
but they are immediately updated with the correct value. Assignments place a label on the
value, and hence, all self-referential labels within the value are not outermost.

A clear advantage of the C-rewriting system over the CS-machine is its simplified treat-
ment of stored values. In the CS-machine, a store location and its contents can only become
unreachable from the control string through the use of some vacuous abstraction or vacuous
assignment. Since the corresponding actions are now realized by substitutions as opposed
to store modifications, the substituted terms including the contained locations simply dis-
appear from the control string. Hence, relevant locations are always directly present in the
control string, garbage locations are eliminated immediately.

Given the informal descriptions and correctness arguments, we proceed to formalize the
final machine semantics. The machine is a control string rewriting system. Its only state
components are expressions in the language Ag, which is a proper extension of A, with
labeled values and o-capabilities with labeled bullets in the variable position.

Definition 4.1 (As and labeled value substitution) Let o (bullet) be a new improper sym-
bol, Labels an infinite set of label identifier, and / a meta-variable for Labels. Then, Ag is

13

the set of terms

M
|4

V|MN|z,| o |V
c|zx| (Az.M) | (62,.M) | (o0 .M)

with the following context-sensitive restrictions:

1. an [-labeled value may only contain I-labeled bullets (o), and an /-labeled bullet may
only occur as a subterm of an [-labeled value;

2. an abstraction Az.M must not contain a labeled value with a free variable z;

3. in an application MN, every [-labeled value in M must be identical to every /-labeled
value in N after replacing all labeled values in these terms by the respective labels.

The meta-variables M, N, L range over Ag-terms, V, U, and W over Ag-values. Sub-
sequently, we also use X to denote an assignable variable, or a labeled bullet, or a labeled
value.

The set of labels in a term M is denoted by Lab(M).

The definitions of substitution, free and bound variables, conterts and evaluation con-
texrts are adopted mutatis mutandis, e.g., the result of

(0z0.M)[zo := V'] is 0 o Mz, :=V)]),

and values in evaluation contexts may be the new form of instantiated o-capabilities.
Programs in Ag are closed terms, possibly containing labels.
Finally, labeled-value substitution over Ag is defined as

E! ifl=k
S { (Ule! := L[o* := .k]f])k ifl#k
c[ot = L!] e
g[o:=I"1 = =
(Az.M)[e':= 1" = Az.M[e := L]
(MN)[o':=L" = M[e':=L|N[o := L]
(cz.M)[o' :=L'] = oz.M[e :=L]
(0 o* M)e':=L' = oo .M =L

Note: L[e* := o] denotes the term L with all occurrences of k-labeled values replaced by a
k-labeled bullet.

The definition of the extended term language takes into account that occurrences of
labeled values are only useful in certain positions. More specifically, sub-terms of a labeled
value with the same label are irrelevant for the evaluation, and, similarly, for a o-capability,
it is only important which sharing relation it must affect, not what the current shared value
is. We therefore use the auxiliary term e to eliminate such useless occurrences.

14

The labels of a Ag-program inherit an important property from CS-stores. Just like
the precise identity of a location was actually irrelevant for a store, so is the identity of a
label irrelevant for a program. As long as the same sharing relationships are identified in
a program, the names of the labels do not affect the evaluation. Indeed, identifying label-
equivalent programs like this corresponds to a “dynamic” extension of a-equivalence, which
is in agreement with our motivational remarks at the outset of this section. Consequently,
we adopt a variant of Barendregt’s bound varidable convention for labels in programs.

Convention. (Label convention)

label-equivalence convention: Programs that are equivalent modulo the names of labels are
identified; we denote this relation with =4;

label hygiene convention: Different label-names always denote different sharing relation-
ships.

Warning. Label-equivalence resembles an ordinary term relation, but it is a relation on
programs. End

To avoid some trivial complications with the context-sensitive restrictions on terms, we
adopt a further convention on the labeling of values. As indicated above during the informal
motivation, the new transition rules often require that an unlabeled value becomes a labeled
value. If done naively, this can easily conflict with the restriction that a labeled value must
not contain a labeled value with the same label.

Convention. If V is a value and [a label, then V* denotes the labeled value (V[eo! := o/])".
That is, we assume that all /-labeled sub-values in the newly labeled value are automatically
replaced with labeled bullets. End

Finally, we are ready to defin~ the operational semantics of Ag. As usual, we base
this function on an abstract machine: the C-machine. Its function uses the partitioning of
control strings into contexts and redexes that is known from the CS-machine.

Definition 4.2 (evals, the C-transition function)

E[fa] +% E[§(f,0)] (C1)
E[QzaM)V] < E[M[zy := V]| (C2)
E[(Mz,.M)V] & E[Mlz,:=V']] wherel ¢ Lab(E[(Az,.M)V]) (C3)

EVY] & EV[e =V (C4)
E[(o e . M)V] +< E[M][¢' := V'] (C5)

The semantics of A, is captured in the partial function evals from As-programs to
Ag-values: .
evalg(&M) =V iff M v V.

15

To strengthen the intuition into the C-evaluation process and to provide a basis for
comparison with the CS-machine evaluation, we retrace the rewriting steps from Section 3.
Recall the sample program:

&(Ap-(Ad.(p0))(p0))(Az.(0z.2)(Ay.2)).

On the C-machine, the evaluation of this program proceeds as follows:

(Ap.(Ad.(p0))(p0))(Az.(02.2)(Ay.2)) (1)
s (A ((Az.(0z.2)(My.2))0))((Az.(02.2)(Ay.2))0) (2)
Vs (A ((Az.(oz.2)(Ay.2))0))((00".0")(Ay.0")) (3)
o (M((Az(02.2)(Ay.2))0) X Ay-e")" (4)
s (M((Az(02.2)(Ay.2))0))(Ay-(Ay-o")") (5)
s ((Az.(0z.2)(Ay.z))0) (6)
= ((002.07)(Ay.07)) (7)
Hs (Agae?)® (8)
W (Ag-(Ag.et)2) (9)

The most important difference between the C-machine and the CS-machine becomes visible
in the transition from line 5 to line 6: the label /; completely disappears. This example
thus validates our claim that garbage locations cannot play a role in an evaluation.

Based on the semantics evals, we can now also define an extended notion of operational
equivalence for Ag. The definition has a non-standard syntactic consistency component
because of the context-sensitive restrictions on the programming language.

Definition 4.3 (~5) Two terms M, N € Ag are operationally equivalent, M ~g N, iff for
any arbitrary Ag-context C[], C[M] is a program iff C[N] is a program, and, if C[M] and
C|[N] are programs, then evals is undefined for both, or it is defined for both and, if one of
the programs yields a basic constant, then the value of the other is the same basic constant.

At this point the natural question arises how A, and Ags are related. Given a program,
both the CS- and the C-machine step through a number of states and stop upon reaching
a final state. It is intuitively clear that the two machines go through the same number of
steps, and that the i-th state in the CS-evaluation closely corresponds to the i-th state in the
C-evaluation. The relationship between corresponding states formalizes the two important
attributes of the C-machine: first, locations in the CS-control string are explicitly replaced
by labeled values, and, second, locations in the domain of the store that are unreachable
through this process are irrelevant for the rest of the evaluation process. Formally, the
relationship is expressed as a function U from CS-control strings to Ag-expressions:

U(cl.M,0) = oo .U(M,0)
u@,8) = (U)ol := o]))

16

U(C,ﬂ) = C
Wz,) = =
U(Az.M,0) = Az.U(M,¥0)
U(MN,0) = U(M,0)U(N,0)
U(oz.M,0) = oz.U(M,0).

On A, and A, U is the identity function; value-store pairs are mapped to Ag-values. In
other words, initial states for the CS-machine become initial states for the C-machine, final
states become final states.

With U as the unload function for the CS-machine, the two evaluation functions eva!g'u
and evalg become the same.

Theorem 4.1 (C-simulation) For all programs M € A,, eval,, (M) = evals(M).

Proof. The proof is an induction on the number of transition steps in an evaluation with
the basic claim that the translation U maps the i-th state in a CS-evaluation to the i-th
state in the corresponding C-evaluation. This is clearly true for initial and final states. For
the induction step, consider the CS-transition:

s
(e1,61) 5, (c2,62).
Assuming that we directly use locations as labels, it is easy to show by case analysis that
U(er, 1) v U(ep, 62)

and thus, the claimed relationship is an invariant of transition steps. The result follows
from the fact that U also preserves stuck states, where a functional constant is applied to a
term, or the interpretation function § for constants is undefined on some application.

The only remaining point to be shown is that the choice of the correct new label is
always possible. After all, the domain of a CS-store in (C,8) and the set of labels in U(C,)
are not necessarily the same. The C-machine only maintains labels that. are reachable from
the program and automatically eliminates all others by (vacuous) substitutions. But then,
on the other hand, it follows that we can add the clause

Lab(U(c;,0;)) € Dom(6;) for i = 1,2

to the induction invariant. A verification of this condition is straightforward. It reassures us
that at (C3)-rewriting steps it is always possible to choose the same label as the CS-machine
in its corresponding transition. Consequently, the two machines always maintain the same

store-equivalence relation. O
As an almost immediate consequence we get that the restriction of S-operational equiv-

alence to A,-terms is o-operational equivalence.

Corollary 4.2 For all M,N € A;, M ~, N iff M ~5 N.

17

Proof. The proof is easy and relies on the preceding theorem. For the direction from
left to right, we must show in addition that every As-program is either a A,-program or
is an intermediate evaluation stage on the C-machine for some A,-program. Clearly, we
only need to consider programs with labeled values as subterms. Without loss of generality,
consider a program with a single such term:

Cc[V!

for some arbitrary value V (possibly containing I-labeled bullets). As can easily be checked
out, such a program is the result of evaluating

(Azy.(02,.Clzs])V)0

Hence, S-operational equivalence does not gain any additional power from using contexts
that already contain labeled terms. O

As a consequence of Theorem 4.1 and Corollary 4.2, we can completely replace the
CS-based system by the C-machine. Most importantly, we can use the C-transition rules
for reasoning about operational equivalences between A,-terms. The advantage of this can
easily be demonstrated with our prototypical example ((Az.(0z.M)1)0) where z is not free
in M. For any arbitrary evaluation context E[] this term reduces in a few steps to M, and
is hence operationally equivalent; no auxiliary proof is needed. We have thus accomplished
the first goal of eliminating garbage from the underlying semantics, and can now tackle the
second one of designing a calculus for reasoning about operational equivalence.

5 The)\,-S-calculus

A closer look at the C-rewriting system for Ag should remind the reader of the standard
reduction sequences for A-calculi [2]. A derivation according to standard rules first partitions
a program into a context and a B-redex, the redex being the leftmost-outermost one. Next,
an appropriate contraction replaces the redex by a new term. After that, the standard
evaluation resumes the cycle. The rewriting system works in the same way, except that the
uniqueness of the context-redex partitioning plays a more crucial role for the timing and the
effect of the transition rules (C3) through (C5). We therefore characterize these transitions
as contert-sensitive.

The context-insensitive rules of the C-rewriting system are (C1) and (C2). They give
rise to Curry’s §- and Plotkin’s §3,-relation:

(fa) — 6(f,a) (8)
(Azx.M)V — M[zy:=V]. (Bv)

Both relations are ordinary notions of reduction in Barendregt’s terminology, that is, they
are applicable to any instance of a redex at any position in a term. Together, the relations
form the basis of Plotkin’s A,-calculus.

Definition 5.1 (\,-calculus) The basic notion of reduction is

v =46UB,.

18

The one-step v-reduction —s,, is the compatible closure of v:
M—,N if (P,Q) € v,M = C[P], and N = C[Q] for some P, @, and C[]in A.

The v-reduction is denoted by —», and is the reflexive, transitive closure of —,. We
denote the smallest equivalence relation generated by —, with =,.

Remarks. First, we use contexts to formalize the idea of applying a redex at any arbitrary
term position. Second, the compatible equivalence (congruence) relation =, is the A,-cal-
culus, but, sometimes, we refer to the entire system of relations as the calculus. End

The context-sensitive transition rules of the C-rewriting system naturally divide into two
different classes: (C3) and (C4), which leave their context intact, and (C5), which modifies
the context. This division implies two reasons for context-sensitivity.

The first aspect of context-sensitivity concerns the timing of C-transitions. The par-
titioning of programs into C-redexes and evaluation contexts uniquely determines when a
transition is to occur. This correct timing is obviously necessary for the delabeling rule
and the assignment rule in order to preserve the determinicity of the semantics. Freely
applicable reduction versions of these transitions would clearly interfere with the correct
ordering of side-effects (according to the C-machine semantics). On the other hand, it is
less obvious why a modified -reduction a la

Az, M)V — Mz, := V]

would establish sharing relations at the wrong time. This is a more subtle point and deserves
an example. Consider the following expression:

let f = (Az.(let y = 0 in ((oy.y)(succ y)))) in
let d = f(0) in
£(0).
Clearly, this program should yield 1. Furthermore, the (expansion of the) underlined sub-

term matches the left-hand side of the above term relation on Az,-applications. If we apply
the reduction, we get:

let f = (Az.((c o' .0")(succ 0'))) in
let d = f(0) in
f(0).

However, the evaluation of this expression on the C-machine yields 2. As mentioned above,
the problem with the suggested notion of reduction is that it establishes the sharing relation
too early.

The second aspect of context-sensitivity concerns the extent to which a transition can
affect a program. This is only visible in the rule (CS5), which not only needs to be timed
correctly, but must also manipulate the entire context. In other words, (C5) specifies how

19

a redez transforms its context. This is certainly unusual and does not exist in regular,
mathematical calculi.

Considering the indicated problems, there is no hope of finding a set of context-insensi-
tive reduction relations that are equivalent to the C-rewriting rules. By their very nature,
imperative effects must happen in a certain order. However, the second kind of context-
sensitivity suggests a partial solution. It indicates that if imperative transitions were only
discharged at the root of a term, there would be no extent problem: all effects would be
concerned with proper subterms of the redex. A restriction of imperative transitions to the
root has the additional advantage that it naturally coordinates the timing of effects.

Following this line of reasoning, we design two sets of term relations: notions of reduction
and computations. The former are ordinary reduction rules that are applicable to any
position within a term. Their task is to bubble a C-redex to the root of an evaluation
context. Once the redex has reached the root, a computation relation performs the proper
imperative effect. In order to keep this system consistent, computation relations must have
a sub-privileged status. Unlike notions of reduction, they cannot be applied to subterms.
We indicate this difference by using > instead of — for denoting computations and by
explicitly depicting their arguments as complete programs.

An evaluation in the new system resembles a race. All imperative redexes in a program
simultaneously start bubbling up towards the root. Whichever redex gets there first per-
forms an imperative effect. The appropriate arrival of an imperative redex at the top is
determined by arbitration conditions in the reduction relations. Although such a system
radically differs from a traditional calculus, it is an acceptable generalization of the notion
of a calculus as we shall demonstrate in the next few sections.

We start the design of our reductions and computations with the C-transition rule (C3).
As mentioned above, the computation relation is only used at the root of a term. That
means, it is applied in the empty context, and therefore, it has the same form as the
transition rule without an evaluation context E[]:

&z, MV > &Mz, := V], | ¢ Lab(M,V). (Bs)

Otherwise, if the C-redex for (C3) appears nested in an evaluation context, it must bubble
up to the root. Since the computation relation takes care of the empty context, the inductive
definition of evaluation contexts requires consideration of two more cases: the embedding of
a C-redex to the left of an arbitrary term N and to the right of a value U. In the first case,
the C-transition rule says that the modified A-body and the term N form a new application.
But this is equivalent to forming the application of the abstraction body to the argument
first and modifying the body afterwards:

E[(M\zo.M)V)N] — E[(Az,.MN)V].

Since this modified transition rule is clearly independent of the evaluation context, we can
adopt the context-free variant as another notion of reduction:

(Az,.M)V)N — (Az,.MN)V (Br)

Based on the symmetry of the definition of evaluation contexts, we suggest the following
rule for the case where the C-redex is to the right of a value U:

U((\zy. M)V) — (Az, . UM)V (Br)

20

Like the B-rule itself, these reductions rely on the hygiene convention and assume that the
sets of free variables in N and U do not contain z,.

From the treatment of Az,-applications, it is clear how to deal with the simulation of
assignments. The computation relation for o-applications is

&(o o .MV > &M[e' := V'] (o)

An embedded o-application can work its way to the root of a term with rules similar to
those for a A-application. This process is applicable to both instantiated and uninstantiated
o-capabilities:

(6X.MV)N —s (aX.(MN))V, (o1)
U((eX.M)V) — (aX.(UM))V. (oR)

Unfortunately, the bubbling-up technique cannot be applied as easily to the delabeling
of labeled values. Unlike a A-abstraction or a o-capability, a labeled value does not contain
a subterm that can be used for the gradual incorporation of the term context. The key
insight* is that, except for two cases, labeled values are only delabeled once they become
the argument of some function. The first exception is the simple occurrence of a labeled
value as a program by itself. Although this is only possible as the final step of an evaluation,
we still need a (computation) rule to account for this case:

&v! o &Vie' := V. (Stop)

The second exception is the occurrence of a labeled value in function position, but it is easy
to see that this case can be transformed into an application of a function to a labeled value:

ViIM — (AvaoM)V'. (Dym)

Once the labeled value is delabeled, the resulting function is immediately applied to the
proper argument after a simple §,-step.

Given the assumption that labeled values always occur to the right of a value, we can
proceed with our analysis in the usual way. First, consider the occurrence of such a term
in the empty context. Then it is time to strip off the label and to perform the application:

&UVYH o &U(V[e := V]). (Dr)

Second, if (UV*) is nested in an evaluation context and, say, is to the left of some expression
M, the application must somehow incorporate the additional argument M into the function
U in order to move closer to the top. The resulting application should first delabel Vi,
then apply U to the resulting value, and finally, the result of this application should absorb
M. Abstracting from the value of V!, this informal description leads to the A-abstraction
Av.UvM for the merger function of U and M. As in the above case of o-capabilities, this
same argument also holds for an application of a function U to an assignable variable.
Putting this together, the appropriate reduction is defined by:

(UX)M — (Azy.UzyM)X. (D1)

*This solution was suggested by Robert Hieb, Indiana University; it greatly improves our own from earlier
reports [4, 5].

21

By symmetry, we get a similar rule for the case where the application is to the right of some
value:

U(VX) » (Mo.U(Vz)X. (Dr)

The definition of reduction and computation relations for assignable variables and la-
beled values ends the design phase of the A,-CS-calculus. For convenience, we have collected
the relations in a separate definition.

Definition 5.2 (Reductions and computations) Recall that U and V denote values, and
that X ranges over assignable variables and labeled values. The notions of reduction are

fa — &(f,a) (6)
(Azx. M)V — M[z):=V] (By)
U((Azo-M)V) — (Az,.(UM))V (Br)
(Azo.M)V)N — (Az,.(MN))V (BL)
U(eX.-M)V) — (eX.(UM))V (or)
((eX.M)V)N — (6X.(MN))V (or)
VIM — (QvaoM)V! (Dagen)
(VX)M — (AzVzM)X (D)
U(VX) — (Az.U(Vz))X (Dgr)

The computation relations are
&(A\zy. M)V > &M(z, := V'] where [is fresh (8s)
&lo o M)V o &M[o' = V] (or)
&UVY » &UV[e' :=V]) (Dr)
&v! o &V[e' := V'] (Stop)

We refer to the left-hand sides of computations as computational redezes.

The next steps in the development of our calculus are straightforward. As usual, we
collect all notions of reductions into a single relation, s, and form a congruence relation. As
in the definition of the \,-calculus, we use an arbitrary As-context to formalize the idea
of applying a reduction to a redex at an arbitrary point in a term. Thus far our calculus
would be a simple extension of the traditional A,-calculus. However, since our goal is a cal-
culus for simulating the rewriting semantics, we must go beyond conventional constructions
and somehow include the computation relations in order to cope with imperative effects.
To avoid any interference of computations with the compatibility construction, we have
chosen to define a computation as the union of the (transitive) s-reduction and the three
computation relations. The motivation behind this step is that one computation step can
simulate one C-transition step: the reduction can bubble up a redex to the root and a com-
putation relation can perform the imperative action. On top of this computation, we define
computational equality as the smallest equivalence relation that encloses the computation.

22

Definition 5.3 (The A,-S-calculus) The basic notion of reduction is
s=6UpB,UPLUBRUOLUoRrU Dygym U D U Dp.
The one-step s-reduction — is the compatible closure of s:
M—,N if (P,Q) € s, M = C[P], and N = C[Q)] for some P, Q, and C[]in Ag.

The s-reduction is denoted by —», and is the reflexive, transitive closure of —,. We
denote the smallest equivalence relation generated by —, with =, and call it s-equality.
The s-computation v, is defined by:

ps= —; U B, Uor U Dr U Stop.

The relation =, is the smallest equivalence relation generated by >,. We refer to it as
computational equality.

The result of our calculus design is an unorthodox two-level system: on the lower level, it
is a conventional congruence, on the upper one, a simple equivalence relation. When we talk
about the A,-S-calculus, we refer to the relation =,. We write M =, N or A,-S®FM = N
for theorems and derivations on this level. Although weaker, the congruence relation =; is
traditional and interesting in its own right. We consider it as a sub-calculus and use the
notation A,-S FM = N.

6 Consistency and Standardization

Given the definition of a calculus, the question arises how this calculus compares with
others. For our work there are two problems of immediate concern, namely, consistency
and standardization. However, before we turn to these, we take a brief look at the nature of
variables in our system. In an ordinary logic or calculus, variables do not play an active role
in proofs; they are simply placeholders for values and nothing else. Although Ags contains
the more sophisticated category.of assignable variables, we can still prove a comparable
substitution property.

Theorem 6.1 Let z) € Var\, z, € Var,, and let | be a label such that | ¢ Lab(MV) U
Lab(NV).

(i) Ay-S® F&MV = &NV implies Ay-S® F&M][zy := V] = &N[z) := V]
(i) Ap-S® F&MV = &NV implies X,-S® F&M[z, = V'] = &N[z, := V']
(iii) Ay-S FM = N implies A,-S FM[zy := V] = N[z) := V]
(iv) A\,-S+M = N implies A\,-S FM[z, := V'] = N[z, := VY

23

Remark. The antecedents in statements (i) and (ii) imply that the label set for V is
disjoint from the symmetric difference of the label sets of M and N, i.e., the labels that a
proof of M =, N introduces in M and N cannot interfere with the labels in V. End
Proof. The claims follow from an induction on the structure of the proofs. The induction
relies on a generalized version of the substitution lemma [2]:

My:=V]u:=Ulv:=V]]|= M[u:=Ulv:=V] ifug FV(V);
and on a commutation lemma for substitution and labeled-value substitution:
Mlv:=V][e' i= (Uv:=V])] = M[e':=U"[v:=V] ifl g Lab(V). O

We shall use the theorem in the following section on the correctness of the calculus. It is
stated here because of its logical nature.

The consistency of traditional calculi is implied by a Church-Rosser theorem. This
theorem shows the confluence of two reduction paths that proceed in two different directions
from the same term. For our two-level calculus, however, this is insufficient. We must prove
in addition that a computation step cannot interfere with the Church-Rosser property of
the reduction system, i.e., that it cannot cause a divergence of derivation paths in the
upper-level equivalence relation.

Theorem 6.2 (Consistency)

(i) The notion of reduction s is Church-Rosser.
(ii) The s-computation satisfies the diamond property.

Proof. The proof of the first part is a modification of the Tait/Martin-Lof proof for the
original Church-Rosser Theorem; the second part is a simple case analysis and relies on the
first part. Details can be found in the Appendix. O

The theorem implies an important corollary.
Corollary 6.3 If M =, N then there ezists an L such that M > L and N v} L.

This corollary and the existence of distinct, irreducible terms guarantee that the calculus
cannot prove an equation between all terms. It furthermore shows that a program reduces
to a value if and only if it has a value.

The second basic question about calculi is whether there are standardized derivation
sequences. Standardized derivation sequences constitute the basis for a semi-decision pro-
cedure for derivations and are thus crucial for finding values and normal-forms of programs.
In the A-calculus and the A,-calculus, standard derivations are formed by reducing the
leftmost-outermost redex or, if a leftmost-outermost redex is not reduced, it is excluded
from any further consideration in the rest of the derivation. The Ay-S-calculus also has such
standard derivations, but, as above, this again requires the consideration of two levels. For
the lower level, we must show that there are standard reduction sequences in the reduction
sub-calculus; for the upper level, we must extend the notion of standard reduction sequences
to standard computation sequences and prove their adequacy.

24

The definition of standard reduction and computation sequences for proving a Curry-
Feys Standardization Theorem proceeds in two steps—a slick strategy due to Plotkin [21].
First, we define the standard reduction and the standard computation function. These
partial functions provide the proper means for contracting exactly one redex at a time,
namely, the leftmost-outermost redex or computational redex that is not embedded in
a value. Both functions are undefined on values. By adding in the computation after
extending the notion of reduction s to a standard reduction function, we ensure that top-
level computation steps cannot cause inconsistencies.

Definition 6.1 (The standard reduction and standard computation functions)

(i) The standard reduction function maps M to N, M——,, N, if there are P, Q, and an
evaluation context C[] such that (P,Q) € s, M = C[P], and N = C[Q)].

(ii) The standard computation function is an extension of the standard reduction function
with computation relations:

'L”ss = —,;, UB, Uor UDr.

Second, we use these functions to define two notions of term sequences: the standard
reduction and the standard computation sequences, respectively. A standard reduction se-
quence combines a series of terms. It is constructed by applying the standard reduction func-
tion to some subterm of a given term and by appending standard reduction sequences with
a common beginning and end. The reduced subterm need not be the leftmost-outermost
redex, but once a leftmost-outermost redex is not reduced, it must remain unreduced for
the rest of the standard reduction sequence. In short, a standard reduction sequence is
approximately a series of terms thz: are related via almost-leftmost-outermost reductions.
Standard computations sequences extend reduction sequences with computations.

Definition 6.2 (Standard sequences) Standard reduction sequences, abbreviated sR-sequences,
are defined by:

e all constants and variables are SR-sequences;
o if My,...,Mm, N1,..., Ny, and V4,...,V; are sSR-sequences, then

Az. My, ..., Az. M,

M Ny, oo My Nys ooy M Ns,
ocX.M,,...,0X.M,,, and
(Valo! := o), (Vo' := o]

are SR-sequences;

o if M—s,, M; and Mj,..., M,, is an sR-sequence, then M, M,..., My is an SR-se-
quence.

25

All standard reduction sequences are also standard computation sequences, SC-sequences,
and if
B .
M +—,, M; and M,,..., M} is an sc-sequence,

then
M, M,...,M;

is an SC-sequence.

The Standardization Theorem states—for the calculus and the sub-calculus—that every
one-way derivation can be reformulated as a standard derivation.

Theorem 6.4 (Standardization)

(i) M—»,N if and only if there is an SR-sequence Ly, ..., L, with M = L, and L, = N;
(ii)) M o N if and only if there is an sc-sequence Ly,..., L, with M = L, and L, = N.

Proof. The proof of the theorem is an extension of Plotkin’s proof of the Standardization
Theorem for the A,-calculus. It is presented in the Appendix. O

With the Consistency and Standardization Theorems in place, we are on firm ground.
Consistency gives us the security that equations in the calculus make sense, Standardiza-
tion provides an effective procedure for finding values of programs. We are now ready to
investigate the correctness of the A,-S-calculus.

7 Correctness

After completing the design and logical analysis of the A,-S-calculus, we need to address the
important question of whether it is the right calculus. OQur goal was to derive a conservative
extension of the \,-calculus for A,. To verify this, we must check that the extension is
conservative, and that the calculus is a programming language calculus according to the
criteria outlined in Section 2. In other words, we must answer three questions:

1. Is the \,-S-calculus a conservative extension of the A,-calculus?
2. Do the machine and the calculus compute the same answer for a program?
3. Does equality in the calculus imply operational equality on the machine?

The first question is the easiest one to answer, given that the definition of the new
calculus subsumes the reduction relation of the A,-calculus, and given the corollary of the
Consistency Theorem about the shape of derivations.

Theorem 7.1 For M,N € A, \,F- M = N iff A,-S*FM = N.

26

Proof. The direction from left to right is obvious since the definition of the notion of
reduction s includes the notion of reduction v as a subrelation. For the opposite direction,
assume that A,-S * FM = N. By the Consistency Theorem (6.2) and its corollary, we know
that for some L, M o5 L and N o} L. But, given that both terms are pure A-terms, none
of the steps in either computation sequence can actually be a computation or reduction
step involving assignable variables or labels, which the left-hand sides of these rules require.
Hence, all steps must be 3,- or é-reductions and are therefore also valid in the A,-calculus.
O

For the second question, we simply need to check that the standard function is an
alternative formulation of the C-rewriting system. After all, we started the design of the
Ay-S-calculus based on the idea that the C-rewriting system works like a standard reduction
system, and we defined the standard computation function as the function that always
reduces the leftmost-outermost redex in an application-term.

Theorem 7.2 For all programs M € A, (or As), evalg(&M) = V iff M 2>, V for
some value V.

Proof. Recall that the standard computation function reduces either a computational
redex at the root of a program or a simple redex in an evaluation context, and that it never
reduces a redex inside of a value. Hence, we can show by induction on the structure of an
evaluation context that
> +
38
+
38

E[VY E[V[e := V']
E[(z,.M)V] +— E[M][z := V']] where [is fresh,
El(oe .MWV] =7 E[M]e := V.

83

This means that the standard computation function correctly simulates the imperative
actions; the simulation of 3, and §-steps is obvious. O

The last correctness question has a curious answer. Equality of A,-terms in the calculus
indeed implies operational equality on the machine, but, on one hand, this statement is
almost useless and, on the other, it is difficult to prove. To understand this, recall the
purpose of operational equivalence. It is to equate terms that are interchangeable in all
contexts, that is, the context-dependencies of both terms are the same. It is clear that
the context-dependencies of A,-terms are their free variables. And this is the point of
contention. In the A,-S-calculus, free assignable variables stand for and are replaced by
labeled values, and, only when they are replaced by values, can we know how a derivation
of the term proceeds. Yet, such labeled values are not a part of A,, but of the larger
language As. Hence, we must use this larger language and reason about its operational
equivalence relation. This, however, causes a major problem: because of the context-
sensitive computations, equalities of Ag-terms in the calculus do not necessarily hold on the
machine.

Proposition 7.3 (i) A\,-StM = N implies M ~5 N.
(ii) Ay-S®FM = N does not imply M ~s N.

27

Proof. Point (i) is easy. The reduction sub-calculus is a full congruence relation. By
Theorem 7.2, we also know that we can standard reduce to a value inside the calculus, and,
by the Consistency Theorem, we know that this can only be a unique basic constant. For
point (ii), consider instantiations of the computations (o7) and (Dr):

Ai:S% F U0 = U0 (1)
A-S®F (ce-1)0=1 (2)

It is obvious that 1 and (o¢/.1)0 behave differently in most contexts, and that U0 is generally
not the same as U0'. The use of computations is restricted to the top of a program. It is
consequently impossible that such equations are valid in more general contexts as it would
be the case with a congruence relation like S-operational equivalence. O

The proof of Proposition 7.3 reveals that there are two distinct troublesome aspects of
computations concerning their use in proofs about operational equivalences. On one hand,
they rely on the specific value parts of labeled values, but this part of course depends on
the assignments that precede the delabeling. On the other hand, terms on one side of such
a computation equation are about to perform an imperative effect whereas the term on the
other side has just performed such an effect; in other words, the two terms of a computation
equation have different effects on their potential contexts.

If we want to use the derivations and equations of the calculus for reasoning about
operational equivalence, we must factor out those that contain these prototypical problems.
The first problem of relying on specific labeled values could be avoided by requiring that
an equation be independent of the labeled values in the two terms. More formally, if

Ao-S ® FM[e't 1= V1] . [ofm := V,/n] = N[o't := V111] .. [o' := V'],

where ly,...,[, are all the labels in M and N, then this equation must not only hold for
the specific values V3, ...,V,, but for all arbitrary values in their places. This restriction
would certainly rule out equation (2) in the above proof as an admissible equation.

For the second problem, we need a restriction that rules out that the two equation-terms
have different effects. The solution relies on two simple ideas. First, a difference in effect can
only be observed when terms are evaluated. Second, terms are only evaluated in evaluation
contexts. Put together, the second restriction says that an equation is only admissible when
it holds in all evaluation contexts. A unification of the two restrictions yields the formal
definition of admissible or safe calculus-equations.

Definition 7.1 (Safe theorems) Let M, N € Ag and let Lab(M)U Lab(N) = {l,...,Iln}.

The theorem
AU'S B i_M = N

is safe if for all evaluation contexts E[] and for n non-assignable variables vy, ..., v,

Ap-S ® FE[M][e" := vy t]...[o" = v,'"] = E[N][e" := v;"1].. o' := v,m].

The adequacy of safe theorems is encapsulated in the central theorem of this section.

Theorem 7.4 (Safe-ness) If A,-S>FM = N is safe, then M ~g N.

28

Proof. Without loss of generality, we assume that M and N contain one free non-assignable
variable (z), one free assignable variable (y), and one labeled value (with label). Now, let
D[] be an arbitrary context and assume that D[M] evaluates to a basic constant a:

Xp-S * FD[M] -, a.

If M plays an active role in this derivation, a closed and possibly side-effected version M’
must occur in an evaluation context E[|:

M-S ® ED[M] 2y, E[M] g, o
where
M' = Mz := Ully := V™[:= W').
From the assumption that M = N is a safe theorem, it follows that
M-S * FE[M'] = E[N']
where
N'= N[z := U]y := V™][¢' := W'].

The safe-ness of the theorem guarantees that side-effects cannot interfere with the proof;
the Substitution Theorem provides for orthogonality of simple variable substitutions: its
antecedent is satisfied because U, V, and W were a part of the program all along.

Given this, we can replace the above derivation by

A,-S ® FD[M] = E[N'] = E[M'] />, a.

This can be done for every occurrence of a version of M in an evaluation context in the rest
of the standard computation sequence. Consequently, the entire derivation is independent
of M:

Av-S ®* FD|[N] = a.

By the Consistency and the Standardization Theorem, it follows that
A,-S ® FD[N] =1, a

as desired. O

An immediate consequence of this theorem is the third correctness theorem for the
\,-S-calculus. The central idea is that equations between A,-terms are automatically safe
as opposed to equations between Ag-terms, which may contain labeled values.

Theorem 7.5 For M,N € Ay, \-S® FM = N implies M ~, N.

Proof. Since neither M nor N contain labeled values, they automatically satisfy one half
of the safe-ness condition. Moreover, the absence of labels also prohibits any immediate
imperative effects on an evaluation context. Hence, equations between A,-terms are safe
and imply o-operational equivalence by the Safe-ness theorem. O

29

Remark. The theorem does not imply that A,-S ®* FM = N implies A,-S * FC[M] = C[N]
for arbitrary contexts. Indeed, this is wrong as the following example demonstrates. Con-

sider the equation
Av-S " H(Az.(02.2)1)0 = 2.

From this equation it does not follow that
Av-S " FAy.(Az.(02.2)1)0 = Ay.2.

Since the right-hand side is an irreducible term, the left-hand side would have to be reducible
to the right-hand side. But it is easy to see that there is no standard reduction sequence
from left to right and hence the two terms are not equivalent in the calculus. End

The upshot of our development and the correctness theorems is that imperative ex-
tensions of functional languages with assignments have equational theories. Based on the
conservative extension property, we can re-use all the equations and proofs about func-
tional programs in the MA,-calculus. The Simulation Theorem gives us the right to rely on
C-rewriting rules for derivations in the A,-S-calculus. This is of great interest, given the
idea of safe equations. The Safe-ness theorem provides the recipe for using the full calcu-
lus in this process, and safe theorems heavily rely on the idea of performing a complete,
C-rule like derivation inside of an evaluation calculus. The last correctness theorem says
that the A,-S-calculus is indeed the right equational tool for reasoning about operational
equivalences of A,-terms. In the next section, we show how all the pieces fit together.

8 Examples

In the preceding sections we have developed an equational theory for higher-order func-
tional languages with assignments. Next, we must demonstrate the feasibility of reasoning
with this theory, i.e., we must show how easy or how difficult it is to derive operational
equivalences about expressions. The correctness theorems of the previous section provide
the receipe for such proofs. Our plan is to investigate this receipe with some simple ex-
amples, to apply these results to some typical problem cases for denotational semantics [7,
18, 16], and to conclude with a brief investigation of an imperative version of the recursion
combinator.

In order to understand the connection between operational equivalences, equations about
A,-terms, and safe equations, we begin with some examples on the effect of simple assign-
ments of values to variables. Consider the program fragment

begin var z;...z := U;z:=V ...end,

where U and V are some arbitrary values. Clearly, the first assignment of U to the variable
z cannot have any impact on the evaluation and is thus eliminable. The formal counterpart
to this idea is that the fragment is operationally equivalent to the block

begin var z;...z :=V ...end.

With A,-terms, we can express this as the equation

(Az,.C[(02,.(025.M)V)U])0 ~ (Az,.C(02,.M)V])0,

30

where 0 is an arbitrary initial value for z, and C[] and M represent the rest of the block.
How can we prove this equation? First, we know that the block can only affect the
result if it is evaluated. Hence, we can apply the transition rule (C3) to both sides:

Cl(e ol (o9 MWV)U)[z, := 0] = C[(a o .M)V][z, := 0].

In this new proof goal, the crucial terms are the fill-ins of the context C[]. The goal holds
if we can show that these two subterms are operationally equivalent:

(oo (00 .MW)U[z, :=0] = (0 .M)V[z, :=0.
Second, in order to prove this last equation, we apply the Safe-ness theorem. In other
words, we must show that
XS > H(o o (oo . M)WV)U[z, := 0] = (oo .M)V][z, := 0],

and that this equation is safe. To this end, we assume without loss of generality that no
label other than [occurs in M, U, or V, and prove the above equation in the A,-S-calculus.
Indeed, to avoid duplication of work, we not only develop a derivation for the equation but
a derivation schema that proves the equation in all evaluation contexts and for arbitrary
[-labeled values:

X8>k E[(g¢' .((c o .MV)U][e' :=)]

= E[(ce .M)V][e':=UY

E[M][e' := U'|[o' := V]
E[M][¢' := V']
E[(o o .M)V][e := z,/].

i

Clearly, this derivation schema establishes the original equation and in addition proves all
relevant instantiations of this equation that we need to prove in order to verify its safe-ness.
The safe-ness of the equation implies the proof goal.

Another property of simple assignments is the interchangeability of such assignments to
distinct variables (in a call-by-value language). More precisely, we should be able to prove

equations like
Mo AT

Applying the same analysis as above, this equation holds if we can prove the following safe
equation about Ag-terms:

M-S ® H(o of ((o o MIV))U = (0 oF .((c o' .M)U))V.
The appropriate derivation schema proceeds as follows:
A SPE E[(c o ((c o .MV)U][e" := z)'][eF := y2*]
. = E[(oe* M)V]e:= U]

= E[M][e := U)ok = (V[o := U'])']
= E[M][e* := VF][e! := (U[s* := V¥])]
= E[(ce .M)U][e* := VF][e! := V]
= E[(oe* .((c o .M)D))V][e* := ya*][e' := 2]

31

As in the first example, this proves the desired goal.
An interesting generalization of this second equation is the case where the second simple
assignment is replaced by an arbitrary computation without reference to the first variable:

=M T e, e, (%)
or
(0 o (A.NYM)U =~ (Md.((c o .NYU))M,

where | ¢ Lab(M). For the proof of this, we distinguish two cases. First, suppose that
M diverges. Then it is clear that both expressions also diverge: the right one uses M
immediately, the left one after a simple assignment that cannot affect M. Second, assume
that M terminates in all evaluation contexts, possibly with effects on the context. Assuming,
without loss of generality, that M can only affect and can only be affected through the label
k, we can state this property as an equation:

Ao-S ® FE[M[e* := y*]] = E[W][e* := V).
Given this, we claim that
Ae-S ® H(o ¢! (Ad.N)M))U = (Ad.((c o' .N)U))M, where | ¢ Lab(M),
and, furthermore, that this equation is safe. The following derivation schema proves the
claim:
A-S " E[(0 o' .(M.N))U][¢" := z)][oF := 11¥]
= E[(Ad.N)M][¢' := U]
= E[QALN)W][e := U'][e* := (V]o! := U))]
= E[N]jo* := V¥|[e! := (U[e* := V*)]
= E[(0 e N)UJ[e* := VE]jol = 2]
= E[(Md((o o' NU)M][e = z)/][e* := 11 *].
Besides elimination and interchangeability, simple assignments also have directly ob-

servable effects. By this we mean that an immediately following reference to an assigned
variable can be replaced by the right-hand value, i.e.,

(o o' .E[z\))V ~ (0 o' .E[V])V
for all evaluation contexts E[]. We prove this in the usual manner:
A\p-S® FE[(c o' .E[c\))V] = E'[E[z\]][¢':=V']
= E'[EV1e' := V]
E'[E[V][é := V!]]][¢' := V]
E'[E[V]|[e' := V']
= E(oo .E[V])V]

32

In Algol-style syntax, this equation is expressible as
s VBRI B 0L =V BV . (1)

We are now ready to apply the above results to a typical example from Algol-like lan-
guages that can only be treated with non-trivial denotational store models [18]. The example
concerns the following operational equivalence of Algol-like statements:

begin var z; z:=0; P(); if =0 then Q end ~ Q

The variable P is a procedure variable, P() a procedure call, the symbol € stands for some
infinite loop. This immediately implies that (the expression for) P cannot refer to z and
hence, by (#), we can exchange the call to P and the simple assignment to z:

begin var z; z := 0; P(); if £ =0 then Q end

~

begin var z; P(); z :=0; if z = 0 then { end.

Next we know that the reference to z in the comparison of the if-statement follows a simple
assignment in an evaluation context and thus the rule (}) applies:

..~ begin var z; P(); z:=0; if 0 = 0 then Q end.

An application of the appropriate é-rules for comparisons and for if, together with a second
application of (*), yields:

..~ begin var z; P(); Q; z:=0 end.

A simple case analysis on P’s termination behavior now shows the above equivalence. If
P terminates, the block will start the infinite loop {2; otherwise, it is in an infinite loop
already. In either case, the block is operationally equivalent to an infinite loop.

For another illustration of the power of the A,-S-calculus, we take a second example from
the same report that cannot be dealt with in the currently available denotational models.
Consider the program fragment

begin var r; procedure Q(y); begin z := y end; P(Q) end.

Since there are no further references to z, only assignments, and since Algol-languages do
not permit reference to local storage outside of its lexical scope, this block is operationally
equivalent to the statement

begin var z; procedure Q(y); begin noop end; P(Q) end.

In Meyer-Siebert store model, however, these two fragments are not semantically equivalent.
With our calculus, we can at least prove the equivalence when the call P(Q) terminates.
Let us first translate this equation into a suitable form:

(Az.P(0z.0))0 ~ P(Ad.0).

33

The block on the left side reduces to P(o o' .0) for some ! ¢ Lab(P):
A-S ® F(Az.P(02.0))0 = P(o o' .0).

The assumption that the call P(Q) terminates can be translated into the fact that there is
a finite derivation in the calculus from the call to some value:

M-S FP(ce'.0)=V.

Since the underlying language is Algol-like, that is, stack-based, we also know that [and
o ¢! .0 cannot occur in V. During the evaluation, P may actually invoke o e’ .0 several times.
This means some steps in the derivation are applications of the o-capability to some value
U in an evaluation context E[]:

Ap-SPFP(ce' 0)=...= E[(ce .0)U]=...=V.

On the other hand, it follows for every single invocation of P’s argument that it has no
effect on its evaluation context and the rest of the derivation:

Ae-S® F...= E[(c¢" .0)U] = E[0][¢ := U'] = E[(M.0)U]=....

Since the derivation is finite, we can show by induction on the length of the derivation that
o o' .0 can consistently be replaced by Ad.0:

A8 FV == El(AdW] = o o = P{Ad0).
Putting the first evaluation step and the two derivations together, we get that
A-S ® F(Az.P(02.0))0 = P(Ad.0).

Finally, it is easy to see that this equation is also safe. Unfortunately, if P(Q) does not
terminate, we cannot prove this equality. We return to this point in the last section.

The final example differs from the previous ones in several ways. Thus far, the programs
have been of first- or second-order flavor and have not dealt with self-referential assignments
and values. Now we drop all these restrictions. The program that we treat is an imperative
version of the recursion operator. The usual way of realizing recursive function definitions
in the A-calculus framework is based on self-application. That is, if the functional F defines
a function f by self-reference:

(fz) = (Ff)=,
then f is represented in A, as
¥y, F

Y, is the call-by-value recursion combinator [22, 26]. It is defined as

Y, £ (Af.(02.(0g.F(A2.(99)))(Ag-f(Az.(99)2))))
and satisfies the fixpoint equation

(Y. Fiz 2 F(Y.F)z.

34

In real systems, however, recursive functions are not implemented through self-applica-
tion. Instead, these implementations use self-reference of function variables. In A,, this can
be expressed as a different version of the Y,-combinator. This imperative Yi-combinator
also takes a defining functional as an argument, then sets up a new variable binding, and
finally assigns to this variable a function that refers to this variable:

Yi £ 2 f.(0g.(09:9) Mz fgz))0.

Although this imperative recursion combinator is a generally accepted means for implement-
ing recursion [9, 15, 27], its correctness proof has been ignored. With the),-S-calculus,
it is not only possible to express the combinator, but it is also easy to verify the fixpoint
property of Y; with a simple calculation:

Av-S P EYiFz = (Agy.(09s-95)(Az-Fgo2))02 by (ﬁu)
= (o¢' .0")(Az.F0'z)z by (C3)
= (Az.F0'z)'z by (C5)
= (Az.F(0z.F0'z)'z)z by (C4)
= F(Az.F0'z)lz by (8y)
= F((o¢'.0)(Az.F0'z))z by (C5)
= F((Ao-(09s-95)(Az.Fgoz))0)x by (C3)
= F(\:F)s. by ()

Since this derivation yields a theorem between A,-terms, the theorem automatically is an
operational equivalence.

Naturally, we would also like to show that the imperative recursion combinator produces
a minimal fixpoint. This corresponds to our intuitive understanding of recursion and would
establish an equivalence between Y, and Y:. However, with our simple syntactic calculus, it
is impossible to state or to prove such a statement. This is another drawback of our work,
and we address this point in the last section.

9 Summary and Perspective

The goal of our work was to extend the A,-calculus to a calculus about a higher-order
programming language with imperative assignment statements. For the implementation
of our goal, we formalized an abstract machine semantics for an extended A-programming
language with an assignment expression and discussed the implied operational equivalence
as the basis of correctness proofs and program transformations. Next, we transformed
the abstract machine semantics into a more text-oriented rewriting system and derived a
calculus-like theory from it. A central advantage of both over conventional models of higher-
order languages is the avoidance of the infamous “garbage” and “free list” problem [7, 18].
The proof of the correctness theorem for the A,-S-calculus revealed that the relationship
between the extended calculus and the underlying programming language is of complex
nature, yet, with a short series of examples, we were able to show that this does not impair
the calculus’s capabilities. In summary, the equational theory is a good basis for an almost
algebraic style of reasoning about imperative programs.

35

During the feasibility study, we indicated some problems with our calculus. Put into
slogan form, the A,-S-calculus is a calculus in Church’s sense, but not in Scott’s. More
technically, the theory is a syntactic system and lacks semantic ordering relationships, limits,
and an induction principle for infinite computations. One possible alternative without these
problems is to work directly with operational equivalence. This line of research is being
explored by Mason and Talcott [12, 13, 14].5 Their basic idea is that operational equivalence
already is a congruence relation, and that all we need to develop are strategies for reasoning
with this relation. To this end, Mason and Talcott develop a set of primitive laws, which
are frequently used operational equivalences. With these laws—there are some sixty for
first-order Lisp—it is possible to prove the correctness of many interesting transformations.
Since operational equivalence is closely related to operational approximation, it is also
straightforward with this approach to establish a fixpoint induction principle about infinite
computations.

Although convincing at first glance, the direct approach is also loaded with problems.
First, given that operational equivalence is a congruence relation, but that the value of a
program is often operationally distinct from the program, it is impossible to use the op-
erational equivalence relation for evaluating programs. Second, as a consequence of this,
there cannot be a finite number of laws that yield all equivalence proofs; the collection
of laws will have to be expanded over time. Third, and probably most important, unlike
programming language calculi, operational equivalence relations are sensitive to the princi-
pal building blocks of the underlying programming language. As a consequence, theorems
about some functional programs, for example, cannot be re-used in an imperative setting:
such theorems have to be re-established from scratch. From this perspective, the calculus is
simply interesting because it identifies equalities that hold across a broad class of program-
ming languages. Working with both the calculus and the operational equivalence should
facilitate the work with multi-paradigm programming languages.

The development of the),-S-calculus is only a first step towards an improved under-
standing of imperative programming languages. The problems that it poses do not have
trivial solutions. Still, we believe that the system is a good starting point for further research
about the nature of assignment operations and state variables in programming languages.

Acknowledgement. Sussman and Steele’s paper on Scheme as an interpreter for extended
A-calculus [25] stimulated us to consider how such a calculus for assignments in higher-
order languages could be constructed. Discussions with Robert Hieb provided the key
insight for the elimination of D-applications from our previous report. Carolyn Talcott and
Albert Meyer clarified some of the strengths and weaknesses of calculi systems. Bruce Duba,
Shinnder Lee, Uday Reddy, Carolyn Talcott, and Mitchell Wand provided helpful comments
on earlier drafts of the paper. The anonymous referees pointed out several inaccuracies and
suggested many improvements to the presentation.

5Their work is mostly concerned with Lisp-like languages and relies on an operational semantics in the
style of our CS-machine with the garbage problem. For the purpose of this comparison, we simply ignore
these differences.

36

References

1.

10.

3 8

12,

13.

14,

15.

16.

17,

AiT-Kaci, H. AND R. NasrR. Logic and inheritance. In Proc. 13th ACM Symposium
on Principles of Programming Languages, 1986, 219-228.

. BARENDREGT, H.P. The Lambda Calculus: Its Syntar and Semantics. rev. ed. Studies

in Logic and the Foundations of Mathematics 103. North-Holland, Amsterdam, 1984.

. BouuM, C. Alcune proprieta della forma n-normali nel A-K-calcolo. Pubblicazioni dell’

Istituto par le Applicazioni del Calcolo, Rome, 1968.

. FELLEISEN, M. The Calculi of Lambda-v-CS-Conversion: A Syntactic Theory of Con-

trol and State in Imperative Higher-Order Programming Languages. Ph.D. dissertation,
Indiana University, 1987.

. FELLEISEN, M. AND D.P. FRIEDMAN. A calculus for assignments in higher-order

languages. In Proc. 14th ACM Symposium on Principles of Programming Languages,
1987, 314-325.

. FELLEISEN, M., D.P. FriepMaN, E. KOHLBECKER, AND B. DUBA. A syntactic

theory of sequential control, Theor. Comput. Sci.52(3), 1987, 205-237.

. HaLreErN, J.Y., A.R. MEYER, AND B.A. TRAKHTENBROT. The semantics of local

storage, or what makes the free-list free? In Proc. 11th ACM Symposium on Principles
of Programming Languages, 1984, 245-257.

. LANDIN, P.J. A correspondence between ALGOL 60 and Church’s lambda notation.

Commun. ACM 8(2), 1965, 89-101; 158-165.

. LANDIN, P.J. A A-calculus approach. In Advances in Programming and Non-numerical

Computation, edited by L. Fox. Pergamon Press, New York, 1966, 97-141.

LANDIN, P.J. The next 700 programming languages. Commun. ACM 9(3), 1966,
157-166.

LANDIN, P.J. The mechanical evaluation of expressions. Comput. J. 6(4), 1964, 308-
320.

MasoN, I.A. Equivalences of first-order Lisp programs. In Proc. Symposium on Logic
in Computer Science, 1986, 105-117. '

MAason, I.A. The Semantics of Destructive Lisp. Ph.D. dissertation, Stanford Univer-
sity, 1986.

Mason, I.A. AND C. TALCOTT. Programming, transforming, and proving with func-
tion abstractions and memories. Unpublished manuscript. 1988.

MAUNY, M. AND A. SUAREZ. Implementing functional languages in the Categorical
Abstract Machine. In Proc. 1986 Conference on Lisp and Functional Programmaing,
1986, 266-278.

MEYER, A.R. Thirteen puzzles in programming logic. In Proc. Workshop Formal
Software Development: Combining Specification Methods, edited by D. Bjgrner. Lecture
Notes in Computer Science, Springer-Verlag, Heidelberg, 1984.

MEYER, A.R. Semantical Paradigms. In Symp. on Logic in Computer Science, 1988,
236-255.

37

18.

19.

20.

21

22

23.

24.

25,

26.

27.

MEYER, A. R. AND K. SIEBERT. Towards a fully abstract semantics for local variables.
In Proc. 15th ACM Symposium on Principles of Programming Languages, 1988, 191-
203.

Mogrgris, J.H. Lambda-Calculus Models of Programming Languages. Ph.D. dissertation,
MIT, 1968.

ProTkIN, G.D. LCF considered as a programming language. Theor. Comput. Sci. 5,
1977, 223-255. :

ProTkiIN, G.D. Call-by-name, call-by-value, and the A-calculus. Theor.. Comput. Sci.
1, 1975, 125-159.

REYNoOLDS, J.C. Definitional interpreters for higher-order programming languages. In
Proc. ACM Annual Conference, 1972, 717-740.

SeTHl R. Circular expressions: elimination of static environments. Sci. Comput.
Program. 1, 1982, 203-222.

Stoy, J.E. Denotational Semantics: The Scott-Strachey Approach to Programming
Languages. The MIT Press, Cambridge, Mass., 1981.

SussMAN, G.J. AND G.L. STEELE JR. Scheme: An interpreter for extended lambda
calculus. Memo 349, MIT AI Lab, 1975.

TALCOTT, C. The Essence of Rum—A Theory of the Intensional and Eztensional
Aspects of Lisp-type Computation. Ph.D. dissertation, Stanford University, 1985.

TURNER, D.A. A new implementation technique for applicative languages. Softw.
Pract. Ezper. 9, 1979, 31-49.

38

Appendix Proofs for the Consistency and Standardization
Theorems

The proofs of the Consistency and Standardization Theorems follow the same pattern. For
both theorems, the validity of the statement about the sub-calculus implies the claim about
the entire A,-S-calculus. Furthermore, traditional techniques are sufficient in both cases for
proving the statements on the sub-calculus [2:59-63, 21:136-142]. Whenever a proof is a
simple (often tedious) re-working of a conventional proof, we omit it. We first treat the
Consistency Theorem.

Theorem 6.2. (Consistency)
(i) The notion of reduction s is Church-Rosser.
(i) The s-computation satisfies the diamond property.

Proof. Let us assume the correctness of point (i). Then we need to show that whenever
M v, L; for i = 1,2 and Ly # 54 L2, there exists a term N such that L; >, N. We proceed
by case analysis on M v, L;:

1. M = &(Az,.P)V b &Pz, := V'] = L; where [is fresh.
First, we must consider the case

M = &(A\z,.P)V b &Pz, := V™)

where m # [. At this point, we can exploit the knowledge that computations are only
applied to complete programs. Hence, it follows that

&Ly Sigp Plz, :=V™) =lab Pl o= VI] =i &Lo.
Since we identify label-equivalent programs, this case degenerates to

&Ly =iap &Ly =iap &N.

Next, we must analyze two subcases because M contains two subterms:

(a) Ly = (Azy.P2)V because P—»,P;.
But then
&(Az,.P)V b &Pyfz, i= V']

and the Substitution Theorem (6.1) induces
Pz, := V' |—», Pz, := V'].

The label [can hereby be reused because a reduction cannot introduce new labels
and therefore /is still available for the computation step. Hence, N = P2z, :=

V).

39

(b) Ly = (Az,.P)V; because V—,Va.
This second alternative requires a variant of the Substitution Theorem, namely,
that
Plz, := U'l—» Pz, := V'] if U—>,V.

Given this, the rest is the same as in subcase (a).

2. M = &(o ot .P)V > &P[et := (V[o! := VI])] = L.
There are again two relevant cases: a reduction of M either transforms P or V. The
claim follows from calculations like the preceding ones provided that we can prove the
following two properties of labeled-value substitution:

Pl :=U'l —», Pl :=V]ifU—»,V,
Pl =V —», Q[¢':=Vif P—,Q.

3. M =&UVY > &UV[e := V!]) = L.
For this case we need the property

Ule' := U —»,V[e! := V1] if U—»,V.
Otherwise, it does not add any new problems.
4. M =&V'o &V[e' := V'] = L. Like 3.

5. M—-'H'sLl.
There are two subcases possible: the second step can be a computation or a reduction.
In the former case, we have a situation that is symmetric to a previous one; in the
latter, M —»,L2, and the consequence holds because of the assumed Church-Rosser
property for s.

In order to complete the proof, we must still show the following four properties of
substitution and labeled-value substitution:

Plz, := U] —», Plz,:=V']
P[oI =Ul —», P[oI =V
Ple':=V!] —», Q[¢':= 14
Ule' := U] —», Vet := V!

if P—»,Q and U—»,V. The first two claims follow from straightforward inductions
on the structure of P. The third uses a structural induction on the reduction from P to
Q and is based on the commutativity of substitution and labeled-value substitution (see
Theorem 6.1). Finally, the proof of the fourth claim is a simple combination of the second
and third statement. [

With the preceding proof we have reduced the consistency problem of the A,-S-calculus
to the consistency problem of the sub-calculus, i.e., the Church-Rosser property of s. This
proof, in turn, is an application of Tait /Martin-L6f’s method for showing the corresponding
result for 8. The first step is to define a version of the parallel reduction relation —p» for
s. For the proof of the Standardization Theorem we also define a notion of the size of a

parallel reduction.

40

Definition Appendix.l (The parallel reduction —») The parallel reduction over Ag is

denoted by —+ and is defined as follows, where spr

N or just s is the function which

measures the size of the derivation M —» N and n(z, M) is the number of free occurrences

of z in M:

1. M—» M, s=0

2.iffM —» M',N—p N, ,U—p» U',andV —» V’then

(Az.M)V

(Azo.M)V)N
s
U((Azo.M)V)
S
((eX.M)V)N
S
U((eX.M)V)
S

(Uzs)M

S

V(Uz,)

S

(UWHM

8

V(UWY)

S

ViM

—‘->1.

Mz =),

SM M’ + n(z, M!)SNT»N' +1
(Azg.M'N)V",

SMgwM' + SNwN' + 8V v + 1
(Az,.U'M"WV',

SM—»M' + SU—U + Sy vy + 1
(cX.M'N"W',

SMoaM'+ SNwN' + vy +1
(e X.U' M)V,

SM—sM' + SUsUr + SV v + 1
((Az).U'zxM")z,),

SMoM' + SUsUr + 1
((Azx.V'(U'z)\))zs),

Ul + SVmyr +1

(AzxU'zy MW,

SMawM! + SUwU + SWwwr + 1
(Aar V(U2)W),

Syt + Vv +Swawr + 1
(Av.oM"V™),

SMosM' SV + 1

3.if M —» M',N — N',and V —» V’ then

(Az.M)
(e X.M)
Vf

MN

(,\E.i'l/f’), 8§ = SM-I—»M'
(cX.M'), s = SM—»M?

V”'p 8= SVT»V"

M'N', s = SM—wMt + SN N

Tt follows from this definition that a value can only parallel reduce to another value.
Moreover, it is obvious that parallel reduction is an extension of the single step s-reduction

41

and is a subset of its transitive closure:
S, C=p (G

Next we show that unlike the s-reductions, the parallel reduction relation transforms
the expression M[z = N] into M'[z := N’] in one step if M and N parallel reduce to
M' and N’ in one step, respectively. That is, two By-contractums reduce to each other if
the subterms do. Furthermore, we simultaneously prove 2 statement that is needed for the
Standardization Theorem, namely, that this new reduction is shorter than the one from
(Az.M)N to M'[z := N'l:

Lemma Appendix.1 Suppose M —* M', N— N/, and N is a value. Then the
following holds:

Mz = N]— Mz=N 1 and spg=N)»M'ls=N"] < $(re.M)N—M'z:=N"

For the actual proof, we need similar lemmas for the other kind of primitive parallel
reductions (group 2.), but, given their simplicity, we omit them. Everything is now in place
to state and prove the diamond lemma for parallel reduction.

Lemma Appendix.2 The relation —* satisfies the diamond property, i.€.; if M —
L; then there erists an N such that L; —» N fori=1,2.

From this lemma, the Church-Rosser property of s follows.
Corollary Appendix.3 The notion of reduction s is Church-Rosser.

Proof. Since —»s 18 the transitive closure of s, it is also the transitive closure of —* -
As a result, the reduction —» inherits the diamond property from the parallel reduction
relation. O

With the Church-Rosser theorem in place, we can tackle the Standardization Theorem.

Theorem 6.4. (Standardization}
(i) M—»4N if and only if there is an sr-sequence L1, -s L, with M = L1 and L, = N;
(ii) M >y N if and only if there is an sc-sequence L, . ., L with M = Liand L,=N.

Proof. For both parts, the direction from right to left is trivial. The other direction needs
some elaboration:

(i) For the standardization property of the sub-calculus, we follow Plotkin’s plan for the

corresponding theorem about the \,-calculus. First, the sequence of —+,-steps is

replaced by a sequence of steps using the parallel reduction —p» . This follows from
the above mentioned property that the parallel reduction relation is an extension of
the s-reduction. Then we iteratively transform the parallel reduction sequence into
an SR-sequence. The basis for this step is developed in Lemma Appendix.5.

42

(ii) Assuming that the proof of part (i) can be completed, we can prove (ii) with an
induction on the number of computation steps in the sequence from M to N. If there
are no computation steps, we can use (i) for forming an srR-sequence from M to N.
Otherwise, there is at least one computation step and we must have the following
situation:
Ll_»sLm B Lm-l-l D‘; Ln*

Again by (i), we can form an sr-sequence Kj,...,K; for the reduction L;—» L.,
where K; = L; and K; = L,,. Since L,, is a computational redex, there is a maximal
prefix of this sr-sequence whose terms are related via the standard reduction function,
i.e., for some j, 1 < j <[there is a computational redex K; of the same kind as L,,
such that

LlH:,ﬂ’j—»,Lm = Kj' g Lm-i-l b‘: Ln

and it is not the case that Kj—,, K;j+;. At this point, we can employ the proof of
the Consistency Theorem, part (ii) and interchange the computation step with the
reduction sequence:

Li—5 K;jp P—» Ly b% Ly,

for some term P. But this can be recast as

+

>
Lyt 58

Psl Ly,

and, because there is one less computation step in the sequence from P to L,, an
application of the inductive hypothesis produces an sc-sequence for this second half
of the reduction. Together with the first half, this yields the desired sc-sequence from
Mto N. O

For completeness, we include a precise formulation of the prefix-property for sr-sequences.

Lemma Appendix.4 If Ny,..., N is an SR-sequence where N is a computational redex,
then there ezists a j, 1 < j < k such that for all i,1 < i < j, Ny9—45 N;y1, and for all
t,] <1< k,N;—;N;11 and it is not the case that Nj— ;s Niyq.

Proof. By case analysis on Ny and induction on k.0
We can now turn to the completion of part (i) of the Standardization Theorem. What
we must prove is that sequences of parallel reductions can be transformed into standard

reduction sequences.

Lemma Appendix.5 If M —» N; and Ny,...,N; is an SR-sequence then there exists
an SR-sequence Ly,...,L, with M = L, and L, = N;.

As with the preceding lemmas, the proof of this lemma is a mechanical extension of the
corresponding traditional proof.

43

an divw (&) wong gad ew bodelgaod sd gao (i) fwg to Toonq wit fadi scioraeld (i)
s B ¥ o W mend sorsupue odd M hgste ooty to tedmig sds se waitsnbe
A 03 Vb medl Aesgopseae an grinmnd 10) (1) sav dey aw aqalin Snitatiajeeon e s
privwollol o1 vasd v sw bus gese not2ernqmes she Jasal 9 N el swwyalsO

siaite o
n-l :“ I'-}-.]' "'-l|l'§“"-*l3

mh e neltesbey ade 3ol gR., D6 Gosol ama s 00 N ey A
hmammmhmn.uwcalﬁ@ﬁ AR SRy
Laaltnasl noitinbsy bisbasts et glv betalor was sy apotlw sonsypse 208 §illy Yo ey
mtuwmmh‘nmmmsﬁmqui A o 10

nds dsoe
‘& -I H-M'J avh = ,,I,pq-“t“m,.!

1o tpony wil? wolgam nes sw dwiog €l 1K o @R SRl aeas add son i N bas
wummmmmsmmm.mwmﬁm

wrsgea nolissber
el 1%) e 2 TR Jen)
ae s s o eis 16l S goved mizon 1ol
ﬂ;t "“ :-:""' Ll
‘28) o Q mo) sugsppee ol ni gedh noitdlegeer el wo i sw sageted | b
Yail hnows sifl? 10) ssasopes-E x5 eopbiong saadtagd svinebai sds Yo avlissiiggs

mOT] N peR-OE ln'ul‘ lﬁdﬁhﬂ(lﬂl RIFTIEL L T L &hmmmh
= AR Y

Ansasgpen-#2 101 Yhoqoag-aiteig 543 Yo coltalnond sebmg 5 abubai ww eemns telgmios 101

ashen \pnoralugreo # 4 W ywde omeges-de e 6 oA, AT boxibasgad e
o w0l B8 pee? o=tV 0 > 4 2 6,0 Vo na Sudy desee. 4 > £ 2 1 0 aheins arsds et
].’.i“. n‘—':‘v mmaﬂ?hﬂhhh 1.'.{%45'_"1..-*:’]? L i

14 po cooabni byia JW oo siedleas s 78 Joord

iV morwadT soitaxibuwbasid odt Yo (i) Jwg To aulbalqmes wll or mun won wes o
brabaats ol Imarotsusst 9d whv smoiionbor lallewsg lo svmupse et wi sy teom ae
LOags e a0 ey
whesas ovadl oald spmapow- A% an o (VW bee Y a— WY BodbawgqA smars)
'!..-‘ = gll Bnt (-1 (S T TR A,.. -.¢'~l Sonadpon-12 ivn

ad) Yo noiensizs nlsafoem & a susewi ad! Yo toosg wis ammmed yribesorg o) diiw <4

