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Fixed-Point Constructions

In Order-Enriched Categories

Mitchell Wand
Computer Science Department
Indiana University

Bloomington, Indiana 47401

Abstract

The fixed-point construction of Scott, giving a continuous lattice
solution of equations X = T(X) where T is an endofunctor on the cate-
gory of continuous lattices, is extended to categories enriched by
partial orderings on the morphism sets. The result allows data
structures to be realized not only in the category of continuous
lattices, but also in the category of complete lattices, in the cate-

gory of complete partial orders,or in any of several related categories

of partial orders.



1. Introduction

A key feature of lattice-oriented theories of computation is
the specification of objects as solutions of fixed-point equations
X = T(X) . When X ranges over the elements of a complete lat-
tice, a canonical solution is supplied by the Tarski fixpoint the-
rem. Typical applications include languages [3,26] and pro-
grams in assorted variations [6,11,25]. Scott defined lattice-
theoretic models of the lambda-calculus [19,21] and of several
other structures [18,20] by solving similar equations where X
ranged over the class of continuous lattices. Reynolds [16] showed
the existence of canonical solutions for a large class of functors
T , and Lawvere [19, p.1l29] pointed out that the result in the
case T(X) = [X»X] 1s a consequence of the fact that certain
direct and inverse limits coincided.

In this paper we extend these results from the category of
complete lattices to any category on which each morphism set has
a well-behaved complete partial ordering. These include the orig-
inal case of continuous lattices,complete lattices, complete partial
orders, powers of these categories, and the category of directed com-
plete relations. Thus many of the repetitious verifications of de-
tails are "factored out" into the proof of the general theorem,
leaving a smaller portion which must be worked out for each category
under consideration. By clarifying and separating the properties
of the general construction from the properties of the individual
categories, we hope to give a more elegant analysis of this class of

problems.
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It is worthwhile to explore the analogy of the standard fixpoint
construction. If L 1is a complete lattice, f:L - L a continu-

ous function, then one constructs

"
|

1 = Tlx)

Then y = ki X, 1is a fixed point of f, and it is "least" in the
sense that if f(z) < z, then ¥ £ z. To get the fixed-point

property, we calculate

£(y) = r(ux)=llee) =Lix, =Lz =y.

The "least" property is obtained by showing that if f(z) < z and

then X < z for every k (by induction on k). If L is re-

garded as a category with L(x,y) = {1} if x < y and @ otherwise,
then least upper bounds are colimits and f is an endofunctor which

preserves directed colimits.



Hence, to solve a fixpoint equation in some appropriate

category, starting with an initial object a, one sets

X, = a
1™ TX
vy = colim X,
Then T = T(colim x, ) = colim Tx = a7
y k X, colim Xk+l Ve

The correctness of this construction, in the case where
the category has colimits and T preserves w-colimits, was shown
by Smyth and Plotkin [14]. The main new result of this paper,
Theorem 1, gives a sufficient condition for the existence of
these colimits in terms of the existence of limits, which are
generally easier to supply. Again we have a "least" property,
which says that if z is any object of the category and there is
a morphism Tz =+ z (analogous to T(z) < z), then there is a unique
morphism y » z satisfying an appropriate diagram condition.
This forces y to be unique up to isomorphism. Last, in Section 4,
we give some examples of categories and functors included by the

theory.
Our use of enriched categories is also worthy of note. One

of the dogmas of category theory is that all of the interesting

structure in a category lies in its morphisms [8]. If we are in-
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terested in ordered structures, then it becomes plausible to study
(%
categories with ordered morphism sets [2, sec. LE]: )In this case,
we are then able to prove theorems about classes of categories rather

than single categories.

2. Preliminaries

We presume familiarity with the standard notions of category,
morphism, functor, limit, colimit, and cone [10]. We denote cate-
gories with boldface type, e.g., K, KP, w. The set of morphisms
from object x to object y 1in category ( is denoted ((x,y)
We compose morphisms from left to right: if f ¢ ((x,y) and
g ¢ C(y,2z) , then fg ¢ C(x,2) . (This will eventually make the
subscript conventions more tractable.) We write application from
right to left: if T:( » ) and U:)) » E are functors, and
k ¢ C(x,y) , then UTk ¢ E(UTx,UTy) ; similarly, if ¢ is an
I-indexed family and ieI, then ¢i is the element corresponding to
i+ . We will also use center dot (*) for composition and add
parentheses as needed for clarity. We will say ( has
D-(co-)limits 4iff every T:)) » ( has a (co-)limit.

Let w denote the category whose objects are the nonnegative

integers, with w(k,n) = {(k,n)} if k < n and = @ otherwise.

(*¥) See also [9], in which category-enriched categories are studied.



Proposition 1. w 1s the category freely generated by the

graph whose set of objects is w and whose edges are (k,k+l1) %
for each k . §

Let () be the category whose objects are partially-ordered
sets X such that every w-chain x; Lx, C...Cx C ... or
elements of X has a least upper bound and whose morphisms are
maps which preserve lub's of w-chains. Let U be the forgetful
functor () » SETs . Clearly () has finite products under the com-

ponentwise ordering.

Propositioﬁ 2." Let X and Y be two objects in (), let {xi}

be an w-chain in X and let {y,;} be an w-chain in Y. Then in XxY,

CLijxi,LT]yj) = LEJ{Xi’yi)°'

Definition. A category K is order-enriched by giving, for

each hom-set K(x,y), a relation | _

= (x,y) such that
3

(K(x, %), LJ(x,y)) is an object of Q and such that for each
X,¥,%, the composition map K(x,y) x K(y,z) » K(x,z) is a morphism
in (. We write K(x,y) for both the hom-set and the object in ().

An order-enriched category is just an (-category in the sense
of [7] or [10, pp. 180-181]. This ordering requirement is weaker
than one might expect, as we do not even require that morphism sets

have least elements. In fact, every category 1s order-enriched under
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the ordering which makes every pair of distinect morphisms incomparable.
Qur primary interest, of course, is in orders which are nontrivial.
Still, () is sufficiently close to SETS that elementwise arguments are
feasible:

Proposition 3. If f « K(x,y) and g, € K(y,z) are w-chains

of morphisms in an order-enriched category, then

(hﬁ fk)'(ljé.gk) = %Zlfkgk.

Proof: Immediate from proposition 2 and the continuity of composi-

tion. W

Definition. Given an order-enriched category K, let KP

denote the category whose'objects are the objects
of K and whose morphisms are given by KP(x,y) = K(x,y) x K(y,x), with
<f,g>+<f',g"'> = <ff',g'g>. The identity morphisms <1,1> of KP will

be denoted 1. Let KR (the category of K-projections) be the subcate-

gory of KP whose objects are those of K and whose morphisms KR(x,y)

.
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censist of pairs <f,g> e K(x,y)*K(y,x) such that fg = 1 and
gf[;:l«

If <f,g> e KR(x,y), we occasionally refer to f as the embedding

and g as the retraction of <f,g>.

If K 1s a category of data types, a morphism in KR(x,¥)
may be thought of as an injection of the data type x into the
"larger" type y [20]. The name "projection", of course, conflicts
with the standard notion of projection maps from a product o 1its
components, but the latter notion does not arise in this paper until
Section U. We will occasionally write "projection pair" instead of

"projection"” for a morphism of KR.

L

Proposition 4 g is an isomorphism iff @ = <f,f77> for some

morphism f of K. H

Proposition 5. (i) If <f,g> and <f',g>>are projections,

f'i

then f

(i1) If <f,g> and <f,g'> are projections,

u

then g 2.8
PROOF: (i) f£'C f'gf = £, and similarly rL_ f'.

(i1) g' = g'fg ]__:_.g, and similarly e E g, [
Propeosition 5(1) implies that KR is isomorphic to the sub-

category of K whose morphisms are "embeddings", i.e. first elements
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of projections.(*) Most of our concern is with K and KR; we use
KP only occasionally. Dually, by proposition 5(ii), KR is isomorphic
to the subcategory of KOp whose morphisms are "retractions," i.e.
(*)

second elements of projection pairs.

Definition. If K,K' are order-enriched categories, a functor

T:K - K is continuous on morphism sets iff for each x,y € K,

the map K(x,y) » K'(Tx,Ty) given by f |> Tf is a morphism of
0.
This is another way of saying that T is an (-functor [7].

Proposition 6. If T:K - K' is continuous on morphism sets,

and fi is a monotonic w-chain of morphisms, then
Lize, = T(L.in). 8
Since we will spend a great deal of time manipulating limits,

it is worthwhile to review the relevant concepts.

If T 1s a functor ) » K and x is an object of K , a
cone from x to T 1is a family ¢ of morphisms of K , indexed

by the objects of [} , such that for each object d of [ ,

¢d e K(x,Td) , and for each morphism h e D(d,d') , the following

diagram in K commutes:

¢d ¢d!

™ )
Th

(¥) . ; ) .
Isomorphic as categories, but not as order-enriched categories.
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o g wop . X 1is the apex of the

Typically )] will be

le

cone.
If ¢ 1is a cone from x to T and ¢' is a cone from y

to T , then f e K(x,y) 1is a mediating arrow from ¢ to ¢'

iff for each object d of [J] , the following diagram commutes:

X
i)
¥

od
I

Y is a limiting cone of T iff for any cone ¢ to T , there

Td

is a unique mediating arrow from ¢ to y . We often write ¢¥*

for this mediating arrow when T 1is clear from context. We refer

to the apex of a limiting cone as 1im T, Limits are, of course,
unique up to isomorphism. The dual notion is a cone from T to x ,

and a colimit.

3. Results

The first theorem establishes a sufficient condition for the
category KR to have w-colimits. These colimits turn out to
coincide with QOp—limits in K.

Theorem 1. Let K be an order-enriched category with w°°-limits.

Then KR has w~-colimits.
(¥}

The proof proceeds by definitions and lemmas.

% _ . _ . . gt
£ The theorem is a refinement of one proved by the author under
some additional assumptions about the behavior of limits in K. Gordon
Plotkin showed that the additional conditions could be removed; the
present arrangement of the proof is due to D. Lehmann.
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Definition. Let E={Zk|kew} be a family of morphisms in KR

with common codomain x. £ 1s said to have property p iff

Ek = <f > and

k> Bk
(1) gkal; 81184y TOr kew

and (ii) Hg gkfk = 3.

Lemma 1. Let K be an order-enriched category with gOp—limits,
and let L:'w » KR be any functor. Then there is an object L¥* of
KR and a £ from L to L* which has property p. Furthermore, the
cene formed by the retractions of £ is a limiting cone for the functor

L':g?p+K obtained by keeping the retractions and forgetting the em-

beddings.

Proof. Let L:w> KR be given by n |» Ln ; (n,m) |- <fnm,g (i £ m).

mn”
We will construct colim L. Let L':gOp + K be
n f» Ln,(myn) P g ,(m 2 n). Let L*¥ = 1im L',with y:n |= -

the 1limiting cone. The cone Yy is shown in Figure 1.
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We must next supply arrows fnm:Ln + L* which will turn figure 1
into a cone from L to L¥. To supply an arrow fnw:Ln + L¥, we construct

a cone ¢n from In to L': then the mediating arrow will serve for fnm.

_—Le
Bl e f
__/..,/,./' ’/,/ Bt/ gccQ
Lp*——1]1 5 % " :
gl,O g2,l Pigure 1
For each n, define ¢n:k | . k £ n
fnk n <k

To show that @ is a cone in K from Ln to T, we must show that if
m = k, (d)nm)-gmk = ¢nk. (Note that if m < k, there is no morphism

in gOP and hence nothing to prove.) If n =2 m, then n 2 k and

¢nm'gmk = 8By = 8oy ~ ¢nk' If n < k, thenm 2 K, so

¢nm'gmk = fnmgmk = fnkfkmg = fnk - ¢nk. Since k = m, this takes
care of all values of n. 8o ¢n is a cone from Ln to T.
Let £ o e K(Ln,L*) be the mediating arrow ¢~ y. Thus,

f In particular fnmgmn =1

nngk . ¢nk' TR

Let &n = <f__,g, >. To show that {&n|néw} is a cone from L to

% =
L*¥, we must show that fnmm fn,n+lfn+1,w‘ But for any k,
T A S U8 ST R L -

s0o the equality holds by uniqueness of the medlating arrow.
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For condition (1) of property p, we calculate:
f = ,
Boon ™ oo goo',i‘1+lgn+l,nfn,n+lfn+l,oo L; gw,n+lfn+1,m

is a mediating arrow

For condition (ii), we show that LEJg kf

Y + ¥. For any n,
(L?JgWkaw)gmn =LEIgMkawgwn =leJ BokBkn = Ben
Since 1 is also a mediating arrow y =+ Y, the uniqueness property

gwkfkm = 1. Consequently, g_ i) |—_-l and

k™ koo

allows us to conclude LTJ
<) wr8xy > 18 @ morphism of KR. &

Lemma 2. Let K be an order-enriched category, L:w>KR a functor,
and &:L-»L¥ a cone with property p. Then

(1) € is a colimiting cone in KR.

(i1) the retractions of £ are a limiting cone in K to L:wP-K
obtained from L by keeping the retractions.

(1iii) the embeddings of & are a colimiting cone in K from L":w->K
obtained from L by keeping the embeddings.

Proof (ii) and (iii) are dual; we prove (ii). Let &n =
<fnw,gwn>, and let {gMn|new} be a cone in K from an object M to L'.
We claim the mediating arrow is lﬁlngfkm° We must first show that
the ngfkmform an w-chain:

f

Bk koo = BM,k+18k+1,kT

K, k+1 k41,0 = B, k41 Tt 1,
Hence the indicated lub exists. To verify that this is a mediating

arrow we calculate,for any n:

- _
(Lg By T ieen) Bony 'LE”ngfkwgmn - &Ei Bane FieooBoon,

n nggkn

1]

&Mn
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S0 this is a mediating arrow. For uniqueness, let a be any

mediating arrow from {gM } to {g }. Then

a=al=oaldg, ) =LR' Ratie "E‘ngkm

thus establishing uniqueness.

For (i), let {<an,gMn>lnem} be a cone in KR from L to some

object M. By (ii) and (iii) then exist gy cK(M,L¥) and

meeK(L*,M) which uniquely mediate the retractions and embeddihgs.

Hence <me,ng> is the unique mediating arrow £+{<an,gM >}. It re-

mains only to show that <me,ng> is a morphism of KR.

(L—Jg

femBe = ol T LeaptBpion e Booie Tigen?
=LE!gWkammenggmkfkm (Prop. 3)
:iklgwkkongfkm
=23ngkfkw
»
Busfom = ByySiool cokl kM for any k
L el
: 1. ]

Iemmas 1 and 2 complete the proof of Theorem 1.

Theorem 2. Let K be an order-enriched category with ¢°P-limits,

and let T:KR » KR preserve property p. Then T preserves w-colimits

in KR.
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Proof. Immediate from Lemma 2(i). B

Theorems 1 and 2 give us conditions on K and T which enable
us to apply the general fixed-point construction sketched in
Section 1. Our account of this construction follows that of
Plotkin and Smyth.[14] If ( is any category with initial ob-
ject and T:( + C is any functor, let PFP(T) denote the category
whose objects are diagrams in (:

n
i =——TH

and whose morphisms N + N' are those morphisms o € C(cod(n);cod(ﬁ'))

such that
n
M &—1T'M
| |
(o] ! jTo
¥ v
M'&—TM
nl

commutes.

Theorem 3 [14]. Let ( be a category with w-colimits and an
initial object, and let T:( »~ ( be any functor that preserves
w-colimits. Then PFP(T) has an initial object ¥:TL*>L¥ which is
an isomorphism in (.

Proof. Let x, be an initial object of ( and let 6, be the

0 Q
unique morphism in C(xO,TxO). Define L:w+( by
LO = xo L(0,1) = 80
L(k+1l) = TLk L(k,k+1l) = Bk = Teknl.

Let L*¥ = colim L with £ the colimiting cone. Next construct a cone
pu from TL to L¥ by setting pk=&(k+l). Since T preserves w-colimits,

TL* 1s a colimit of TL, with colimiting cone TE. 8o we have a



i

unique arrow ¥ e¢ ( (TL*,L*) mediating between Tf and u, that is, for

any k, T&k+*y=E(k+1l). We claim ¢y is the desired initial object.

Let n ¢ C(TM,M) be any object of PFP(T). Define a cone v
from L to M by
v(0) = a, the unique morphism in C(XO,M)
v(k+1l) = Tvken
To show that v is a cone, we verify by induction that an-v(n+l)=vn:
For n = 0, 6.°vl = BO'TVO‘H = 90°Ta°n = 0 = v0. Assume the identity

0
holds for n = k. Then

ek+l°v(k+2) = T(Sk)-Tv(k+1)-n (Definition of 6,v)
= T(Bk-u(k+l))-n (T is a functor)
= Tvken (by induction hypothesis)
= v(k+l) (Definition of v)

We must show that there 1s a unique morphism ¢ such that

Y
TL¥——3 L¥
To ko
B e

commutes. We will show that o makes the diagram commute iff o
medliates between the cones & and v. Since the mediating arrow

exists and is unique, this will complete the proof of initiality.
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First, assume o is the mediating arrow from £ to v, that is,

Ekeo = vk. Since TE is a colimiting cone, 1t will suffice to show

that for any k, TEkey-oc = TEk+To*n:
(TEk)-yp*0 = g(kt+l)eo (mediating property of ¥)
= v(k+l) (mediating property of o)
= Tvken (definition of v)
= T(Ek+0)*n (mediating property of o)
= TEk+Toen (T is a functor)

Last, assume o makes the square commute. We must show that
Ekeo = vk. We proceed by induction on k. For k = 0, the equa-
tion holds by initiality of X g Assume (&k)e*o = vk.

Then

E(k+l)e0 = TEkePeo (by Corollary L4)
= TEk+Toen (since the square commutes)
= T(Ekeo)*n (T is a functor)
= Tvken (by induction hypothesis)
= v(k+l)
Last, we construct an inverse for y as follows. Define a cone

v from L to TL¥ via

v0 = the unique morphism XD+TL*

v(k+l) = TEk.
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Let 6 be the mediating arrow from £ to v, so &ke6 = vk.
Then
E(k+1l)+0+y = vkey = TEkeyp = E(k+l)
and TEkepeB8 = E(k+1)-0 = v(k+l) = Tgk.

Since £ and TE are both colimiting cones, we deduce 8¢y = 1 and Yo

4, Applications

The framework of the previous section says that one should

1, W

construct domains as follows: Choose a category K of domains with

w°P_1imits, and a p-continuous functor T:KR + KR which

describes the self-referential properties of the desired data types.

One then solves the domain equation X £ T(X) wusing Theorem 3

(by Theorem 1 the colimit object is constructed as an gOp—limit in K);

the solution obtained is canonical.
This section is devoted to listing some categories K with

gOp—limits and some p-continuous functors T. The choice

of K and T for a particular application is often a delicate

decision which is beyond the scope of this paper; our aim is merely

to indicate some of the possibilities.

Example 1. A complete lattice is a partial order (L,x<)

with the property that if S ¢ L. , then S has a least upper bound

in L . We say D c L 1is directed if D = Qi and any pailr of
members of D has some upper bound in D . Let (|]) denote the
category of complete lattices with morphisms chosen to be the maps
that preserve lubs of directed sets. (LD is order-enriched under
the ordering fl_g iff (Vx)[f(x) T g(x)] . Then (LD has

w P-limits.
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PROOF: Let G:w”® » CLD . Denote G(n,k) by g, (nzk) .

e

Let L = {(xo,xl,...)lxi e Gi & (Vnew) (Vkew)[nzk =>gnk(xn) = xk]}

under the ordering (xo,xl,...) E;(yo,yl,...) iff
(Vi e:w)[xi[;yi] .
To show L°° is a complete lattice, let S ¢ L . Let
8y = {xk[(xo,xl,...,xk,...) € S} ¢ Gk . Then for each k , Sy
has a least upper bound S¥ < Gk . Let y, = igignk(sg) . We

claim that y = (yo,yl,...) is the least upper bound of S

We must first show that y ¢ L . If k <n , note Sﬁ =

;J{xkix « 8= LiHg, (=)|xe 8 g.( LJ{xnlx e 81

€ (S%) . Therefore, if m2n 2k , then g (S¥) g;gnk(gmn(S%)) =

gmk(S;) » 80 the terms in the construction of Vi are an w—-chain.

& = i i ¥ — * =
Hence, if n 2 k , then y, ml__.}_;kgmk(Sm) k;Lgmk(Sm)

ég%gnk(gmn(s;)) =g (5] « S8 y= (FpaFieees) el -

To show that y 1s the least upper bound of S , we first

observe from the definition of iy that yk:;58§ . LI

X = (XO,Xl,...) e S , then for each k , Xk € Sk s BO

X, E:S§ Lryk . Hence y is an upper bound for S in L
Next, let =z = (ZO,zl,...) be another upper bound for S in

L . Then for every n |, 8% [ = . Now z e L_ , so for
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every n >k , z, = (z.) . So 1z = || (z ) d g (8%)=5_ .
k - Bnk'Zn x © o Bngtin et el k

So y:;;z » and y 1s the least upper bound. (This construction
is of course due to Scott.)

The maps oo * Lo +'Gk:(xo,xl,...) - X, form a cone and

preserve lubs of directed sets. To verify the limit property, let

n - 8w, De a cone from M to G . Then for meM,

(gMO(m),...,gMn(m),...) e L since the form a cone, and

En
Bpoo T | (gMO(m),...,gMn(m),...) is also a morphism in (D . ®
So ng is a mediating arrow. The unigueness of 8o is assured
by the fact that the underlying set of L is a limit in SETS.

As was pointed out by Scott, L_ 1s a subset and sub-poset
of lIGk , but not a sublattice; lubs of w-chains, however, are
foried componentwise.

Example 2. (), CPC (the full subcategory of objects
of () with bottom element), and CPC* (CPC restricted to bottom-
preserving maps) [12] all have g?p—limits.

PROOF: Mutatis mutandis from the previous proof. B

Example 3. Any finite product of c¢ategories with gOp-limits

has g?p

-limits. ©

Thus we can solve systems of several mutually recursive
simultaneous domain equations. Another example is Reynolds'
category of directed complete relations [17]:

Example 4. Let RCL denote the category whose objects are

triples (L,R,L"') where L and L' are complete lattices and
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R e L x L' has the property that if A ¢ L x L' is directed
and A ¢ R, then lub A €R ; the morphisms (L,R,L') > (M,S,M')

of RCL are pairs (f,g) where f e CLD(LyM), g ¢ CLD(L',M")

and for all (x,y) € L xM , if (x,y) e R , then
(f(x),8(y)) ¢ S . (Reynolds' category R is RCL-R ) .
Then RCL has w®P-limits.

'
k’Lk)

PROOF: Let G:w°® » RCL . Denote Gk by (LR
and G(n,k) by Gnk = (gnk,gﬁk) . Let L_,L! be limits of
the Lk and Li respectively (i.e. of the appropriate functors

‘0
g_p > RCL = CLD ) constructed as in example 1, with limiting

cones g,.»8,,s and let G, = (g,..8. ) - Let

R_= {(x,y) e LWXL;I(Hn)(Gwn(x,y) e R)} -
We claim that (Lm,Rm,L;) is a 1limit, with the cone given by
the G 3

on

We must first show that this construction makes (L _,R_,L!)

an object of RCL . Let A ¢ L_ x L! be directed and A c R_ .
We must show that lub A ¢ R. Let A = {(x,,x])[(d8 ¢ 8)[G _(8) =

(xk,xﬁ)]} . Each ﬂk is directed and A, c R, s0 ﬂi = lub 4,

€ Rk' Recalling the construction of lubs in example 1, and

using the fact that lubs in product lattices are constructed com-

= 5 - Y. - = * *
ponéritwise, we see that G, (lub A) A;LGHK(AH). Now A% ¢ R, so

* B 7
Gnk(ﬂn) € Rk . Hence Gmk(lub A) 1is a lub of an w-chain in
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Lk X Lk’ each of whose elements belongs to Rk . So Gmk(lub A) € R

k

for each k¥ . So lub A ¢ R00 ¢ Thus R has the required
e}
property.

To verify the limit property, let (M,S,M') be an object of

RCL and let (gMn’gﬁn) form a cone from (M,S,M') to G . Since

Lo and L& were constructed as limits, there exists a unique pair
(ng,gﬁm) of morphisms which will mediate between the morphisms

of the cones. It remains only to show that (ng,gﬁm) e RCL((M,S,M") .
(LysR,5LY)) . Let (mym') ¢ S . Then for each k , (ng(m) 5

gy (m')) e Ry . But (g, (m),gy, (m)) = (g, (gy,(m)), &l (gh (m'))) =
G (B (M) s (M) € R . So (g, (m),gl (m) ¢ R, , as

desired.N
This category is typically used for comparing different
éemantic schemes [17] rather than for constructing domains.
Plotkin's SFP [13] also appears to have the required properties.
To catch the category of continuous lattices, we need an embedding
theorem:

Proposition 7. Let C ve any category with an initial object and

w-colimits, and let T: (+C be a functor which preserves w-colimits.
Let (' be a full subcategory of ( such that

(1) (' is closed under isomorphic copies of objects.

(11) £* 1s closed under T.

(1ii) Colim T is an object of (!.
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Let T!' deﬁoﬁézthe restriction of T to ('. Then PFP(T!) has an initial
object which is an isomorphism in (.

Proof PFP(T') is a full subcategory of PFP(T') which, by (iii),
includes the initial object of PFP(T). ®

Example 5. Let CoNTL be the full subcategory of C[]) whose objects
are the continuous lattices [19]. Let T:CLDR->CLDR be 2 ep-preserving
functor such that CONTL is closed under T, and let T' denote the re-
striction of T to CONTL Then PFP(T') has an initial object which is

an isomorphism in CoﬂTLJ

Proof. By Theorem 1, colim T is the limit of the retractions
of T; by [19, Prop. 4.1], colim T is a continuous lattice. %

For a starting point in the construction, we usually choose an
initial object of KR:

Proposition 8. For any of the categories K of Examples 1-3,

the one-point order is initial in KR. B
For some constructions, however, the initial object is not the
appropriate starting place. The following proposition ensures that

we can start with any X S0 long as we can provide a starting morphism

XO > TXO:

Proposition 9 (Plotkin). Let ( be any category with w-colimits,

and let x be any object of G. Tt D denote the category whose objects

are morphisms o of C whose domain is X,2and whose morphisms o-a'
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are those morphisms o ¢ C(cod(d), éod(q‘)) such that

x
——-*-"5—‘—43,1

commutes. Then [) has w-colimits, and the forgetful functor [)»]
preserves them. Furthermore, the identity morphism on x is an
initial object of D.W

Given a functor T:(+{ and a morphism 8,:x*Tx, we can extend
T to a functor T':D+) via T'a-= 6 _*Ta. This, in effect, starts the
1terative construction at x.

We may now start to consider, for some fixéd suitable K,

some functors KR » KR which are p—pfeserving.

Proposition 10. The class of p-preserving functors T:KR + K'R

is closed under composition and includes the projection functors
K°R ~ KR. ®

Proposition 11. Let (C be the graph whose objects are small

order-enriched categories K, with (QC(K,L) the set of p-preserving
functors KR - LR. Then QC is a category. B

The usefulness of this proposition 1s limited by the fact that

most of the interesting categories K are not small.

Proposition 12. If T:KP -~ LP is continuous on morphism sets, and

has the property that if T(<f,g>) = <f',g'>, then T(<g,f>) = <g',f'>,

then the restriction of T to KR is a p-preserving functor KR. 4-LR;



=S

Proof. Let <f,g> be a projection, and let T(2f,g>) = <f',g'>.

Then <g'fle gtil> = gt Ploscft gl = Pleg, i)+ T2, 2>)

= T(<g:f>'<f:g>) T({gfsgf}) L._::T(<lsl>) = 1

<f!gt, frgts>= ﬁf'l,gf:_‘{gf’fl}: T(<f"g>)-T(<g,f>)
= T(<f,g>+<g,f>) = T(<fg,fg>) = T(<1l,1>) = 1.

Liet & = [<f >|kew} be a family of morphisms with property o.

K8k
Let TEk = <f&,g£>. We must show that the gif& form an w-chain with

g lub of 1.

For the w=chain, we calculate:

<g? {1 s = T(<gk,fk})°T(<f

kk® Bkl 1c28”)

[ ¥
= Ty ) Ty 58y pq)

= ¥ ! ¥
Cpy1Th412 8501 Theen”
4 T 3 i 5 .
S0 géfk E;gk+lfk+l'l For the limit, we calculate similarly:

| {
(J ol
e 11 ~w= | i s

E Etle T ) TOg 0 Tt g, 2)

o —
| |

| £
O <g o8 f>)

T(1)

= 1, .’
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Our major tool for constructing p-continuous functors 1s the
following:

Theorem 4. Let Kl""’Kn’K be order-enriched categories
and let T:KlX...XKn - K be a functor continuous on the morphism

sets and covariant in some arguments and contravariant in the others.
Then we can construct a covariant p-continuous functor
T':(le...XKn)R +~ KR with the same object function as T and which

is given on morphisms by T‘(((fl,..,fn),(gl,.,1gn))0-=

(T(kl,...,kn),T(xl,...,ﬂn))

Where k, =%%i if T 1s covariant in its i-th argument

gi otherwise
and 21 =(8; if T 1is covariant in its i-th argument
fi otherwise

PROOF: As defined, T' 1is evidently a covariant functor

(le...xKn)P + KP , continuous on the morphism sets, with the sym-

metry property of Proposition 12. B
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We can now list examples of functors T , continuous on the

morphism sets, to which Theorem 5 may be applied. In each case,

K may be any of the categories of Examples 1-3.

(1)

(11)

(iiE)

(iv)

(v)

We may now display the functors associated with some typical

the Cartesian product functor x:K x K - K .

the coproduct functor (or any of the related “unién“
functors) +:K x K + K (See Figure 4.1.)

the internal hom-functor Hom:KOp x K - K given by
Hom(L,M) = [L » M] ; if f ¢ K(L,M) and g « K(N,P)
then Hom(f,g) ¢ K([M - N],[L - P]) dis given by
Hom(f,g)(h) = fhg .

the diagonal functor A:K - K x K siven by

Alx) = (xx) o AM(E) = (£;:8) .

all of the functors K" + K™ obtained as products of

projections Kn + K (this includes A as a special case).

data structures. In each case, we may realize the structure in

any category K to which the given functor and Theorem 3 apply.

Unless otherwise noted, we choose x = {1}

L#¥

(a)

Let A be an object of "atoms". Let T(L) = {1} + (AxL)

is the object of stacks of A's . The image of {1} 1is the

empty stack.

L#*

may
the

the

(b)

Let A Dbe an object of "Matoms"™. Let T(L) = A + (LxL)

is the object of 1lists accessed by "car" and "cdr".

(e)

set

If we wish the null list to be distinguishable, then we

(L) = {1} + A + (LxL) . The choice of T depends on

use to be made of the data type, the operations desired, and

type

of partial information needed. Note that {1} + A + (LxL)

»

3



R

({1}+A) + (LxL) , and {1} + (A+(LxL)) are distinct,
non-isomorphic lattices [1].

(d) Let <Q,r> be a ranked set [4]. Let TCL)==EELP(S)|S e 0} .
Then L#* 1is the object of ranked Q-trees [23,28]. 1In this case
there 1s a compact representation of L¥ as a set of trees [6,26].

(e) Let T = HomeA ; thus T(L) = [L - L] and
T(<f,g>) = <Hom(g,f),Hom(f,g)> . Choose x = {1,T} and
8, ¢ KR(x,Tx) , and use Proposition 9. If K = CoNTL, then L¥* is
one of Scott's original models of the lambda-calculus [19].

(f) Let D be an object of K , let T(L) =D + [L - L] ,

T(<f,g>) = dlD + Hom(g,f) , lD + Hom(f,g)> . Then L¥*¥ is a

model for a typed lambda-calculus based on the primitive data type
O »

(g) Hierarchical graphs (similar to [15]). Let G Dbe a fixed
set of unlabelled graphs. A hierarchical graph is to be a graph
from G whose nodes are labelled with atoms A or other hierarch-
ical graphs. For ge G , let |g| be the number of nodes in
g . S0 a hierarchical graph is either an atom or a graph g with
|g| other hierarchical graphs as the node labels. So we have
T(L) = A-FEHngI| geG} . This gives a representation of these

objects as trees.

5. Conclusions and Open Problems

We extend Scott's fixed-point construction to categories
enriched by an ordering on the morphism sets. This allows data

structures to be realized in an assortment of categories of orders.



This construction corresponds to the construction of domains
at language-definition time; by contrast, Scott's construction of
domains via projections of a "universal" domain [22] seems to
correspond to the construction of domains at run-time via simu-
lation in a fixed underlying type. It is an open problem whether
similar "universal" domains with adequate projections exist for
categories other than CLD .

Another open problem is an adequate account of the various

limit-colimit coincidences that arise in these constructions.
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(b) CPC
(a) CLD

(c) CPC*

Figure U4.1. Coproducts in several categories of orders.

((b) & (d) are weak coproducts.)
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