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Abstract

The quadtree representation of matrices is a uniform representation for both
sparse and dense matrices which can facilitate shared manipulation on multipro-
cessors. This paper presents worst case and average case resource requirements
for storing and retrieving familiar families of patterned matrices: packed, sym-
metric, triangular, Toeplitz, and banded. Using this representation it compares
resource requirements of three kinds of permutation matrices, as examples of
non-dense, unpatterned matrices. Exact values for the shuffle and bit-reversal
permutations (as in the fast Fourier transform), and tight bounds on the expected
values from purely random permutations are derived. Two different measures,
density and sparsity, are proposed from these values. Analysis of quadtree matrix
addition relates density of addends to space bounds on their sum, and relates

their sparsity to time bounds for computing that sum.
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Section 1. Introduction

Recent papers [12, 13] have proposed a uniform quadtree representation
for both dense and sparse matrices which provides a graceful decomposition of
algorithms suitable for scheduling on multiprocessors. Most of the material there
is about algorithms for manipulating quadtree matrices, focusing on the pattern
of decomposing n X n matrices gracefully onto p processors for p<<n. Some of

these results are outlined at the end of the next section.

This paper presents measures for the quadtree representation that show
how it compares with alternative sparse representations. Section 2 defines the
quadtree representation of matrices, structuring dense and sparse matrices in-
distinguishably. This uniform representation comes at some price, of course,
because a sizable tree of nonterminal nodes is above all the scalar entries in a
matrix. In the usual matrix representation this tree is supplanted by hardware
that directly implements the bijection from index to memory address; here the
mapping is represented by levels of structure that can be explicitly shared. This
sharing can be used on a multiprocessor to decompose data and processes among

memories and processors to use parallel resources coherently.

Although nontrivial in comparison with the constant-time access and zero-
space overhead of sequentially stored matrices, the additional overhead for the
nonterminal nodes is an artificial concern for three reasons. I'irst of all, it may be
irrelevant in the appropriate algorithms (vide infra) because they typically use
recursive descent. That is, rather than accessing elements of a matrix from the
root of the tree (analogously to indexing from a distinguished memory address),
these algorithms recurse to nested, successively shallower subtrees, so that only

rarely is an entire path from the root traversed to manipulate just one element.

Secondly, even if the complete path from the root were traversed upon ev-
ery probe into an array, some time spent in such a traversal might be offset by
effective memory speed, improving with depth; this is purely an architectural
phenomenon that is motivated by the rigors of multiprocessing. For instance,
accelerated access time is realized on the later of repeated probes into a sub-
tree that is sufficiently small to fit within cache. Something similar happens
when subtrees are stored locally on distributed processors: random manipula-

tion within a local subtree is very fast, compared to the interprocessor contention
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arising [rom global access. Under such architectures, the improved efficiency of

repeated accesses within a subtree counteracts the increased cost to isolate it.

Thirdly, heap memory, which directly supports trees and other linked struc-
tures, is an attractive architecture [6] for avoiding “hot spots” in a multiprocessor
where each processor accesses shared memory through a packet switch [9]. When
arrays are mapped sequentially across address space, their usual traversals gener-
ate a regular addressing pattern. Then several processors, even if running differ-
ent algorithms on disjoint data but using the same address map, tend to collide
repeatedly in the switch. A first collision between two might occur randomly,
but the addressing patterns of those two synchronize and follow one-another
through their traversals; that couple presents a larger obstacle to a third, etc.,
and shortly a gaggle of these traversals would be driving one “hot spot” along
that regular pattern through address space. Experienced Cray programmers use

different “strides” in setting up coordinated pipelines to avoid just this problem.

Many problems that justify parallel computation also exhibit sparseness.
Therefore, these results on space and access efficiency are of interest in designing
both parallel algorithms and parallel computers [3]. It is the purpose of this
paper to measure analytically the costs of storing and retrieving large matrices
in the quadtree format for comparison with alternative representations. Some
empirical results are already available elsewhere [1]. However, truly competitive
results may require further developments in hardware and algorithms [3] that,

perhaps, will be encouraged by the results presented below.

The main results are summarized in Table 1. Half of the table reports
values for sparsity and density, but they are only defined and related to resource
bounds on quadtree operations in Section 5. At this point the reader can readily
understand ihe entries in the first two columns. The second column presents
exzact worst-case space required to represent an nXn matrix in quadtree format (n
1s a power of two.) As expected, the space for a packed, symmetric, or triangular
matrix remains O(n?), but that for a Toeplitz, diagonal, or banded matrix is
O(n). The constants of proportionality are slightly higher than those from the
usual representations of such matrices (e.g. sequential or vector-compressed
structures), but hardly outrageous when one allows that only one convention is

used to represent all.



Pattern Space Density* Expected Path Sparsity*

Packed 3(n? -3 1 lgn+ 1 0
Symmetric 2n+2)(n—-3) F+¥8 lgn+1 0
Hankel/ Toeplitz dn —lgn — 3 % - &iig—n lgn+1 0
Triangular %(n +2)(n — %) % 4 -‘l?-:-i 1522 G % — ﬁ % _ lgLn
fF'T permutation “—1-253 3 %’l -3 0-_”%8”_“ lszﬁ 4+ % _ 3%1 . ?é_as
Random permutation “—125—” + 0.9n — % w;‘L” 152—'”' + 0.9 3 — TUE%
Diagonal 2n — 1 — 2-2 S T;E
Tridiagonal 6n — 2lgn — 5 42 D242 f = f_;.?%
Pentadiagonal 8n — 2lgn —9 % 13—0 == i = % 1-— -:118'—31—%
[leptadiagonal 11n — 2lgn — 19 % 13—” £ % - %lﬁg | ?é—i?
Enneadiagonal 13n — 2lgn — 27 218 2412 1~ %‘%
Shuffle permutation 3(n—1) % 3(1—2) f.— lgin
Zero 0 0 0 1

Table 1. Measures of patterned and unpatierned matrices as quadtrees.

*Density is accurate within a term of ©(n~2). Sparsity is accurate within a term

of O((lgn)~2).

Section 2 offers the definitions and normal forms for quadtree representation;
it also indicates how some parallel algorithms fit this representation. Sections
3 and 4 compare the costs of representing familiar matrices [10]; many of them
are characterized by strong patterning. Section 3 presents the expected path
and exact space measures (worst-case) for familiar patterns of matrices: packed,
symmetric, triangular, and finally banded matrices, the most familiar of sparse
matrices. Section 4 deals with very sparse matrices, patterned after permutation
matrices that only have n non-zero entries: the “shuffle” and “bit-reversal” per-
mutations, encountered in the fast Fourier transform, and random permutation
matrices. The foregoing analyses support the definitions in Section 5 for the
measures, sparsity and density, easily computed for any matrix representation.
An analysis of matrix addition there shows that sparsity of addends relates di-
rectly to time to add them, and that their density relates to the space ocupied

by their sum. Conclusions and future work appears as Section 6.
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Section 2. Quadtree Representation and Algorithms

Dimension refers to the number of subscripts on an array. The size of a
vector 1s the cardinality of a basis for its space, i.e. the number of its elements
when written in the conventional tuple notation. Order of a square matrix,
similarly, is the cardinality of a basis for its underlying vector space, the number
of its rows or columns when it is written as the conventional tableau. In this
paper, matrices will be square, and orders and sizes will mostly be powers of two;

a convention for padding arrays of other sizes is presented after some definitions.

Thesis. Any d-dimensional array is decomposed by blocks and represented as

a 2%-ary tree.

Here only vectors and matrices are considered, where d = 1 suggests binary
trees and d = 2 suggests quaternary trees—or quadtrees. A vector is said to be

homogeneous if all of its scalar elements have the same value.

Binary Vector Representation. A vector of size 2P is either homogeneous
and is represented by that scalar value, or it is not homogeneous and is repre-
sented by a binary tree whose subtrees each represent vectors of size 2P~'. These
subtrees are identified as left and right, isomorphic to the left and right halves

of the conventional tuple notation.

A vector of size 1 is trivially homogeneous, and is always represented by a
scalar. Of particular note is the scalar 0, which is well implemented to be the
pointer NIL in Pascal notation. Such an implementation recognizes the impor-
tance of quickly recognizing zero elements, because in any heap-based system all
meaning of NIL is apparent without a memory reference. Therefore, the “zero
vector” would be represented by NIL, as is the “zero matrix” in the following

representation.

Quadtree Matrix Representation. A matriz of order 27 is either homoge-
neously zero, in which case it is represented NIL; or p = 0 and its element is a
non-zero scalar, in which case it is represented by that scalar; or else it is repre-
sented by an ordered quaternary tree [7] whose subtrees each represent matrices

of order 2P~!. These subtrees are respectively identified as northwest, northeast,



southwest, and southeast, isomorphic to the four quadrants of a block decompo-

sition of the conventional tableau, in the order that those names suggest.

Tagged Quadtree Matrix Representation. A quadtree matrix representa-
tion is tagged if each non-zero, non-scalar subtree is decorated by a boolean value,
labeled transposed. When transposed is false the isomorphism between subtrees
and subblocks remains the trivial one used in the definition of quadtree matrix
representation. If transposed is true, then the isomorphism at every level of the

tree exchanges the northeast and southwest subtree in that order.

That 1s, if the matrix is transposed then the first subtree maps to the north-
west block, the second to the southwest, the third to the northeast, and the
fourth to the southeast at every level in the tree (unless deeper subtrees are also
transposed.) The effect of this is to transpose the matrix from its conventional

orientation.

So that this recursive cleaving works smoothly even when the order, n, is
not a power of two, an n X n matrix is embedded in a 2M871 x 201871 matrix,
justified at the lower, right (southeast) corner with zero padding to the north
and west. Then it can be represented efficiently as a quaternary tree; padding
with NIL minimizes the space consumed in padding. (The matrix is justified to
the southeast, rather than to the northwest, in anticipation of the recurrence for

eliminants [2].)

This prescribes a normal form for the representation of matrices as quater-
nary trees (henceforth “quadtrees”): no scalar entry is ever 0 and four quadrants
cannot all be NIL. Scalars can only occur at Level 2871 in the quadtree rep-
resentation of an order n matrix. (This normal form for representation of any
matrix should be distinguished from a normal form for that matrix, itself.) To-
gether, the order and the quadtree representation of a matrix comprise a unique

representation for the matrix.

Theorem 1. If a matrix of order n is padded as described, then it has a
unique quadtree representation. If two matrices of the same order share the

same quadtree representation, then they are the same matrix.
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Proof by a simple induction on [Ilgn]. There is only one way to pad the matrix

out to order 2M€71,

Of course, there can be several representations of a matrix as a tagged
quadtree, accordingly as different subblocks are transposed. Knowledge of order
1s necessary in order to interpret NIL uniquely, and it becomes critical upon
output. It must be acknowledged that the 1/O conversions are non-trivial algo-
rithms, but they require comparatively little processing and are also restrained
by communication bandwidth whenever they are necessary. Like floating-point
number conversions, however, they remain an irritating impediment to one who

would experiment with the algorithms discussed below.

Similarly, a vector of arbitrary size n is embedded in one of size 2871
with zero padding to the left, which then is represented as a binary tree. Thus,
we obtain a normal form for representation of vectors as binary trees, which is

unique when size, as well, is specified.

Corollary 1. If a vector of size n is padded as described, then it has a unique
binary tree representation. If two vectors of the same size share the same binary

tree representation, then they are the same vector.

The algorithm for matrix addition [12] decomposes naturally into four quad-
rant additions which are independent processes. Because of their mutual inde-
pendence, these four are naturally computed in parallel within a shared memory,
or distributed to independent processors with private memory. The decomposi-
tion extends naturally to 16, 64, 256, etc. processors, or—by splitting the sums
in half, rather than in quarters—to 2, 8, 128 etc. as well. Whenever either
addend is NIL, addition immediately returns a shared reference to the other

addend.

The algorithm for matrix multiplication may be decomposed two ways
(again treating the product as two halves), four ways (the four quadrants of
the answer), and eight ways (the eight quadrant products in the block or cellular
decomposition [5] of Gaussian matrix multiplication.) Whenever either factor is
NIL, their matrix product is annihilated to NIL. Moreover, the resulting product
matrix (of order n) is more stable than that from pipelined dot-products, be-

cause each element is computed as a sum over a tree of addends, rather than as
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a serial sum of n addends; each addend participates in at most lgn, rather than
up to n, additions. Thus, quadtree mulliplication of sparse matrices improves
both on the time of Strassen’s [11] (when a factor’s quadrant is NIL only six
recursive multiplications are necessary, instead of eight), and on the stabilily of

pipelined vector processing.

The problems of solving linear systems and of matrix inversion can both
be reduced to the Pivot Step problem [7, 13]. The important problem there
of identifying a pivot is mitigated by the search space already being structured
as a tree. The quadtree representation not only allows pivoting to occur on
arbitrary elements with equal facility, but also it provides for propagation of
the computation from the “pivot block” to its siblings in parallel [13], providing
parallelistn at a higher level in the problem’s decomposition than is available
using only vector operations. IFor instance, pivoting on an entire quadrant uses

the same code as pivoting on a scalar [14].

Other conventions of representation (besides NIL) and other annotations on
nonterminal nodes (beyond the transposed tag) can enhance various quadtree
algorithms. For instance, any scalar, , might be used to represent a scalar
matrix [z§; ;]; then the unit matrix, 1, accelerates multiplicative operations [12].
Alternatively, that scalar  might always represent a homogeneous matrix [z],
all of whose elements are z; under a Boolean algebra the matrix 1 could then be
programmed as the additive annihilator, more useful there than a multiplicative
identity. In addition to the transposed tag, each interior node in the quadtree
might also be decorated by the magnitude of its largest element to assist in
selecting a stable pivot [13]; other decorations there assist in pivot selection
meeting other criteria. Theorem 1 suggests that a quadtree representation always

be decorated at its root with the size of the represented matrix.

The remainder of this paper addresses static measures of the (tagged) quadtree
representation. Use of the algorithms mentioned above is only incidental. Even
though implicitly shared references are likely to result from many programs, none
of the analyses that follow consider any sharing beyond that explicitly stated and

indicated in the figures. All these measures, therefore, are conservative.

Section 3. Matrices with Elementary Patterns
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In order to measure the relative cost of quadtree representation, we compute
in this section the total space and path length in various familiar patterned
matrices. Bach scalar and each interior node are counted as one unit of memory,
and each such node accessed during the fetch of a random element contributes

one unit to the expected path length.

For comparison, an n X n matrix stored sequentially in memory (in the
conventional manner as under Fortran) occupies n? space and has expected path
length 1. In special cases ad hoc representations reduce this space and some of

these umprovements will be noted.

Definition. A matrix, [a; ;| is zero if a; ; = 0 for all i and j.

A matrix, [a; ;] is packed if a; j # 0 for all ¢ and j.

It is symmetric if a; ;j = a;; for all 7 and j.

It is lower (upper) triangular if a; ; = 0 for i < j (respectively i > j).
It 1s diagonal if a; ; = 0 for ¢ # j.

It is Hankel I.fa,;.‘_l'j = a4 41 for all 7,7 > 0.

Whenever an element is not constrained to be zero in these definitions, we
require it to be non-zero in order to attain the worst-case measures. That is,
any unconstrained region of a matrix is assumed to be packed with (pairwise)

different values, so that there is no sharing of common quadrants.

Hankel matrices are quite similar to Toeplitz matrices: a Toeplitz matrix
has a;t1 j4+1 = a;; for all 4,5 > 0; so the pattern of sharing across quadrants is
the same. Table 2 lists type indices for various patterns of matrices, not all yet

defined, that are used as subscripts below.

Definition. Let n = 2P, for p an integer and let t be a type index D, ', HT,
P, R, S, SD, T, or Z from Table 2. The function S; maps p to the number of
nodes (worst case space) necessary to represent a n X m matrix of type t. The
function P; maps p to the worst case expected path length in a n X n matrix of

type t.

Thus, Sp and Pp specify space and expected path length for packed matrices
and Ss maps p to the space necessary to represent a symmetric n X n matrix,

and Ps maps p to the expected path length in a symmetric n X n matrix.
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Index
B
C
1)
F

HT

Matrix Type Index Matrix Type

Banded R Random

Chip Permutation-pattern
Diagonal SD Shuffle/Deal

fE'T (bit reversal)
Permutation-pattern S

Hankel / Toeplitz T

Packed Z

Permutation-pattern
Symmetric
Triangular

Zero

Table 2. Type indices identifying patterned matrices.

Theorem 2.

Sz(p) = 0;

Sp(p) = $(4% - 3);

Ss(p) = 3(47 — 3) +2%;

St(p) = %(47 — ) +2%;

Sp(p) =277 — 1
Sur(p) =22*% —p - 3;

Pz(p) = 0;

Pp(p) =p+1;

Ps(p) =p+1;

Pr(p) = $(p+ 3 — 277);

Pp(p) =2—-277
Pyr(p) =p+1

Proof. Zero matrices are a trivial exception; NIL takes no space and contributes

nothing to path length. The other values are derived from recurrence equations.

The space for any of the other matrices of order one is just 1, for the non-zero

scalar. Similarly, the expected path lengths are all just 1.

Sp(0) = Ss5(0) = S7(0) = Sp(0) = Sxr(0) = 1;

Pp(0) = Ps(0) = Pr(0) = Pp(0) = Pgr(0) = L.

The recurrences for the first three follow Figure 1. The quadtree represen-

tation of a packed matrix decomposes into four packed quadrants.

Sp(p+1)=1+4Sp(p);
4
Pp(p+1) =1+ 7 FPp(p).
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Thence,

D |

P
1=0

Pp(p) =p+1.

The representation of a symmetric matrix appears much like a packed ma-
trix; indeed their expected path lengths are the same since both “trees” seem to
be complete upon traversal. The difference is that a symmetric matrix can make
use of the tagged quadtree representation, sharing southwest quadrants, being
a directed acyclic graph (dag) rather than a tree. That is, its northeast quad-
rant is really a transposed reference to its southwest, which—although packed—
contributes to the space but once. Its northwest and southeast quadrants are

just symmetric matrices (Figure 1).

Ps(p)=Pr(p)=p+1;
Ss(p+ 1) =1+ 2Ss(p) + Sp(p) + 0.

Thus,

Ss(p) =0 2+ L Y L Ly 2 =24 - 1)+ 2P

In the worst case, the quadtree representation of a triangular matrix occu-
pies the same space as that of a symmetric matrix of the same order. The reason
is illustrated in Figure 1 for lower triangular matrices; the northeast quadrant is
NIL and thus adds nothing to the required space. It is analogous to the shared,
tagged northeast quadrant of a symmetric matrix which also contributes noth-
ing. The expected path is one for the root of the tree, plus 25% of the expected
path length in each of the quadrants, which are respectively triangular, zero,

packed, and triangular.

Sr(p+1) =1+ 287(p) + Sp(p) + Sz(p) = Ss(p+ 1)
Pr(p+1) =1+ 2Pr(p) + : Pr(p) + ; Pz(p)-

11



Solving this recurrence [7: §1.2.3-16],

i
Pilp] =33 er‘+ 232‘

(.p+3—2 P).

e

B3

The quadtree representation of a diagonal matrix has two quadrants that

are diagonal and two that are NIL.

Sp(p + 1) =1+ QSD(}J) + ZSz(p);
Pp(p+1) =1+ 2Pp(p) + 2Pz(p).

Solving these recurrences establishes the values in the theorem.

The quadtree representation of a packed Hankel matrix shares some features
of that for symmetric matrices and that for diagonal matrices. The efficiencies of
its representation come from its representation as a dag. Just as for symmetric
matrices, the northeast quadrant is a shared (but untransposed) reference to the
southwest. The northwest and southeast quadrants are quite similar, heavy with
shared references, both internally and to the southwest. In fact, the structure
of shared references, which contribute no additional space, is much like the NIL
pointers in the representation of a diagonal matrix. There is only one column

(row) of “unshared” scalar values to be counted.

SHT(}J + 1) =1+ SHT(P) + QSD(p) + 0;
Pyr(p) = Pp(p).

Solving these recurrences again establishes the values for Syr and Ppyp stated

in the theorem. '

The values from Theorem 2 appear in the second and fourth column of Table
1, expressed in terms of n = 2P. It is useful to compare this space to that for
alternative representations. For instance, a n x n Hankel or Toeplitz matrix can
be compressed to a sequential vector of size 2n — 1; the quadtree representation
takes less than twice this space. Similarly, a diagonal matrix can be represented

as a vector of size n; again the quadtree representation is under twice as big,
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about the size of its representation with all the non-zero entries in each row
linked [7] (linked-row). Representing packed matrices as quadtrees costs a 33%
space overhead beyond the sequential n? space. This overhead applies as well
to that for symmetric and triangular matrices, which occupy just over half the
space of a packed matrix of the same order, just as they do in sequential storage

schemes.

Since the space efficiency is nearly realized without special accessing algo-
rithms, there must be a penalty. The tradeoff is manifest in the path length,
which is logarithmic in n for the dense patterns. Nevertheless, the expected path
length in a diagonal matrix is under two, and that for a triangular matrix is al-
most half that of a packed matrix, just as under a compressed sequential scheme
(where almost half of the possible pairs of indices can be discharged without
any memory access.) Of course, no memory fetches are required to probe the

quadtree representation of a zero matrix, NIL.

As the purpose of this paper is to obtain analytical measures on sparse
matrices, we consider the most familiar family of them: the banded matrices. In
order to get tight bounds for banded matrices, however, a new kind of pattern
for matrices, the clip matrix, must first be introduced. A “clip” matrix looks
similar to a triangular matrix, with the role of the main diagonal replaced by
one closer to a corner. See Figure 2; the name, “clip” suggests the clipped corner

where lies its dense fill.

Definition. A matrix, [a; ;] of order n is banded with bandwidth b if |t — j| > b
implies a; ; = 0
It is lower (upper) clip with bandwidthbifn—i+j > b (respectivelyn+i—3 > b)

implies a; ; = 0

Any unconstrained portion of the matrix is again presumed to be packed.
As before, we take n and b as powers of two: n = 2P;b = 2" for non-negative
itegers p and w (“width”). When p = w, then, a banded matrix is packed and

a clip matrix is triangular.

Definition. Let 2P = n > b = 2%, for p,w non-negative integers and let t be

a type index, B or C, from Table 2. The function S; maps p to the number of

13



nodes (worst case space) necessary to represent a m X n matrix of type t with
bandwidth b. The function P; maps p to the worst case expected path length in

a n X n matrix of type t with bandwidth b.

Theorem 3.
> w 2 "
Solp,w) = 4 + 351y +w—277)
Pe(p,w)=p—w+ %(4‘” —-1)+2%
Sp(p,w) = %(2“*”l +2P—% _ 22%) 4 2[(2P — 2¥) — (p— w)] — 2
Pp(p,w) =2+ H2(w—-1)+ (277 -27") - H(w+ 3)]

Proof. For clip matrices,

Sc(p,p) = S1(p);
Sc(p+ 1, w) =14 Sc(p,w) + 35z(p).
Pc(p,p) = Pr(p);
Po(p+1,w) =1+ ;Po(p,w) + §Pz(p).

Solving these, we obtain the values stated in the theorem, to be used in the

following recurrences for banded matrices.

Banded matrices are composed of clip quadrants and banded quadrants as

shown in Figure 2.

Ss(p,p) = Sp(p);

Sp(p+1,w) =1+ 25s(p,w) + 25c(p, w).
Pp(p,p) = Pr(p);

Pp(p+1,w) =1+ %PB(p,w) + %Pc(p,w).

The exact solutions appear in the statement of the theorem. I

Corollary 2. Let 2> = n > b = 2%, for p,w non-negative. The quadtree
representation of an worst-case n x n banded matrix of bandwidth b requires

space

22nb—b24+ 2 —1)+2n—b—1g(})] — 3
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and has expected path length

D+ 22(gb—1)+(:-3)— 2(lgb+ 3)I.

Definition. A banded matrix with bandwidth 1 is said to be tridiagonal; with
bandwidth 2, pentadiagonal; with bandwidth 3, heptadiagonal; with bandwidth

4, enneadiagonal.

The space and expected path length for nxn tri-, penta-, and enneadiagonal

matrices can be read from Theorem 3 with w = 0,1, 2, or from Corollary 2.

Corollary 8. Let n = 2P. The quadtree representations of ann X n tri-, penta-,
and enneadiagonal matrix (worst-case) occupy space, respectively, 6n —2lgn —5,

8n — 2lgn — 9, 13n — 2lgn — 27; and have expect path length, respectively,
10 3, .2 10 1 _ 10 10,47 _ 100
3 n

3 n 3n2° 3 n 3n2? 3n?’
Alternatively, one can define bandwidth, b, of the form b = 2 —1 and rewrite
the recurrences on v. This exercise will verify the results above for tridiagonal

matrices (v = 1), and fills in the following values for heptadiagonal matrices

(=2}

Theorem 4. Let n = 2P. The quadtree representation of an n X n heptadiag-
onal matrix (worst-case) occupies space 11n — 2lgn — 19 and has expect path
length 12 4+ 2 — I8

3 " n 3n%

Thus, a tridiagonal matrix that occupies 3n cells if represented in sequential
storage requires just under twice that as a quadtree, although that proportion
falls as bandwidth increases. However, expected depth, a reflection of access cost,
remains remarkably small over various bandwidths. Compared to a banded ma-
trix stored in a more conventional scheme, for instance the linked-row structure

[7], this 10/3 expected path length is encouraging; a pentadiagonal matrix has

a longer expected path-length in linked-row representation.
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Section 4. Permutation Matrices

Nevertheless, there is something artificial about the space and path length
results of the previous section. The patterns of the matrices are so regular
that the measures are almost predictable, at least within a coefficient. They do
not convince one that the quadtree representation is really useful—only that it
behaves well. In an effort to obtain analytic results of extremely sparse matrices,

the family of permutation matrices is considered.

Definition. A permutalion-pailerned matrix is square and has exactly one non-
zero entry in each row and column. A permutation matrix is a permutation-

patterned matrix in which each non-zero entry is 1.

Because any permutation matrix can be represented as a vector of integers
(regardless of whether a vector is represented using sequential memory or as a
binary tree), it seems wasteful even to consider them expanded in a quadtree
matrix representation. They are studied here because they initially seem to be
really sparse, but turn out to be surprisingly expensive. Permutation matrices,
particularly that familiar one associated with the fast Fourier transform (fFT)
algorithm, have little patterning of zeroes that would allow a collapse of the
quadtree representation. Since, as argued elsewhere [4], patterning is necessary
to sparseness, it is interesting to see how these measures of space and path length

compare with those of the highly patterned matrices, already presented.

Another reason for obtaining measures on permutation matrices is that per-
muting the indexing on a quadtree representation is a surprisingly expensive
operation. (In contrast, most presentations of Gaussian elimination trivialize
that the cost of permuting indices.) Whereas permuting the rows/columns of
a sequentially stored matrix is simple (involving an indirect indexing and an
increase of one in path length), it can require a severe twist on a quadtree rep-
resentation. As a result, multiple permutations of quadtree matrices should be
avoided, these results teach us to seek algorithms that accumulate repetitious

index permutations into a single one, or that avoid them entirely.

Because we are more interested in the patterning of zeroes in the permuta-
tion matrices than in any space compression possible from sharing within them,

all space analyses ignore the possibility of sharing submatrices. Thus, the space
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analyzed is that required for quadtree representation of permutation-patterned

madlrices.
Two permutations, D, and S, occur naturally in developing the fF'T, which

are here called deal and shuffle, respectively [14].

Definition. Let p be a non-negative integer. A permutation matrix, [a; ;| of
order 27 is Dy, (deal) ifa;j =1iff j=2i—1orj=2i—n.
S, (shuffle) is the transpose of D,.

The typical layout of D, appears below.

/1000 0 0 0 0
BEEERETE 00
0000 1 - 0 000

p,= [0 0000 0 10
0 1L 000 - 0 .0 0
00010 - 0 6 @
\0 0000 --- 0 i 004

Pease [8] names S, as P, without specifying its order. Multiplying a vector
of size 27 by D, on the left has the effect of reordering its elements as if the
vector had been a deck of cards, which has been dealt into two full hands of n/2
cards that were then stacked. Multiplying it on the left by S, has the effect of
performing a perfect riffle-shuffie on the elements of the vector. Multiplying on

the right by these permutations reorders the columns similarly.

The fFT permutation (p-bit-reversal), arises as a direct consequence of

Pease’s recurrence [8], as shown by Wise [14] who calls it F,.

Definition. The fFT permutation (p-bit-reversal) is defined by the recurrence

=1

Fpr1 = (




Theorem 5 [14].

F, | o
Fpt1 = Spt1
0 | F,

Recall the definition of the functions S; and P, for t in Table 2, given at the

beginning of Section 3.

Theoremn 6.

Ssp(p) = 3(2;_: — 1);
Psp(p) = 3(1 —27P);

. . aEtE_y
se(p) = et + 2L,
p 4-27P
Polp)=E
r(p) 5 +: 3

Proof. Figure 2 illustrates how D, can be decomposed at Level 2 into the
quadrants of D, by duplicating and restructuring the quadrants of the latter.
The top two levels of the tree are rearranged there and counted explicitly in the

following two recurrences:

Ssp(0) = 1;

Ssu(i)= %
Ssp(p+2)=5+2(Ssp(p+1)—1).

Psp((

) =
Psp(1) =
Psp(p+2)=2+ %(PSD(P+ 1) — 1)+ & Pz(p).

Solving these recurrences, we find that for p > 0

p—3
Ssp(p 22‘ —I—Zp 255]3( ) = 3(27 —1);

1=0

Psp(p) = 3(1 —277).

F, is well known as the “bit-reversal” permutation because it exchanges z;
and z4(;) in permuting &, where b is a function on natural numbers less than 27

that reverses the p-bit strings that represent them [8]. That is, the element of &
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indexed 7 = E?:o bj - 27 is indexed 2?:0 bn_j - 27 after that permutation. (This

fact, as well as Theorem 5, can be established by a simple induction on p.)

Figure 3 illustrates the quadtree representation of Fy, the 2F x 2% fFT

4%k entries gridded as a 2% x 2% matrix of blocks,

permutation matrix, with its
each of which is a 2% x 2F matrix. Each of those blocks has ezactly one element
that is non-zero. This gridding can be inferred from the bit-reversal function,
b; if one considers the grid block of Fyj indexed by 7,5 < 2% and the bitwise
concatenation of ¢ and j, ¢ = 2% + j, then the only non-zero entry in that
grid block is in its position indexed (c,b(c)). That is, if 0 < 7,5 < 2* and the
(2% + b(q), j2F + b(r))th element of Fy; is 1, then i = r and 7 = q.

Redrawing the above block decomposition as a tree, also in Figure 3, we
find that the quaternary tree is complete for the first k levels, down to the
4% intermediate nodes that root these grid blocks. The trees rooted there are

metalinear; that is, each node has at most one son, along the path toward the

unique 1 entry. All other pointers in those subtrees are NIL.

Thus,

SF(U) = PF(U) =1
SF(I):3; PF(1)=3/2;

Sp(p+2) =1+4Sp(p) + 272,
p+2

Pp(p+ 2)=1+ Pp(p) + TS

The last recurrence arises by adding a root above four copies of the quadtree
representation for Fj,, and extending each metalinear chain by one level at the
bottom. Solving these two recurrences yields the worst-case results stated in the

theorem. Wl

If sharing were allowed—that is if we consider permutation matrices, rather
than that permutation-patterned ones—then Ssp(p) coll‘a.pses to 4p — 2 and all
2" x 2¢ shuffle/deal permutation matrices for integers i < p can be represented
in shared space 5p — 3. Similarly, because the bit-reversal function, b, is its own
inverse, I}, 1s also, and so a symmetric permutation matrix; therefore, the space

measure, Sp, can be halved by sharing of transposed quadrants.
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Theorem 6 shows that the space needed for an n x n fFT permutation
maltrix grows with (nlgn); this is significantly more than the linear space we
obtain with the vector-of-indices representation. Also, the average path length
is surprisingly poor, essentially 1—52—”', reflecting the completeness of the tree to
that level, but already more than half that of a packed matrix. Theorem 7
should then be no surprise, because it shows that F}, measures to be the worst

of the permutation-patterned matrices.

Theorein 7. The quadtree representation of an fF'T permutation-patterned ma-
trix, F, realizes the worst case space and expected-path-length measures of any

2P x 2P matrix with only 2P non-zero entries.

Proof: Let n = 2P and, for 0 < m < 4P, define S(p,m) to be the worst-case
space for an n x n matrix with m non-zero entries, and P(p,m) to be the worst

expected path length for an n X n matrix with m non-zero entries.
Lemma 1. S(p,0) =0 = P(p,0) and, for 0 < m < 47,

S(p,m) < mp — mlogym + 2m — L;

P(p,m) < log, m + 3(4 — m4~7).

Lemma 1 is proved in the Appendix. When m = 27, it gives the following

upper bounds:

o P2
S(p,2P)§2p-p—2P-§+§2p—%:pQP 1_|_2_3_1;

P(p,2°) <B4 1(4—-2°P.47P) =2 4 427

3

However, Theorem 6 shows that these upper bounds are, in fact, realized by fF'T

permutation matrices. So they measure the worst of all permnutation matrices.

Now we consider tight bounds for the average time and space required by
quadtree representation of random permutation-patterned matrices. The results
show that a random permutation matrix requires about as much resource as the
worst case fF'T permutation matrix. Thus, the surprisingly poor resource char-
acteristics of the fF'T permutation matrix are also typical for randomly chosen

permutation matrices.
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Definition. Letn = 27, for p an integer. The function Sg maps p to the average
number of nodes necessary to represent a random n X n permutation-patterned
matrix. The function Pr maps p to the expected path length in a random n X n

permutation-patterned matrix.

Theorem 8. If p is even

2P e )0 d 4
S < — zp - aP/2 _ o -
wP) S 755 (2+1+2—p+:’,-(1+2—37)2)+ (3 ¢ 3

and .

p
> 27 (= 4+.78) — —.
Sa(p) > 2 (2+ 78) -
If p is odd

P —p/2+1/2 " 9 1 __ale+1)/2 4
SR(P) S . (E + l + 2 -+ s )2)+2P (_ e g 2(p_+_1)/_2_2) 2

= 1422 \2 2 1427 3-(1+2-7 3 2 3
and i
Sr(p) > 2 (g +.768) — =

Proofis in the Appendix.

Corollary 4. For n a large power of 2, the average space required for n x n
permutation matrices is between (nlgn)/2+.768n—4/3 and (nlgn)/24 .983n —

Proof: From Theorem 8 the average space gets trapped between the lower bound
of

2P(p/2 + .768) — 4/3 or 27(p/2 + .783) — 4/3 and the upper limit of 27(p/2 +
4/3 —e7')—4/3 or 2°(p/2+7/6 — e~ /2) —4/3 . The result follows. I

Theorem 9. If p is even, then

p _aEiZ 1 i1 2 2-7
P <=—e 2?72 -+ = 1
R(p) < 5 —e T 3712w/

and

—P
Pr(p) 2 T +.862 - 2T
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If p is odd, then

p 1 __alp41)/2 1 9 2*’2—5
P € 2 - alp—1)/2_4 ——— 1 P
rp)S5+3—¢ Tz \3tTa ey

and
—-p

p 2
5 > — 4. -
R(p)_2+ 764 3

Proofis in the Appendix.

Corollary 5. For n a large power of 2 the average path length in an n X n

permutation matrices is between 3lg(n) + .763 and 31g(n) + .966.

Proof: From Theorem 9 the average path length tends to between a lower
bound of p/2 + .862 or p/2+.763 and an upper bound of p/2+4/3 —e~! or and
p/2+ 7/6 — e~!. The result follows from n = 2P. i

The bounds in both Corollaries 4 and 5 are tight with respect to their leading
coefficients of %, coinciding with those from the fF'T permutation. Their second
coeflicients lie between 55% and 75% of the corresponding coefficients, 3, from
the fF'T permutation. While looser, the two sets of bounds for those second

coeflicients bracket the same range.

Section 5. Measures of Sparsity and Density

Dulf states in his authoritative survey, “In quantitative terms, the density
of a matrix is defined as the percentage of the number of nonzeros to the total
number of entries in the matrix. The term sparsity for the complement of this
quantity is rarely used. [4, p. 500]” Rather, he suggests that sparsity of a matrix
has as much to do with the distribution of zero elements as with their relative

population.

This section presents an alternative definition of sparsity [14] that contrasts
with density, but one which does reflect patterning of zero entries, as well as a
plethora of them. Furthermore, a theorem ties the measure of sparsity to time
bounds on matrix addition, just as density is already tied to space bounds on the
matrix sum. Both these measures are easily computed and are scaled between

zero and one.
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We already have closed-form results for worst-case total space and expected
depth from various patterned and permutation matrices, as summarized in Table
I. Based on Duff’s caveat and these numbers, we propose measures for both
density and sparsity. Although they were motivated by the results on quadtrees,
they are defined independently of any particular matriz representation. Values

for the quadtree matrix representation are included with the cases in Table 1 .

Definition. Density of a matrix is the ratio between the space it occupies, and
the space occupied by a packed matrix of the same order. Non-sparsity of a
matrix is the ratio between the expected time to access a random element and
the expected access time within a packed matrix of the same order. Sparsity is

the difference between one and the non-sparsity ratio.

Both density and sparsity are measured on a scale from zero to one, and
we shall see that they are not complementary. For the conventional row-major,
sequential representation of matrices, however, the density measure corresponds
precisely with Duff’s [4], and constant access time yields zero sparsity. So they

are inversely related on that common model.

When rows (or columns) are linked according to a bit-map, however, non-
sparsity becomes half the expected row (respectively, column) length. Triangu-
lar matrices, for instance, measure 1/2 in both sparsity and density under this
representation, but still complementary; diagonal matrices also measure comple-
mentary: density 2/n and density 1 —2/n. Measures of common patterns under
other representations are left as problems. Complementary density and sparsity
measures (that is, equal density and non-sparsity ratios) seem to be common; is

this equivalence an indicator for good sparse representations?

In reviewing the results for these measures on quadtrees, once again we
restrict the order of matrices to be powers of two (or four). For the quadtree
representation of 27 x 27 Type ¢ matrices (¢ according to Table 2) density is given
by the ratio Sy(p)/Sp(p) and sparsity is 1 —P;(p)/Pp(p). Table 1 presents results
for space, density, expected path length (root to terminal node), and sparsity for

n X n matrices of the types in Table 2.
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The remarkable lines in Table 1 are those for symmetric matrices, Hankel
matrices, and for random and fFT permutation-patterned matrices; they mea-
sure out to be neither dense nor sparse. Quadtree representations of Toeplitz/Hankel
matrices measure out to almost 0 in both density and sparsity. This result is
due to its heavy sharing of quadrants in a dag, rather than a tree, structure.
Similarly, symmetric matrices measure to be only 50% dense, but only because
the tagged quadtree allows heavy sharing, like a dag. In both cases their sparsity
suggests that a traversal will find them full, unless the traversing algorithm can

take advantage of reference equality to attenuate its work.

These permutation-patterned matrices have sparsity and density measures
that only sum to slightly over 1/2, in contrast with their n non-zeroes of n?
entries; aren’t they sparse? This measure, however, is consistent with Duff’s
observation that patterning is essential to sparseness; both the FF'T (bit-reversal)

and random permutations are characterized by lack of local patterning.

Also interesting is that triangular and random permutation matrices strangely
share the same sparsity, about 1/2, while the other sparsities are close to 0 or
nearly 1. These are strange kin, because their trees are of radically different

shapes.

The utility of these measures must be demonstrated in analytical or in
experimental studies of the behavior of algorithms on arguments with various
measures. An example worst-case analysis for the matrix addition algorithm

follows.

Theorem 10. The quadtree sum of two n X n matrices, respectively of density
d, and dy and of sparsity s; and s,, requires uniprocessor (proportional) time

and space within the bounds:
n?(lgn+1) max|0, 1—(s;+s5)] < uniprocessor time < n?(lgn+1)[l—max(s;,s2))],
2n?|d; — dy| < space,,, < 2n?min(1,d; + dy);
and, itself has sparsity and density measures within the bounds,
max(0,s; + 53 — 1) < sparsity ,, < 1—|s; — s2;
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|dy — dy| < density,,, < min(1,d; + dy).

Proof: These results follow from the following observations. The sum will be,

at worst, packed:

space,,,, < Sp(lgn) < n? -1 <

el
=

and is no larger than the sum of the space occupied by the addends:
space,,,, < space; + space, < Sp(lgn)(d; + dz).

If one addend is the negative of the other, then the space for the sum, NIL, is

zero;

spaceg,

sl el ;
> |space, — space,| = 0 = 3n®|d; — ds);
otherwise the sum-tree must, at least contain a root:

spaceg, ., > |space; — space,| + 1

> 4(n? — L)ldy — da| +1 > $n?|d; — dy|

Let (proportional) time be measured by the number of nodes visited in computing
the sum quadtree; only the portions near the roots of both trees, common to both
addends are traversed during summation, because unshared periphery are merely
borrowed in the sum. The number of nodes visited during an addition is, at best,
zero when both addends are NIL. That number is otherwise proportional to the

path common to the two addends:

uniprocessortime > 0;
> totalpath, + totalpath, — totalpathp, i.q4;
> n?(lgn + 1) max(0,1 — (s; + s3)).

It 1s less than the lesser of the two total paths:

uniprocessortimne < min(totalpath, , totalpath,)

< nz(lgn + 1)(1 — max(sy, s2))-
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Bounds on density follow from dividing the bounds from the space analysis,
above, by Sp(lgn). In considering sparsity, however, we must consider the entire,
unshared path length within the sum:

totalpath_,,,, > 0;
< n®(lgn + 1);
> |totalpath, — totalpath,|;
< totalpath, + totalpath,.
The first two bounds arise from the extreme cases when the sum i1s NIL or
completely packed, respectively. The second two bounds account for the cases

where the addends are additive inverses, or have no coincident non-zero elements,

respectively. Since, for ¢ =1,2:

totalpath; = n’*(lgn + 1)(1 — s;),

totalpath

- AT < e Lt D
max(0,s1+s2—1) = 1—min(1,2—(s;1+s2)) < sparsity n2(lgn + 1)

S l—|51—82|.

Theorem 10 shows that the bounds, at least, relate sparsity to time and
density to space. In general, however, analytical results like these are difficult
and so the utility of these measures ultimately must be established or denied
by experimentation on real data [1]. Results on multiplicative operations, or
average case results of any sort would help compare the quadtree representation

to other representations for matrices.

Section 6. Conclusions

Measures of space and expected depth of quadtree representations of various
kinds of “sparse” matrices have been presented. All measures exceed those for
conventional representations, in most cases by only a constant factor. Quadtree
representation, however, offers a natural facility for process decomposition and
effective scheduling, so the increased costs may be recovered on a multiprocessor.
Since heap memory is not addressed regularly, the chance of “hot spots” in
parallel memory access into a quadtree is eliminated, and available bandwidth

to memory will, therefore, be better used.
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The exercise of comparing these measures revealed that permutation ma-
trices are remarkably expensive under the quadtree representation. By a simple
extrapolation, it was easy to see that permuting indices on quadtree matrices was
an expensive operation, corresponding to a multiplication [12] by one of those
expensive matrices. This motivated a rule-of-thumb for developing algorithms
on quadtrees: permutations should be accumulated or entirely avoided. Fortu-
nately, it is indeed possible to find algorithms (e.g. for Gaussian elimination)
that avoided permutations, which were suited for implementation under other

representations, as well.

In retrospect, we realize that, even under another representation, repeated
permuting of indices is a bad strategy under multiprocessing because sharing the
permuted structure across multiple processes requires additional synchronization
that is best avoided. (Synchronization is, of course, free on uniprocessors, so it’s

easy to see why permutations have been taken for granted for such a long time.)

If these measures are a harbinger of difficulty, however, they also point to a
likely alternative to heavy use of permutations. It will be desirable to avoid wild
permutations (like the fF'T) on parallel processors, in favor of alternatives like
factoring simpler permutations from partial results. Although the {FT permuta-
tion measures out to be bad, it admits a factorization of Shuffle Permutations (or
Deals; Theorems 5 and 6), each of which measures out to be comparatively tame.
Perhaps permutations can be distributed out from a parallel process to a serial
process where they would not create bandwidth-consuming, chaotic access, or
perhaps, like the permutations in convolution, these accumulated permutations

will simplify or cancel themselves on other postponed permutations.

The original purpose of these measures was to compare the relative costs
of different patterns of matrices within the quadtree representation. Now that
the measures of space and path length have been extended to representation-
independent measures for density and sparsity, other questions arise. Do these
measures form a basis for comparisons among different representations? That
is, can we characterize the general utility of a matrix representation in these
terms? For instance, representations yielding sparsity and density whose sum is
less than one appear to be ellicient; is this always true? Is it possible for their

sum to exceed one under some rational representation?
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Theorem 10 offers resource bounds for addition under quadtree representa-
tion. Bounds for other operations: for matrix inversion and solutions to linear
systems, or for matrix multiplication, are needed. Average case analyses, of
course, would be even more useful. Of more interest would be measures on al-
gorithms that are independent of a particular representation, say, in terms of
density and sparsity. That is, can we find a variant of these definitions for den-
sity and sparsity that would be useful measures of important matrix algorithms,

independent of any particular representation of matrices?

Acknowledgement: An earlier version of this paper was assembled while
the first author was a visitor at Tektronix Labs. Toeplitz matrices were measured
at the suggestion of E. Kaltofen.
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Appendix

S(p,m) is the worst-case space for an n x n matrix with m non-zero entries, and

P(p,m) is the worst expected path length for an n x n matrix with m non-zero

entries.

Lemma 1. S(p,0) = 0= P(p,0) and, for 0 < m < 47,

S(p,m) < mp —mlogym + 3m — 3;

P(p,m) <log,m + 3(4 — m4~P).

Proof: The proof is trivial for m = 0. For 0 < m < 4?7 the proof follows by

simple induction on p:

Basis: I'or p = 0, necessarily m = 0 or m = 1. The latter case is also easy:
1) — 1 — 4 -
50,1)=1=1-0—1-loggl+3-1—3;

P(0,1)=1=log, 1+ 3(4—1-479).

Induction Step: Assume that Lemma 1 holds for p = ¢, and consider g + 1.

S(g+1,m) =1+ ., max [S(q,%)+ S(q,7) + S(g, k) + S(g,1)];
0 7k 1<40

P(g+1,m) =1+ %{Mfﬁ{z:m [P(q,i) + P(q,5) + P(a, k) + P(g,0)] }.
0<i,5,k,1<4"

Establishing the bounds from these equations decomposes into four cases: re-
spectively when four, three, two, or only one of 1, 7, k,l are non-zero. Only the

first and last cases will be expanded here; the cases for three and two are similar.
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When all four are non-zero, m must be 4 or larger:

S(g+1,m)<l+ max [i+j+k+0)(g+2)—2

i+j+k+i=m
0<i,j,k,1<49
— (tlog, i+ jlog, j + klogy k + llog, 1)];
=1+ m(qg+ g—) - %- £+ji1}ui_|l_lzzm [ilog, i + jlog, j + klog, k + Llog, I];
0<i,j,k,1<47

3 4 1
<m(q+3)— 3 — 4[7F log, F]
because minimum occurs at 1 = 3 =k =1=7;

:mq+§m—%—mlog4m+m

1.

=m(qg+1)—mlogsm+ $m — %;

P(g+1,m)<l+3 max ([(log,i+log,j+logyk +log,l)
0<i ik 1<as
+4(3) -3+ 7+ k+ 1479
=1+3—gma @43 max [log,i+log,j+logsk +log,
0k R <4l

1 i Leooa{gf i
<1+ 2 - Lima(atD) 4 L{4]og, 2]
because maximum occurs at ¢ = j =k =1=7;
= log, m + % — %m4_(9+1).
When only one is non-zero, m > 1 and the recurrence is straightforward:

. 4 173
S(g+1,m) <1+ o Y [lg + logy l + 51— 3]
0=i=j=k<I<4?

=14+ mqg+ mlog, m+ %m—v%;
<m(qg+1) —mlogsm + %m— —é—;

. : 1 Log —14-9)]
Pla+ Lim) €145 . [logy I + (4 — 1479)];
=1+ ;[logym + 3(4 — m4~2)];
= ;log,m + % — %mil_(g"'l);

<logym + (4 — ma—(at1)), U
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Lemma 2. Ifb> 1 and |a| < 1 then (1 —a)® > 1 — ab.

Proof: Compare the Taylor Series expansion of the logarithm of both sides.]

Lemma 3. Ifa > 1 then (1 —z)* <1 — az + (az)?/2.

Proof: Using Taylor’s Series expansion (around zero) with remainder (7, p. 150]

we can write
az(l o c)“a:2

(1—2)*=1-ax+ -

where 0 < ¢ < z. Setting ¢ = 0 proves the lemma. i
Lemma 4. Forallz,y >0, (1 —z)¥ > ¢—2¥/(1—2),

Proof: It suffices to show that —In(1 —z) < z/(1 — z). But

2 1B3 wé
n(l —z) mif ik gk
and
T omaatialesta.,
1—2

Straightforward comparison proves the lemma. O
Lemma 5. Forallz,y >0, (1 —z)* < e~y

Proof: Take the logarithm of both sides, apply the Taylor Series expansion to

the left side and compare terms. D

Definition. P(p) is an n X n permutation matrix where n = 2P and p is an

integer.

Definition. Tp(p) is a complete quadtree representing a 2P x 2P packed ma-
trix and T'(p) is the quadtree that results from representing a given 2P x 2P

permutation matrix P(p).
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Theorem 8. Ifp is even

2P g-#{? 2.2-P 4 22l 4
SRipIE ——— (E + + ) + 2F (E _ svﬂ—z) -

<
g =

371427 " 3-(l+2 PP 3
and
P 4
> (B4 )_—.
SR(p)_2(2+78 .
If p is odd

2P p 1 9—p/2+1/2 4.9-F 9 1 __2tn/z 4
S < —— =+ = gp [ 2 _ e 3eF2 5 | _ =
R(p)-'1+2—P(2+2+ 1+27 +3-(1+2—:v)2)+ (3 3¢ ) 3

Sr(p) > 27 (% + .768) = %.

Proof: Only the case where p is even is presented in detail. The case for odd
p may be established in similar fashion. Associate with each node in Tp(p) a
pair of integers (7, 7) where ¢ specifies the level of the node in Tp(p) and j is the
left-to-right order of the node at that level. Let N(7,7) be an indicator variable
which has value 1 if node (%, j) exists in T'(p) and 0 otherwise. The expectation

of N(i,j) is the probability that node (7,7) is in T'(p). Then,

Sr(p) = Z E(N(i,j)) = Zpr(node (z,7) is in T'(p)). (1)
i,7 i,
But node (7, 5) 1s in T'(p) if and only if the submatrix corresponding to that node

is not zero. Let pr(p,7) denote the probability that the submatrix corresponding

to a node at level 7 is zero. Therefore, the probability that node (z, j) is in T'(p)
is 1 — pr(p,1).

Figure 4 illustrates the calculation of pr(p,i). The 2P~* x 2P~* submatrix
corresponding to node (2, j) has been placed at the lower right corner of matrix

P for simplicity; this matrix must be entirely zero. In order for P to be a permu-

tation matrix exactly 277" rows of submatrix B must contain 1’s. This requires
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. o P_ r—1i
2P~ columns of submatrix A to be all zero. There are (2 zpz_‘g ) ways to choose

2P~ zero columns in A. For each way to choose 2P~% zero columns in A there
are (2P — 2P~*)! ways to place 1’s in submatrices A and C such that no two are
in the samne row or column. Finally, for each way to place 1’s in A and C there
are 277! ways to place 1’s in B (these must be placed in the zero columns of A).

Thus, for a node at level 1,

(V5702 ier — 2= (29 — 2p=)1(2p — 2,

o 2P—1i

pripi) = 271 T (2P —2- 227!
_(p—2rmi_0) (2P—2PP_1) (2P—2P"F_2) (2P _2PHl 4
(2?-0) (27 — 1) (27 — 2) (27 — 2p—i 4 1)

2Pt
H (-53)- 2
Using (2), the fact that the number of nodes on Level i is 4*, and that the node

on Level 0 is always present, rewrite (1) as follows:

P . ¢ i PO | 2p—i
p)=1+) 4 (1- ] (1*21)_&) : (3)
=1

k=0

Now split the sum in (3) into two subsums by cleaving the range of k and
derive upper and lower bounds for each. These will later be added to establish

the theorem.

a. Consider the sum

i=p/2+1 k=0
P " gp—1
\ 203
<< P11 = -
353 ( () )
i=p/2+41

From Lemma 2, 2P~% > 1 implies

i 2p—i oot . 22(;1—-—:')
S - >1 - - 3
( 2p_2v—t+1) = T iyl
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Therefore, we can bound Upper from above as follows:

P wif P
- 4P 1
T Y = 2P
Eppe'r§‘z 4(2p_2p—i+1) 2 Z 1 =954 D-p

i=p/2+1
-y
- —p T 2-1
1487, Sl s

Making use of the fact that 1/(1—z)<1+2+222if 0 <z < 1/2 we can

write

9P : z 2. g2k
Ve 1
S 135w 2 ( +1.+2-P+(1+2-p)2)

i=p/2+41

g P p 9—p/2 92.92-P
—1+42-° (§+ 142-7 + 3-(1+2—P)2)'
Upper is bounded from below by

P , op—i 27~
Upper > Z 4 1—(1— 23’) )

i=p/2+41

From Lemma 3, 27~ > 1 implies

gp—i 7=t 92(p—i)  94(p—i)
(1 s ) £f = 4

9P = 2P 22p+1 °
Therefore,
U ; | (9p—2i _ 92p—4i—1 p2f _ 2F
i > 4?. 2 — _ 2 —431 > e _ -
merz >, #( )25~

i=p/2+1

b. Now consider the sum

p/2 2P 9p—i
Lower:Zfli 1 — H (1—2p k)

i=1 k=0

p,fZ ' z‘p—t 2?—1-'
< 4" (1-(1- ,
et (-55m) )

p/2 1 gp=3
<> 4 (1 ~ (1 - ) )
- i =1
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Lemma 4 asserts that (1 —z)¥ > e~*¥/(1=2) for all positive z and y. There-

fore,

p/2 ; p/2— ; 1 3 2p/2
bower s34 = 3 4 (1) -7 ()

f==1, i=1

Lower 1s bounded from below by

p/2 ‘ 2p—i gp—i
Lowerzzcl"(l—(l— 2;;) )

i=1
p/2 2P=
1
= 4‘ 1 — 1 - —
e (-(-5)" )
=1
Lemma 5 asserts that (1 — z)¥® < e~V for all positive  and y. So
p/2 1 1 p/2-3
gi _opf -1, 1 -4, L _—16) i —16
Lowe'rZ;l 2(6 +4e +1Ge ) ;46
pptd 4
— = —.38.2P
- 3

Putting the bounds of Cases a and b together proves the theorem. l

Theorem 9. If p is even, then

P __2P/2 1 1 2 2°°F
Pr(p) < = —e #7-2 Sl 2 4 )
R(p)S 5 —e T 3T 71727/t
and
P 27"
s 4 B8 T —
Pa(p) 2 5 + 862 — —
If p 1s odd, then
p 1  __aivz 1 9 9252
P < = —_— alp—-1)/2_o — S ——
Rlp)s5+5-e T \3 T iy
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and _
20

Proof: Again only the case for even p is extended here; the case in which p is
odd is similar. A path contains one node from each of levels 0,1,2... in Tp(p)
until a node at some level, say i, representing an all zero submatrix is reached.

Therefore,
P
Pr(p) = Zp'r(ra,udom path 1s at least ¢ in length).
1=0

But, a path is at least 7 in length if and only if the level : submatrix is not
zero. The probability that the level ¢ submatrix is zero was found in the previous

proof. Using that probability we have

Pr(p) =1+ (1- H_ (1—;13:;) . (4)

k=0

As before, break the sum of (4) into two subsums so that the upper limit of the
first subsum is p/2 and the lower limit of the second subsum is p/2 + 1 and find
bounds {or each subsum. Proceeding as in the proof of Theorem 2, we find that

the second subsum is bounded from above by

p

QP 4t
Upper S 155 'Z - =
i=p/2 itz »
2P 2 : R
Bt Tl A
e DI Ry
it=p/2+1

< 2P 12_p+2 4P
=1 L£9-F 3 T\142-p '

The second subsum is bounded from below by

P P 2
Upper > ) (7% -2%) =22 3} 47 47 3 167
i=p/2+1 i=p/241 i=p/2+1
JL 11
- 3 3-2P 15
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The first subsum is bounded from above:

B 1 27 p/2 P =t
LowerSZ(lw(l—g) )S (1—e‘ﬁ)§§—
i=1 i=1

The first subsum is bounded from below:

p/2 ‘
Lower > Z (1 s e"zp_m) > g- — el 2,

i=1

Assembling all the bounds proves the theorem. I
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Figure 1. Recursive decomposition of

packed, symmetric, and triangular matrices.
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Figure 2.. Recursive decomposition of

clip, banded, and shuffle matrices.
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Figure 3. fFT permutation.
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Figure 4. Calculation of the number of 2Px 2P

permutation matrices such that the last 2P
columns of the 1ast 2P~ ! rows are all zero.




