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ABSTRACT

In this paper we describe a method for using data dependence analysis to
estimate cache and local memory demand in highly iterative scientific codes. The
estimates take the form of a family of “reference’” windows for each variable that
reflects the current set of elements that should be kept in cache. It is shown that,
in important special cases, we can estimate the size of the window and predict a
lower bound on the number of cache hits. If the machine has local memory or
cache that can be managed by the compiler, these estimates can be used to guide
the management of this resource. It is also shown that these estimates can be used

to guide program transformations in an attempt to optimize cache performance.
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1. Introduction

Perhaps the most critical feature in the design of a shared memory parallel processor is the
organization and the performance of the memory system. Generally, the shared memory is imple-
mented as a set of independent modules (which, in turn, may be interleaved) connected to the pro-
cessors via either a bus or a switch network. This organization exhibits several potential perfor-
mance problems. First because of the long journey each memory reference must traverse in going
to and from this shared resource the latency to access a data may be pretty high; this effect ends
up to be very important in systems with large number of processors where the number of network
stages that each memory request has to go through, grows as logy(p ) where p is number of proces-
sors (due to the number of stages of the network). Second due to the contention both at the net-
work level and the memory level (routing and memory banks conflicts), the practical bandwidth
(and also the latency) can be severely degraded. A good example of such phenomenon is "hot spot”
contention [PhNo85]. To overcome these problems, the key idea is to use a hierarchical memory

system, technique already proven eflicient on sequential computers for speeding up memory access.

In such a system the memory is organized in several levels which might be fully shared (each
processor may access the whole level), partially shared (the processors "inside a cluster" share the
access to a given level) or fully private (each processor has its own level, access of which is res-
tricted to itself; therefore access do not suffer from going through the communication medium and
from interfering with the other processors). The transfers between these levels are either entirely
hardware managed (such as with a cache where the user has no explicit control on the loading and
unloading strategies) or fully software managed (such as registers where the user, or preferably, the
compiler explicitly moves data between levels). For example the ALLIANT FX8 uses two levels of
shared memory (trading size for speed): the main memory is connected via a bus to a high
bandwidth cache which is turn shared by the processors through a crossbar. Access to vectors
from the cache is 2 to 3 times faster than accessing from memory. Additionally, each processor has

its own Instruction cache and its own set of vector registers. In other machines only the main



memory level is fully shared and each processor has a private data cache, such as with the Sequent
Balance and Encore Multimax, or a local memory which might be physically distinct from the
main memory (CRAY2) or just a portion of the shared memory such as the IBM RP3 or BBN
Butterfly. In this last case, the difference between local and shared requests are that the local ones
do not go through the network. Finally, the Cedar system has perhaps one the most ambitious
design of memory hierarchy. At the processor level, we have instruction caches and vector regis-
ters. The processors are then grouped into clusters which share a local cluster memory which is
accessed by a shared cluster cache. Finally the clusters have access to the globally shared memory
through the network. Additionally, each cluster has a prefetch unit controlled by software for pre-
fetching data and therefore hiding the latency induced by the access to the global memory level.

However, the overall performance of all these hierarchical memory systems is highly depen-
dent upon the address reference stream of the program (more precisely its locality). Several studies
([CJST85] [GaJaMB7] [GaJa87]) have shown how algorithm reorganization may result in consider-
able performance improvement. It is crucial to notice that even in the case of hardware managed
systems (ALLIANT FX8), reorganizing the program in order to make references to the same vari-
able closer in time (or reducing the size of the working set) will speedup program execution
[GaJaM87] [GaJa87|. Similar phenomena were already observed in studies considering the effect of
program organization on paged memory behavior [KaMK69] and our approach can be considered
following in the spirit of [AsKL81].

In this paper we consider the problem of automating the process of transforming programs to
optimize the utilization of the memory hierarchy. For sake of simplicity, in our first approach we
will assume that the transfers between levels are completely under software control. In that case,
locality optimization is a 2-level process: first for a given program, one must solve the allocation
problem (which data is to be kept in cache and for how long), and then restructure the program to
minimize the number of data transfers. In fact, our basic strategy may still be applied to hardware
managed systems. This is because reducing the number of transfers between levels is a dual prob-
lem to maximizing the reuse of data (optimizing ‘‘hit ratio”). Our key idea in solving the alloca-
tion problem is to consider it at a macroscopic level (loop level and section of arrays) rather at the
microscopic level (machine level instruction and individual array elements). Using the fact that for
scientific codes, most of the CPU time is spent in loop-like structure execution, we will globally
study the interaction between two statements in a loop, by analyzing the sets of all the addresses

referenced by each of them during the whole loop execution.

First we show that the theory of data dependence analysis used in automatic vectorizing
compilers can be extended so that a more refined algebraic structure can be given to a class of data
dependences associated with array index expressions that are common in scientific code. We call
this class of dependences ‘“‘uniformly generated”. Next we associate a ‘‘reference window” with
each data dependence. The reference window of a data dependence between two statements
describes the set of elements (section of the array) that must be kept in the fast memory level to
make sure that any data referenced by both statements will stay in the fast level as long as both

statements continue to be executed and continue to reference that data item. More generally, we



try for a given dependence to determine the amount of space required to ensure that each data will
be loaded just once. In fact, the reference window can be considered as the part of the "working
set" (i.e. data which is going to be reused later and which may result in cache hits.) In sections 3
and 4 of the paper, we show that “uniformly generated” dependences have special properties that
relate the structure of the data dependence graph to the lattice of reference windows and, given
information about the loop bounds, we can estimate the size and ‘hit ratio”’ of the various win-
dows. Now the problem is very similar to a classical bin packing problem: the size of the windows
being the cost, and the ‘“‘hit ratio” being the benefit associated with a window. In fact, all the ele-
ments necessary to manage the data between the different levels can be done symbolically at com-
pile time, while the final decision might only be taken at runtime by substituting values in the

symbolic expressions.

In section 5 of the paper, it is shown that program transformations like loop interchange and
blocking can have a substantial effect on the size of the windows and therefore on the demand for
space in the fast level. While this is a well known fact to most programmers, it is shown that the
data dependence modeling can be used a mechanism to predict when a loop interchange can
improve performance. In section 6 we show how this mechanism can be used to decide which data
should be moved from the global memory of a multiprocessor system to the local memory. We

also briefly discuss the implications for multiprocessors with shared cache.

2. Definitions

In this paper we use the standard definitions for data dependences given in many places (for
a recent overview see [PaWo86]). A flow dependence from a statement S, to a statement S, exists
when a value computed in S, is stored in a location associated with some variable name z which is

later referenced and used in S5 and is denoted
6, : 81— S,

An anti-dependence from S, to S, exists when a variable z referenced by S, must be used before it

is overwritten by S, and is denoted
33 e S 2

An output dependence from S, to S, exists when both statements modify a common variable z

and S; must complete before Sy does. This is denoted by
5: . Sl — Sg

In order to track memory references another dependence type , known as an input dependence, is
used. Unlike the other three types of dependences, an input dependence does not impose a con-
straint on the potential parallel execution of the two statements, but we still use a notation similar

to the others:

6l:8,— 8,



In the case of references to elements of structured variables such as vectors or arrays, most
references occur within loops. In this paper we consider only simple “for loop” iterations though
much of what we say applies to “while loops™ and other tail recursive control structures. For each
data dependence between two references nested within a loop, we extend the work of [Cytron85]
and associate with the dependence a set of distance vectors which is defined as follows. Consider

a nested sequence of k loops of the form shown below.

FOI‘ 1‘1 = Ll to Ul
For i, = Ly to U,

For i.k = Lk to Uk
51
Sa

endfor

endfor

endfor

k
The module Z* is called the Extended Iteration Space and the product _1:[1D,- where D; is the

range of the " induction variable [L; .. U], is called the Bounded Iteration Space. Both the
extended and the bounded iteration spaces have a total order which is defined by the point in time

at which the element is executed, i.e.

(vy, g, oy ) < (wy, wo, ..., i)
if there is a point 5, 1 < s < k, such that v; = w; for { < s and v, < w,. We will say a vector
is positive if it is greater than zero in this order.

If a data dependence exists between a variable reference (which might be a component of a

structured variable z ) in S, at iteration

. 0 - .0 . .0
1=ty , 9=, C T =

and the same variable (or component of ) in S, is referenced at iteration
i=1}, fg=ta, - - f=t
Let
vy=1f —i0, vo=ig —id, -+ - ve=it—il.
If this vector is positive in the total order of the iteration space, then we say the dependence exists

and has a distance vector V = (vq, vy, ..., v) at time



P = ({10} !'20 ? "'Js-kﬂ)'
In general there may be more than one distance vector at each point in time, because S, may refer-
ence the same component of z at several different points in the future. To make this more precise,
let d be the dimension of the structure z and let k¥ be the depth of loop nesting that we are con-

sidering. Let S, reference = by an indexing function f:Z* — Z? and S, reference z by the func-
tion g:Z¥ — Z?. Then the dependence

8,:51(ez [f (T°)...) = Sol..z[g(TY)...)
defines a family of distance vectors at iteration time I by the relation
Ve = (veZ' | v >0 and f(I) = ¢(I +v)).
Note that we insist that the distance vectors point forward in time (which translates to the require-
ment that the leading non-zero component of the vector be positive.)

There are a number of important, very common special cases. We say the dependence is Uni-

formly Generated if there is a linear function k:Z2¥ — Z¢ and two vectors C; and C, such that

) = wI)+ ¢
o) = r(I) + G,
In this case it is easy to see that
Vit = (vER |v>0, h{v) = G - C,)

and that the right hand side is constant in time (independent of I). Clearly if a non-negative
member of h™(C; —C,) does not exist the dependence does not exist. If A~Y(C; —C,) is a single

vector (vy, vy, ..., v;) then we say the dependence is uniquely generated and denote it by,
63{”1:”2!“‘:”#) : SI_*SQ
Another method of describing the set of distance vectors is to represent it as the sum of a

uniquely defined positive vector plus the kernel of h. To do this let v = (vy, vg, ..., v) be the
smallest non-negative vector in h™}(C; —C,) then clearly

Vit = (v +w | w € Ker(h))

where Ker(h) is the kernel of the mapping, i.e. the set of all w such that A(w) = 0. The existence

and uniqueness of v is because the time order is total and the function h is continuous.

To illustrate these ideas consider the loop

Fori=1ton

Forj=1ton

S1 x[i,j] = 13.5
S2 yli] = x[i-3,j+5] + 19.0
S3 zfj] =14

S4 call 1(3,2[j-7])



endfor

endfor

This program has six dependences and we will look at three of them. On the variable z, there is a
flow dependence for each (¢,5) pair to iterates (i+3,5—5) when i <n—3 and j>5. In this case
h(¢,i) = (4,7) and C; = (0,0) and C, = (3,—5). Because the Ker(h) is trivial we can write this
as

63 (3,—5) : SI—FSQ

For the variable y we note that for each j iteration y([¢] is modified. Thus for each j we have a
family of output dependences one from each value of ¢ to the next. In this case h(7,5) = ¢.
This is a selfl dependence so we have C; = C, and the set of distance vectors is just equal to

Ker(h) which is generated by the vector (0,1). This dependence vector is written as
6;(1,0)-'- ‘ Sg—hgz

Where the superscript ‘“+’’ is used to denote that a full module of dependences are generated by
this vector, i.e. we have §,(k,0) for all k>1 and (k¥,0) = £(1,0). Such dependences are called

cyclic self-dependences and are very important for cache management.

The third dependence involves the variable z. Here we have h(i,5)=j, C; =0 and
Cy = —7. The kernel of k is generated by the vector (1,0) and £ (0,7) = C; —C,. Hence the set of

dependence vectors can be described as
8((0,7) + (1,0)* ):8; — S,
where the vector summation is to denote the one parameter family of vectors
(0,79 + p*(1,0) = (p,7) for all p € Z

It is important to notice that for p >0 this is a flow dependence, but for p <0 the direction in time

is reversed and in fact we have described a set of antidependences

8.(—p,~7):Sy — S5 all p<0

Of course not all data dependences are uniformly generated. For example,

Fori=1,n

S1 x[2*1+3] = 29.9
S2 y[i] = x[4*1+7] - 39.0
endfor

has an anti-dependence from S, to S, which, at iteration 7, has a distance vector
5,(142) : §;—8, 1 <i <(n—3)/2.

The vector is not uniformly generated because the vector is of the wrong form (it depends upon

time) and the it is carried only by the even iterations. In this situation we use the classical
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“direction’ vector notation. In the case above the distance is always positive, so we denote it as
3,,(+). If, on the other hand the lower bound of the for loop was -3, the distances would have
ranged from -1 to (n—3)/2 and we use the notation §,(—/+). If the lower bound of the loop were
-2, the vector would be 8,(0/+), etc.

3. The Cache Window for a Dependence Vector
For our purposes we are interested in the following question:

Let two references to a variable be linked by a data dependence. Under what con-
ditions can we be assured that if the first reference to the variable brings the

current value into cache, then the second reference will result in a cache hit?

In general this is a very hard problem whose answer depends on more than a single data
dependence. One must know not only more global program information, but also a great deal
about the way the cache replacement policy works. As described in section 1, we take the
approach that the compiler can restructure the program and suggest a replacement schedule that
will be reasonably good. The consequence of letting the compiler manage the cache is that we may
focus attention on one variable at a time and estimate the effect of program restructuring on the

demands that are made on cache resources by that variable.

If the compiler has complete control of the cache and it is to be managed much like a mas-
sive set of registers, the basic cache optimization problem can be stated as follows: when we read a
scalar or an element of a structured variable, should we, or should we not, keep the element in
cache. If we have complete knowledge of the data dependence structure of the program, a reason-
able solution is to see of that reference was the source (tail) of a data dependence. This means the
element will be referenced again, if so, and if there is room, we should keep the element. To make

this idea more precise, we need the following.

DEFINITION. The reference window, W(dy); for a dependence 8y : S;— S, on a variable
X at time ¢ is defined to be to be the set all elements of X that are referenced by S, before ¢
that are also referenced (according to the dependence) after ¢ by S,.

For example, the loop

fori=1,n

S1 x[i] =14
S22 x[i-3] =yl[i]
end;

?

has an output dependence §;(3). If we set a break point at the top of iteration i we see
W(62(3))i= = (z[1-3], z[t—2], z[¢—1])

In this case, we see that to make sure every reference to x in statment S, (excluding those few not
referenced at all by S;) is a cache hit we must be sure that for all {=¢ the past four elements refer-

enced by S, are kept in cache.



A more complex example is given by

fori=1,m

S1 yli] = x[i]
forj=1,m
S2 x[j] = 15
end;

In this case there are three families of dependences. First there is an anti dependence
8,(0/+): §; — S,

which describes the use of z[¢] prior to the reassignment in S, for all iterations in the future. It is
not hard to see that

W, (0/+)im = (z[1), 2[2], -+ 2[i-1])
Second, from S, to itself, we have
5:(110)1-: Sy — S
which again represents a family of dependences §,(k,0) generated by the distance vector (1,0). In
each case, at the top of the loop all m elements of z have been referenced and will be referenced
again. This implies
W(6;(1,0) = (z[1], - - =z[m])

At the top of loop 1, all future references to z[k| for k£ >¢ in statement S; have been previously

generated by assignments in S,. Consequently,
O, (+): So — 5,
has an associated window

W(:(+)em = (2], z[i+1], -+ z[m])

As the above example illustrates, different dependences generate different, but not necessarily
disjoint, reference windows. In section 5 of this paper we will have need of a mechanism for pick-
ing families of dependence windows for cache management. Our problem here is to consider ways
in which a “basis’’ of dependences can be chosen that somehow generates the entire family of refer-
ence windows for a given variable z so that we can measure the size of the total set of elements of
z that must remain in cache. To do that we must first study a bit of the algebra relating the

dependence graph to the family of reference windows.

DEFINITION. Suppose we have three dependences
61:51 — 52
0385 — 5
63:51 — S3



= G

with the property that if z[¢] is referenced by S, and later by S then it is referenced some
time in between by S,. In this case we say that §; = 6§, + &,

The relationship between the reference windows for these three dependences is given by the
following result.

Lemma 3.1. Let 63 = 6, + &, define a relation between references in statements S,
Sz aﬂd SS-

51!81 — 52, 62:32 - 33
We then have

W(d), N W(), C W(b); C W(5), U W(b),
Furthermore, if W(6),NW(8,); is not empty there is a cyclic self-reference
b: Sy — S
and

W) N W(&k) C W(&):.

Proof. Let z[¢] be an element of W(8;),. This means that it is referenced at, or before time ¢
by S; and later by S;. Either it has already been referenced by S, which means that it is in
W(8,); or it has not which means that it is in W(é,);. This prove the right hand inclusion. To
prove the left hand inclusion notice that if z[¢] is an element of both W(5,), and W(6,), then it
has been referenced by both §; and S; and will be referenced by S; in the future. This last fact
puts it in W(é&;),.

Assume that W(6,),NW(d,), is not empty. Let z[¢] be in the intersection. Then by & z[¢]
is referenced by S, after ¢ and because of &, it is referenced by S5 at or before ¢. This implies the

existence of & and z[¢] is a member of W(&);.

In general one would like to find a family of dependences that are mutually disjoint and gen-
erate the entire set of dependence windows. In other words we would like the intersection term in
the above expression to be empty and the second inclusion to be a set equality. Unfortunately,

this is not always true. For example,

fori=1tom

S1 x[i] == 15
forj=1tom
S2 y[i.i] = xi]
end;
S3 z[i] = x[j-4]
end;

has 6 dependences. Among these, three dependences satisfy the addition formula (83 = 6; + &) and

we have



-10-

Wi(6,:81—So)= = (2[1], 2[2], ..., z[¢-1])
Wo6,:85—+S83)imi = (z[i—4], z[¢-3], ..., z[m])
Wy(6,:81=Ss)tmi = (z[0—4], 2[i=3], z[¢-2], z[1—1])

which satisfiess W3 = W ,NW, and not Wy = W,;UW,. One of the reasons that this happens is
that both the dependences 6,:5,—S; and 8,:5,— S, are not uniquely generated, i.e., they both
have direction vectors (—/+). If we restrict our attention to uniformly generated dependences it is
possible to state a stronger results. In particular, we have
Theorem 3.1. Let S, reference z[h(i)+C} ], S, reference z[h(i)+C,] and S; reference
z[h(i)+Cy]. Then if h() is linear and the dependences

61:31 = SQ and 62152 o 53

both exist, then a dependence 6;:5; — 53 exists and, in the unbounded iteration

space, we have
W(as)t = W(ﬁl), U W(62]t

Proof. Let z[¢] be in W(&); and let v;EVa‘_ for 1=1,2 be the smallest positive vectors in
these sets. By definition z[¢] is referenced before ¢ by S; and after ¢ by S,;. Looking at the refer-
ence by S, we have ¢ = h(7)+ C, with ¢ > t. Pick 7 to be the smallest such vector that satisfies
this condition. Because h(vy) = Cy—C,, we have ¢ + vy > ¢ and ¢ = h(i+v5)+C;. Hence,
z[¢] is referenced by Sg after ¢ as long as s7+vz lies in the iteration space. This is always true in
the unbounded space, but in the bounded space it may not always hold.

In the other direction, let z[i] be in W (8,) be referenced by Sy at ¢ < t. If we pick 1 to be
as large as possible, then there exists v € Vj such that i+v > t where Sy references z[i]. But
7—v; < t defines a point where $; references z[i], so z[¢] is in W(&). But again, in the bounded

iteration space this may not hold.

This proves that, in the unbounded iteration space, we have
W(8,)JuW () C W(s)

To prove the inequality the other way, we need only observe that if z[i] is in W(8;) and is refer-
enced by S, at ¢; before ¢t and at i3 by S after ¢. Consider i = i3—v,. If 45 > ¢ then z[i] is in
W(8,), otherwise it is in W(&).

DEFINITION. We say that a window for a dependence spans a set of other windows if each
is contained in the first.

Theorem 3.1 states that for any three references generated by the same function A() that

form a graph connected by dependences, there is a single dependence that has a window that spans

the others. The next step is to show that this may be generalized to larger sets.
DEFINITION. UG (x) is defined to be the subset of the atomic data dependence graph con-

sisting of nodes that are references to variable z and edges that are uniformly generated depen-

dences.



i

We say that a source for a directed graph is a node where all non-self cycle edges are outgo-

ing and a sink is an edge where all non-self cycle edges are ingoing.

Theorem 3.2. Let CCUG(z) be a connected component. Then C has a spanning

dependence and following three statements are true.

: 8 If p is a source then it is unique and there is a node ¢ and a dependence
6:p — q such that W(6) spans C.

2. If ¢ is a sink then it is unique and there is a node p and a dependence
6:p — ¢ such that W(6) spans C.

3. If there are no sinks or sources in C then the references windows for

dependences in C are all equal.

Proof. We first show that C is complete in the sense that if z and y are nodes in C' then
there is a dependence between them. We use an induction based on Theorem 3.1. Let p and ¢ be
two nodes in C. Pick the shortest (undirected) path between p and ¢q. If this path has length
greater than 1 then let r be the node on the path connected to p and s be the node connected to
r. Nodes p, r and s form a triangle with two sides that are dependences. As in the proof of
Theorem 3.1 the existence of the third edge (between p and s) follows from the linearity of k().
Hence there is a shorter path between p and ¢ which contradicts the assumption that the
minimum was greater than 1. The fact that the source and sink are unique follow from this com-

pleteness.

We next prove that if there is a source or sink then there is a spans dependence edge con-
nected to it. Let si be a sink for the graph and let é;:p —¢ be an arbitrary edge not involving si.
By the closure property there are two edges 8,:p —si and 3:g—si. By Theorem 3.1 6, spans both.
By the same argument all edges connected to si are totally ordered by the set inclusion of the
corresponding reference windows, hence there is a maximal element that spans all other edges con-
nected to si and hence all edges in C'. If a source node exists then the same argument shows that
there is an edge connected to the source that spans all others. If both a source and a sink exist
then the spanning edge must be connected to both. If neither exist, then let ¢ be any node. Then
because ¢ is not a source or sink there must be both an ingoing edge é;:7 —¢ and an outgoing edge
dy:g—y. Again by Theorem 3.1 both &, and & are spanned by an edge from z to y. This fact
must be true for any outgoing and ingoing pair. This means that z can not be an end point to an
edge to any maximal window that strictly spans any other, hence all the reference windows must

be equal.

It should be noted that this result tells us how to pick a dependence that spans any con-
nected component of a dependence graph in an unbounded iteration space. Unfortunately, in the
bounded iteration space, Theorem 3.1 is no longer valid, and remain true only ‘away from the

boundary’ of the iteration space.

Fortunately there is another mechanism that we can use to estimate window extents in a
bounded iteration space. The key idea is that for each window in a bounded iteration space we can

enclose the window in a moving “frame” of fixed size. Let D* be the bounded iteration space and
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let z be a structured variable if dimension n. If we have a dependence
6:z[h(i) + C)] — z[h(i)+ Cy

we can define the following special subspaces of Q* where Q is the field of rationals. Let e; for
¢ = 1.k define the natural basis of Z* that corresponds to the induction varibles 7, 7y, ..., 4.
Define the subsets of Z*,

T‘,’j = span[e,-, €41y +oey Ck }

where span (uy, ..., u;) is defined as

¢
[v€QF | v = Yo,u,, with a, € Q |

r=l1
We have
Vi C Ve - - CVaC V=@
We can now characterize the window for 4, as follows.

Theorem 3.3. Let r; be the largest integer such that ker(k) C V, and let

v € h7YC, — C3). Let r, be the index of the leading nonzero term in v and set
r = min(ry,ry). Define

X, = <—s* + V,,,> N D*.

where D* is the closure of the iteration space over the rationals and s is a rational
in the range [0, 1]. We then have

W(éz)t-{a'l,ig...,:'k] £ [ :'C[I] I i€ h(i:l! TENE irr 0, Or 10) 3 Ol + h(Xu] )
Proof. Let z[s;] = z[so] be two references to the same element of z where s, = h(¢;)+C,
and sy = h(ty)+Csand ¢; <t < ty. Because s; = sy, we have
h(:g—tl) — 01 - 02.

Letting ¢ = t, — t;, we have t — v € ker(h). Because ker(h) C V,, we can let h = t — v which

must take the form
B = 10,50, % Begies Ry )
Now consider two case. First assume £{; > ¢ — v. We now have
£ < I <lit+w

Assume t, is of the form

= B e T
Because the first r—1 terms of v are zero we have

<4 <G4y

hence E = i; for all j < r. Consequently, if we let
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to = (i, 92 .. 4,,0,0,...,0)
then we can write
ty = tg — s*v + w

where s < 1 is chosen to satisfy s_, = 1, — §*v, and w is of the form

(0,0,0, ..., wpy, Weyp, -~ - Wy )
with w; = E — ¢; + s*v;. Applying h() and adding C, we have

sl = h(t;)+ C; = h(tg) + C1 + h(—s*v+w)

which is of the correct form because —s*v+w € X, N D*.

Now assume that t; <t —v. If t{;+h < t—v we would have {5 = ¢;+h+v < ¢ which is
wrong. Hence, £; + k > ¢t — v. By applying an argument identical to the one above, we can pick
a number s<1 that gives us

t1+3*h = to—ﬂ-{-'w

where w; = ; — ¢; + s*h; for j > r and O otherwise. Again —v+w is in X, and because
h € ker(k) we have

h(t) + Cy = h(t; + s*k) + C,
and the theorem is proved.

The advantage of the formulation in Theorem 3.3 is that the window has been enclosed in a

moving frame. The term
R £,55 vy 5,00 2 40,0
describes how the frame moves in time. The term
Ci+ h(X,) with X, = <—s*v+V,,,, s€[0,1]> n D*

is the time-independant “frame” for the window. Notice that k(X,) is independent of the choice
of v because any other choice will differ from v by a member of Ker(h). In the following section
it will be shown that this formulation provides the necessary machinery to compute the size of

cache windows.

4. Hit Ratios and Selecting Cache Windows.

Assume, for now, that we have a machine where the compiler can select which memory refer-
ences to keep in cache. (For local memory this is always the case.) Clearly we would like to select
those references belonging to reference windows associated with dependences that somehow gen-

erate a lot of cache hits. Our problem is twofold:

1. How do we compute the total size of a reference window and what is the cache hit ratio

if we keep the entire window in cache?
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2 How do we decide which windows to keep and which to disguard when the total is too
big to fit in cache?

Another question that we would like to answer is if we have no control over the cache then
can we estimate the hit ratios for hardware cache policies other than the one above? While the

mechanisms described in this paper can be used to solve this problem, we will not consider it here.

Our basic cache scheduling algorithm will be as follows. First, at compile time, we select a
set of dependence windows that we consider important. Our policy for cache replacement will be
the following: we will read an element into the cache as soon as it enters the window and remove it

from cache as soon as 1t leaves the window.

A simple way to estimate the total number of elements in cache for this policy is simply to
sum the window sizes for each of the selected dependences. Unfortunately, as we have seen the
relationship between cache window in a systém of dependencies for a given variable can be rather
complex. In particular, cache windows overlap and an element might be counted several times by

this scheme. For example,

fori=1tom
S1 x[i] = 1.5
forj=51t09
s2 y[i,i] = x[j]
end
S3 z]i] = x[i-3]
endfor

In this case there are 6 dependences listed below.
Wi(6:(0/4):81—S2)imi =
Wo(8, (+/=):8g—>Sa)i=ii) =

(z[5], 2[6], ..., = [min(i—1,9)])
(
W8 (3 ):51—Ss)imi = ([z[i-3], 2[1-2), z[i-1])
(
(

z[maz(5,1—3)], ..., z[9])
W4(5s(1:0)*:52_’32)!=[f,j] = :?:[5], ) 9:{9])

Wy(8,(0/4):55—>Ss)t—i =
Wﬁ(53(+/—)352—’51)r-(£,j] — (3[m43[5:5)]: ey 3’[9])

Notice that, in fact, there are only two significant windows here. One is the window of size 3, Wy,

z[5], ...,  [min(9,i—3)])

and the other is the window of size 5, W,. Each of these are based on uniquely generated depen-
dences. The other windows are subsets of W,. The correct cache policy for this program is to
select W3 and W, to be kept in cache. Also notice that W, sweeps over the entire z array while
W, is constant in time (after ¢ = 1). At some times they are disjoint, but at times they overlap

and it is only during the period of overlap that the other dependences exist at all.
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Because of the fact that these non-uniformly generated dependences have reference windows
that tend to be either subsets of uniformly generated dependences or they have low hit ratios, we
drop them from consideration for inclusion into the cache. (We will attempt to justify this restric-

tion better in the next section.) For now our approach is based on the following strategy.

Let UG (z) be the subgraph of the atomic data dependence graph consisting of those reference
nodes involving the variable £ and those edges corresponding to uniformly generated dependences.
For each connected component CCUG(z) we estimate the size and the “hit ratio” of the reference
window for the spanning dominate dependence. If the total size is greater than the cache capacity,
we attempt to restructure the program to reduce the size. If the program cannot be restructured
but the cache can be managed by tagging the references that should be retained in cache, we
attempt to solve the corresponding bin packing problem to select the reference windows that will

give best performance.

Our nest task is to describe the machinery for the size and hit ratios of uniformly generated

dependences. In some cases the task is easy.

For example, the loop

fori=1ton

forj=1tom

S1 | -

S2 . X[i-3, j+5] ...
endfor

endfor

defines a dependence with distance vector dx(3,—5). At iteration (f,,5,) X[¢,,s,] is referenced.
This element is not referenced again until iteration (¢,+3,5,—5). Consequently, statement S, will

have to access elements

Xi gL, X[ j+1], ..., X[i ,m)],
X[i+1,1] .. X[i+1,j], X[i+1,j+1], ... , X[i+1,m],
X[i+2,1] .. X[i+2,j], X[i+2,j+1], ... , X[i+2,m],
X[i+3,1],..,X[i+3,j-5]

This set of elements defines the window W(éy) for this dependence at iteration (7+3,57—5).
Clearly any smaller set would not include reference X|[i,7] and would cause a cache miss for state-

ment Ss.

In the more general case of a uniformly generated dependence é from a term of the form
z[h(I)+C] we need to consider the formulation from Theorem 3.3. Let I = (iy, ..., % ). Let

v € Vsand r be chosen according to the conditions of the theorem. We have

W(,), .7 C h(iy ..., %,0,0,...,0) + C + h( X,)



=016

where
X, = < —s* + span(e,yq, ..., & ) >
and e; is the vector describing the extent of the ;™ induction variable. The problem is to com-
pute the size of h(X,). There is a natural mapping to the quotient module
Zk
ki 2% —_
" Ker(h)

which identifies all point in iteration space that reference the same element of the variable z By
mapping each index point ¢ to its equivalence class [¢] mod h. If we let X be the set of all distinct

elements of x, then there is an injection

Zk
In.m — X

given by In([i]) = h(i)+C. For a point ¢ in iteration space, let £, be the projection on the first r

components. Clearly we have another formulation of Theorem 3.3.

W(é:r )s C h (tr ]+In (h' (Xﬁ' )}

[W(s.) | < 1h(X0)]

To compute the size of h(X,) we use the following result. Let U be a convex subset of z*.

The linear function k() is composed of component functions of the form

Tk
h"(vl g6 owwy 'Uk] = Zh;’j‘v".
j=1
Lemma 4.1. Let h;, -~ - h; be a linearly independent set of components of k().

Let VP be the set of vertecies of a bounded convex subset U of Z* and let
pi = ged( hyj j=1.k)
and
;== i £ h; — h;
s = maz(l, maxf, [hi(v) — hi(w) )

An upper bound on the size of the set h(U) is given by

8. & 8
Bl & 2t o
Pi, Piy ps,

The proof is by induction on r. When r=1 the image of A is a scalar in the bounded inter-
val

55l gl

Because U is convex and h is linear, the size of this range is bounded by s and the maximum

occurs at the vertecies of UU. But the image of h can assume values only every p points so the



= i

8.
number of elements is bounded by %. In general, we observe that —_is the number of hyper-

P,

planes orthogonal to h; that contain the image of U. Let V be one of the hyperplanes and con-

sider the convex set VNU. By induction,

& &
lr(vaU)| < ——=2---
?l'l Pi2 P

r—1

-
and we have |h(V)|<|R(VNU) |pL

To apply this result observe that the determination of a maximal set of linearly independent
elements is a standard linear algebra computation. The only messy part of the computation is the

determination of of the index r and a vector in V. The rest is given by

Lemma 4.2, Let § be uniformly generated based at a reference of the form
h(I)+C. Let v € V; and let r be chosen as in Theorem 3.3. Assume the iteration

3
space takes the form D = _Hl[O,d‘-]. We have

(W) < |h(X)]
where the verticies of X, in Lemma 4.1 may be taken to be

0,—v», and (0,..,0,d;,0,..0) for j > r+1

As an example consider the following matrix multiplication routine.

for 1 = 0 to nl1-1
for j = 0 to n2-1
for k = 0 to n3-1
ali,j] += b[ik]*c[k,j|;
end;
end;

end;

?

For each of the three variables the dependences are self cycles
§,(0,0,1)*, &, [0,1}0)"', é, (1,0,0]+
corresponding to the three functions
he(i,j k) = (i,j) r=3
he(é,5,k) = (i) r=2
k(v,g.k) = (Bi7). F=i

In each case the v may be taken to be zero because these are self cycles. The corresponding X sets

are
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X* = ((0,0,0)

((0,0,k) [0<k < n3)

Xb

X* = ((0,,k) |0< 5 <n2,0<k <n3)
In the first case we clearly have
|W('§a)| = |([(0s0;0]] I = 1

where the square brackets denote equivalence classes mod h(). In the second case we invoke
Lemma 4.1 and 4.2.

Notice that for the dependence &;(0,1,0)*, the verticies of X* are
(0,0,0)and (0,0,n3).
The components of () are
hoa(i,5,k) = ¢ hyofig k) = k
and from Lemma 4.2,
py=pe=1 8, =1, s3=nsg
We have,

& ]
|W(8)| < ——= = na
P1 P2

In the case of §, we have vertecies
(O:O:O)r (0,?‘12,0), (0:0:?33)'
Again p; is always 1 and the component functions are

hb,l{isj’k) = J h6,2(1‘1}-1k) =k

We get
81 = Ny, g = ng
and this time,
8 82
[W(.)| < —— = nons.
‘ P1 P2

Notice that in the example above the function k() was an injective map from X, to W(8). It

is not hard to show when the dimension of the Ker(h) is 1 then this is always true for a self-cycle.

In the case of loops that are not perfectly nested these formulas still may work. For example,

in

Fori=1ton
Forj=1tom
x[i,j] = 15.4
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endfor
forj=1tom

yli,i] = x[i-3, j+7]
endfor

endfor

the “official” distance vector only reflects the level of “common’ nesting, i.e. §,(3). The formula
give a window size of 3. However, we may artificially extend the vector to §,(3,—7) and apply the
formula to get the correct window size of 3m —7. Consequently the formula is still valid here, but
one must take extreme care in making the extension. An alternative approach is to recognize when
a vector operation is carried by a dependence and scale the formula above by the size of the vector.

For example,

Fori=1ton
x[i, :'m | = 15.4
yli, 1:m | = x [i-3, T:m+7]

endfor

is equivalent to the example above, but the “vector scaled” formula would give us an upper bound

of 3m.

DEFINITION. The hit ratio hr(W(é,)) of a dependence window which is selected to be in
cache is defined to be the number of times elements of W(6,) are referenced while in cache

divided by the total number of times they are referenced.

A uniquely generated dependence §,(v):5,—S,, if kept in cache, will have a hit ratio of at
least 1/2 because each element is referenced twice and the first reference is the read that loads the
element in cache. If a dependence window is associated with a self-dependence §,(v)":5,— S the
ratio is much higher. In particular, we need to compute the number of times each element of the
window is referenced. We introduce a new set which approximates »~'(W(5)). Define the hull of a

dependence § at time ¢ by
Hull(§)yo; = (p€D |I—v<p <I for all v e Vy).

The Hull is the set of all points p in iteration space that can reach to or beyond ¢ by a vector
from V; Computing its size first involves computing its extent by finding the largest vector in Vj
that still lies in the iteration space. This vector spans a comvex domain that contains the Hull

and we can use Lemma 4.1 to calculate the size.

For example,

for i = 0 to n-1
for j = 0 to m-1
yli,j] = x[3* - 2%j)

end
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end

has an dependence §/(2,3)*. Let k = min(n /2, m /3). The hull of the dependence is the rectangle

with lower left corner (0,0) and upper right corner (2k,m). From Lemma 4.1 we have

2
|hull(8)| = min(mn, 2’;‘

) and |[W(8)]| < 2m + min(2m,3n)

Because each element is read into the window once and the remaining references are hits we have

__|Hull(9) |- [W(9) |
) = [Hull(3) |

which for 2m > >3n is approximately i .
n

In general, let CCUG(z) be a connected component. Define

Hull(C);o; = (p€D | I—v < p < for all veV;for all 6€C )

Lemma 4.3. Let CCUG(z) be a connected component with n nodes. If h(X,) ele-
ments are always kept in cache we will have a hit ratio of

n |Hull(C) |— |h(Hull(C)) |

hr (h (Hull(C)) > n |Hull(C) |

Proof. Each of the n nodes represents a source of references for the variable. There will be at
least n other references to each element of Hull(C). The total number of distinct elements of the
array z that are referenced is just |k (Hull(C))|.

Notice that, in general, Hull(C') = Hull(6) where 6 is a spanning dependence for C in the
unbounded iteration space. Where this fails to be true is when C' is not closed under transitivity
in the bounded iteration space because there will be no corresponding dependence. For example in

the loop

fori=1 to 100

x[i] = 1.0;
y[i] = x[i-60];
z[i] = x[i-140];

end;
In this case, there are only two dependences one of distance 60 from S1 to S2 and one of distance
80 from S2 to S3. In this case we form the transitive closure of C' and work with the hull of the
spanning dependence, even though the dependence may not exist in the bounded case. It is not
hard to show that in this case Hull(C) C Hull(é). From this point on, we assume that the itera-

tion space is large enough to make sure C is closed.

Given these tools we may now formulate the basic cache management algorithm as follows.
Let B be a block of code, most likely a subroutine. Assume, for now, that B has no subroutine or

function calls that require a substantial amount of cache activity. Also assume that B is one large
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(possibly nested) loop. (If not, then apply the algorithm below to each subblock contained in a
top-level loop in B).

initialize S = empty

for every variable x in B {
let C% for ¢ = 1..n, connected components of UG/(z).
let 5 be the dominating dependence for C.

let n! be the number of nodes in C;.

fori=1ton, do S=29 + {6, n'};
}
set Cache = empty
set n = size-of-cache
while (n > 0){
let (8, n) be the pair in S with the maximum value of

n |Hull(9)] — |W(9)].

if [W(8)]<n{
Cache = Cache + W(§)
n=n- W]
}

S=S8-(6mn)

}

Elements are selected in order of decreasing value of the total number of hits generated by the
component, if it were kept in cache. It is easy to see that if you are given the choice of two win-
dows to keep in cache, the one that generates the greatest total number of cache hits will yield the
best overall memory access performance. Upon termination, Cache is the family of connected

component that have the best memory reference performance.

The algorithm above is presented to give a simple selection method. It may be sub-optimal.
The complete solution of this selection problem is NP-complete, but good approximate algorithms
do exist (see [SaSa75)).

5. Program Transformation That Improve Data Locality.

In the previous section it was shown that if we consider the union of all cache windows for
uniformly generated dependences associated with variables in a program segment we can estimate
the size and hit ratio of the elements in cache in terms of the loop bounds. Because the estimates
are only based on uniformly generated dependences the hit ratio estimates will be lower bounds.
Because windows belonging to different generating functions may overlap, our size estimates will
tend to be upperbounds. If the union is too big to fit in cache, we have given an algorithm to select

a reasonable subset to keep.
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On the other hand, if the union of the cache window sizes are too big for cache, then another
alternative is to try to restructure the program to reduce the size of the cache requirement. The
basic set of transformations to do this are well known. In their study of paged memory manage-
ment, Abu-Sufa, Kuck and Lawrie showed that a good strategy is to attempt to split loop and
then remerge them together so that loops tend to use fewer different variables and if a variable is

used more than once its uses tend to be clustered together.

In the case of cache management these same techniques apply and, in addition, several other

transformations can be used. For example, consider the following program segment.

fori=1ton
forj=1tom
s2 xfij] = vlil
S3 2fi,j] = y[i-3J;
end;
end;

?

The uniformly generated dependence
5,((0,3)+(1,0)%): S — Ss
dominates the other two (self-cyclic) dependences. The window is
W) = (v[], v(2l, ., w[m])

which has size m. By interchanging the loops (which does not change the meaning of the pro-

gram) we have

forj=1tom

fori=1ton
S2 x[i,i] = ylil;
S3 2[i,j] = yl[j-3J;
end;

?

end;

?

and the dependence becomes
5,((3,0)+(0,1)"): S; — Ss
which still dominates the other two (self-cyclic) dependences. The window is now
W(8))mp) = (v[5-3), v[i—2], y[5-1])

which has size 3. If m was too big to let the window fit in cache then 3 will probably be small

enough. In addition, this transformation did not change the cache hit ratio. In fact we have
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Theorem 5.1. Any correctness preserving program transformation will leave the

cache hit ratio of the reference windows of data dependences unchanged.

Proof. By definition, the reference window of a dependence §,:5,—S5, at time ¢ is the set of
elements of z that have been referenced by S, in the past that will be referenced by S, in the
future. This means that if the window is kept in cache there will be one initial load and the
remainder of the references will be hits. A program transformation will not change the nature or
total number of references. The ratio is the the total number of times an element of the window is
referenced while in cache divided by the total number of times it is referenced. In these terms, both

the numerator and denominator are invariant with respect to program transformation.

Unfortunately, loop interchange is not always powerful enought to reduce the size of the
cache demand to do the job. There is, however, another technique known as loop blocking that
can have a significant effect on the size of the cache requirements. Consider a nested sequence of k

loops

for {; = 0 to n,

for i, = 0 to ny

for & = 0 to n,
BOdY(il! tg, %k)
end;

end;

end;
We say the r* loop has been blocked if we apply the transformation which replaces the the loop

for i, = 0 to n,

end;
with
= n!‘
for j, =0to 7
for !',. = dr *J’r to df *[J‘r’{‘l)
end;
end;

where the value d, is called the blocking factor. This form of blocking is always legal in that it
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does not effect the order of execution of the statements nested within. Furthermore, by itself, it
does nothing to reduce the size of the cache windows. Its power comes when it is used in combina-

tion with loop interchange.

For example consider the following simple code segment.

fori=1ton
forj=1tom
fork=1ton
ali,k] += b[k]*c[j,k]|
end;
end;

end;

In this case we have

l W(éa) l = n
[W(E)| = n
| W(ac) | = m*n.

Assume n > m and mn is to big for the cache which is of size CS. We apply blocking to the
“for k’ loop and get

fori=1ton
forj=1tom
forr =0 ton/d
for k = r*d to (r+1)*d
a[i,k] += b[k]*c[j,k]
end;
end;
end;
end;
Now, interchanging loops to bring the “for r’’ loop to the outer most position and normalizing the

“for k’’ loop, we have

for r =0 to n/d
fori=1ton
forj=1tom
fork=1tod
afi,k+r*d] += b[k+r*d]*c[j k-+r*d];

end;
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end;
end;
end;

2

The reference windows now have sizes

|W(6¢)' =d
|W(5)| = d
W) = med

Clearly, in this case we can choose d small enough so that the total window size (m +2)*d < CS

and every element will need to move only once from memory to cache and every other access will
be a hit.

Unfortunately, it is not always possible to restructure so that we have a perfect memory
reference behavior. For example, in the case of matrix multiply we can use blocking on three levels

in the original algorithm shown below.

fori=1n
forj=1,n
fork=1,n
afi,j] = afi,j]+blik]*e[k,j;
end;

end;

end;
The result takes the form

for r = 0 to n/d1
fors = 0 ton/d2
for t = 0 ton/d3
fori=1todl
forj =1 to d2
for k =1 to d3
ali+r*dl,j+s*d2] += b[i+r*dl k+t*d3|*c[k+t*d3,j+s*d2|;
end
end
end;
end;
end;

end;
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and we have
[W(s,)] = d1*d2
|W(8)] = di*n
|W(s.)]| = n?

The reader will find it easy to verify that no matter how we block and reorder the loops there is

always a window of size n?

. What this implies is that if n? is greater than CS we can not expect
to get perfect cache performance. The question then becomes, how good can the cache hit ratio be

made if we keep a subset of the full reference window?

To answer this question we observe that the computation of a reference window is also a
function of the scope of the execution we are considering. In the case above, it is easy to see why
the window for the variable ¢ is so big. The entire (n? element) ¢ array is accessed for each itera-

tion of the outermost loop. If we restrict our view to the inner most 5 loops we see that
|W(s,)| = d2*d3

which reflects the fact that for each r iteration of the outer loop, the five inner loops make d1 %2
references to a sequence of sub-block of size d2 by d3 of the ¢ array. Hence for each r iteration
we reload each sub-block and the total hit ratio is

1

1 - —

d1’
As the value of r is incremented a different sub-block is loaded and the hit ratio is as above.
Another way to say this is if
d1*d2 + n*d1l + d2*%d3 < C§
then each element of ¢ and b are accessed from memory only once and referenced from cache n—1
times, and each element of ¢ is read from memory % times and referenced from cache n — %
times.

In the program above we restricted the context of the program execution to derive a smaller
cache window. In terms of the data dependences in the program, observe that the family of data

dependence vectors Vs for the variable ¢ is
Vs = (p*, + g% | p,q€ZY)
where the generating vectors v, and v; are
v’ =(1,0,0,0,0,0) and v; = (0,0,0,1,0,0)

By restricting the context we have simply discarded the dependences related to the loop variable r
and the dependence family is generated by v; alone. The hull of the associated reference window
contains the extreme points (0,0,0,0,0,0) and (0,0,0,d1,d 2,d3). After applying Lemma 4.2 we have
|W(6,(v;))| = d2*d3.
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6. The Role of Concurrency.

In the case of programs executing on parallel processing systems most of the analysis above
can be directly applied, but some care must be taken. There are two cases that are of interest to
us. In the first case, we consider shared memory multiprocessors where each processor has either a
local memory or cache for its own private use. Examples of this type of machine include the BBN
Butterfly, the IBM RP3, the Encore Multimax and, at the level of processor clusters, the Illinois
Cedar. The other case is where the processors share a cache. The prime example of this is the
Alliant FX/8.

In these multiprocessor systems there are three basic forms of concurrency that are used in
scientific computations. The two that are the most simple are parallelized loops and vectorization

and the third is where the computation takes the form of a system user defined light-weight tasks.

Consider first the case of the multiprocessor with private local memory. In the light weight
task model, tasks communicate through shared variables or message buffers. Because the code has
already been partitioned into tasks, the analysis in the previous sections can be applied to optimize
the performance of each separate processor. Because shared variables and shared message buffers

can not be cached without potential coherency problems, there is little that can be done here.

A more interesting case is the parallelization of loops. Following Kennedy and Allen
[Allen83] we give the following

Definition. Let a loop I; be the ™ loop in a nested sequence and let v»; be the vector
(0,0, --+,1,0,...,0) with a 1 in the ¢* position and zero everywhere else. We say that the loop
carries no dependence if v; is orthogonal to V; for every flow, output, or anti-dependence &

between terms nested in L;.

The basic theorem that permits the parallel execution of a loop is then stated as:

Theorem 8.1. A loop may be parallelized without the use of special synchroniza-

tion if and only if the loop carries no dependence.
Proof: See [Allen83], [KKLPW81] or [Wolfe82].

The key point of this result is that all data dependences (except for input dependences) are
resolved withing the body of the loop. Consequently each iteration can be executed on a separate
processor. Any input dependences that may span the loop can be discarded, because the
corresponding window would span two different caches or local memories. The resulting reference
windows associated with the reduced graph tell us precisely the information we need to keep in the

cache or local memory of each processor.

For example, consider the blocked loop in the previous section:

forr =0ton/d
fori=1ton

forj=1tom
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fork=1tod
afi,k+r*d] += b[k-+r*d]*c[j k+r*d]
end;
end;

end;

end;

The outermost loop does not carry any dependences and hence, may be parallelized.

FORALL r = 0 ton/d

fori=1ton

forj=1tom
fork=1tod
ali,k+r*d] += b[k+r*d]*c[j, k+r*d]
end;
end;
end;
ENDFORALL;

The semantics of the FORALL is that each processor will take a single unique r iterate and execute
it to completion and then take another until all iterations have been complete. For a fixed value

of r, the three cache windows are (in terms of the local time for each processor as)
W0 )emii) = @lf, L4r*d .. (r+1)%d]
W (8 )emi,ipy = b[1+r*d .. (r+1)*d]
W )emti,jp) = c[l.m, 1+r*d .. (r+1)*d]

The way in which this information is used depends on the machine. For example, on the BBN
Butterfly a local memory reference can be three times faster than a remote reference. (If a number
of processors try to access the same element then this may be much worse.) Furthermore the
microcode provides a block transfer mechanism that can copy a vector from global memory to a
local are at very high speed. Hence for the Butterfly, we would be best to use this information to

compile in special code that prefetches the cache window with block transfers as follows

blocal[1..d] = block_transfer(b[1+r*d..(r+1)*d]);
clocal[l..m, 1..d] = block_transfer(c[1..m, 1+r*d..(r+1)*d]);
fori=1ton
alocal[1..d] = block_transfer(ali, 1+r*d..(r+1)*d]);
forj=1tom
fork=1tod
alocal[k] += blocal[k]*clocal[j k];
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end;
end;
afi, 14+r*d..(r+1)*d] = block_transfer(alocal[l..d]);

end;

Notice that because the “for r”’ loop was perfectly parallelizable there was no need to be concerned
about coherence problems. Also the form of the data dependences were enough to detect where the
copies should be made and when an update was needed. Notice that there are only a few simple
constraints that must be satisfied. First to parallelize the “for r”’ loop we would like to pick d
small enough so the n/d is greater than or equal to the number of processors. Also, we need d
small enough so that (m+2)d < CS where CS is the local memory size on each processor. On the
other hand the size of the task for each processor grows with d, and we would wish to pick d large
enough so that the task size make the parallel loop overhead look small. Fortunately, on the
Butterfly this overhead is relatively small.

In case a loop carries dependencies, we may still parallelize the program, but we must syn-
chronize the processors so that the dependence constraint is satisfied. Such a loop schedule is often
called a ‘“‘do-across” schedule. For systems that have private local memories for each processor, it
is not likely that we would chose to cache data that is involved in a data dependence constraint.
This is because such a constraint requires that one processor write data to a shared location before
another processor reads it, or it must read/write the data before another processor overwrites it.
In any event, the dependencies associated with “synchronized’ data must not be included in our
computation of cache needs because it must be shared between processors. After excluding these
dependencies, what we are left with are the dependencies associated with data that is not involved
in a synchronization conflict. It is purely local and we can apply the theory above to estimate its

size and hit ratios.

In the case of a system where the cache is shared by all processors, such as the Alliant FX/8,
the situation is vastly different from the private memory case. In particular, in the private cache
case, processors are best working on data that is completely disjoint form the other processors. On

the other hand, if the cache is shared, processors will be best off when they share the data in cache.

8. Conclusions.

The ideas presented here represent only a first approximation to the problem of transforming
programs to improve cache behavior. Many important refinements are needed. In particular, this
paper only considers the special case of uniformly generated dependences. It is shown that, in this
case, we may make a good approximation to the size of the cache windows if certain conditions are
satisfied. The problems come in two places. First, the structure of the bounded iteration space
can make it very hard to select a set of spanning dependences that really reflect the lifetime of a
variable in cache. In particular, if we generate a spanning dependence by a transitive closure
operation, the dependence will exist in the unbounded iteration space but it may not exist in the

bounded case. If it does not exist in a given iteration space, but we use it to compute a cache
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window, we may overestimate the real cache demand. In general, this happens when the distance

vectors are greater than the size of the iteration space.

The second shortcoming of the theory above is that if the dependences are not uniformly gen-
erated then the reference window for the dependence will, in general, not be of constant size. This
can make it very hard to make a‘priori choices of the best dependences to use for loading the
cache. It should be possible to extend the theory so that we can detect upper bounds on reference
windows for these non-uniformly generated dependences. These extensions should improve the

range of programs where good estimates can be made.

Most of the theory in this paper assumes a cache that is completely under the control of the
program. Even in the case of caches that are not completely managed by the user, the analysis
developed in this paper may be usefull. It is easy to imagine a cache which is partially programm-
able by the user, namely one where cache loading is user programmed while the unloading is under
control of the hardware. For example moving data from main memory can be performed by 2
kinds of instructions: fetch and store in the cache (the data is fetched from main memory and is
stored in the processor registers as well as in the cache), fetch only (the data is fetched from main
memory and stored in the processor registers but not kept in cache). The main advantage this pol-
icy is to avoid filling the cache (and therefore discarding usefull data) with useless data. The main
difficulty lies in deciding at compile time by the restructurer what kind of move to perform. The
key idea in managing such a cache is to force data that the analysis has decided should not be kept
in cache to be fetched by fetch only instructions. The remaining problem is that we are not sure
that the hardware unloading policy will follow our optimal programmed policy. However, if the
hardware policy is based on an LRU scheme, it should be possible to analyze the behavior of the
cache using our method because our static analysis generates a “worst case’’ stream of references
and therefore we should be able to build a timetable indicating when the elements are touched.
Using this information we will be able model the LRU policy and derive a good replacement

scheme.

Currently, we are in the process of implementing the ideas described in this paper into a
FORTRAN restructuring system being built at Indiana University and CSRD in Urbana. The
objective is to show that an interactive program restructurer can take data provided by the pro-
gram and the programmer and then make estimates about potential cache performance problems
and also make suggestions about way that the programmer can restructure the code to avoid these
problems. A detailed description of the software system and the results of experimental use will be

given in a sequel to this paper.
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