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12.1 Introduction

12.1.1 The Trend Toward Parallelism

Perhaps the most important trend in supercomputer design is the reliance on
parallelism to achieve performance improvements over our fastest sequential pro-
cessors. During the three-year period from 1984 to 1987, the number of commer-
cially available general purpose parallel processing systems jumped from a couple
to over a dozen. The number of ways in which different architectures exploit
parallelism is almost as large as the number of different companies. This is a
healthy situation for computer architecture. Many good ideas are emerging.
Unfortunately, each different machine presents a different architectural model to
the programmer. A program that has been optimized for one system may not be
well suited to another. At first glance, the differences may appear to be due to
the fact that each machine supports a different set of extensions to FORTRAN, or
even a different base programming language. But a deeper analysis shows that
the architectural difference between machines plays a fundamental role in the
organization of the computation. Surface level syntactic changes are not enough
to port a program optimized for a Cray XMP to good code for a MIMD hyper-
cube design. While this is an extreme case, it illustrates the problems faced by the
small, but growing, cadre of programmers who have taken up the task of putting
these machines to productive use.

Because of these problems, it has become clear that the greatest need in
supercomputer development is a new generation of software tools that can help in
the task of optimizing code for new architectures.

In this chapter, we describe a project under development at Purdue Univer-
sity and Indiana University, which is an experiment in integrating expert systems
technology with the advanced compiler optimization research conducted over the
last ten years by Kuck, Wolfe, and their associates in Urbana Illinois (3, 13, 14,
15, 20, 21, 23, 29], Kennedy and his students at Rice [11, 1], and Allan, Cytron,
and Burke at Yorktown Heights [6, 4]. There are three key ideas that are guiding
our work:

e Interactive program restructuring tools are essential in helping users move
programs to new machines.

e Expert knowledge about how to choose a sequence of restructuring transfor-
mations that optimize performance can be organized as an “advice giving”
system. Furthermore, performance models of the target architecture can be
incorporated into a rule based system to guide the transformation process.
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e New architectural models and expert programming heuristics for new target
machines must be easily incorporated into such a system in a uniform
manner.

Of course, interactive tools already exist. For example, FORGE from
Pacific-Sierra Research provides an excellent user interface. PTOOL from Rice
University [2] has an elegant way to help users identify data dependence in pro-
grams. And all automatic program restructurers, such as VAST, KAP and Para-
phrase, employ powerful heuristics to retarget user code. The goal of this research
is to show that an expert systems approach is a more flexible and extensible model
than the conventional parallel compilers for designing a tool that can be rapidly
adapted to new target machines and new heuristics for parallel program optimiza-
tion.

12.1.2 Automatic Program Parallelism Optimization

The program parallelism optimization problem is the following: given a pro-
gram and a target parallel machine, how can a parallel program that is both func-
tionally equivalent to the original program and optimal for the target machine be
generated?

The basic algorithm for program parallelism optimization can be outlined as
the following:

BasicProgram

Input: a sequential or parallel program and the description of the target
machine.

Output: a parallel program that is optimal for the target machine.
Begin
repeat
pick the “best” transformation from the set of
all applicable transformations;
apply the selected transformation to the program;

until the resulting program is optimal for the target machine
End;

This algorithm is superficial in the sense that it does not specify how to
determine either which transformation is the best or when the program is optimal.
However, this is the algorithm that most parallel computer users use when they
hand-optimize their programs. Picking the ‘“best” transformation requires expert
intelligence.
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Our goal is to design an intelligent system that can perform the program
parallelism optimization process for different classes of target machines automati-
cally. Several fundamental issues must be addressed before such an intelligent
system can be constructed:

Machine knowledge representation. Conventional program restructurers hide
the impact of machine knowledge on the decisions made during program restruc-
turing as a part of the process of selecting of the heuristics used in the system. -
only heuristics that are effective for the target machine are included. This is pos-
sible because only one target machine is considered. However, when the program
parallelization system is designed to handle different classes of architectures, the
features of the parallel computers that affect program parallelism must be
abstracted and represented in a uniform structure. Separating the machine
features from the heuristic acquisition process allows the description of the heuris-
tics to be based on the machine features as well the program features. In this
way, a heuristic can be applied to any target machine that has the appropriate set
of features.

Program representation. The program representation problem is to define
internal data structures that can encode the program’s semantic and parallelism
constraints. A good program representation must preserve the exact semantic and
parallelism constraints of the original program. The program representation
scheme must also allow easy and efficient accesses and modifications.

Transformation techniques. Transformation techniques are the essential ele-
ments of program restructuring systems. Many transformation techniques have
been studied during the past two decades by a number of pioneering researchers.
Rather than going through the details of the mechanical techniques for modifying
program structures, in this chapter we will emphasize the heuristics for applying
the transformations and the effects of the transformations on program parallelism.

Restructuring heuristics. The optimal sequences of transformations needed to
get good performance from a section of code is very dependent on the program
and the target machine. There are no algorithms that provide the optimal
sequence of transformations for all circumstances. Heuristics are usually used to
perform the task and these heuristics are usually based on the particular applica-
tion and make assumptions about the target machine. In order to make the
heuristic general the special features of the program and the assumptions about
the machine must to be made clear.

The representation and organization of transformation knowledge. The
representation, organization, and integration of the transformation knowledge are
the central issues for an automatic program parallelizing system. They actually
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determine the effectiveness and efficiency of the system.

Parallelism metrics. Parallelism metrics are used to compare the effects of
different transformations and to decide when to terminate the optimization pro-
cess. Measuring the achievable parallelism of a program on a target machine
must be based on the parallelism features that the machine provides and the
matching between the program structure and the target machine.

The remainder of this chapter is organized into three sections. In section
12.2, we formally define the program parallelism optimization process and discuss
the machine knowledge representation problem. The program representation
problem and the problem of defining parallelism metrics are also briefly discussed.
In section 12.3, the transformation knowledge representation problem and some
program restructuring heuristics are presented. Examples that describe the work
of the inference engine are also included. In section 12.4 we give a brief summary
and describe the status of our project.

12.2 Abstracting Machine Features and Building the
Knowledge Base

In this section, we define the program parallelism optimization process. A
machine feature abstraction scheme is introduced and a function to estimate the
matching between the program level parallelism and the machine level parallelism
is also given.

12.2.1 Parallelism and Program Parallelization

Parallelism can be exploited at three different levels: the algorithm level, the
program level, and the machine level. Each of these three levels has a conceptual
concurrency model of computation and we call this model the virtual machine for
that level.

At the algorithm level, the virtual machine is the computational model (e.g.
mesh, hyper-cube, etc.) that the parallel algorithms are based upon. Algorithm
level parallelism can be characterized as the number of virtual processors, the com-
plexity of inter-processor communications, and the complexity class of the parallel
execution time on the virtual machine model when expressed as a function of
problem size.

At the program level, each parallel programming language defines a virtual
machine by the semantics of its parallel control constructs. Program level
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parallelism can be characterized by the control and data dependence constraints
imposed by the language and the user’s choice of data structures.

Machine level parallelism is the maximum concurrent execution capacities of
the architecture and can be characterized by various machine features.

When mapping problems from the algorithm level to the program level or
from the program level to the machine level, the differences in the computational
models of the two levels may cause parallelism to be lost. For example, when an
algorithm is translated into a program, the concurrent properties of the algorithm
may be serialized by the dependence relations inherited from program constructs
and data synchronization. In some cases, the concurrency is lost because the lim-
ited parallel constructs provided by the programming language simply can not
express the full parallelism in the algorithm. The problems encountered in
translating parallelism from the algorithm level to the program level fall into the
scope of parallel programming language design will not be discussed in this
chapter.

When the program is mapped from the program level to the machine level,
the programs may have to be restructured, since some specific program structures
or data structures may suit the target machine better than others. Program res-
tructuring is the process of improving the match between the program level paral-
lelism and the machine level parallelism by applying a sequence of program
transformations to restructure the program.

12.2.2 Program Realization and Restructuring

The process of optimizing program parallelism consists of two steps: the pro-
gram restructuring process and the program realization process. The program res-
tructuring process improves the program parallelism by modifying the structure of
the program representation. The program realization process maps the programs
onto the computational model of the target machine by effectively utilizing the
concurrency potential of the machine.

Program level parallelism can be divided into three concurrency levels: task,
micro task, and operation. At the task level, a program is decomposed into large
processes which may be run on different processors. At the operation level, vector
operations or scalar operations are the units of computation. The size of the vec-
tor operation represents the degree of concurrency of this level. The micro task
level is the level between task level and operation level and is often characterized
by loop bodies. More specifically, inside a task, operations are grouped into micro
tasks, which are the blocks of code that are executed between synchronization
points.
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Based on the dependence constraints of the program and the feature descrip-
tions of the target machine, the program realization process partitions the pro-
gram into operation blocks and composes them to form vector operations, micro
tasks, tasks, and processes. Abstractly, the process can be viewed as a function:

Program_realization: Computational_model X Programs — Programy

where elements of Program, are programs that are augmented with parallelism and
run-time information such as processor assignments, synchronization, vectorizable
or parallelizable loops, etec.

The program realization process does not actually improve the true parallel-
ism of the program. It simply takes the current form of the computation, as
represented by the program, and based on the features of the target machine,
applies a mapping to realize the program into parallel form. For example, for
multiprocessor systems, the outermost parallelizable loop is always used to gen-
erate tasks. For machines with vector capability, the innermost loop is the one
that is vectorized (if it is legal to do so). The synchronization technique that is
provided by the computational model is used to satisfy any data dependence not
already satisfied by sequential execution of parts of the program.

The program restructuring process improves the match between the program
level parallelism and the machine level parallelism by modifying program struc-
ture and improving the data locality in the program. In particular, it involves
techniques such as changing the instruction execution order ( by forward substitu-
tions, statement reordering, etc), modifying program control (by loop interchange,
loop distribution, etc), and eliminating unnecessary data accesses and modification
(by data localization, block transfer, cache optimization, dead code elimination,
etc). Each individual technique used to modify the structure of the program is
called a transformation.

Abstractly, a program transformation, T, is a mapping
T: Program — Program

that maps a program representation to a new program representation that has the
same input-output semantics. The precondition of a transformation is the list of
conditions that must be satisfied so that the result of the transformation will have
the same meaning as the original program. If a program satisfies the precondition
of a transformation, we say that the transformation is applicable to the program.

Program transformations are just mechanical techniques for changing the
structure of the program. To have a positive effect on the performance, the
transformations must be chosen based on the full knowledge of the program, the
target machine, and a set of effective heuristics. The program restructuring
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process is a composite function of a sequence of transformations. It uses heuristics
that are based both on features of the program and the machine to guide the
transformations and effectively translate the program into optimal form.
Abstractly, it takes the form

Program_Restructuring: Program X Computational_model X Heuristics — Program

At the heart of the program restructuring is the set of rules in the knowledge base
that represents the expertise about program constructs, transformation techniques,
machine parallelism, and heuristics for improving the matching between programs
and machines. These rules decide the effectiveness of the program restructuring
process.

12.2.3 Problems in Program Parallelism Optimization

Corresponding to the concurrency levels of the program parallelism, the task
of improving program parallelism can be subdivided into the following problems:

Partitioning problem. How does one partition a problem into tasks and
micro tasks and form good vector operations? If the current structure of the
program does not suit the hardware, various transformation techniques
should be used to improve the program structures and to achieve a better
partition.

Synchronization problem. When mapping a sequential program to a mul-
tiprocessors machine, the proper synchronization operations must be inserted
in the code to preserve the meaning of the original program. Synchronization
costs penalize the program performance, and, in the worst case, it may serial-
ize the whole computation. Fewer synchronization points mean less processor
idling time and better system performance. Grouping closely related micro
tasks into one task, copying repeatedly used data into local memories, and
changing data access patterns may have a positive effect on minimizing the
synchronization cost.

Scheduling problem. The scheduling of the processes is another important
factor in obtaining optimal performance. Traditionally, this problem is
viewed as the task of the operating system. However, studies have shown
that static estimates done at compile time can simplify the task of the
operating system at run time [6]. There are techniques (e.g. do-across) that
can estimate the required minimum process delay time and significantly
reduce the amount of time the processor in ‘‘busy-wait’’ loops. Run-time
tests can also be generated at compile time to guide the execution of the pro-
cess.
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Memory utilization problem. Since the data access time for different com-
ponents of the memory hierarchy may be different, the utilization of fast
memory components (like cache) and the removal of unnecessary data
accesses will shorten the access time and speed up the computation. Array
decomposition, data copying, scalar gathering, stride mining, loop interchang-
ing, loop blocking, and other transformations can be used to achieve a lower
cache miss ratio and improve locality.

Due to the complexity of the task, most algorithms used in solving the above
problems are heuristic-driven. Some useful heuristics for program restructuring
are discussed in section 12.3 and others can be found in the literature on program
transformations.

12.2.4 Program Representation

The state of the program can be represented by program dependence graphs
which consist of the conirol flow subgraph [7] and the data dependence subgraph
[14, 29] of the program. The data dependence subgraph represents the set of
essential constraints on the execution order of the operations. The control flow
subgraph specifies the preconditions on the operations which are required for them
to be actually executed. Together, these two subgraphs form a complete summary
of the semantics of the program. The dependence relations in the program depen-
dence graph specify the sequential order that the program parallelization process
must respect. Violating the dependence relations may cause data access and
modifications to happen in the wrong order which will change the meaning of the
program. Program dependence graphs have been studied extensively, details of
the representation and computation of the graph can be found in [7, 14, 4, 26, 29].

12.2.5 The Representation of Machine Structures.

One of the major advantages of multi-target optimization systems over dedi-
cated single-target optimization systems is that the heuristics can be shared
among all target machines that have the same properties. When a heuristic is
synthesized, the influences of the target machine must be distilled to identify the
properties of the target machine that actually affect the heuristic. These proper-
ties of the machine must be represented in a uniform structure so that different
parallel computers can be easily characterized. The properties of the target
machines that affect program parallelism optimizations are called machine
features.

The space of all possible values of a feature is called the feature space. A
feature space may be either a subspace of the reals or a discrete space. The cross
product of all the feature spaces forms the space of all possible computational
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models, which we call the Computational_Model An element in the
Computational_Model represents the computational model of a particular target
machine. The computational model is the abstraction of the properties of the tar-
get machine that influence program parallelism optimization. It represents the
program restructuring system’s understanding of the target machine.

Since the intelligent program restructuring system can reason, not all of the
hardware properties need to be included in the computational model. Instead,
properties that can be derived from other features can be omitted from the com-
putational model, since they can be derived by the system when they are needed.
This helps keep the size of the feature list manageable.

We represent the Computational_Model as a frame “‘slot filler”” model. This
frame model of representing the computational model is called the reaw model
Each individual feature is an slot of the raw model to be filled. The computa-
tional model of a target machine can be defined by filling the feature space attri-
butes in the raw model with the correct values. Not all the slots have to be filled
when abstracting a machine feature. A set of rules can be used to derive default
values for the unfilled slots.

The computational model of the target machine can be divided into the fol-
lowing four categories:

1. Processor hierarchy
2. Processing units

3. Memory hierarchy
4. Networks/Busses

Each of these 4 subspaces consist of a list of features. In the following three sub-
sections, we examine the elements of these features and discuss their attributes in
the program restructuring process.

12.2.5.1 Processor Hierarchy and Processing Elements

The set of computational elements (PEs) in a parallel computer can be
characterized by the following components of the feature space:

Number of processors.

Modes of computation: (SIMD, MISD, MIMD, etc.)

Methods of scheduling: (data driven, data-flow, demand driven, control flow)
CPU scalar speed.

. CPU scalar instruction type: (stack, two address, three address, etc.)

Vector attributes --

6. Vector instructions: (diadic, triadic-vec-vec-vec, triadic-vec-vec-scalar, ete.)

o oo o
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7. Vector instruction speed.

8. Vector startup time.

9. Vector operands: (register, memory)

10. Vector results: (register, memory)

11. Number of vector registers.

12. Size of vector registers.

13. Chaining.

14, Cost of non-uniform stride.

15. Cost of scatter-gather.

16. Vector reductions: (max, add, inner-product, etc.)
17. Horizontally coded multiple function units.
18. Special restrictions/features: (list)

The number of processors affects the way in which a program is partitioned
into tasks. For example, when partitioning a nested loop, the best way to create
tasks is to first match the number of iterations of the outermost loop with the
number of processors, then block the loop to form tasks. Loop interchange can be
used to cause the best matching loop to be the outermost loop.

For processors with vector processing capabilities, issues such as where the
operands are stored (in memory or in register), whether it has vector registers, and
the size of vector registers affect the way that data is decomposed and how vector
operations are formed. Vector operation start up time and relative speed of
vector/scalar operations are critical in justifying whether a loop should be
translated into vector operations. In addition, the use of special vector instruc-
tions (e.g., triadic vector operations, inner product reductions, vector operand
gathering) can be more important than the absolute speed of the vector proces-
sors.

The processors may have a special hierarchy that the programmer must keep
in mind. This processor hierarchy, usually based on processor clustering, affects
task decomposition. Features in this category include:

. Cluster size.

. Shared resources within clusters: (memory, synchronization hardware, etc.)
. Task switching time within a cluster.

. Processor scheduling within a cluster: (loop oriented, data-driven, etc.)

. Special topological constraints: (mesh, cube, etc.)

. Cluster task granularity.

. Cluster scheduling policy: (users or special operation system policy)

=~ O U ks W=

A cluster can be viewed as a collection of processors that is capable of execut-
ing a collection of very finely grained tasks in a tightly-coupled manner which is



= 12-=

not possible by the set of all processors. For example, the computational complex
(CEs) of the Alliant FX/8 forms a cluster that is distinct from the interactive pro-
cessors (IPs) system. A system may support multiple clusters with multiple pro-
cessors per cluster (as in the Cedar system), or it may be viewed as one tightly-
coupled cluster of processors (as in the Connection Machine) or a loosely-coupled
system of one-processor clusters (as in the Cray XMP). In a machine with multi-
ple clusters, there will often be two levels of scheduling: a ‘‘micro-task” level that
manages jobs within each processor and a ‘“‘process’ level that assigns processes to
each cluster.

12.2.5.2 Memory Hierarchy.

The memory hierarchy of a parallel computer consists of global memory,
local memory, and cache memory, as well as the networks or busses that connect
these components. Global memory is shared by all processors, and can be either
physically centralized in one memory module (as in the Alliant FX/8) or distri-
buted among processor units (as in the BBN Butterfly and the IBM RP3). Local
memory is owned exclusively by individual processors. Processors are not allowed
to access other processors’ local memories directly. However, some computers
have a centralized controller which can access all local memories (as in the Pringle
[9, 10], or the Connection Machine). The feature space for the memory hierarchy
consists of the following items:

Size of cache.

Cache sharing: (shared cache, private cache, etc)

Cache coherence strategy: (compiler managed, snoopy cache, etc.)

Cost of cache data fetch relative to register fetch.

Size of local memory.

Cache shared by cluster.

Cost of local memory data fetch relative to register fetch.

Size of global memory.

Interleaved or non-interleaved global memory.

. Centralized or distributed global memory.

. Cost of ‘“‘near” global fetch relative to register fetch.
. Cost of “‘far” global fetch relative to register fetch.
. Vector prefetch mechanism: (from global to local, from global to cache, none)
. Special synchronization memory commands: (fetch-add, locks, memory tags, etc.)
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Normally, accessing data from the global memory is slower than accessing
data from a local memory, which is in turn slower than accessing data from a
cache. In multiprocessor systems, an excessive amount of shared data access and
synchronization might cause network contention and, as a result, saturate the
entire system. For example, on the BBN Butterfly, if all processors make frequent
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references to the same critical section lock or data structure, a memory ‘‘hot spot”
is created. If the data is not a critical section lock, then a local copy can be made.
This can double performance on many algorithms.

Management of cache and local memory is also critical. If the cache miss-
ratio or the locality of an algorithm is bad, then the system utilization will be low
since most of the processing power will be wasted waiting for data. On the Alli-
ant FX/8, cache is shared by all computational elements. Because the cache is

twice the speed of main memory, bad cache management can cut performance in
half.

Although better locality always means better memory utilization, the cost
ratios of data accesses from different components of the memory hierarchy plays
an important role in resolving conflicts between improving data locality and
decreasing the number of instructions. We will discuss this issue in more detail in
the next section.

Different machines may have different memory hierarchies. On some
machines, one or more components in the memory hierarchy may be missing. For
example, the connection machine has no cache, most MIMD hypercubes have only
local memory; message passing strategies are the basis of all synchronization and
access to shared information. Data flow machines have a completely different
memory model. The Pringle has no shared memory; processor communication is
done by message passing through reconfigurable processor-to-processor routing
switches. Each processor in the Pringle has only eight ports, so a message routed
to another processor might need to go through a couple of hops, and setting up an
optimal message routing network for a given algorithm is a non-trivial task.
Although some heuristics for data allocation and routing on non-shared memory
machines like the Pringle do exist, the data decomposition problem for non-shared
memory remains largely unsolved. More effort is needed before an optimal result
can be achieved.

On the other extreme are the IBM RP3 and Cedar, which both have a com-
plete memory hierarchy that includes cache, local memories, and global memories.
On the RP3, global memories and local memories reside in the same memory
modules that belong to individual processing elements. The same mechanism is
used in the BBN Butterfly Uniform system. On the RP3, a sophisticated memory
addressing scheme allows the boundaries between global and local memories to be
adjustable. On both machines, it is more expensive for a PE to access another
PE’s global memory than it is for the PE to access its own. Therefore, it is very
important that the locality is explored on these machines. The Butterfly provides
a block transfer operations which makes localizing frequently used data attractive.
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The Alliant FX/8 has no local memory, and its two 32KB caches are shared
by eight processors. The shared cache is connected to the processors by an 8 x 8
crossbar switch, and is connected to memory through a high speed bus (188 MB
read-access per second). Therefore, cache utilization for the Alliant is important.
Examples of data utilization for the Alliant will be discussed in the next section.

12.2.5.3 Interconnection Networks and Busses.

The connections between processors, or between processors and the memory
hierarchy, or between the components of the memory hierarchy may utilize either
busses or complicated networks. There are a number of factors that are very
important to understand:

Network topology: (bus, ring, cube, mesh, tree, banyan, etec.)

Network bandwidth.

Delay per network stage.

Packet or circuit switched.

Packet size.

Maximum pending memory references a processor can have in the network.
Routing type: (self-routing, compiler routing, both)

Performance penalty of self-routing.

P 5 Pl R R =

Network topology plays an important role in the way data structures are dis-
tributed around the system. On networks with a low bisection width, such as a
tree, certain data movements are notoriously slow. For example, a matrix tran-
spose is extremely slow on trees and rings. A complete study of the role of topol-
ogy in parallel algorithm design is found in the paper [8].

From the point of view of a program restructurer, there are two issues which
are more critical. First, if the network is not self-routing, then the compiler needs
to plan a path and generate switch settings for the network. Many non-shared
memory machines require that each intermediate processor be programmed to
intercept and forward cross network traffic as part of the target code. Second, if
the network is such that some processors are ‘“‘nearer’ than others, and if the mes-
sage delay from a far processor is significantly more than from a near processor,
optimal data structure decomposition becomes critical. Not only is this problem
NP-complete, there are also very few good heuristics for it. In addition, for
dynamic allocation of new processes, it may cost more for a processor to start-up
a new process on a remote processor than it does for it to do the computation
itself. The program restructuring system has to consider all these differences in
network implementation before it can actually perform task and data decomposi-
tions.



= Th=

Some interconnection networks have special properties to enhance the capa-
bilities of the system. For example, the IBM RP3 has a combining network which
supports fetch-and-op kinds of operations, making the implementation of system
primitives much easier; in particular, it supports the implementation of task
queues and makes self-scheduling loops possible. (On the Cedar and BBN
Butterfly these same operations exist, but they are done by the memory controll-
ers rather than the network.) For machines that support self-scheduling loops, the
program restructuring system can leave the task scheduling problem to the
operating system of the machine by transforming the outermost loop into a self-
scheduling loop. However, the self-scheduling loop makes the global array decom-
position almost impossible, since it can only be known at run time which loop will
be run by which processor. Our experience shows that the data decomposition is
usually more important than the loop scheduling, so in programs that have
decomposable arrays (i.e. arrays that can be allocated into the local memories of
the processing units) data decomposition should be favored.

In multistage networks, non-uniform network traffic, known as "network hot
spots", is typically (but not uniquely) produced by shared locks or data synchroni-
zation. This can generate effects that severely degrade the network traffic. Stu-
dies have shown that combining data access requests within the switches is an
effective technique for dealing with a hot spot contention problem that is caused
by global shared locks [22]. For machines that have no combining network,
balancing the operation load is one of the major challenges to the program res-
tructuring system.

12.2.6 Program and Machine Feature Abstraction

As we discussed above, the program parallelism abstraction process bases its
decisions on the features of the program at hand and the target machine. The
features of the program and target machine are abstracted into concepts that can
be used by various heuristics. In the case of program representation, this feature
abstraction can be done by either matching patterns or checking program depen-
dence relations to find out whether the program region under consideration
matches some predefined ‘‘concepts.” For example, an inner-product operation can
be recognized by matching the pattern that a statement inside a loop accumulates
the product of corresponding elements of two arrays into a variable. A more com-
plicated example is the concept of ‘“vectorizable’’, a loop is vectorizable if each
statement, S, in the loop can be executed for all values of the index set of the loop
before executing any of the statements in the loop following S, and this alternate
execution order will compute the same result. The vectorizable concept can be
captured by examining the dependence relations of the loop. A procedure (or rule)
that does the test inserts the fact ‘‘the current loop is vectorizable’ into the solu-
tion space if the test is true.
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As for the machine, we should note that there are usually some heuristics
which accompany the features of the machine. These heuristics are the metho-
dologies of utilizing the properties of the machine. Examples of this are: “improve
locality if the machine has cache or local memories,” and ‘“‘generate P( =
number_of_processors) tasks if task creation cost is high.” It is the collection of
these methodologies that really defines the computational model of the machine.

There is a fundamental difference between the abstraction of features of the
program and the abstraction of features of the machine. That is, the features of
the machine are static, but the features of the program are dynamic. The facts
that are derived by the feature abstraction process will stay true throughout the
optimization process for the machine, but the facts about the program may be
changed as the structure or data distribution of the program is changed. There-
fore, the feature abstraction process for the machine is done at the time the target
machine is chosen but the feature abstraction process is done during the program
restructuring process. Another dynamic aspect of the feature abstraction process
is that only the features of the program that are currently important are
abstracted. For example, it would make no sense for the restructuring system to
check whether a loop is ‘‘vectorizable’” when it is trying to figure out how to
create tasks from a simple loop. However, if the loop is a nested loop and the
machine supports both multiprocessing and vector processing, then the loops will
be checked for ‘‘vectorizability” since the best way to schedule the loops is to
create vector operations from the innermost loop and create most tasks out of the
outermost loop.

12.2.7 The Parallelism Metric

In order to justify the merit of a particular transformation, a valuation func-
tion which evaluates both the degree of program parallelism and the matching
between the program and the machine is needed. The valuation function:

Matehing: Computational_Model X Program — R

returns a simple real valued index that estimates the matching between the com-
putational model and the current structure of the program. The matching func-
tion is a weighted linear combination of several factors. Among these are: how
well the size of the program structure fits the size of the target machine (size
matching), how well the data access pattern matches the data distribution on the
memory hierarchy (data access matching) and how much synchronization delay is
needed (scheduling matching). Each of these factors can be defined as a match
function that maps the cross product of the spaces of the computational model
and the program into a subset of the real space.
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The size matching function quantifies the structure matching between the
program and the target machine. For example, an outer loop that generates only
two tasks on a machine with 100 processors would get a rather low score. For
machines with wvector instructions, the size matching function estimates the
efficiency of the vector instructions.

Data access patterns are also measured. If possible, data that is repeatedly
referenced should be kept in local memory or cache to reduce the network traffic.
The most common example of repeatedly referenced data is the array references
inside loops. The subscripts of the references, plus the loop bounds, give a good
estimate of the number of array references in the loop. Non-unit stride array
references are discriminated against when cache size is relatively small since these
references will generate a much higher cache miss ratio than unit-stride array
references.

Shared data accesses might cause memory contentions and serialize the data
accesses and thus degrade the system performance. The more shared data refer-
ences that a program has, the higher its synchronization cost will be. So the
shared data synchronization factor can be defined to be the reciprocal of the
number of shared data accesses in the program region under consideration.

Task scheduling and synchronization are also modeled by the match funec-
tion. Based on a do-across schedule [6], an estimate is made of processor utiliza-
tion. This estimate contributes to the final value.

Once processor assignment is completed, only the cross-task dependence may
produce inter-processor synchronization. Another source of synchronization cost is
the serialized access of shared variables. This kind of data synchronization can
also be characterized by inter-task data dependence.

The number of inter-task dependence, IDEP, can then be used to quantify
the effectiveness of the synchronization factor. The fewer of these dependence
there are, the better the matching is. Let NDEP be the total number of depen-
dence in the focused program region. The synchronization matching factor,
SYNC, is defined as:

SYNC=(NDEP —IDEP)/NDEP.

A large number of other factors go into the evaluation of the Match function. A
much more detailed discussion is given in [26].

The weighted-combination approach of computing the match function has
the following advantages:
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Dynamism. Weights of the components can be adjusted dynamically and this
makes the matching function very flexible and powerful. Different architec-
tures can have different weights to suit their particular configurations. For
example, on a vector machine that has vector registers, the weight of the size
matching can be increased so that longer vector operations will be generated,
and bad stride vector operations will be avoided. During the program
transformation process, some factors can be intentionally ignored to resolve
conflicts, or to allow alternative paths to be explored.

Svmplicity. Each individual matching function focuses on the matching
between the program and a set of particular features of the machine, making
it easier to compute.

Modularity. When new factors that affect matching are introduced, they are
vary easy to be added into the matching function. One only needs to define
the sub-function and give it a weight that represents its importance in
matching parallelism.

Topics discussed in this section form the foundation of the program parallel-
ism optimization process. However, what really decide the effectiveness of the pro-
gram parallelism optimization systems are the heuristics which are based on this
foundation and the program transformation techniques which are used to restruc-
ture the program to match the machine. In the next section, we will discuss the
mechanism used to organize the heuristics that deal with program transformation
theory and we will describe the operation of the inference engine.

12.3 Intelligent Program Transformations

In this section, the organization, integration, and interpretation of program
transformation knowledge are discussed. An example of optimizing a matrix-
vector multiply program for three different parallel machines (BBN Butterfly, Alli-
ant FX/8, and Purdue Pringle) is given to describe the operation of the inference
engine.

12.3.1 System Organization

There are three major components in the expert systems organization: the
knowledge base, the inference engine, and the user interface mechanism. The
knowledge base contains the domain dependent rules, facts, heuristics, and pro-
cedural knowledge. The inference engine is the mechanism used to select and
apply the rules in the knowledge base to solve the problem. The user interface
mechanism contains the utilities to build user friendly interfaces. These include a
menu selection mechanism, graphics interface utilities, an explanation mechanism,
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and help utilities. The inference engine and the user interface are domain
independent, and they can be used to construct other expert systems by adding a
domain dependent knowledge base.
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Figure 12.1 System Organization.

The organization of the system components is shown in figure 12.1. As the
figure shows, the inference engine analyzes the machine feature list to form the
parallelism faciors, which are the key components of the computational model dis-
cussed in the last section. It selects part of the dependence graph as the program
focus, and it analyzes and restructures the focus region based on the parallelism
factors and the heuristics in the knowledge base. The structure of the knowledge
in the knowledge base is discussed in the next two sections. Figure 12.2 illus-
trates the process of building the domain dependent knowledge base.
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12.3.2 Heuristic Hierarchy

While the modularity and integratability of the rule-based expert system
makes modifying the knowledge base easy, its inefficient execution and the opacity
of the knowledge are the major drawbacks.

For example, translating a heuristic into a set of rules causes the knowledge
to be fragmented, this makes the maintenance and modification of the knowledge
difficult. Even though there are still strong relations between many of the rules,
the fragmentation causes an unfortunate loss of coherence.

In order to improve the integration and modularity of the knowledge, and
the efficiency of the system, we have devised a new hierarchical structure to organ-
ize the heuristics. This heuristic hierarchy is used to integrate the rules into con-
ceptually and logically related units. Since this is a new concept, we devote the
remainder of this section to a general description of heuristic hierarchies. In sec-
tion 12.3.3 we detail the organization of the hierarchy for the program restructur-
ing system.
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As shown in figure 12.3, a heuristic hierarchy consists of one or more layers;
rules in the same layers are divided into groups that we call actions. Each heuris-
tic hierarchy has a goal and some rules associated with it to accomplish the goal.
The actions in the top-most layer represent possible solution steps that the
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hierarchy can use in trying to accomplish its goal. In other words, the rules of a
heuristic hierarchy can use any actions of the top layer in attempts to satisfy the
goal of the hierarchy. For each action, there is a goal for the rules in the action
to accomplish. The rules in the action can select among the actions in the lower
layer to satisfy its goal. Similarly, the actions in the lower layer may in turn
select the actions in the next layer when trying to satisfy their goals. There are
no goals associated with the layers because a layer represents a conceptual level of
the problem solving process in which different actions can be applied to achieve
the goal of the control flow that calls the action.

A complicated action can be organized into a heuristic hierarchy. This recur-
sive definition makes the heuristic hierarchy very flexible and it can be constructed
corresponding to the step-wise refinements in a top-down problem-solving
approach. In a top-down problem-solving process, the problem is divided into
multiple stages that represent the problem solving steps of the process. Each
stage can be refined stepwise as the system is implemented.

The inference engine of the heuristic hierarchy works as follows: the process
tries to satisfy its goal by executing the rules of the hierarchy. The rules may
select any of the actions in the top layer. An action works just like a hierarchy,
except that the actions in the next layer may be called by any rules in the action.
When a rule fails to satisfy the goal, other rules in the group are tried until either
the goal is accomplished or all the rules have been tried. In either case, the con-
trol goes back up one level to the previous layer. If the selected action fails to
satisfy the goal, an alternative action in the lower layer is selected. This process
is repeated until the goal of the hierarchy is either satisfied or failed, and the con-
trol flow goes back to the caller of the hierarchy.

This hierarchical structure organization of the heuristics is actually a
simplified hierarchical production system. It has the following advantages:

Modularity. Conceptually related rules can be grouped together. Grouping
related rules together makes implementing, understanding, maintaining and
updating the knowledge base easier. The knowledge representation process
that translates heuristics into rules can be done in either a top down or a
bottom up fashion.

Efficiency. Only a small subset of the knowledge base needs to be considered
at any given instance. The size of the knowledge base for real problems is
usually very large. It is very inefficient to perform rule selection and back-
tracking when a flat structure knowledge base is used.

Flexibility. The order of the actions to be taken can be decided dynamically.
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Note that the purpose of introducing the hierarchical structure is not to
impose a tightly coupled structure into the knowledge base, because not all
knowledge can be represented in structured or procedural form. Also, if the struc-
ture of the rules is too tight, then the flexibility of the rule-based system may be
lost. The purpose of the hierarchical structure is to provide a knowledge organi-
zation structure that matches the hierarchical structures in a top down problem
solving processes. The hierarchical structure preserves all the advantages of a
rule-based system but has better efficiency, modularity, and flexibility in the way
it represents knowledge.

The hierarchical structure of the rules can be specified by the following
hierarchy declaration:

hierarchy(name, [ layer(name, [ action | * )] * );

where the notation [expression/* represents a list of one or more expressions of the
same type. Examples of this will be shown in the next section.

The lexical order of the layers represents the level of the layers from top
down. The lexical order of the rules decides the default ordering of the rules to be
applied. This default ordering can be overwritten by explicit rules. The order of
the actions is irrelevant, since they are selected by the rules in the upper layer.

In the system, knowledge and heuristics are represented as rules of the follow-
ing form:

[Rule, [action_name*]]:
If
{condition list}
then
{action list}.

The action_name* is used to label the action(s) in the hierarchy to which the rule
belongs. These hierarchy declarations provide an easy way for the system
engineer to specify the structure of the heuristics and keep closely related rules
together.

12.3.3 Program Transformation With Heuristics

The program restructuring process is an iterative process. At each step, the
dependence graph of the program focus region is analyzed, and a transformation
that can improve the parallelism matching between the program and the machine
is chosen and carried out. There are two difficulties with this process. The first
problem is “when and how to apply which transformation?’’ Different sequences of
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transformations may lead to different results. Also, a transformation may have
different effects when it is applied to different program states.

The second problem is “how does the system detect that the program is in its
optimal form and stop the transformation process?’’ Unlike some other Al prob-
lems, there is no good description of the goal states. The goal of performing the
transformations is to optimize the matching between the program and the compu-
tational machine model. For the same program, there may be many different
representations of the program that have the same input-output semantics. The
problem is to find a sequence of transformations that transforms the current
representation of the program into a representation that allows maximum paral-
lelism on the target machine.

Since it is expensive to test the applicability of the transformations and
apply the transformations, and since there may be many different applicable
transformation sequences for a given program, it is impractical to try all of the
sequences and then to choose the best way to restructure the program. Heuristics,
and some kind of metric, must be employed in order to find the most promising
transformation to apply at each step. The matching functions described in sec-
tion 2 can be used to measure the effectiveness of the transformations. But we
should also note that the matching function can only be used to compare the rela-
tive merit of the transformations since an optimal form can only be found after
we try all the possible transformation paths.

On the other hand, the user selectable optimization degree indicates how deep
the user wants the system to explore. The user can control the optimization
depth by choosing the optimization degree or by stopping the process during an
interactive session. The optimization degree is a real number between 0 and 1. If
the user specifies an optimization degree of 1, the system tries all possible
transformation sequences and selects the best sequence to apply. If the optimiza-
tion degree is set to zero, no program restructuring effort will be tried, the system
takes the program as it is and applies the program realization process to parallel-
ize the program. When the optimization degree is set to some number between O
and 1, the heuristics will be applied in selecting transformations. The higher the
optimization degree is, the more aggressive the system is in trying different
transformations. The optimization degree also sets a limit for the parallelism
matching index to compare against. The attempt at restructuring the program is
stopped when the parallelism matching index passes a certain limit, or when the
heuristics are exhausted. Another advantage of using a user selectable optimiza-
tion degree is that different optimization degrees can be set for different regions of
the program. During an interactive session, the user can concentrate the attention
of the system (as well as his own) on parts of the program that he considers more
critical.
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Empirical studies of the sequences of transformations have been reported by
Kuck and his associates. A number of fixed sequences of transformations, tailored
for different architectures, have been investigated and built into the Parafrase pro-
ject [3, 13, 14, 21]|. Although these sequences work well for certain programs on
the architectures and problems for which they are designed, the inflexibility of the
fixed sequence of transformations may limit potential optimization. In fact, recog-
nizing the shortcomings of fixed sequences of transformations, the Parafrase sys-
tem relies on the user to provide the sequences of transformations as options for
particular applications that the user knows well. Also, the user can provide asser-

tions or directives to help the compiler recognize the parallelism that it over-
looked.

In our system, heuristics are organized into heuristic hierarchy structures.
The heuristic hierarchy and other user interface mechanisms are built on top of
the UNIX C-Prolog. In the following subsections we explain the organization of
the heuristics and illustrate the operation of the inference engine with an example.

12.3.4 Organization of Transformation Heuristics

There are three kinds of transformation heuristics: the heuristics to define
program parallelism and machine parallelism, the heuristics to restructure the pro-
gram to match parallelism between the program and the machine, and the heuris-
tics to control the parallelism matching process. These three kinds of heuristics
correspond to the three layers in the heuristic hierarchy which we call the
parallelism-defining layer, the parallelism-matching layer, and the parallelism-
matching control layer. Each of these three layers are further divided according to
the purpose and effects of the heuristics. The hierarchy structure of the transfor-
mation heuristics is shown in figure 12.4.

The parallelism-defining layer is the basis of the program restructuring pro-
cess. It defines the program parallelism and the machine parallelism by asserting
facts about parallelism into the solution state. The computational model
represents the machine parallelism and its construction is based on the machine
features and the heuristics of utilizing them. The program parallelism is
represented by program dependence graphs. The parallelism matching functions
and the heuristics (for analyzing the matching between the program and the com-
putational model) are included in this layer. Customized conflict resolution stra-
tegies and inference rules can be added to this layer as well.

The program parallelism optimization process improves the matching
between the program and the machine by repeatedly selecting program regions
and restructuring them. Corresponding to this process, the parallelism-matching
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Figure 12.4 Heuristic hierarchy of transformation knowledge

layer consists of two actions that are implemented as hierarchies: the program
focus selection and the program restructuring control. The program focus selection
process is responsible for selecting the program fragment to optimize, and the pro-
gram restructuring control process utilizes heuristics to optimize the program
focus.
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The program restructuring control process is the part of the heuristic hierar-
chy that actually selects and performs the transformations. Corresponding to the
problems of parallelism optimization discussed in section 12.2, the purposes of the
transformations can be classified into the following four categories: improving pro-
gram parallelism, minimizing synchronization, creating tasks and allocating pro-
cessors, and utilizing memory usages. Since each transformation may fit into
several categories, we separate the heuristics in the program restructuring control
layer into two layers: the program restructuring subgoal selection layer and the
transformation layer. The restructuring subgoal selection layer contains the
heuristics for solving the four problems mentioned above, and the transformation
layer contains the transformation techniques which we termed transformation
modules.

Each transformation module consists of the description of the transformation
technique, the conditions for the transformation to be applicable and the pro-
cedures to carry out the transformation. Also included in the module are the
heuristics about feasibility of the transformation under various circumstances,
short-cut rules in applying the transformation, methods of estimating the effects
of the transformation, etc. As an example, the module for “loop interchange’ is
outlined below. The direction vector notation is taken from [29].

Module Name : Loop interchange

Purpose : Change the order of headers of
nested loops into ’optimal’ ordering.

Description : Based on heuristics, compute the loop order
that matches the computational model best.

Restrictions : Loop orders that cause a dependence to
have direction vectors in the form of
(i <5 was Dy0) 18 prohibifed.

Test Algorithm : Procedure legal_order(L, ORD)
Gtven a loop order ORD,
for each dependence DEP in the loops do
if the direction vector of DEP has the form
(cory <, wery >, ...) according to ORD
then return(fail);
end for
return(true); /* The order is legal */

Applying Algorithm: /* find the best ordering of the loops. */
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procedure best_loop_order(L)

old-ord = generate-loop-order(L);

while ((new-ord = generate-loop-order(L)) != NULL) do
old-order = better-order(old-ord, new-ord);

return(old-ord);

Transformation Algorithm: Loop_interchange(Outmostlp, Norder)
change all distance vector according to Norder;
update control dependence of the loop headers;

Heuristies :
if has_TO(FOCUS)
then fail.

if (is_loop(FOCUS)) and (not nested(FOCUS))
then apply loop_distribution(FOCUS).

if (nested_loops(L1, L2)) and
(in(S1, L1) and in(S2, L2)) and
(dep(S1, S2, [<, >]))

then not interchangeable(L1, L2).

if ('memory optimization dominates instruction minimization’)
then

(set(weight, size-matching, light)) and

(set(weight, memory-access-matching, heavy))

The program restructuring process can be divided into the following stages
that we termed the program restructuring subgoals. These include the program
parallelism improvement subgoal, the synchronization minimization subgoal, the
task creation and processor allocation subgoal, and the memory-access optimization
subgoal. A transformation might be applied in different situations for different
reasons. Therefore, each subgoal category may select any of the transformations in
the underlying transformation layer. Rules in each of the program restructuring
subgoals select the appropriate transformations to apply. The selection of the
transformations is based on the heuristics in the transformation layer and the
parallelism-defining layer.

The program parallelism improving subgoal consists of rules about the
methods of improving program structures. This goal is achieved by restructuring
the program to cut down on the amount of data or control dependence presented
in the program dependence graph. The synchronization minimization subgoal
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contains the heuristics for trying to decrease the cost of inter-processor synchroni-
zation. The task creation and processor allocation subgoal is formed by the
heuristics for both decomposing the program into tasks and matching the tasks
against the target machine. The memory-accesses optimization subgoal is aimed
at utilizing the memory hierarchy. Issues considered here include array decompo-
sition and allocation, cache utilization, inter-task communications minimization,
and improving locality.

The program focus selection layer cooperates with the parallelism matching
control layer in selecting the appropriate program focus. It consists of rules to
select a portion of the program to serve as the current focus of program restruc-
turing. Depending on the size and the structure of the program, as well as the
optimization degree that the user sets, the size of the program focus ranges from a
loop to the whole program. If the program is complicated, a divide-and-conquer
strategy is used to subdivide the program. The program is divided into several
“super-tasks’” and each super-task is restructured separately. Then the restruc-
tured portions are combined based on global considerations. Depending on the
dependence relations, the super-tasks of programs can be executed either sequen-
tially or simultaneously. If these super-tasks are to be executed sequentially on
the target machine, then each part is restructured based on the computational
model of the original machine. On the other hand, if some super-tasks of the pro-
gram are to be executed simultaneously, then the machine is subdivided into
several independent virtual machines (or clusters) and the super-tasks are assigned
to the virtual machines.

Note that when a program is divided into sub-programs, and the sub-
programs are restructured separately, the memory accesses optimization subgoal
will try to optimize the memory accesses and decompose the array storages based
on the program focus and the machine model to which it is assigned. The array
decompositions chosen in the subgoal may be changed when global consideration
and adjustments are made.

The parallelism-matching control layer is the topmost layer of the hierarchy
and it represents the process that controls the overall optimization of the pro-
gram. It uses the subgoals in the parallelism-matching layer to decompose the
program into tasks which we call program focuses. It then matches them with the
machine model individually, and finally adjusts the results based on global con-
siderations.

The hierarchy structure significantly improves the flexibility and efficiency of
the transformation process. The rules in a layer may select any of the actions
(subgoals) in the lower layers. Thus no fixed ordering for applying the actions
needs to be specified. This allows the system to be very flexible in deciding the
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sequences of the transformations. Unrelated rules do not need to be checked, since
only the set of rules in the subgoal selected by the upper layer needs to be
evaluated. Furthermore, back tracking only occurs within the set of rules in the
same layer.

12.3.5 Applying a Transformation Hierarchy to Program Transforma-
tion

The program restructuring process starts by examining the rules on the top
layer of the hierarchy. After the focus of the program is chosen, the transforma-
tion subgoals on the next layer are selected and the rules associated with the
subgoal are involved in selecting the applicable transformations. Similarly, when
a transformation is chosen, the rules associated with it are applied to decide the
merits and methods of performing the transformation on the program focus.

The flow of control is decided by the rules in the heuristic hierarchy. We will
illustrate the decision making process of the system with a simple example. A
matrix-vector multiply is a nice illustration of the ideas behind the system, since
very few data dependence are involved and many transformations are possible.
The program is a simple nested iteration.

foriin [1..n] do
for j in [1 .. m] do
y[i] = y[i] + a[i,i]*x[i];
end for;
end for;

To simplify the discussion we assume that the result vector y has been previously
initialized to zero. We seek to transform this program to programs suitable for
three different machines: the BBN Butterfly, the Purdue Pringle, and the Alliant
FX/8. The rules used in this example are listed in the appendix.

12.3.5.1 Mapping onto the BBN Butterfly

First, we consider the Butterfly. As we discussed in section 2, the machine
feature database is first consulted in the construction of the virtual computational
model. For example, the fact “‘parallelize outermost loop without blocking” is
added by rule 12.a.1 (listed in the appendix) because the Butterfly provides a
mechanism, ‘“GenOnlndex,” which can schedule the loops automatically. The sys-
tem discovers, among other facts, that memory optimization dominates instruc-
tion minimization (rule 12.a.5), locality is important, and local memory should be
used whenever possible (rule 12.a.6). These facts are added to the system’s state
space in the working memory.
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Next, the transformation heuristic hierarchy is used to optimize the program.
First, the parallelism-matching control layer is involved to control the restructur-
ing of the program. In this example, it is trivial to select the program focus. By
rule 12.b.1, the whole subroutine is chosen as the program focus, since the original
program consists only of a single statement inside the doubly nested loop.

The next step is for the program restructuring control layer to decide which
sequence of program restructuring subgoals to achieve. Due to the simplicity of
the dependence graph of this program, none of the transformations which are used
to break the data dependence cycles are needed. Thus, the parallelism improve-
ment subgoal is skipped (rule 12.c.1). For the sake of flexibility, it is best to do
processor assignment toward the end of the transformation process. However,
array decomposition can be done only after tasks are created. So there is a
conflict in deciding which of the two subgoals, task creation and processor alloca-
tion subgoal or memory access optimization subgoal, should be done first. Our
solution to this problem is as follows. First, we find the tentative process alloca-
tion scheme and block the outermost loop to create ‘“‘processes.”” The newly
created outermost loop is marked, but is not actually parallelized. The loop
instances of this marked loop form the tentative processes, and this information
will be used to guide the array decompositions in memory access optimization
subgoal. The actual processor allocation is carried out at the end of the transfor-
mation process if the marked loop remains marked by then. This heuristic is
encapsulated in the default ordering of rules 12.c.4, 12.c.5, and 12.c.7.

After the task creation and processor allocation subgoal is picked, the system
concentrates its restructuring efforts on the loop structures. At this stage, appli-
cable transformations include loop interchanging and loop blocking (to create
processes). According to the heuristic (rule 12.e.1), if the program focus is a
nested loop, then loop interchanging is checked to find the best order of the loops
before the processes are created.

Therefore, the control goes down to the lower level transformation layer, and
rules associated with loop interchanging are applied. We assume that the arrays
in Butterfly are stored in row order. There are no dependence relations that
prevent us from interchanging the loop, so the loop is interchangeable. However,
if loop j is changed to be the outermost loop, the array a will be accessed in
columns no matter how we block the outer loop to form processes. This is not
attractive because it increases the inter-task communications significantly. There-
fore, based on the rules associated with loop interchange, the system decides that
the original loop order is the best and that no loop interchange is needed.

The next step is to find a tentative way of allocating the processes to the pro-
cessors. Since the Butterfly has an instruction, GenOnlndez, that can schedule
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the loops automatically, we can parallelize the outermost loop without blocking
(rule 12.a.1). As a result, the outer loop i is marked to form tasks (rule 12.e.4).
There are n instances of the loop i, so n tasks are formed if each loop instance is
viewed as a task. This information will be used to guide the array decompositions
when the memory access optimization subgoal is involved.

After the processor allocation phase, rule 12.c.3 chooses the memory access
optimization subgoal. Since local memory access is faster than global memory
access on the Butterfly, locality is important (rule 12.a.6). Also, the Butterfly
supports a ‘‘block-transfer’”’ instruction, which allows a block of memory to be
transferred to, or from, the local memory to speed up the data transfer. This
makes copying array references inside loops into local memory beneficial. In the
matrix-vector multiply program, there are two array references in the nested
loops. Each element of array z is accessed once by every instance of the loop j.
Also, elements of the i-th row of the array a are accessed exclusively by loop
instance i. Since loop i is marked to be parallelized in the “processor allocation”
subgoal, every processor that runs loop instance i will have to access every element
of the array z and the i-th row of array ¢ once. Rule 12.f.1 suggests we copy
array z and array a into local memory with block transfer operations. Since the
i-th iteration accesses only the i-th row of the array a, there is no need to copy
the whole array. The block transfer operation on array e is later changed by rule
12.f.2 into a block transfer operation on row i of the array a in loop i. This gives
us (by applying rule 12.£.3):

foriin [1.. N] do
block_transfer(x, x_local, sizeof(x));
block_transfer(ali, *], a_local, sizeof(ali, *]));

for j in [1 .. M] do
y[i] == a_local[j] * x_local[j];
end for
end for

Since the block transfer statement of copying array z does not depend on
loop i, it can be moved outside loop i to form another parallelized loop of P
instances, where P is the number of the processors (rule 12.f.4). In this way, the
array is copied P times instead of N times, as it was in the original form.

After the memory allocations are complete, the parallelism improving subgoal
is tried. This is to see if there is any chance to improve the program further. It is
relatively easy for the system to recognize that the inner loop j is an inner-product
operation (rule 12.d.1), so the loop is replaced by an inner-product operation (rule
12.d.2). The final step involves the processor allocation subgoal again. Since no
transformation that might prevent the parallelizing of the outermost loop i (which
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is marked for parallelizing) has been performed, the loop is directly parallelized as
shown below.

coprocess k in [1 .. P] do
block_transfer(x, x_local, sizeof(x));
end coprocess

coprocess i in [1 .. N] do
block_transfer(ali, *], a_local, sizeof(ali, *]));
y[i] ;== inner-product(a_local[*], x_local[*]);
end coprocess

12.3.5.2 Mapping onto the Pringle/CHiP

The Pringle/CHIP architecture consists of an array of 64 processors which
communicate with each other via a packet-switched message network. There is no
shared memory, and each processor runs one process. The communication pattern
of messages between processors, defined at compile time as a communication
graph, is used to configure the switch network at load time. Each of the memory
modules is dual ported. One port goes to the processor while the other goes to a
global bus, this allows the local memory of each processor to be a page of the glo-
bal address of the front-end host. Downloading programs and data to each pro-
cessor and loading the results of a computation to the host is done over this bus.

For the same reason as in the case of Butterfly, the system decides not to
change the original order of loops after the rules in the transformation module,
loop interchange, are used to decide the order of loop headers. Making the pro-
gram restructuring task different here are the facts that process creation time on
the Pringle is expensive, and no self-scheduling primitive is available. The best
strategy for processor allocation on the Pringle is to create P processes to run on
the P processors that the Pringle has (rule 12.a.2). So, the n instances of the
outermost loop i are blocked to form P tasks (rule 12.e.3). The result is shown
below:

coprocess k in [0 .. P-1] do
for iin [k*n/P .. (k+1)*n/P] do
for j in [1 .. m] do
ylil == vlil + afi, i] * x[il;
end for;
end for;
end coprocess;

Next, the memory access optimization subgoal is invoked to allocate the
data. Since the Pringle is a non-shared memory machine, all the data must be
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distributed among the processors. Array decompositions are done by means of
inter-process dependence analysis. By checking the bounds of the loops, the sys-
tem discovers that the processor which runs process k (k-th iteration of the copro-
cess loop) accesses only rows k*n /P to (k+1)*n/P of the array a. In terms of the
dependence relations, this means that no out-of-bounds dependence (dependence
edge that has only one end in the loops) or cross-iteration dependence (dependence
whose source and sink are in different loop iterations) of the array a exist. So, it
is best to store these rows of the array in the local memory of the processor that
runs the task. By rule 12.f.11, the array e is divided into P blocks according to
the memory access pattern, and the P blocks are allocated to local memories in
the corresponding processors. Similarly, array y can be blocked into P “chunks”
and stored in the local memories of the processors. Therefore, each of the proces-
sors computes n /P components of the y vector.

Since each process uses all the elements of array z, the processor that runs
the process needs to access the whole array 2 no matter where the array is allo-
cated. If we are free to allocate the array z anywhere, the most direct method is
to put it in one processor, say PEO, and then ‘“‘broadcast’ it to other processors
by means of a pipeline process (rule 12.f.12). To accomplish this, each element of
z is passed from omne processor to the next by using a ‘“‘channel” variable. This
transformation is termed ‘‘pipelining,” which is a modified version of the transfor-
mation ‘‘scalar expansion’ to pass the data through ‘“‘channel_variables’” instead
of temporary variables. The channel variable Ch_z[k] implements a communica-
tion channel between processor k and processor k+1. Processor k =0 reads the
value of z[j] and puts it in Ch_z[0]. Processor k=1 reads the value in Ch_z[0] and
puts it into Ch_z[1], etc. The result of the transformation is shown below:

coprocess k in [0 .. p-1] do
local tmp;
for j in [1 .. m] do
tmp = if (k====0) then x[j] else Ch_x[k-1];
Ch_x[k] = tmp;
for iin [k*n/p .. (k+1)*n/p] do
y[i] = yli] + a[i,j] * tmp;
end for;
end for;
end coprocess;

On some non-shared memory machines it is too costly to send a message con-
sisting of only one word (for example, the Intel IPSC and the N-cube). In this
case, it is best to send large segments of the z vector through the pipeline at a
time.
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Perhaps the most important problem to be solved for both non-shared
memory machines and shared-memory machines that require programs exploit
locality is how to analyze a program and derive an optimal partition of the data
structures.

12.3.5.3 Mapping onto the Alliant FX/8

In the case of the Alliant FX/8 there are three important programming
issues. First, because of the powerful vector instruction set in each processor, one
should exploit as many vector operations as possible. Second, since cache access is
twice as fast as a memory access, the programmer must force as many memory
accesses to be from the shared data cache as possible. Third, because only one
operand in a vector instruction may come from memory or cache, it is important
to keep vector operands that are used repeatedly in vector registers.

Most parallel compilers can recognize the inner-product operation in the origi-
nal matrix vector multiply program and translate the program into the following
form:

foriin 1..n do
y[i] = inner_product(Ali, *], x);

Although the Alliant supports fast inner-product operations, this transforma-
tion does not really utilize the parallelism capabilities of the Alliant FX/8. Each
processor that runs the program accesses the array z n times, so the array z needs
to be brought into the cache repeatedly. Since each vector register in the Alliant
FX/8 can hold only thirty-two words of data, the vector z and the matrix ¢ in
the sample program need to be loaded into the vector registers repeatedly. This
data traffic floods the bus and slows down the computations significantly.

In general, without intelligent program analysis, this communication
bottleneck problem is hard to solve. Our system tries to improve the matching
between the program and the computational model of the Alliant by examining
and managing the memory accesses intelligently.

As in the case of the Butterfly, task creation and processor allocation is the
first subgoal selected. Since the Alliant has a vector capability, both the vector
processing parallelism in the innermost loop and the multi-processing parallelism
in the outermost loop need to be explored. Before the outer loop is blocked to
form tasks and the inner loop is blocked to form vector operations, loop inter-
change is considered to find the best ordering of the loop headers (rule 12.e.1). So
control goes down to the transformation layer, and the rules associated with the
transformation ‘“‘loop interchange’ are applied. First, the nested loops i and j in
the original source are checked, and the conclusion that they are interchangeable
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is reached. Next, rules about loop orders are applied to decide the best order of
the loop headers. Program size matching and memory utilization matching
indices can be used to select the loop order. Rule 12.a.5 suggests that memory
optimization dominates the instruction minimization, so memory optimization
matching is considered.

The matrix-vector multiply program accesses vector £ n passes in total, one
pass for each loop instance of loop i. Loop j is the loop that scans through vector
7. If loop j is the inner loop, and loop i is the outer loop, then each value of the
vector z will be accessed once by every loop instance of loop i. Therefore, the vec-
tor needs to be brought into cache repeatedly. On the other hand, if loop i is the
inner loop and loop j is the outer loop, the value zfj] is brought into the cache
and used by all loop instances of the inner loop i for each loop instance of the
outer loop j. In this loop order, the network traffic for references of vector z is
decreased significantly. Therefore, the loop order where loop j is outside is pre-
ferred according to the memory allocation matching function. In other words, the
loops need to be interchanged.

After the loops are interchanged, the innermost loop is blocked to form vec-
tor operations, and the outermost loop is translated into tasks and may be
blocked to form processes. For the vector loop blocking, the inner loop i is
blocked according to the vector register size of the Alliant (rule 12.e.2). The vec-
tor operation is created by vectorizing the innermost loop after the blocking. The
resulting program is shown below. Each loop instance of the outermost loop j
forms a task. Since the Alliant instruction set provides a means to automatically
allocate the processes to the 8 processors, no loop blocking is needed to match the
number of processes with the number of processors (rule 12.a.1). Subsequently,
loop j is marked to be parallelized.

for j in [1 .. m] do
for k in [0 .. n/32-1] do
k1 =k *32 + 1;
k2 = (k+1) * 32;
y[k1 .. k2] sum= a[k1l .. k2, j] * x[j];
end for;
end for;

The next step is to perform memory access optimization. Rule 12.a.7 sug-
gests that keeping one vector operand in a vector register is beneficial. Since vec-
tor segment y[k*32+1 .. (k+1)*32] is used repeatedly by each instance of the outer
loop j, it is best to keep this segment in the vector register. This can be accom-
plished by interchanging loops j and k (rule 12.f.13). Note that in the previous
task creation and processor allocation subgoal, the loop j is marked as ‘‘to be
parallelized”. However, according to rule 12.f.14, the utilization of vector registers
and vector operations is weighted to be more important. So the previous decision
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is revoked, and the loops are interchanged. Loop k becomes the outermost loop to
be parallelized. The resulting program is:

coprocess k in [0 .. n/32-1] do
local k1, k2 : int;
k1 =k *31+1;
k2 = (k+1) * 32;
for j in [1 .. m] do
y[kl .. k2] sum= a[kl .. k2, j] * x[j];
end for;
end coprocess;

In the final version, each 32 word y vector segment can be saved in a register
for the lifetime of the process and can be written to memory only at the end of
the computation. Experiments performed in collaboration with Dan Sorensen at
the Illinois Center for Supercomputer Research and Development [CSRD] have
shown that this implementation of the program is the fastest version of a matrix-
vector multiply available for the machine.

The matrix-vector multiply example described above served three purposes:

1. It demonstrated how the inference engine works.

2. It illustrated the fact that a different sequence of transformations was
required to produce an optimal program for each machine.

3. It showed the complexity of the program parallelism optimization process.

Many heuristics were needed even for this simple program. This reinforces
our view that an expert systems approach is a more flexible and extensible
approach than the conventional hard-wired heuristics approach.

On the other hand, the example described above is far too simple to illustrate
many of the most interesting and important issues in program restructuring. In
particular, it fails to illustrate the issues relating to the introduction of synchroni-
zation needed in many problems to satisfy data dependence constraints between
parallel tasks. This topic and many other are considered in greater depth in [26].

12.4 Conclusion

Different parallel architectures use different properties of parallel algorithms
to speed up computation. These properties require different programming metho-
dologies and heuristics in order to be well utilized. Most users of scientific parallel
computers use the following approach: they study the target parallel architecture
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extensively, then develop tricks and expertise to utilizing the architecture. From
these experiences, they carefully code their applications to exploit the parallelism
provided by the hardware. This “study and experience cycle’” may need to be
repeated many times before the resulting program achieves a satisfiable speed-up.
As a result, users need to pay a great deal of attention to the problem of match-
ing program parallelism to machine parallelism for each application. Further-
more, algorithms tailored to suit the particular underlying hardware may not be
easily ported to other machines without major modifications. It is clear that this
approach is expensive in human terms, i.e. software development and mainte-
nance grow as the diversity of parallel machines increases.

Although most program transformation techniques are machine independent,
the heuristics of applying these techniques to the target machine are not. These
heuristics are based on extensive study of the particular target machine and are
usually hard-wired into a compiler. As a result, existing parallel
compilers/restructurers can only generate parallel code for one particular target
machine. Much effort must be spent in order to build compilers for different
machines even though much of the knowledge can be transferred with minor
modifications. Furthermore, the transformation sequence is often predefined by
the compiler or specified by the user as an option to the compiler. Given the
dynamic nature of programs, this approach is not flexible and may not be able to
generate optimal code across a wide spectrum of algorithms.

Building an interactive program restructurer is an attempt to improve the
programming environment to allow users to experiment with different program
restructuring sequences interactively. But the user still has the burden of match-
ing program parallelism with the underlying machine. From our point of view,
what the user really needs is a user friendly environment that is capable of explor-
ing program parallelism and providing expert advice for different architectures
when it is requested to do so.

The expert systems approach of program parallelism optimization has the fol-
lowing advantages over the conventional hard-wired approach:

Modularity. The heuristic hierarchy structure provides a means to organize
the program transformation heuristics into a modular form for easy under-
standing and maintenance of the system. Basing heuristics on both the pro-
gram features and machine features can clean up the heuristics and allow the:
heuristics to be used for different parallel machines. It also makes modifying
and expanding the system easy. New heuristics can be easily installed. Port-
ing the system to new target machines is just a matter of specifying the
machine features and providing a mechanism go generate target code for that
machine.
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Flexibility. The decision of which transformation to apply is made dynami-
cally during the program optimization process. Both current program struc-
tures and the target machine features are considered as the program is optim-
ized. This allows the system to select transformations that suit the particu-
lar program and target machine well.

Retargetablity. The system can handle different kinds of target machines. It
would be very difficult, if not impossible, to implement a program parallelism
optimization system using the conventional hardwired approach.

In its current form, our system consists of three major components: an

interactive incremental parser/structured editor for a simple functional language
BLAZE [MeVR85] or FORTRAN, an interactive graphics based program restruc-
turer that allows the user complete control over the program restructuring pro-
cess, and the knowledge base and inference engine described in this paper. All
three components now work in prototype form only, and much work remains to
be done before we will know if this experiment has been a success. Experimental
results and many more details about the system will be published in a later
volume [26].
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Appendix

Rules used in the examples.

Cnstruction of the Computational Model.

Process Creation.

[Rule 12.a.1, 'computational model construction’]]
if ’has self-scheduling-loop primitives’

then

assert(’parallelize outermost loop without blocking’).

[Rule 12.2.2, computational model construction’]
if (’process creation cost’(high)) and
(number-of-processors(P))

then

assert('number of processes to create’(P)).

[Rule 12.a.3, ['computational model construction’]]
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if ’process creation cost’(low)
then
assert(’parallelize outermost loop without blocking’).

Locality

[Rule 12.a.4, "computational model construction’]]
if has-cache
then

assert(’locality is important’).

[Rule 12.a.5, computational model construction’]]
if ’data access/process cost ratio’(large)
then
assert(’memory optimization dominates instruction minimization’).

[Rule 12.a.6, computational model construction’]]
if ’shared /local memory access ratio’(large)
then

(assert(’locality is important’)) and

(assert(’use local variable whenever possible’)).

[Rule 12.2.7 ['computational model construction’|]
if (Chas vector register’)
then

(’try to keep vector operand in register’)

The Program Focus Selection Subgoal

[Rule 12.b.1, [’program focus selection’]]
if ("nested loop’(PDG)) and
(nested-in(BB, PDG)) and
(’single statement block’(BB))
then
FOCUS = PDG.

The Transformation Selection Subgoal.

[Rule 12.c.1, ’program restructuring subgoal selection’]|
if ('nested loop’(FOCUS)) and

(nested-in(BB, FOCUS)) and

(’single statement block’(BB))
then

select(’task creation and processor allocation’).

[Rule 12.¢.2, ['program restructuring subgoal selection’]|
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if ("compound statement’(Focus))
then
select(’parallelism improvement’).

[Rule 12.¢.3, ['program restructuring subgoal selection’]]
if ("tasks created’)
then

select(’memory access optimization’).

[Rule 12.c.4, ['program restructuring subgoal selection’]|
- (select(’task creation and processor allocation’)).

[Rule 12.c.5, ['program restructuring subgoal selection’]|
if (("has cache’) or (’has arrays in’(Focus)) or (’locality is important’))
then

select(’'memory access optimization’).

[Rule 12.c.6, ’program restructuring subgoal selection’]|
if *multiple tasks are created’
then

select(’parallelism improvement’).

[Rule 12.c.7, ’program restructuring subgoal selection’]]
if ((*task created’(FOCUS)) and (not ’parallelized’(FOCUS)))
then

select(’task-creation and processor allocation’)

Parallelism Improvement Subgoal

[Rule 12.d.1, [’parallelism improving’]]
if (is-a-loop(L)) and :

(L = (for i in [RANGE] do A += BJi] * C|i]; end for))
then

is-inner-product(L)

[Rule 12.d.2, [’parallelism improving’]|

if (’has built-in fast inner product’) and
(is-in(L, FOCUS)) and
(is-inner-product(L))

then
apply(transformation(inner-product, L)).

[Rule 12.d.3, [’parallelism improving’]|
if (’has fetch and op operations’) and
(’recurrence relation’(STMT))
then
(’change into accumulation’(STMT)).
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[Rule 12.d.4, [’parallelism improving’]]
If ("nested-loops’(Focus)) and
(not ’perfectly-nested-loops’(Focus)) and
((is-multi-processors’ and high(’task-creation-time’)) or
("has vector operations’))
then
apply(’loop distribution’).

Rules about task creation and processor allocation

[Rule 12.e.1, [’task creation and processor allocation’]]
if (is-nested-loop(FOCUS))
then

select(loop-interchange(FOCUS)).

[Rule 12.e.2, [task creation and processor allocation’|]
if (is-nested-loop(FOCUS)) and
(’has vector operations’) and
(’size of vector registers’(V)) and
(V <> 0) and
(innermost-loop(FOCUS, INNER)) and
(num-of-iterations(INNER, N)) and
(V< N)
then
"loop blocking’(INNER, N).

[Rule 12.e.3, ['task creation and processor allocation’|]
if (is-a~-loop(FOCUS)) and
(outermost-loop(FOCUS, OUTER)) and
(num-of-iterations(OUTER, N)) and
(number-of-processor(P)) and
(N> P)
then
’loop blocking’(OUTER, P).

[Rule 12.e.4, ['task creation and processor allocation’]]

if (’parallelize outermost loop without blocking’) and
(is-nested-loop(FOCUS)) and
(outermost-loop(FOCUS, OUTER))

then
(parallelize(OUTER))

Memory Access Optimization.

[Rule 12.f.1, 'memory access optimization’]]



e iih =

Assume L2 is the innermost loop that is nested in L1 such
that array references of X depends on the loop index of L2.
Also let X-sub be the part of the array X whose references
depend on the loops inside L2.

if (has-instruction(block-transfer)) and
(shared-array(X)) and
(parallelize(L1)) and
(referenced-in(X, L1)) and
(innermost-depends-on-loop(L1, X, L2)) and
(sub-depends-on(X, X-sub, L.2)),
(N = sizeof(X)) and
('minimal number of references to justify cost of block-transfer’ = B) and
(N > B)

then
(apply(’block transfer’(X-sub, L2))).

[Rule 12.f.2, "memory access optimization’|]
if (apply(’block transfer’(X, L)) and
(parallelize(L)) and
('nested in’(L1, L)) and
(sub-depends-on(X, X-sub, L1))
then
(apply(’block transfer’(X-sub, L1))).

[Rule 12.f.3, 'memory access optimization’]]
if (apply(’block transfer’(X, L))) and
(’nested in’(L, LO))
then
(’create temp array’(amp, LO) and
(’create statement’(S, block-transfer(X, tmp, sizeof(X))) and
(’insert in front of’(S, L2)) and
(substitute(X, tmp, L)).

[Rule 12.f.4, 'memory access optimization’]]
if (S = (’block transfer’(A, L, N))) and
(shared(A)) and
(local(L)) and
(nested-in(S, LO0)) and
(parallelized(LO)) and
(’not depends on’(A, L0)) and
(’number of processors’(P))
then
(create-loop(LL, 1..P)) and
(add-stmt(LL, S)) and
(parallelized(LL)) and
(’insert in front of’(LL, LO)).
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[Rule 12.f.5, 'memory access optimization’|]

if (S = (’block transfer’(L, A, N))) and
(shared(A)) and
(local(L)) and
(nested-in(S, LO)) and
(parallelized(L0)) and
('not depends on’(A, LO)) and

- ('number of processors’(P))

then
(create-loop(LL, 1..P)) and
(add-stmt(LL, S)) and
(parallelized(LL)) and
(’append to’(LL, L0)).

[Rule 12.£.6, 'memory access optimization’|]
if ("has cache’) and

(’mostly used array’(A, FOCUS))
then

(’keep in cache’(A)).

[Rule 12.£.7, Pmemory access optimization’|]
if ("locality is important’) and
(has local memory’) and
(’data accessing ratio of shared memory-local memory’ > 2) and
(shared-array(A))
then
(allocate array A to the local memory of each processor).

[Rule 12.f.8, 'memory access optimization’]|
if (has-local-memory)
(’mostly used array’(A, FOCUS))
(shared-array(A))
(appears-in(A, S)) and
(’in nested loops’(S, [L1.. Ln])) and
('not depends on loops’(A, L1))
then
(’create tmp’(tmp, L1)) and
(’create statement’(S1, (A := tmp))) and
(’insert in front of’(S1, S)),
(substitute(A, tmp, L1)).

[Rule 12.f.9, 'memory access optimization’|]
if ('mostly used array’(A, FOCUS)) and
(shared(A)) and
(appears-in(A, S)) and
(’in nested loops’(S, [L1.. Ln])) and
(’depends on loops’(A, L1))
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then
(find the plausible loop order ORD with most inner loops that A depends on) and
"loop interchange’(L1, ORD) and
(innermost-depends-on-loop(L1, X, LL)) and
(’create tmp’(tmp, LL)) and
(’create statement’(S1, (A := tmp))) and
(’insert in front of’(S1, S)),
(substitute(A, tmp, LL)).

[Rule 12.f.10, "memory access optimization’]]
if (’has local memory’) and
(’mostly used array’(A, FOCUS)) and
(shared(A)) and
(’not modified’(A)) and
(cache-size(C)) and
(sizeof(A) > C)
then
(’create tmp’(tmp, FOCUS)) and
(scalarize(A, tmp)).

[Rule 12.f.11, "'memory access optimization’]]
if ("non-shared memory’) and
(parallelized(L)) and
(array(A)) and
(appears-in(A, L)) and
(’no inter task dependence exist’(A, L)) and
(sub-depends-on(A, A-sub, L))
then
allocate-local(A-sub, L).

[Rule 12.f.12, 'memory access optimization’]|
if ("non-shared memory’) and

(parallelized(L)) and

(array(A)) and

(appears-in(A, L)) and

(has inter task dependence in’(A, L))
then

'pipelining references’(A, L).

[Rule 12.f.13, 'memory access optimization’]]
if ("has vector register’) and
(’is a vector’(V)) and
(appears-in(V, S)) and
(’in nested loops’(S, LList)) and
(member(LL, LList)) and
(’not depends on’(A, LL))
then
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‘interchange loops to move LL into innermost’

[Rule 12.f.14, 'memory access optimization’]]
if (Chas vector register’)
then
(’vector register optimization dominates memory access optimization’)



