THE CALCULI OF LAMBDA-v-CS CONVERSION:
A SYNTACTIC THEORY OF CONTROL AND STATE

IN IMPERATIVE HIGHER-ORDER PROGRAMMING LANGUAGES

Matthias Felleisen

Submitted to the faculty of the Graduate School
in partial fulfillment of the requirements
of the degree
Doctor of Philosophy
in the Department of Computer Science,

Indiana University

August 1987

Accepted by the Graduate Faculty, Indiana University, in partial fulfillment of
the requirements of the degree Doctor of Philosophy.

Et o S
‘!évi"d"}b\/:" ,} X L\J [Flrevr—~

Daniel P. Friedman, Ph.D.

| Ml o

Doctoral Commitiee: Vs
J. Michael Dunn

- A 7

y. Yorg, oy ,: 1
:(’/l’”’“, 5L {/ LK/ : f LA é l;)‘,’, =
Paul W. Purdom

N bk

4 / ' t
F ! bl Avefeed
Fia i et

1i July 1987 Mitchell Wand

Copyright (© 1987
Matthias Felleisen

ALL RIGHTS RESERVED

111

To my parents and my grandmother

v

Abstract

Imperative extensions of higher-order functional languages are highly expres-
sive media for reasoning about programming problems and solutions. They directly
support a broad variety of programming paradigms and their associated facilities,
e.g., lexical scoping with blocks and modules, object-oriented programming with
message-passing entities, backtracking with relations and coroutines. Purely func-
tional languages can also emulate these facilities, but, in general, this requires a
(re-) formulation of the entire program in a special style.

The advantage of functional programming languages is that they automati-
cally come with a powerful, symbolic reasoning system. They are syntactically and
semantically variants of the A-calculus, and this connection provides an abstract
understanding of programs, independent of any implementation machinery. Thus,
for verifications, transformations, and comparisons, programmers can manipulate
programs in an algebra-like manner. However, the A-calculus is too weak to support
imperative extensions of functional programming languages. Consequently, it has
been impossible to reason algebraically about imperative programs. We have solved
this problem with the construction of the \,-CS-calculus.

The A,-CS-calculus is a conservative extension of the A-calculus. Its principal
syntactic facilities are variables and assignable variables, functional abstractions,

v

vi
function applications, and two new expression types for the manipulation of evalu-
ation control and program state: ubiquitous building blocks of most practical lan-
guages. The extended set of axioms is derived from an abstract machine semantics.
They satisfy a variant of the Church-Rosser Theorem, the Curry-Feys Standard-
ization Theorem, and Plotkin’s Correspondence Theorem.s. With the calculus, it
is easy to establish and prove equational properties of such facilities as loop exits,
cell objects, and generators. Since the calculus—lanéuage can express high-level con-
structs and their low-level, assembly-like implementations, we can also formalize
and establish the correctness of classical compiler techniques with simple program
transformations. Examples are the elimination of tail-recursion and the implemen-

tation of recursion with self-references.

The construction of the \,-CS-calculus is a contribution to the study of fun-
damental concepts in programming languages. It is an attempt to bridge the gap
between mathematically elegant and realistic programmiﬁg languages. A further
exploration of the calculus will certainly produce deeper insights into imperative

higher-order programming and its paradigms.

Acknowledgements

I owe thanks to my advisor and Doktorvater Daniel P. Friedman for introducing
me to the fascinating world of closures, continuations, and assignments; for the
stimulating discussions on languages and calculi; for being available day and night
to give advice; and, most importantly, for his friendship throughout these years of
apprenticeship.

Another important support element has been my doctoral committee consist-
ing of Michael J. Dunn, Paul W. Purdom, and Mitchel Wand. Mike Dunn pro-
vided many insights into the logic of things; Paul Purdom safely steered me around

administrative and Tex-y obstacles; Mitch Wand streamlined many of my windy

motivations.

Beyond this official doctoral environment, Bruce Duba and Eugene Kohlbecker
have played a crucial role in my endeavor. Without them, I may have never un-
derstood Dan’s original ideas on rules for our favorite Scheme construct call/cc. In
particular the numerous talks on Bruce’s front-porch swing have been a constant
source of inspiration. I'll miss them.

Furthermore, I thank Carolyn Talcott for her critical reading of most of my
papers and a draft of this dissertation. Like nobody else, she went through my
proofs with greatest care, pointed out many improvements, and posed a great deal

of interesting questions.

vil

viii
Last but not least, I mention my loving and caring wife Helga. Especially in the
last few months, she had to put up with a lot of hectic activities and panic between
me and our son Christopher. For all that and a lot more: Thank You. We both are
indebted to our families for their support throughout these school years and to our

American family-extension George Paulik for his wise words on so many issues.

Financial Support. My dissertation has been financed by a teaching assistantship
from the Indiana University Computer Science Department, an NSF research as-
sistantship (NSF grants DCR 85-03279 and DCR 85-01277), an IBM Graduate
Research Fellowship, a summer internship with the Software Technology Program
at the MCC/Austin, and an Indiana University Summer Research Fellowship. The
Program in Classical Archaeology provided a comfortable workspace for both me

and my wife. I gratefully acknowledge all this help.

Preface

This preface provides a high-level survey of our technical contributions, an ex-

planation about their relationship to mathematics, and some basic definitions of

notation and terminology.

Overview. The \,-CS-calculus is an equational theory about the ubiquitous pro-
gramming language concepts of function, control operation, and assignment. The
theory is a conservative extension of a variant of Church’s A-calculus. For the treat-
ment of control and assignment operations, the calculus includes two new sets of
term relations: reduction and computation rules. The former are freely applicable
term relations like Church’s $-rule; the latter are program relations that can only
be applied to a redex at the root of a program. The division is necessary for the
coordination of imperative effects, but it does not constitute an infringement on the
calculus’s properties or capabilities. The \,-CS-calculus satisfies a modified version
of the Church-Rosser Consistency Theorem and the Curry-Feys Standardization
Theorem.

We derive the calculus from and for a programming language called Idealized
Scheme. The language generalizes the principal computational primitives of most
sequential imperative programming languages. Most facilities of other languages can
be expressed as syntactic abbreviations of Idealized Scheme expressions and can be
treated in the calculus with simple equivalences. The syntax of Idealized Scheme

1x

X
1s an extension of the A-calculus-term language. Beyond constants, variables, \-
abstractions, and applications, the term set contains two new expression categories:
F-applications for the manipulation of evaluation control and o-capabilities for the
manipulation of state. The former are related to label values in Algol derivatives and
to continuation values in Scheme-like languages; the latter are expression-oriented
variants of assignment statements. The semantics of the entire language is defined

via a denotational-style abstract machine.

From the abstract machine semantics we systematically derive the above-men-
tioned set of term relations for the \,-CS-calculus. The main result with respect
to the relationship between Idealized Scheme and the calculus is a generalization
of Plotkin’s Correspondence Theorem. The theorem verifies that, under certain
conditions, the equality of two programs in the calculus implies operationally in-
distinguishable behavior and is thus a major tool for reasoning about imperative
programs. With such a symbolic reasoning system, a programmer can manipulate
imperative programs like algebraic expressions—on a 3ymbol£c-syntactic level. The
programmer can algebraically determine the result of a program, prove the equiv-
alence of two programs, or transform an obviously correct program into a more ef-
ficient version. For example, with a few, simple equations we prove the correctness
of the elimination of tail-recursive function applications in favor of unconditional
jumps and the implementation of recursive functions with self-referential structures,

two traditional compiler techniques that are usually justified on informal grounds.

In some sense, our research attempts to reconcile the premisses of two diverging
currents in the programming language research community: the one striving for
mathematically-based languages, the other for expressive ones. The advantage of a
mathematical language is that it automatically comes with an equational reasoning

system, e.g., all functional languages directly correspond to some variant of the

xi

M-calculus. Imperative extensions of functional languages, on the other hand, are
much better equipped for expressing an exceptional flow of control and the occur-

rerce of a state-changing event. Unfortunately, because of the additional imperative

operations, the usual mathematical theories cannot support equational reasoning

calculus resolves this dichotomy by providing an

with these languages. The Ay -CS-

algebra-like system. for the manipulation of imperative programs.

quisites and Mathematics. The goal of our research is a deeper under-

putations in an extended functional programming lan-

Prere

standing of imperative com

jor tool for this endeavor is the mathematics of sets, terms, term

guage. The ma

relations, and induction. Accordingly, we concentrate on the interpretation and

application of mathematical results. Informative or constructive proofs are devel-

oped together with the theorems; long proofs that do not immediately further the
understanding of a topic are moved to subsections. The proofs are kept informal so

long as it is easy 0 fill in the gaps.

We assume that the reader 1s acquainted with the contents of an undergraduate
and a graduate course on the principles of programming languages as they are
taught at a university like Indiana University; that the reader has been exposed
and at various places we assume some

to the notion of a state transition system;

superficial familiarity with the organization of a denotational programming language
semantics—for example, that the separation of environment and store 1s necessary

for an imperative higher-order langua‘ge—and its realization as an abstract machine.

Further knowledge of denotational semantics is also helpful for the analysis of the
dichotomy between functional languages and imperative extensions in Chapter 1.

al background is developed in Chapters 2 and 3. The

The necessary mathematic

second chapter 1s an :ntroduction to the concepts of abstract machines and calculi
ges; the third introduces an abstract machine for imperative

for functional langua

xii

extensions of functional languages. We assume that the reader is knowledgeable of
induction principles.

Notation and Terminology. Three basic mathematical notions deserve some
general explanation. First, we use the word domain when talking about sets for
meanings of programs, but also when referring to the range of values that the
independent variable of a function can assume. Domains in the first sense are
generally defined by a system of mutually recursive equations. In order to improve
readability, the meta-language for these equations contains some elements from

abstract syntax. For example, an equation of the form

A4 =B X token x C

defines the set A as the cartesian product of B, {token}, and C. A typical element

from this set may be written as

(b token c).

Second, many domains are sets of partial or finite functions from a set 4 to a

set B. We denote these domains with

A > B.

If fis a finite function on A, then the domain of f, Dom(f), is the subset of A4 on
which fis defined. In some cases it is more convenient to perceive a finite function
as a set of pairs. We shall switch to whatever variant is more convenient. The

update of a finite function f for z with value y is written

and denotes a new function such that

Yy g =2

flz = yl(z) = {f(:) otherwise.

x1il
Warning. We overload this notation twice: for term substitution and labeled-value
substitution. Both are syntactic counterparts to function updates. The textual
context should distinguish the different-uses. End

Finally, besides the relations proper, we frequently need transitive and reflexive

closures. If

A— B

stands for a single step relation from A to B, then
A—T" Band A —* B

denote the transitive and transitive-reflexive closures. Exceptions to this rule are
clearly indicated.

We use ordinary programming language terminology which generalizes math-
ematical usage. Thus, we call a programming language object a function if it is

applicable to different values and yields values, even though it may not correspond

to a mathematical function. If it does, we call the function pure. We refer to

apparent or bound wariables for the syntactic objects that define an equivalence
relation on term positions. With application we mean two different things, namely,
the syntactic juxtaposition of two objects and the computational process of call-

ing a function. To emphasize that we mean the latter, we sometimes use function

invocation.
For talking about terms and programs, we make use of abstract syntax termi-
nology and freely mix it with tree terminology. Hence, we shall call the outermost

syntactic construction the root and parts of a term the sub-expressions. Other words

should be self-explanatory.

Contents

Abstract v
Acknowledgements . vil
Preface o 1%
Contents Xiv
Definitions Xvil
1. Expressiveness versus Mathematics 1
1.1. A Short History of Expressiveness 3
1.2. The Essence of Expressiveness 9
1.3. A Calculus for Imperative Higher-Order Programming Languages . . . 15
1.4. Outline 18
2. Programming Languages, Calculi, and Correspondence 22
2.1. The Programming Language A 23
2.2. An Abstract Machine Semantics 27
2.3. The A-value-Calculus . 35
2.4. The Correspondence of Programming Languages and Calculi . 40
2.5. Programming and Reasoning with A . 47

3. Idealized Scheme: An imperative extension of A 58
3.1. Ars 58
60

3.2. The CESK-Machine

x1v

XV

3.3. Programming with Ax, 68
4. From the CESK-Machine to a Program Rewriting System 81
4.1. Eliminaﬁng the Environment . 81
4.2. Eliminating the Continuation Code86
4.2.1. Contexts as Continuations . 86

4.2.2. Merging Control Strings with Contexts 90

4.3. Replacing the Store by Sharing Relations95
5. The X.-CH-Caleulus 108
5.1. Reductions and Computations 109
5.2. Consistency and Standardization 118
5.2.1. Proofs for the Consistency and Standardization Theorems . . 122

5.3. Correspondence 137
5.3.1. Proof for the Simulation Theorem 149

6. Reasoning with the A,-CS-Calculus 160
6.1. Reasoning with Control 161
6.2 Reas-oning with State 167
6.3. Reasoning with Control-State 186
7. Summary and Perspective 195
7.1. Results and Limitations 195
7.2. Related Work 197
7.3. Future Research 200
7.3.1. Fundamental Abstractions 201

204

7.3.2. Syntactic Abstractions

7.3.3. Proof Principles, Proof Techniques, and Program Development 207

7.3.4. Calculi for Intensions

7.3.5. Feedback Information for Language Design

xvi

7.3.6. New Implementation Strategies for Imperative Languages . . 213
7.3.7. Dynamic stepping | 216
7.3.8. Miscellaneous 217 “‘
7.4. Concluding Remarks 218 “
219

References

Definitions

Definition 2.1. The programmang language A 24
Definition 2.2. The CEK-machine, part I: the computational domains . . . 29
Definition 2.2. The CEK-machine, part II: the transition function 30 “
Definition 2.3. The A\ -calculus .37
Definition 2.7. Standard reduction function and sequences41
Definition 2.13. Operational equivalence on the CEK-machine 45
Definition 3.1. The programmaing language Ary60
Definition 3.2. The CESK-machine, part I: the computational domains . . . 61
Definition 3.2. The CESK-machine, part II: the transition function 63
Definition 4.1. The CSK-machine, part I: the computational domains . . . 83
Definition 4.1. The CSK-machine, part II: the transition function 84
Definition 4.3. The CSC-machine, part I: the computational domains . . . 87
Definition 4.3. The CSC-machine, part II: the transition function 89
Definition 4.5. The CS-machine . . 92
Definition 4.8. The C-rewriting system, part I: the language . 99
Definition 4.8. The C-rewriting system, part II: the transition function . . 100
Definition 4.11. The label equality =jqp - 104
Definition 5.1. The calculus language Acs 114

117

Definition 5.2. Reductions and Computations

xvil

Definition
Definition
Definition
Definition
Definition
Definition
Definition
Definition
Definition

Definition

xviii
5.3. The A\, -CS-calculus .
5.7. Standard reduction and computation functions .
5.8. Standard reduction and computation sequences .
5.10. The parallel reduction
5.19. The correspondence of continuations in Nrew and Acs
5.23. Generalized operational equivalence
5.26. Safe theorems in A,-CS
6.1. The control fragment of \,.-CS .
6.6. The assignment fragment of A\, -CS .

7.1. The Eval-function

1. Expressiveness versus Mathematics

The programming language research community knows two diverging currents:
one striving for mathematically elegant formalisms, the other for highly expres-
sive thought media. In general, the basis of a mathematically-oriented language
consists of a single concept from mathematics. The set of syntactic categories is
small, each category and its interaction with others is well-understood. The un-
derlying mathematical theory provides a foundation for symbolic reasoning about
programs in the language. Two prominent examples are pure! Lisp and Prolog.

The former is associated with \-calculus, the latter with Horn-clause logic.

With a symbolic reasoning system, a programmer can manipulate programs like
algebraic expressions—on a symbolic-syntactic level. This is useful in determining
the result of a program, proving the equivalence of two programs, or transforming
programs into more readable or efficient versions. In short, a symbolic reasoning

system provides an abstract understanding of programs, independent of any imple-

mentations or annotations.

The mathematical elegance of a programming language/reasoning-system pair
is obviously appealing. The exploration of this direction of language design has led

to the discovery of many programming principles, to an improved understanding
1

Full-funarg, lexically-scoped Lisp.

2
of structural elements in language designs, and to novel implementation strategies.
Yet, when it comes to realistic programming, mathematical languages are usually
offered as impure realizations with imperative operations. Their addition is justified
on grounds of efficiency; their use, however, is discouraged because the underlying

mathematical theory cannot account for the imperative effects.

An advocate of expressive languages rejects restrictions on the use of linguistic
facilities. If an imperative facility can succinctly express the idea of a particular
program, then it is appropriate to use. After all, a programming language is a
vehicle for formalizing and organizing thoughts about problems and their solutions,
and some problems and solutions are better expressed in an algorithmic, event-
based manner. From this perspective, the design of a programming language means

anticipating the needs of a language user and building in useful facilities.

At first sight, this argument leads to big and baroque languages, but this is
not necessary. A series of experimental language designs from the mid 60’s to the
late 70’s has demonstrated that a practical language can be simultaneously small
and expressive. The important insight is to distinguish between a language core
and syntactic abstractions. A language core is the set of facilities that are truly
necessary essentials of a language; the set of syntactic abstractions comprises all

those constructs that are abbreviations of typical usage patterns of core facilities.

From this point of view an analysis of Algol-style languages and sub-languages
produces an interesting result: higher-order functions, access to an abstraction of
the current thread of program control, and lexical assignment suffice to treat prac-
tically all traditional language facilities as syntactic abstractions. The range of
expressible facilities includes looping constructs, blocks, modules, structured data

objects, function exits, co-routines, and quasi-parallel processes.

The meaning of this finding is clear. Not only are control facilities and assign-

ments ubiquitous building blocks of programming languages, but they also express
fundamental concepts that are difficult to formulate within a functional framework.
However, as mentioned above, adding these imperative facilities to a functional
language invalidates the correspondence between the language and the reasoning
system. And thus,

it appears [that] we have a choice: we can either define weak sys-

tems, such as purely functional languages, about which we can prove

theorems, or we can define strong systems which we can prove little

about.?

We are more hopeful and accept both premisses: a language should simultane-
ously be expressive and associated with a symbolic reasoning system. Consequently,
our goal must be the construction of a symbolic reasoning system for the core of
expressive languages. In the rest of this chapter, we further explore the notion
of expressiveness, first in an historical, then in an analytical setting. The presen-

tation is informal and assumes a superficial knowledge of programming language

concepts and algebra-like calculi. In the third section, we investigate and formulate -

the problem statement. The last section contains an outline for the main body of

the report.

1.1. A Short History of Expressiveness

The history of the systematic analysis and design of expressive programming lan-
guages contains three major milestones. The first to explore the idea of mathe-
matical programming and its relationship to imperative programming was Landin.
His major idea is to map out the space for programming languages in a system-
atic manner. Reynolds’s contribution is the realization that this design space has

a small basis with regard to traditional languages, and that language research is

This quote is attributed to M. Minsky by T. Knight [32:105].

to investigate this basis. The credit for making these ideas practical goes to Steele
and Sussman.

Landin’s starting point was a simple observation: a computation should be
construed as the mechanical evaluation of a mathematical expression [40]. Fur-
thermore, to conceal the intricasies of computers, programming languages should
formalize mathematical notation in a most general sense. Landin chose the A-cal-

culus as his notational framework.

The A-calculus [10] is a formal system for studying “the concept of a function
as it appears in various branches of mathematics”[10:1]. It consists of a simple
term language, and its semantics is defined via a small set of equational axioms.
The term language consists of three classes of expressions: variables, functional or
A-abstractions, and function applications. Whereas variables and function applica-
tions are traditional mathematical notation, functional abstractions are somewhat
unusual. A \-abstraction defines a function by combining the independent vari-
able and the result expression in a A-tagged pair, e.g., A\z.z?. Furthermore, a \-
abstraction can occur wherever an ordinary expression can occur. It is thus possible

that a function’s result is a function; in other words, the calculus is a higher-order
system.

Semantically, the calculus is equivalent to other computational formalisms like
Turing-machines [5:ch6], but syntactically it is rather austere. Nevertheless, it of-
fers a natural framework into which most mathematical notation can be translated.
Landin refers to the calculus language as applicative expressions (AE) and to other
notations as “syntactic sugaring.” Put differently: all systems of functional pro-
gramming notation are syntactic variants of the A-calculus, and the study of func-

tional languages and their reasoning systems is based on the study of the A-calculus.

The kind of syntactic transformation that Landin had in mind for the expansion

5
of “syntactic sugar” into AE is best illustrated with an example. In mathematical

contexts, statements are often qualified with a where-clause, e.g.,
2?2 + az + b = 0 where a = 2.
Such a qualified statement can be restructured into A-notation as

(a.z® + az + b = 0)2.

More generally,

M where z = L

translates into the application of a function (of argument) to the value L:
(Az.M)L.

The translation has three characteristics: (1) it is independent of the context in
which the expression occurs, (2) it cannot be formulated in terms of .functional
abstraction because it manipulates the scope of variables, and (3) sub-expressions
of the abbreviation become sub-expressions of the expansion. Due to the first and

second characteristics, syntactic variants are also called syntactic abstractions.

Landin’s next step was to design an abstract machine for the implementation
of the mechanical evaluation rules: the SECD-machine. This abstract machine is a
rather simple state-transition system, based on machine-related constructions like
stacks, dumps, and control memories. It simultaneously provides a formal semantics

and an implementation strategy for AE and for its syntactic variants.

This success in explaining a large body of mathematical symbolism in a sin-

gle framework led Landin to attempt a bigger project: the formalization of Algol’s

semantics via a syntactic correspondence to a simple AE-like language [35, 37].

e — - — - e xmﬂ‘umm,_: —

6
In order to capture the meaning of imperative Algol-statements with syntactic ab-
stractions, Landin [39] introduced the language of imperative applicative expressions
(IAE). IAE extends AE with two new facilities: the J-operator and the assignment
operator. The former is used to model the meaning of labels. In simplistic terms,
the J-operator provides the program with instantaneous access to the current con-
trol state of the machine [7:ch 2]. The result is a label-like value with the same
status as a function. When invoked on a value, it resumes the evaluation at the
labeled point and discards the current state. The assignment operator resembles
the usual side-effect statements in Algol-like languages, but in conjunction with
higher-order functions it can achieve new effects. The language semantics is based

on an extended SECD-machine, called sharing machine.

In his final, seminal paper on language design, Landin [38] extrapolated his
experience into a single framework: IswiM. IswIM is a family of programming lan-
guages. The family members share a common abstract part and differ in their choice
of primitive mathematical entities and functions,? e.g., numbers, strings, vectors,
etc., an idea originally due to McCarthy [45]. A particular choice of mathematical

entities determines the application area of a member language.

The abstract part of the ISwiM-language is constructed from a language core,
the prototypical core being IAE. Other language constructs are expressed via defini-
tional equations as patterns of core expressions. The semantics of the core language
is defined by an abstract machine. Introducing different syntactic abstractions or
a different core produces a different family of languages. Within a given family,
the language design process has become simple. Arbitrary choices are eliminated.

Landin explains that “... a new language is a point chosen from a well-mapped

3 The members also differ in their written representation—concrete syntax, an aspect of language design
that we disregard.

7
space, rather than a laboriously devised construction” [38:164]. He does not further

explore the idea of varying sets of syntactic abstractions.

The idea of splitting the abstract part of a language into a core and a set of
syntactic abstractions naturally provokes the question of how large the core must
be. Reynolds [51] investigated this problem by constructing a language GEDANKEN
(for Gedanken experiment). GEDANKEN is a minimalistic, Algol-like language based
on the principle of completeness: all values, including functions, labels, and cells
can be used in any appropriate context. This implies that functions can return
labels, that functions can be stored in structures, and that cells can be passed as
arguments. The importance of “GEDANKEN lies primarily in the language features
which have been excluded”[51:308]. The language proper only contains five major
facilities: variables, functions, applications, assignments, and jumps, but still, all
traditional constructs of Algol-like languages and extensions of those can be pro-
grammed. Reynolds’s examples include functional data structures, lists, records,
arrays, co-routines, and quasi-nondeterministic computations. Although the term is
never mentioned, the programming style for all but the last example recalls Landin’s
“syntactic sugar.” Reynolds’s conclusion is that simplicity does not impair expres-

siveness, except that the implementation of GEDANKEN is extremely inefficient.

In the mid-70’s, Sussman and Steele [68] started another experiment of mod-
eling programming languages with the A-calculus. To this end, they implemented
a programming language called Scheme. Scheme is an extension of the A-calculus-
term set that structurally resembles IAE. The major semantic differences between
the two languages are the parameter-passing technique and the control operator.
Whereas IAE passes arguments by reference, Scheme passes arguments by value.

The manipulation of the flow of control in (original) Scheme is based on catch-

expressions. An expression of the form
catch L Body

constructs a continuation value—an abstraction of the rest of the computation—
and binds it to L for the evaluation of Body. A continuation value has the same
status as a function, it can be the result of an expression, passed to functions, and
so on, but upon invocation it behaves like a label value and passes its argument
back to the labeled point in the evaluation. Syntactically the facility is equivalent to
the J-operator, semantically it is simpler, avoiding interference with A-axioms [14].
A superficial difference between Scheme and IAE is the concrete syntax. Since
ecarly implementations were based on Lisp, Scheme’s syntax is Lisp-oriented and it
is occasionally called a Lisp dialect. Scheme implementations also inherited Lisp’s
macro facility. Because of this, experimenting with syntactic abstractions is rather

convenient, and unlike in ISWIM, the set of syntactic variants is not fixed.

Sussman and Steele’s initial goal was to implement Hewitt’s actor model of
computation, but they soon discovered that Scheme could also express numerous
other linguistic facilities [64]. Some of the results were rediscoveries of Landin’s
and Reynolds’s work, others were new, e.g., models for dynamic variable bind-
ing and calling mechanisms such as call-by-name and call-by-need. They realized
that practically all facilities could be rephrased in terms of functional notation,
but that some, including control and assignment operators, were better left in as
primitive computation vehicles. Steele [61, 62, 63] then set out to look for efficient
implementation techniques. The outcome was a compiler and a set of compilation
techniques, which implemented Scheme and its macro-based syntactic extensions
quite efficiently.

In the meantime, Scheme has left the laboratory environment and is used as

a teaching, research, and industrial programming vehicle. A textbook [2] has ap-

9
peared that successfully uses Scheme for teaching the current programming para-
digms in a single language framework. Research about Scheme concentrates on
improved compiler techniques [34], the use of Scheme as a language development
framework [11], and practical additions of syntactic abbreviation as a programming
tool [33]. Research and programming with Scheme happens in all areas that in the

past have been dominated by Lisp and Algol-derivatives.

The Scheme community has recently begun to standardize the language [49].
The development of Scheme is the proof of practicality of Landin’s programming
language design philosophy. Imperative higher-order languages not only provide a

theoretical test-bed for language design ideas, they are also practical programming

tools.

1.2. The Essence of Expressiveness

The preceding history of language design teaches that an expressive language need
not be complex. The important distinction between core facilities and syntactic
abstractions is the foundation for a structural, hierarchical design of a language.

For an analysis of languages, it is crucial to understand the core facilities. Syntactic

abstractions can be explained via their definitional equations. Thus, language

analysis and design reduces to the question whether a given construct is a core
facility or not. The answer hinges on what is acceptable as a syntactic abbreviation
technique. This is, reduced to a single point, the problem of expressiveness.
Throughout the evolution of expressive languages, the notion of expressiveness
has been kept vague. There is no formalization of the meaning of expressiveness.
A few hints come from Landin [38] and Sussman and Steele [64]. The former says

that a transliteration of a syntactic variant into its expansion must be indepen-

4 Gee also Subsection 7.3.2 on this topic.

10
dent of whatever its context is; the latter notice that ordinary transformations for
syntactic variants are “syntactically local” whereas eliminations of control and as-
signment operations in favor of functional notations involve complex reformulations.
In other words, access to the current continuation and lexical assignment are just

as fundamental as functions and function applications.

Landin’s syntactic abstractions exhibit another important attribute. As men-
tioned above, his transliterations are usually of denotational character, that is,
the result of a syntactic expansion for a complex term depends only on the sub-
expressions, not on their structure. This further simplifies the expansion algorithm
and preserves the possibility of proving and inferring structural properties by in-
duction.

Based on these characteristics, we define syntactic abstractions as syntactically
local (possibly denotational) transformations. For the comparison of languages we
concentrate on fundamental concepts and ignore all syntactic extensions because
they are trivially equivalent to core expressions. It immediately follows that a func-
tional language with a control operator is more expressive than a (mathematically)
functional language. Take as an example the abort-operation. When evaluated,
the expression abort(v) is to terminate a program and must return the value v as
the result of the entire program. Now suppose that some functional expression A4,
is syntactically equivalent to abort(v). Since abort(v) is defined so is A, but we

also know that A, is equivalent to its value in any context. If 4, is equal to v, then

a program of the form
F(abort(1)) where F(z) =0* x
cannot yield 1; similarly, if 4, is not equal to v, the expression

abort(1)

11

is not equal to 1. Consequently, there is no syntactically local translation of abort-

operations into functional expressions.

In an absolute but trivial sense this statement is counter-intuitive to the develop-
ment of denotational semantics. The latter has shown that all sequential program-
ming languages can be assigned mathematical meaning, and hence, can be expressed
with a functional notation. Indeed, there are well-known techniques for reformulat-
ing imperative programs into functional ones, b‘ut the emphasis here is on program.
These reformulations cannot be performed as syntactically local translations of one
construct into an equivalent expression: the entire program must be restructured.
The crucial idea for modeling exceptional flow of control and state variables with
a functional program is to make all control and state information explicit. As a re-
sult, such a program contains many recurring programming patterns. In addition,
the program is generally less modular than its imperative counterpart, since a local
change in an imperative program—Ilike the insertion of an abort-statement—may
require a global restructuring of the program.

- We illustrate the pattern-oriented programming style of functional versus im-
perative programs with an example for the (relatively local) emulation of a catch-
expression. For the example we work in a programming language with a built-in
data type binary number tree. Such a tree is either empty, which can be tested with
the predicate empty?, or it is non-empty, in which case it consists of two sub-trees
and a number. The parts of a non-empty tree can be accessed with lson, rson, and
info. Provided recursive functions are available, it is straightforward to write a re-
cursive program ©* that sums up the numbers in a tree. In an Algol-style language,
this could be expressed as

integer procedure ©*(T'); tree T}

if empty?(7") then 0
else info(T) 4+ Z*(Ison(T)) + =*(rson(T)).

12
Next we consider a slightly modified version of T*, namely, a function I that

walks through the tree and adds up the numbers, but immediately returns 0 upon

encountering 0. With a Scheme-like catch-facility, this is only a minor extension

of the above program:

integer procedure Z3(T); tree T;
catch Fzit
begin
integer procedure S(T); tree T}
if empty?(T') then 0 else
if info(T) = 0 then Ezit(0)
else info(T) + S(Ison(T)) + S(rson(T))
S(T)
end {Z(}.

Informally, when S encounters 0, it invokes the continuation value Ezit with 0 and
thus jumps back to the caller of £, returning 0 as required.

A functional version of this program that preserves the one-parse-early-exit
property is more complicated. It is based on the idea of a denotational continuation
[1, 21, 44, 67].> That is, every function takes an additional parameter that represents
the computation after the function invocation. If the function wants to continue

the computation, this extra parameter must be invoked in such a position that

after its return nothing is left to do. Also, the current function must pass along

5 Indeed, the origin of the concept of a continuation can be traced back to A. van Wijngaarden who
pointed out in a discussion at the IFIP Working Conference on Formal Language Description Languages, 1964
[59:24] that “this implementation [of procedures] is only so difficult because you have to take care of the goto
statement.” He went on to explain his newly designed implementation strategy:

[N]o procedure ever returns because it always calls for another one before it ends, and all
of the ends of all the procedures will be at the end of the program: one million or two
million ends. If one procedure gets to the end, that is the end of all; therefore, you can
stop. That means you can make the procedure implementation so that it does not bother
to enable the procedure return.

Or, put differently, ... it’s exactly the same as a goto, only called in other words” [ibid].

13
a representation of the rest of its computation to invocations of other functions.
When a computation is to be terminated, the extra parameter is simply ignored.’

In a first-order Algol-style language, this program becomes:

integer procedure X7 (T); tree T
begin
integer procedure [d(z); integer z; z;
integer procedure S(7,C); tree T; integer procedure C}
begin
integer procedure Si(sumy); integer sumy;
begin
integer procedure S,(sum,); integer sum,;
C(sumy + sum, + info(T));
S(rson(T), S;)
end {5};
if empty?(T') then C(0) else
if info(7T) = 0 then 0
else S(lson(T'), Sr)
end {S};
S(T, Id)
end {¥)}

Our complaint with this second version is not that it is longer. This could be
improved with a better syntax and higher-order functions. The important drawback
of this programming style is that it introduces recurring programming patterns,
e.g., every call to the auxiliary function $ uniformly takes an extra parameter. A
programming language, however, should not introduce patterns into programs, but

it should hide them. Constructing highly repetitive programs is an error-prone task

6 There are various other ways to achieve the correct effect, e.g., with explicit stacks, but these can be
derived from this solution [72].

14
and should be avoided with appropriate abstractions. This is the essence of the
desire for abstract programming notation. To conclude this part of the discussion,
we recall McCarthy’s argument about the advantages of introducing conditional
expressions into the theory of recursive functions:

[B]oth the original Church-Kleene formalism and the formalism us-
ing the minimalization operation use integer calculations to control
the flow of the calculations. That this can be done is noteworthy, but
controlling the flow in this way is less natural than using conditional
expressions which control the flow directly [45:64].

The same arguments hold for the elimination of assignments in favor of func-
tional notation. This technique enforces an explicit passing around of the current
state variables of a program [8, 30]. If a program models many objects with state,
this structure—generally a state-tree—becomes large. Changing one component
means finding the place of the current value in the state structure, putting in the
new value, and re-constructing the state structure. This can be expensive, yet,
more importantly this strategy induces a notational overhead. With an assignment
operation, the first and the third part of this state transformation need not be pro-
grammed. Since the program text naturally organizes the state structure in the
shape of a tree, these parts are automatically a part of the assignment statement.
Again, functional programs that emulate state variables and state changes contain
recurring program patterns.

In summary, the essence of expressiveness is a set of fundamental computa-
tional abstractions. These abstractions are chosen in order to avoid a repetitive
programming style. Other facilities that abstract patterns of core expressions are
explained via syntactic equivalences. Accordingly, they are called syntactic ab-
stractions. Writing down a syntactic abstraction should be considered as a mere
editorial task. For traditional languages, five fundamental facilities are sufficient: a

set of names, means for functional abstraction and function application, and oper-

15
ations for the manipulation of control and state. The need for a naming capability
is obvious. Functional abstraction binds expressions together via names and is the
main tool for structuring programs. Function application is the means of employing
functions: it relates names to values. A control operator has the task of manipu-
lating the thread of control for exceptional cases. An assignment statement finally
expresses the occurrence of a state-changing event. Equipped with this understand-

ing of expressiveness, we can now proceed to our problem statement.

1.3. A Calculus for Imperative Higher-Order Programming Languages

The historic evolution and the analysis of expressive programming languages shows
that they share with mathematical languages the tendency towards simplicity. The

point of contention is the inclusion of two imperative operations for expressing

events. As McCarthy remarks:

A programming language should include both recursive function def-
initions and Algol-like statements. However, a theory of computa-
tion certainly must have techniques for proving algorithms equiv-
alent, and so far it has seemed easier to develop proof techniques
like recursion induction for recursive functions than for Algol-like

programs [45:63].
The apparent reason for the problem is captured in Landin’s complaimt that

[flor both of these [jumps and assignments] the precise specification
is in terms of the underlying abstract machine [38:159].

In other words, there is no method for understanding these operations solely on the
basis of program text and program equivalences.

At the outset of this chapter, we briefly alluded to the importance of program
equivalences. Both McCarthy and Landin clearly foresaw the possible need for and

uses of calculi. The former anticipated transformational programming:

[Equivalence preserving] transformations can be used to take an al-
gorithm from a form in which it is easily seen to give the right

16

answers to an equivalent form guaranteed to give the same answers
but which has other advantages such as speed, economy of storage,

or the incorporation of auxiliary processes [45:34];

the latter perceived a need to put available techniques on solid ground:

The practicability of all kinds of program-processing (optimizing,
checking satisfaction of given conditions, constructing a program
satisfying given conditions) depends on there being elegant equiva-
lence rules [38:160].

That is, if computer science wants a well-founded theory and practice of compilation
and optimization or a sound understanding of the construction of programs, then an
equivalence theory for expressive programming notations is the absolutely necessary
starting point.

The central clue to the precise formulation of our problem statement comes from
our characterization of an expressive language core: an imperative extension of a
functional language. Given that the A-calculus is the principal reasoning system
for functional languages and that it is based on a small set of basic rules, we must
accept Talcott’s challenge, who asked in the conclusion of her dissertation:

What rules should be added to the rules for ... lambda-calculus to
obtain a Rum calculus with reasonable properties? [70:199],

where Rum is a functional language with a syntactic variant of catch-expressions.

Our own starting point is a version of the programming language Scheme.
Scheme is well-explored and practical. Its current fundamental abstractions are
almost orthogonal, that is, their (syntactic and semantic) tasks do not overlap; its
syntax is expression-oriented, the only exception being the assignment operator.
Scheme is thus an acceptable extension of the A-calculus-language and a well-suited

candidate for our project.

7 Emphasis ours.

17

The real question then becomes: when do we know that we have the correct
calculus? Or, more precisely, what does it mean for a calculus to correspond to a
programming language? The first to investigate this question systematically was
Plotkin [47]. He noticed that Landin’s abstract machine for AE/ISWIM was not in
accord with the A-calculus. There are two problems with the relationship. First, the
SECD-machine reduces programs to values as opposed to normal froms. Second,
the SECD-machine may stop and yield a value when the calculus fails to produce
a normal form and vice versa. One possible solution is to change the programming
language so that it fits to the calculus, but since we are interested in studying
programming languages, this is the wrong solution. Instead—and this is Plotkin’s
insight—we must look for the correct version of the calculus.

For Landin’s AE/ISWIM-language the correct calculus is the A-value-calculus. It
differs from the original A-calculus in the basic axiom and incorporates the notion of
a value. Plotkin showed that the relationship between the programming language
and the new calculus satisfied a set of correctness conditions. The same criteria are
also valid for the correspondence between the original A-calculus and a modified
AE/IswiM-language. The difference between the two programming languages is
the argument evaluation strategy. Whereas Landin’s original language evaluates
the arguments to a function before the application, the modified version does not.
The two strategies are known as call-by-value and call-by-name.

In Algol 60, both argument evaluation strategies are available. Most practical
languages, however, realize (a form of) call-by-value over call-by-name.® Scheme is
among those. There are two reasons for this choice. Since a function generally uses

an argument more than once, it is more efficient to evaluate the argument expression

8 While agreeing on when to evaluate an argument, they generally disagree on wha_t to pass as an argume.nt,
i.e., the value of the argument or a (machine) pointer to the value. We reject the idea of meshing machine
concepts with abstract semantics and therefore only accept the first alternative.

18

only once for every function call. Furthermore, as Church already remarked in

conjunction with his own A-calculus, call-by-name is unnatural in some sense:

Indeed if we regard these and only these formulas as meaningful
which have a normal form, it becomes clearly unreasonable that
F'N should have a normal form and N have no normal form [10:59].

That is, with call-by-name

~

i
F(a) = 5 where F(z) =5

is valid, even though the argument to F is meaningless. The call-by-value strategy

is in this sense preferable: it evaluates the argument once and this happens before

the function application takes place.’

Put

We have now explored all essential aspects of our problem statement.

briefly, the task is:

— to analyze the correspondence between call-by-value functional languages and

the A,-calculus,

— to extend the call-by-value based functional language with Scheme-like opera-
tions for the manipulation of program control and state, and

— to construct a conservative extension of the \,-calculus that reflects the ex-

tended programming language and that satisfies the correspondence criteria for

languages and calculi.

1.4. Outline

The main body of the thesis has three parts. Chapters 2 and 3 form an introduction

¢ Church’s way out of this dilemma was the A-I<alculus. This calculus has a different term language in
which functions must use their argument. This solves the problem by avoiding vacuously abstracted variables.
Churcli’s original paper also contains a proposal that is reminiscent of the A,-calculus. It is based on a restriction
of the ground axiom such that “if M is a meaningful formula containing no free variables, the substitution of
(Ax.M)N for M ought not to be possible unless N is meaningful” [10:59]. Put differently, the A-Icalculus
solves the problem of vacuous abstraction with a syntactic, i.e. static, restriction, while the A,-calculus uses a

semantic, 7.e. dynamic, restriction.

19

to the general area of higher-order languages, calculi, and imperative extensio
< I1S.

Chapters 4 through 6 contain the main results. Chapter 7 summarizes the resear K
arc

and provides a perspective.

Following the above problem statement, we must first develop a formal settin
“tling

oy i sialts of functional programming languages and their relationship to th
e
9. We formalize the concept of a

Lia

This is the contents of Chapter

A-calculus.
ir semantics, the construction of a calculus
?

family of programming languages and the
and their mutual correspondence. The descriptions draw on work by Barendregt
d Plotkin, but are presented in a single, unified framework. With a

Reynolds, an
programming with functional languages.

few examples, we illustrate (meta-)

In the third chapter, W€ extend the functional language of Chapter 2 with

ns: F-applications for the manipulation of control and o

two imperative operatio
te. The former is a semantic (and syntactic)

r the manipulation of sta

capabilities fo
the latter is an expression-oriented

improvement of Scheme’s catch-expressions,
nts. Accordingly, we refer to the extended

ant of assignment stateme

syntactic varl
d via an abstract machine
b

me. The semantics is define

language as Idealized Sche
hapter ends with a section on programming

based on a denotational semantics. The c

with Idealized Scheme.
s our first result. In a series of four steps

4 leads up to and state

Chapter
m rewriting system. The new

we transform the abstract machine into a progra

t on a set of six rules t
e rules only apply to entire

they provide a symbolic evaluation strategy

hat rewrite a program to another program

semantics is buil
programs and are therefore

until a value is reached. Th
Nevertheless,

not suited for a calculus.
t from the perspective of the programmer. At the

which i 5 major improvemen

good starting point for the design of a programming language

same time, they are &

calculus.

20
The fifth chapter contains the main result. First, we derive a set of term re-
lations from the rewriting rules such that the context semsitivity of the latter is
concentrated on a small subset of the former. From this set we construct the A,-
CS-calculus. In the remainder of the chapter, we show that the calculus has the
usual properties, i.e., it is consistent and has standard sequences, and that it corre-
sponds to Idealized Scheme. The correspondence relationship is more complex than

the one for functional languages, but it still induces a method for the construction

of program equivalence proofs.

In the sixth chapter we exploit the correspondence theorem and apply it to some
programming examples. We prove the correctness of the catch-based version of T;
an implementation of cells based on higher-order functions and assignments; a fast
implementation of recursion in terms of self-referential assignments; the removal
of tail-recursion in favor of jumps; and the characteristic idempotent behavior of
generators on finite objects. This set of examples covers the two important fields
that McCarthy and Landin predicted: program processing and program correct-
ness. For example, the implementations of recursion as self-referential code and the
elimination of tail-recursion by jumps are traditional compiler techniques. As far
as we know, this is the first time that they are justified with simple, algebraic cal-
culations. The If-example, on the other hand, is a typical case where an obviously
correct, but slow program is equivalent to a faster, but less perspicuous program.
All the proofs are simple and easy to construct. They demonstrate that reasoning
with imperative programs has the same algebraic flavor as reasoning with func-
tional programs. Although we explore a wide range of examples, this field needs

more consideration.

The last chapter is devoted to a summary, a comparison to other work, and pro-

posals for future research. Although we are not the first to construct an equational

21
theory for imperative languages, the design of a symbolic rewriting semantics and
a calculus for the full core of traditional imperative languages are unique results.
The major limitations of our approach is the concentration on type-free, traditional
imperative languages. This is addressed in the section on future work where we
suggest an investiga.tion of a type structure and additional fundamental abstrac-
tions. There are also numerous other theoretical directions that promise fruitful
extensions, é.g., a direct axiomatization of syntactic abstractions, a systematic ex-
ploration of proof principles, and the incorporation of intensional calculi. On the
practical side, we perceive two main application areas, namely, a visual, animated
implementation of our symbolic rewriting semantics as a debugging and learning

aid and new implementation strategies for imperative languages.

2. Programming Languages, Calculi, and Correspondence

The three basic concepts of our development are programming languages, their

calculi, and the notion of correspondence between the two. The definition of a
programming language consists of two parts: one for the syntax and one for the
semantics. An associated calculus is approximately an equivalence relation over the
same syntax, i.e., it equates programs and program pieces with respect to some

behavioral understanding.

Put differently, a programming language semantics and a calculus interpret a

«: the semantics is a map from programs to results, the calculus a

common synta.
set of equivalence classes. On the other hand, the semantics also defines a calculus

and vice versa. The semantics-based calculus is called operational equivalence. Two
program pieces are operationally equivalent if one can be replaced by the other in
arbitrary context without changing the result. A calculus-based semantics can

any
be built upon the standardization procedure for derivations in a calculus. For every
calculus, the standardization procedure determines a standard way

equation in a
of deriving this equation. It follows that the standardization procedure associates
a unique value with a program if the calculus equates the program with any value
at all. Thus, the standardization procedure defines a function from programs to

values: the standard reduction function.

22

23

According to the preceding argument, the correspondence between a language
semantics and a calculus has two aspects. First, the calculus perceived as a language
semantics must equal the original semantics. Second, equivalence in the calculus
must imply semantic equivalence. This second criteria accounts for our understand-
ing that we accept the programming language as a given specification of a calculus,
and that we actually investigate the correctness of a calculus with respect to this
language semantics. We cannot expect the two equivalence relations to be equal
because the semantic equivalence collectively assigns all diverging computations to
the same equivalence class.

In the following sections we develop the necessary mathematical machinery for
a formalization of these basic concepts. Because our work is an extension of the
relationship between pure AE/ISWIM and the A.-calculus, we explore this corre-
spondence as a prototypical example. The first section contains a specification of
pure AE-syntax, i.e., the A-calculus-term language. In the second one we define an
operational semantics in the form of an abstract machine. The third section is a
primer on the construction of a calculus, in particular the A.-calculus. Section 4
pulls the first three sections together by examining the correspondence question. In

the last section we illustrate programming and reasoning with the A,-calculus.

2.1. The Programming Language A

The term language of the A-calculus, A, is defined inductively over the terminal

symbols (,), . (dot), and A; over an infinite set of variables, Vars; and over a set of

constants, Const. The syntax is formalized in Definition 2.1. The language contains
four classes of terms:

— constants: a, which are interpreted symbols;!

1 We do not make a distinction between a constant symbol and the constant it denotes.

24
— variables: z, which are placeholders for values;
— A-abstractions: Az.M, which play the role of lexically-scoped, call-by-value func-
tions; accordingly, M is called the function body, z is the function parameter;
— applications: MN, which serve as the computational vehicle, applying the func-
tion part M to the argument part N.

Constants, variables, and abstractions are collectively referred to as values.

Definition 2.1: The programming language A

Syntactic Domains:

a € Const (constants)
& € Vars (variables)
M,Ne A (A-terms)

Abstract Syntax:

M:u=al|z|(Az.M)| (MN).
The union of constants, variables, and A-abstractions is the set of (syntactic)
values; we refer to it by Values.
Convention. a,b,..., f,qg,... are meta-variables for Const, but are also used as
if they were members of Const, and similarly for z,y, ..., which range over Vars.

M, N,... denote terms, U, V, ... stand for values. End

The set of constants represents the primitive or built-in data types of a program-
ming language. It is intentionally left unspecified in order to separate the logical
design issues from the application-oriented ones, but we assume that the set is the
disjoint union of basic constants, BConst, and functional constants, FConst. Thus,
the language definition for A actually specifies a family of programming languages.
A particular instantiation of the constant set yields a special-purpose language. In

principle, every algebra with its carrier set and its operations is a suitable basis

25

for a set of constants. For example, if we take the integers with the successor and
predecessor function constants, 17 and 17, we get a primitive language for numer-
ical applications. Some terms in this language are (Az.1), a function that maps
everything to 1, (Az.(17(17z))), a function that increases every integer by 2, and
((Az.1)0), an application that combines the first sample function with 0. More
useful constant sets include rational and complex numbers for advanced numerical
applications, strings for language processing, etc. Constants play an important role

in the comparison of language semantics and calculi.

We adopt the notational convention of using Azy.M for (Az.(A\y.M)), LMN for
((LM)N), and other shorthands with an obvious meaning; similarly, we write about
two-place functions or of the application of a function to two arguments. When we
write A\z.\y.M we wish to emphasize that this expression is a higher-order function,
i.e., a function that maps every argument to a function. The usual terminology of
(abstract) syntax applies to A. For example, the term (Az.z)z contains the subterms
z and z, or z and Az.z eccur nested in this term. We also refer to the root of a term,
meaning the outermost syntactic construction, generally an application.

Two important syntactic notions are the set of free and the set of bound vari-
ables, FV(M) and BV (M), of a term M. An occurrence of a variable z is free if it is
not a part of a Az.M-abstraction; otherwise, the occurrence is bound. For example,
in (\z.z)zz there are two free and two bound occurrences of the variable z. We

define the two sets by induction on the structure of a term:

FV(a) =0, BV(a) =0,
FV(z) = {=}. BV(z) =0,
FV(Ae. M) = FV(M)\ {z}, BV(Xa.M) = BV(M) U {z},

FV(MN) = FV(M)UFV(N); BV(MN)= BV(M)UBV(N).

Terms with no free variables are closed terms and play the role of programs in our

26

language. Open terms are sometimes referred to as program pieces.

Bound variables often cause confusion in dealing with substitution. To avoid
this, we adopt two of Barendregt’s conventions [5:26]:

e Terms that are equal except for some unique renaming of bound variables are
identified, e.g., Az.z = Ay.y, but A\y.zy = Az.za Z A\z.zz [a-congruence con-
vention); -

e In all mathematical definitions, theorems, etc. the sets of bound and free vari-

ables of all A-terms are assumed to be mutually disjoint [hygiene convention].

The first convention reflects the fact that the actual name of a parameter is irrelevant
for the functionality of an abstraction. Together, the two conventions permit a
naive treatment of terms and term-substitutions. The definition of the substitution
operation M|z := N] becomes straightforward. Informally, M [z := N] denotes the
term that is like M but with all free occurrences of z replaced by N; formally, we

define:
alz := N] = aq,

zlt:=N]=N, yle:=N]=y (zZEvy),
(A\y.M)[z := N] = (A\y.M[z := NJ),

(LM)[z := N] = (L[z := N|M[z := NJ]).

For an illustration of the above conventions, suppose we wish to substitute
in M = \y.zy by N = Az.y. First, this is illegal because it violates the hygiene
convention: M’s bound variable is not distinct from N’s free one. If we want to
apply the substitution algorithm, we must rename the bound variable of M, e.g.,
M = Mu.zu. Assuming this, the result of M[z := N]is Au.(Az.y)u.

An important fact about substitution is captured in the

Substitution Lemma [5:27]. If 2 Z y and ¢ € FV(L), then

Mz == N[y := L] = M|y := L][z := N[y := L]].

27
Several proofs in the main body of the work use this fact.

The last major syntactic notion that we introduce in this section is the concept
of a one-hole contest, which is a term with a hole. We use [] to indicate a hole
and C[|],... as meta-variables ranging over the set of contexts, indicating that a
context is a term which is a function of its hole. The formal definition is given by

an abstract syntax:

Cl I==[11Q=zCl D I(Cl M) | (MC[]

We use the notation C[M] to denote a term that is like the context C[|, but
with M put into the hole. Unlike terms, contexts do not need to satisfy the above
conventions about terms. The filling of a context C[] with a term binds free
variables in M. That is, we do not assume that bound variables in C[] are distinct
from the free variables in M, e.g., take M = z and C[| = Az.[| which yields
C[M] = Mz.z. Later, contexts will also appear in a more specialized version,

namely, as evaluation contexts.

2.2. An Abstract Machine Semantics

The first formal semantics of AE/ISWIM as a programming language was Landin’s
SECD-machine [7, 39, 36, 40, 47]. The machine is a state transition system and thus
provides an abstract operational semantics.> The operational character facilitates
the comparison with a calculus since a calculus also operationally reduces terms to
values. A major disadvantage is that the SECD-machine is hard to compare with a
corresponding denotational semantics, the predominant method for formal semantic
specifications [54, 66]. To combine the best of both worlds, we follow Reynolds and

others [31, 50, 74] and specify the language semantics with an operational version

2 Considering the results in the following sections, the equational theories also define an operational pro-
gramming language semantics, but of course a kind that is only remotely related to state-of-the-art machines.

28
that is derived from a denotational semantics. This should help to clarify the
definitions and later it ties in neatly with the design and proof of correctness of our
calculus.

The abstract machine for A is a classical state transition system. Some states
are designated as initial, others as terminal. For the evaluation of a program, the
machine’s current state is set to some appropriate initial state. Given a current
state, a state transition function determines the next current state. When the
current state becomes a terminal state, the evaluation stops. Unloading this final
state yields the program result.

Since our language definition actually specifies a family of languages, parame-
terized over constant sets, the semantics depends on an interpretation of constant
applications. We assume that the specific sets of constants come equipped with an

interpretation function
§: FConst X BConst —o—» ClosedValues,

where Closed Values is the set of closed values. Consider the set of natural numbers

with the function constants +, 17, ... A well-suited definition of ¢ for this set 1s
§(+,n) =n' and §(nT,m) =n + m.

The function + acts like a one-place function and depends on the existence of

I

the functions nt. Although this treatment is cumbersome, it is sufficient for our
investigations.

The formalization of the abstract machine requires the specification of a state
space and a state transition function. A machine stateis a triple of a control string,

an environment, and a continuation code. Accordingly, the machine is called CEK-

machine.

29

Definition 2.2: The CEK-machine, part I: the computational domains

Computational Domains:

s € States = Controls X Envs X Conts (machine states)

¢ € Controls= A+ § (control strings)

p € Envs = Vars —e— Closures (environments)

V& Closures= Values X Envs (closures)

k € Conts = ret-Conts+ p-Conts (continuation codes)

where p-continuations and ret-continuations are

p-Conts =stop + p-Conts X fun X Closures + p-Conts X arg X A X Enwvs
ret-Conts = p-Conts X ret X Closures

A control string is either a A-term or th¢ unique symbol f. If the current
control string is a proper term, it determines the next transition step; otherwise,
the continuation code is the deciding criteria. In denotational semantics, this latter
situation corresponds to the application of a continuation function to a value. We
call a transition sequence starting in (M, -, -) an evaluation of M. An environment
is a finite map from variables to closures. The machine uses environments to store
the meaning of free variables in the control string. A CEK-machine closure is an
ordered pair of a constant and the empty environment—a constant-closure—or of
an abstraction and an environment whose domain covers the free variables in the
abstraction—a A-closure. Closures are semantic equivalents of values. All these
concepts are formalized in Definition 2.2, part I.

The definition of a continuation code is more complex. A continuation code

remembers the remainder of the computation after the current control string is

evaluated. The domain of continuations consists of two subdomains: p- and ret-

30

Definition 2.2: The CEK-machine, part II: the transition function

The CEK-transition function maps states to states:

States FER States,

according to the following cases:

(a, p, &) £5 (1,0, (r vet (a, D)) (0)

{(z, p, k)] (1,0, (kret p(z))) (1)

(Az. M, p, k) P (1,0, (kret (Az.M,p))) (2

(MN, p, &) S5 (M, p, (x arg N p)) (3)

(1,0, ((xarg N p)ret V)) E25 (N, p, (s fun V)) (4

(4,0, ((x fun (A\z.M, p)) ret V)) E25 (M, p[z = V], &)
(1,0, ((« fun (f,0)) ret (a,0))) ©5 (1,0, (s ret (5(f, a), D)) (6

—
(S
S VI Sar

continuations. A ret-continuation consists of a p-continuation code & and a seman-
tic value V. It results from an evaluation that started in (M, p, &), and we therefore
say M evaluates to V. The value is supplied to the p-continuation so that it can
finish whatever is left to do. p-Continuations are defined inductively—see Defini-
tion 2.2—and have the following intuitive function with respect to an evaluation:
— (stop) stands for the initial continuation, specifying that nothing is left to do;
— (karg Np) indicates that N is the argument part of an application, that p is
the environment of the application, and that & is its continuation;
— (x fun V') represents the case where the evaluation of a function part yielded
V as a value, and & is the continuation of the application.
A CEK-machine state is either a triple of the form (},®, x) where £ is a ret-

continuation, or a triple of the form (M, p, k) where M is a A-term, p is an environ-

31

ment that provides a meaning for all free variables in M, and & is a p-continuation.
A machine state of the form (M, 0, (stop)) is instial; (§,0, ((stop) ret V)) is ter-
minal. We sometimes refer to the state components as registers, thinking of every
transition as an assignment to the thrée registers.

The state transition function is displayed in Definition 2.2, part IL The first

n rules evaluate syntactic values to semantic values in a single ste
p.

three transitio
e-step evaluation rules that syntactic values are

Indeed, it is because of these singl

called values: once a value is encountered, it is immediately clear what the result
“ésu

and no further evaluatio

b t 3 e .
d up in the environment; constants and abstractions are

of this term is o of subterms is necessary. The (semantic)
value of variables is looke
and current environment, respectively, to yield closures

combined with the empty
abstraction corresponds to the definition of a function

Since the occurrence of a A-
e result of a definition. The i

sary for the lexical scoping of its free variables

nclusion of the definition-time en-

the A-closure is th

vironment in the closure 1s neces
s of free variables in the abstraction body could not refer t
sl

Otherwise, occurrence

ey had at definition-time. Rules (CEK3) and (CEK4) cause the machine

the value th
an application to values; the function part is hereby con

to evaluate the two parts of
he last two rules perform th

rst is a A-closure, the machine continues with an eval
on) (a0 » VAL~

sidered Brat, T e actual application of a function value

argument value. If the fl

to an
body in an extended

closure-environment that maps the

uation of the abstraction
Installing the closure-environment ensures th
e >s the

ter to the argument value.

parame
required lexical scoping of function definitions. If both parts are constant-closures
L

ction, the second a basi
¢ machine is stuck if none of the two application rule
' iles

¢ constant, the machine uses the é-function

the first a fun

to determine the result. Th

ndefined on the given constants.

matches or if 6 is 1

escription of the machine 1t follows that the machine may stop in

From the d

32

al state, it may stop in a stuck-state, or it may run forever. When it

ret 1)), we say that the prog

the termin

terminates in (i, 9, ((stop)
however, a semanti

e comprehensible world of syntax. In case V is a

ram M yields the closure

V. For a programimer, ¢ value makes little sense. The result

must be translated back into th

constant-closure, this s simple: the first part directly corresponds to a syntactic
value. Otherwise, V 1s @ \-closure and naturally we would then like to see the
abstraction part of such a closure since it determines the functionality. But in order
to understand the abstraction completely, we must also say what its free variables

e by extracting the corresponding values from the

mean. This, in turn, can be don
environment part. Of course, values in the environment are closures and therefore
= 9

all this procedure Unload because it constitutes

this translation 18 recursive. We ¢
machine and the user and define it as a map from closures

the interface between the

to syntactic values:

Unload({V; P)

)= Vo1 = Unload(p(z1))] - - - [&n := Unload(p(zn))]

where FV (V)= {.’L‘l,...,l‘n}.

d due to the finiteness of terms and environments.

This definition is well-founde

tion we can formalize an evaluation function that hides

With the Unload-func
s to values:

the machine details and maps prograiil

iff (M, 0, (stop)) ;C—£{;+ (1,0, ((stop) ret V)).

evalopx (M) = Unload(V)
_function is the eztensional se-

definition is that the evalcEK

Another view of this

as the CEK-

transition function is the intensional semantics

mantics of A where
e is the result of a program, and the

In other words, evalcEK defines which valu

transition function says how this result 18 computed.
tion between extensional and intensional semantics is important for

The distinc
nt of view, which is that of a program-

practical purposes- From the extensmnal pol

ing language A is an entirely sequential language. Events in an

mer, the programin

33

evaluation are ordered and thus, for example, no function can compute the math-
ematical (symmetric) or-function.® However, the sequentiality of our intensional
semantics is not inherent. In Section 2.4 we shall discuss an alternative intensional
framework that is extensionally equivalent, but gives rise to parallel evaluations.

A different issue is the nature of the extensional results. The evalgpi -function
is partial; if it diverges, we say the program under consideration is undefined. If
the function returns a value, the value is either a basic constant or a function. In
general, basic constants are the final answers which a programmer expects from a
computation. They can be effectively compared and the correctness of the com-
putation can be decided. On the other hand, if a function is the result, we must
assume that this is an intermediate computation step, and that the final answer is
eventually found by further applications of this function. Since there is no effective
procedure for deciding on the equality of functions, the display of a A-abstraction
or a primitive function as a result is merely an attempt to provide some information
on the progress of the computation.

At this point some examples are appropriate for clarifying the formal definitions.
Assume that A is defined over the set of natural numbers with the function 17 and

consider the following three programs:
(Az.17(1F2))0, 01, and (Az.1)((Az.zz)(Iz.22)).

The first program should yield 2. This can be verified by tracing the machine steps:?

{((Az.17(172))0, 0, (stop))

3A proof of this statement goes beyond the scope of this introduction to the A-calculus. The reader is
referred to either Berry’s original work [6] or Barendregt’s reformulation [5:375—382].

4 In evaluation traces we let constants stand for constant-closures.

34

CEE e I+ (1¥2)), B, ((stop).arg 08))

(o, (((stop) arg 00) ret ((Az.17(172)),D)))
F25(0, 0, ((stop) fun ((A\z.1* (17 2)), 0)))

CEK (1.9, (((stop) fun ((Az.1*(17z)), B)) ret 0))
FEE (17 (17 @), {(, 0)}, (stop))

F5 (17, {(2, 0)}, ((stop) arg (172) {(z,0)}))
CEK 1+ 0, (((stop) arg (1) {(z,0)}) ret 1*))
A — ((17z), {(z,0)}, ((stop) fun 17))

ek — (17, {(z,0)}, (((stop) fun 17) arg z {(z,0)}))
= — (1,0, ((((stop) fun 17) arg = {(z,0)}) ret 17))
4 — (z, {(z,0)}, (((stop) fun 17) fun 17))

CER (4,0, ((((stop) fun 17) fun 17) ret 0))

“28 (1,0, (((stop) fun 17) ret 1))

PEX (1,0, ((stop) ret 2)).

The second program does not return a value because the machine gets stuck:

(01*,0, (stop)) 25 (0,0, ((stop) arg 1+ 0))
2 (1,0, (((stop) arg 17 @) ret 0))
He (17,0, ((stop) fun 0))
S (1,0, (((stop) fun 0) ret 17)).

This last clause is not matched by any of the cases in the definition of the CEK-

transition function. The third program causes the machine to run forever:

((Oz.1)(Az.zz)(Az.2z)), 0, (stop))
CEET ((Az.zz)(Az.22)), B, ((stop) fun ((Az.1), 8)))
CEKT 1+ 0, ((((stop) fun ((A\z.1), 0)) fun ((Az.zz),0)) ret ((\z.zz), 0)))
CER™ (4w, {(, ((Aa-az), 8))}, ((stop) fun ((Ae.1),)))

CEKT (4.0, ((((stop) fun ((Az.1), 8)) fun ((Az.zz),0)) ret ((\r.22),0)))

CEK™T

35

This transition sequence proves that the machine returns to the same state after a
few steps and hence goes into an infinite loop. Beyond this, the trace exemplifies
that a functional simulation of a loop can be implemented as efficiently as a hand-
compiled construct.” The CEK-machine acts like a true register machine, and, in
particular, it implements tail-calls in a goto-like fashion.

To the same degree as the abstract semantics is suited for realistic implementa-
tions, if is unfit for human consumption. The above examples illustrate how hard it
is to reason about programs with the CEI(-machine. The need for a program-based,

human-oriented reasoning system is obvious.

2.3. The A-value-Calculus

A calculus is an equational theory over a term language. There are two equivalent
ways to construct a calculus: as a logic-like system with axioms and inference rules
or as a term relation built from a set of term reductions. Since reducing a program
to a value is closer to the computational understanding of a program evaluation
than axiomatically proving its equivalence to a value, we develop the mathematical
background for the A-value-calculus in Barendregt’s [5:ch 3] framework of reduction
and congruence relations.

A notion of reduction is a relation between terms. For example, the S-value

relation 1s
B = {(((Aa.M)N), M[z := N]) | M,N € A, N is a value}.
A more conventional notation is

By : (Ax.M)N) — M[z := N] provided that N is a value.

9 This is not true for implementations based on the SECD-machine. The very same program causes a
constant growth of the machine state, and on a finite computer this sooner or later exhausts the available
machine space and (abnormally) terminates this infinite loop.

36

The é-function on A-constants provides another notion of reduction:
0 : fa — V provided that §(f,a) = V.

If M is related to N via a notion of reduction R, then M is an R-redez, N is a

contractum, and reducing M to N is called R-contraction or R-step.

Notions of reduction roughly correspond to basic computation steps. For the A,-
calculus, no notions of reduction are needed for values, i.¢., constants, variables, and
abstractions: they are already results. On the other hand, the §,-relation explains
how to understand the application of a A-function to a value, § does the same for
built-in prirnitives. Since this covers the entire set of syntactic constructors, these
two relations are in some sense sufficient for defining computations in A. However,
these notions of reduction only apply to the actual applications, they do not re-
late terms in which such applications occur as subterms, e.g., (Az.(Azy.zy)170) or
17(170). In order to provide computations for these cases, we introduce the concept
of compatible term relations.

A relation is compatible Wi‘th syntactic constructions if a relationship between
two terms implies that the relation also holds between all terms that contain the
original pair. With the notion of a context this can be expressed more succinctly:
a relation R is compatible if (M, N) € R implies (C[M],C[N]) € R for all M, N,
and contexts C[|. Since A is defined inductively, every notion of reduction has
a compatible closure, that is, there is a smallest relation that c.‘onta‘ins the notion

of reduction and is compatible. Given R, —p is its compatible closure and it is

defined by
(M,N) € R= M—pgrN

M—gN = \a. M —gAz.N

M—gN = LM—>RLN and ML—prNL.

The compatible closure of R is also called one-step R-reduction. The one-step

37

Definition 2.3: The \,-calculus

The basic notion of reduction is v = 3, U §, where

Be: ((Az.M)N) — M|z := N] provided that N is a value, and
6 : fa — V provided that §(f,a) = V.

The one-step v-reduction —, is the compatible closure of v:

(M,N) € v = M—,N;
M—yN = \a. M —, \z.N;
M— N = LM—,LN,ML—NL.

The v-reduction is denoted by ——», and is the reflexive, transitive closure of
—,. We denote the smallest equivalence relation generated by — with =,

and call it v-equality:
M=, M
M— N =M =, N
M=y N SN =M
L=, M, M =, N = =, N.

Formally, the \.-calculus is the congruence relation =.; informally, we also refer

to the entire system of relations as \,-calculus.

f3,-reduction, for example, relates (Az.(\zy.zy)170) to (Az.(Ay.17y)0) and further-
more, (Az.(Ay.17y)0) to (Az.(170). To allow for a direct connection of terms that
are related via several single steps, we define R-reductions, —»g, as the reflexive,
transitive closures of one-step reductions. Finally, an R-equality or R-congruence,
=p, is the equivalence closure over the one-step reduction. It is customary to write

AR+ M = N for M =p N when the calculus is perceived as an axiom system.

The general development of a calculus is instantiated for the A.-calculus in

Definition 2.3. The basic notions of reduction are the .- and the é-relation. The

38
A.-calculus is the congruence relation =,.

Two central notions in the study of calculi are normal forms and values. A term
is in normal form if it contains no redexes. We say a term M has a normal form N -
if M equals N and N is in normal form; the process of going from M to N is called
normalization. Similarly, the terminology M has a value N means that M equals N
and N is a value; going from M to N is an evaluation [in the calculus].

Given the claim that M has a normal form or a value N, the question arises
of how to prove or disprove the equivalence between M and N. This directly leads
to the more general question whether the calculus does not prove too much, ¢.e.,
M = N for all M and N, or, in technical terms, whether the calculus is inconsistent.

Answering the consistency question for a calculus is equivalent to showing that
there are distinct normal forms. This, in turn, is true if the diamond property holds

for the system. A term relation — satisfies the diamond property if for all L, M,

and N such that

L— Mand L — N

there exists a K such that

M — K and N — L,

i.e., two reductions that start from the same term are confluent. A notion of reduc-
tion is Church-Rosser if the corresponding reduction, i.e., the reflexive, transitive,
and compatible closure, satisfies the diamond property. Given that a notion of
reduction is Church-Rosser, we can prove [5:54]°

Theorem 2.4. Let R be a notion of reduction that is Church-Rosser. Then

(i) M =g N implies that there exists an L such that M —rL and N—»pL;

6 Unless indicated otherwise, the proofs of the theorems in this chapter can be found in the associated

references.

39

(ii) If M has an R-normal form N, then M —»pgN.

The proof of the Church-Rosser property for the original A-calculus exists in
many different variations [52]. The shortest one was developed by Tait and Martin-

Lof [5]. The same proof technique also yields a Church-Rosser Theorem for the
Ay-calculus [47]:

Theorem 2.5 (Church-Rosser). The reduction v =§, U 6 is Church-Rosser.

The theorem implies an appropriate version of Theorem 2.4 and [47]

Corollary 2.6. If an application M has a value V, then M —», V.

With the Church-Rosser Theorem we can now illustrate how the A.-calculus
facilitates reasoning about A-programs. Let us return to the three examples of the

preceding section. The first program was (Az.17(172))0. It reduces to a value and

a normal form in three steps:
(Az.17 (1% 2))0—, 17 (11 0)—p 1T 11— 2.

Our second example was 017, This application is already in normal-form, hence,
it cannot be further reduced, and therefore, it does not have a value. The third

program finally was (Az.1)((Az.zz)(Az.zz)). Its only redex is the underlined part

and a contraction of this redex leaves the term unchanged:
(Az.1)((Az.zz)(Az.22))— (Az.1)((Az.22)(A2.22)) —0 - - -

Since the term is not in normal form, by Theorem 2.4 it does not have a normal form;
since the application contains a redex in the argument part that never disappears,
it does not have a value either.

For the above sample programs an evaluation in the calculus yields the same

result as an evaluation on the machine. That this need not be the case is demon-

iy
‘)

40

strated by (Azy.(Az.z)z)1, which reduces to two distinct, but equivalent, values:

(Azy.(Az.2)z)l— Ay.(Az.2)1

and

(Azy.(Az.2)z)l—>(Azy.7)l—0 Ay 1.

The CEK-machine evaluation yields the first value. Hence, we must ask whether

there is a way to evaluate a program in the calculus such that we find the “right”

value, that is, the machine result. This problem, together with the connection

between the machine and the calculus in general, is the topic of the next section.

2.4. The Correspondence of Programming Languages and Calculi

In the two preceding sections we have developed an operational semantics and a

calculus for A. Thus far, we have kept the two perspectives separate. To investigate

the mutual relationship, we construct a programming language semantics from the

calculus and compare it with the original CEK-machine semantics. Similarly, we

define a congruence relation for program pieces based on the CEK-machine and

study its connection to the A.-calculus.

An evaluation in the A,-calculus is a reduction of a program to a value. As

demonstrated at the end of the preceding section, the reduction of a program can

vield many different values. With respect to the CEK-machine, only one of these
find an algorithm which always reduces a pro-

values is correct. Thus we must

gram to the correct value. Put into a broader context, the problem generalizes to
the following: given that M reduces to N, is 1t possible to construct a standard-
ized sequence of reduction steps from M to N? For the traditional A-calculus this
standardization question was raised and solved by Curry and Feys [13, 5]. Plotkin

[47] showed that the same theorem holds for the Ay-calculus and that standardized

reduction sequences reduce a program t0 the machine value.

41

Definition 2.7: Standard reduction function and sequences

The standard reduction function, denoted by ——,, is defined by:

(M,N) € v=>M—sN,;
M— g M = MN+— s, M'N;
M is a value, N—; N’ = MN+——s, MN'.

Standard reduction sequences, abbreviated SRS, are defined by:
1. all constants and non-assignable variables are SRS-s;

2. if My,..., My and Ny, ..., N, are SRS-s, then

\e. My, ..., \z. My and M1 Ny, ..., MnN1, ..o, Min Ny

are SRS-s;
3. if M——s, My and My, ..., My, then M, M, ..., My is an SRS.

Historically, a standard reduction sequence is defined in terms of positions and
residuals of redexes. Plotkin’s proof is more elegant. Following his proof strategy,
we first define a standard reduction function, which maps a term M to a term N
by reducing the leftmost-outermost redex not inside a A-abstraction. The standard
reduction function is undefined on values. A standard reduction sequence combines
a series of terms. It is constructed by applying the standard reduction function to
some subterm of a given term and by appending standard reduction sequences with
a common beginning and end. The reduced subterm need not contain the leftmost-
outermost redex, but once a leftmost-outermost redex is not reduced, it must remain
unreduced for the rest of the standard reduction sequence. In short, a standard
reduction sequence is approximately a series of terms that are related via almost-

leftmost-outermost reductions. The two concepts are formalized in Definition 2.7.

An alternative characterization of the standard reduction function is based on

42
the notion of an evaluation contezt. Such an evaluation context is a context with
exactly one hole for which the path from the root to the hole leads through appli-
cations only and the terms to the immediate left of the path are values. Letting

C[] range over evaluation contexts, we define the set of evaluation contexts by
Cl 1==[1] ¢l 1M IVC]

Since these contexts never contain a hole inside of abstractions, putting an expres-

sion into the hole cannot bind free variables. We can now state and prove

Proposition 2.8. M+——, N iff there exists an evaluation context C[] such that

M = C[P], N =C[Q], and (P,Q) € v.

Proof. Straightforward induction on the standard reduction step. O
This characterization of standard reduction functions will be helpful for the design
of the \,-CS-calculus.

The importance of standard reduction sequences is captured in the following

two theorems. The first says that if there is a reduction from M to N, then there

must be a standard reduction sequence [47]:

Theorem 2.9 (Standardization). A —», N iff there exists an SRS Ly, ..., L,

such that M = L; and L, = N.

The theorem determines a semi-decision procedure for finding normal-forms and
values. Indeed, the first value in a standard reduction sequence of a program is the
correct value with respect to a machine evaluation, i.e., the standard reduction

function simulates evalcpg [47):

Theorem 2.10 (Simulation). evalopx (M) =V iff M—3, V.

This theorem justifies the use of our terminology “evaluation in the calculus” for

the reduction of a program to a value, and it motivates the restriction of this idiom

43
to standard reductions from programs to values. It is essential for the symbolic

evaluation of programs by programmers.

The calculus viewpoint is also potentially beneficial for a machine implementa-
tion of the language semantics. Whereas the intensional formulation of evalopx on
the basis of the CEK-transition function is sequential, a reformulation according to
the standard reduction function reveals opportunities for parallel evaluations:

e'UalC'EK(V) =¥

6(f,a) - ifevalopx (M) = f, evalopx(N) = a
evalocpx (MN) = { evalcex (Plz := Q]) if evalcpx (M) = 2. P
and evalcpx (N) = Q.
In other words, evaluating a value is immediate; evaluating an application depends
on evaluating the two parts and the transition step. Therefore, the evaluation of

the two components of applications can proceed in parallel.

A different way of comparing a machine semantics with a calculus-based lan-
guage semantics was developed by J.H. Morris [46] and adapted for the A.-calculus
by Plotkin [47]. Mathematically, a program maps inputs to outputs and is ex-
tensionally equivalent to a function; the intention behind a program is neglected.
The desire to compare these functionalities for different frameworks requires a re-
striction to effectively comparable values.” For the traditional A-calculus, these are
normal forms; for the A,-calculus, we pick basic constants. Furthermore, without
evaluating the application of a A-expression to basic constants, it is impossible to
determine how many arguments a particular expression consumes until it yields a
basic constant. We therefore consider all possible arities n > 0. With respect to the
CEK-machine, the functionality of an expression is determined by the evaluation

function. For a given arity n, the machine assigns to a program M the function

In a slightly different context, these values are called observable [26].

44

n

Af:

MX[= {{a1,...,an,c) | evalcex (May yuwilly] B2 0},

The calculus, on the other hand, interprets a program according to the equivalence
relation:

o = {{a1,...,an,c) | \y F May...an = c}.

The consistency of this function definition is based on the Church-Rosser Theorem.
The above Simulation Theorem, together with the Church-Rosser Theorem, implies

that the two functional interpretations of an expression agree [47]:

Theorem 2.11. For alln > 0, I}, = Mj;.

Since—as discussed above—Dbasic values are what the programmer is interested
in, this theorem liberates us from using the standard reduction function for evalu-

ations. Every strategy that reduces programs to values is appropriate.

The theorem also leads to the second central issue of this section. Provided that
the calculus is a system for reasoning about the equality of functions and programs,
the question arises what equivalence proofs mean for the behavior of programs on
the machine. To this end, we derive a compatible equivalence relation on terms

from the evaluation function and compare this relation to the Ag-calculus.

The CEK-evaluation function defines an equivalence relation on programs in a
rather natural manner: two programs M and N are equivalent if they return the
same answer. However, in order to extend this equivalence relation to a calculus-like
system over all kinds of terms, we need to form a compatible closure. The original
definition of compatibility in Section 2.3 points out the correct way to construct
the appropriate relation as can be seen from the following proposition. It is a

generalized construction, originally due to Morris [46:58]:

Proposition 2.12. Let ~ be an equivalence relation on A-terms. Define > as

45
follows: M =~ N if for all contexts C[], C[M] ~ C[N]. Then =~ is a compatible

equivalence relation.

In other words, an equivalence relation induces a congruence relation by re-
quiring equivalence in all possible contexts. The proposition reduces our task to
specifying precisely the comparison of program answers. Naturally, we would like
to use the identity relation, but this is impossible since there are many programs
that only return functions for use on other problems. Hence, once again we take

refuge in basic constants and otherwise simply require that programs terminate:

Definition 2.13. M, N € A are operationally equivalent, M ~crx N, if for any
program context C[| such that C[M|] and C[N] are closed, evalcpx is undefined
for both C[M] and C[N], or it is defined for both and if one of the programs yields

a basic constant, then the value of the other is the same constant.

From an extensional point of view this operational equivalence is also how an
end-user perceives, tests, and compares programs. For such a user, a program is
a black-box that produces some outputs. A comparison of this output with the
expected result decides about the correctness of a program. Thus, operational
equivalence is a natural means for specifying the correctness of a program. A
specification can require either the equivalence of a program to a value or to another
program. The second possibility is preferred when a solution is easily specified with
a simple, but inefficient program. A proof of correctness in either case means a
verification of the operational specification, and in the second case, it also means
In light of this, the

an improvement of the solution with respect to efficiency.

following, second correctness theorem of the A,-calculus is important [47]:

Theorem 2.14 (Soundness and Incompleteness). If M =, N, then M ~cpg

N. The converse is false.

46
The theorem is a consequence of the Church-Rosser Theorem and the Standardiza-
tion Theorem. A typical example that proves the claim about the converse direction
is based on programs with infinite loops. Whereas all diverging programs are oper-
ationally equivalent, the calculus cannot prove the equivalence of such programs in
general. Consider the two programs (Az.z)((Az.zz)(Az.zz)) and ((Az.2z)(Az.xT)).
Both programs diverge. There is clearly no program context that can differentiate
the two. Hence, they are equivalent in ~cpx. But, at the same time, there is no

reduction such that \, can eliminate the extraneous Az.z in the first program.®

The expressiveness of the machine calculus is captured in a stronger variant of

the above theorem. It characterizes ~cpx as the largest extension of =, of its kind:

Theorem 2.15. ~cgx is the largest consistent extension of =, that respects equal-
ity on the set of basic constants and that is also

— compatible: M ~cpx N implies C[M] ~cpx C[N] for all C|].’ and

— evaluating: M ~cpgx N implies C[M] has a value iff C[N] has a value for all

contexts C[| that close M and N.

Proof. Morris’s corresponding proof [46] relies on clever techniques by Bohm [4,
5:254-260] for the separation of normal forms. The proof of this theorem is similar,
but simpler, because it can assume separability of observable values. O

The main point of the theorem is a reinforcement of the arguments preceding
the Simulation Theorem. The machine-calculus is a true calculus that can be used
to specify the behavior of program pieces without reference to the program context.
Since it is the largest relation of its kind, everything that can be specified at all,

must be specifiable in ~cpk .

8 Another counterexample concerns the parameterization of recursive functions. If a recursive function
is independent of an argument, this argument can be passed before the recursive function is constructed,
Although this yields two operationally equivalent programs, the A,-calculus cannot prove this equivalence,
[Talcott, private communication]

47
Before leaving the section, we quickly summarize the theoretical part of the
presentation. A is the set of terms and programs of the A-calculus; the relation = is
the term identity equivalence. The CEK-machine defines an operational semantics
for A, which is close to machine implementations. For reasoning about A-programs,
we use the A, -calculus. This is based on the fact that

e an evaluation in the calculus agrees with the machine evaluation (Theorem 2.10);
® equality in the calculus, =,, implies behavioral equality on the machine, ~cpx
(Theorem 2.14).
Together the two respective theorems are called correspondence theorems. The
usefulness of the calculus for programming and reasoning in A is demonstrated

next.

2.5. Programming and Reasoning with A

At first glance, A is a rather primitive programming language. Here, primitive
does not refer to computational power, but it means lack of such traditional pro-
gramming facilities as blocks, branching expressions, complex data structures, etc.
Fortunately, the literature provides a wealth of studies [2, 5, 7, 35, 40, 51] on how
to perceive these presumably fundamental necessities as syntactic embellishments
to pure A.

In order to demonstrate this point, we present a series of meta-programming
examples in A. For most examples, we first introduce a well-known programming
language construct by giving an intuitive machine behavior; then, if possible, we
formalize this specification or some property with the CEK-calculus; and finally we

discuss and prove an implementation in pure A.

The examples make use of two definitional techniques. We write combinator

specifications of the form

4

Name = A-term,

48
where Name is some string of characters, the combinator name. A combinator is
simply an abbreviation for the closed term on the right-hand side of the definition.

New syntactic forms are defined with equations of the type’

df

(keywordl Ezp! keyword2 Ezp2) = A-term(Ezpl, Ezp2).

The meaning of this kind of equation is that every occurrence of the left-hand
pattern in an exp'ression is an abbreviation of the right-hand pattern with the
expressions Ezpl and Ezp2 appropriately instantiated. To allow for pyramided
dependencies, the defining terms may contain previously defined combinators and
syntactic forms. Every occurrence of such a combinator or syntactic form should
be thought of as being replaced by the defining side of its specification. With these
preliminaries in place, we are now ready for the actual examples.

Some programs in A have traditional names and, for completeness sake, we shall

introduce them here. The identity function is

%

AT.T

and it maps every value to itself.

af

K= \zy.x

is a constant-function producing function, i.e., when applied to a value, it returns
a function that maps every defined argument to this value. Functional composition
is accomplished by

B = Afgnflos)

One more combinator with an important role is

df
S = Afgz.fz(gz).

Kohlbecker’s [33] extend-syntax-facility provides an implementation of this technique for Scheme.

9

49

S are sufficient to compute every definable function, but of course

Together, K and
the respective programs are practically unreadable because of the lack of high-level

syntax.
ar in programming languages in various forms, yet these forms share

Blocks appe
consists of a variable declaration and

a number of traits. Most generally, a block

pression. The variable declaration is valid inside the block expression as

a block ex
eclared again. Also, outside of the block the variable is

long as the variable is not d

invisible. In some languages, & block initializes a variable to a possibly user-specified
is left uninitialized. In a functional setting only the first

value; in others, the variable
s sense and a block is essentially a

s. A suitable syntax for block-notation 1s

version make shorthand for improving readability

and performance of program

(let (z Init) Body),

able that is initialized to the value of the expression Init and

where z is the new vari
From the discussion it is clear that in A such

that is accessible from within Body.

a block 1s syntactically equivalent to an application of the form

(\z.Body)Init.

n, the A-abstraction binds z in Body; when Init is evaluated to

In this applicatio

Val, the block becomes equivalent to

Bodylz := V]

making every reference to z a reference to the value of Init. The variable conventions
o

ake care of redefinitions of . Therefore, we may define the syntactic

automatically t
abstraction for a block by

df ,
(let (z Init) Body) = (\z.Body)Init.

50
A generalized version of the let-facility permits the simultaneous declaration of

two or more variables:
; . df . .
(let ((z1 Init1)...(zn Inity)) Body) = (Az1...%n.Body)Inity ... Init,.

Of course, the order of variable declarations should not matter. In the machine

calculus, we express this for a block with two variables by requiring
(let ((z Initz)(y Inity)) Body) ~crx (let ((y Inity)(z Initz)) Body)

for all Initz and Inity. The proof of this proposition is easy. Assume that either
Initz or Inity has no value. Since both sides of the equation force the evaluation
of these subexpressions, neither side has a value, and hence, they are operationally
equivaient. Otherwise, both initialization expressions have values, and the equiva-

lence follows from a simple calculation in the \,-calculus:

(let ((z Initz)(y Inity)) Body) = (Aay.Body)Initz Inity by definition
=, Body[z := Initz][y := Inity]
= Bodyly := Inity|[z := Initz]
by hygiene convention, substitution lemma
=, (Azy.Body)Inity Initz

= (let ((y Inity)(z Initz)) Body).

Convention. As in the proof above, we shall henceforth treat an expression that

has a value as if it were a value. End

The notion of a branching construct in a programming language presupposes the
existence of truth values True and False. Given this, a generic branching construct

of the form

(if Test Then Else)

51
evaluates its Then-subexpression if Test has the value True, and the Else-part if
Test yields False. An important characteristic is that either the Then- or the Else-

branch affects the final outcome, but never both. With our machine calculus this
can be formalized as
(if True Then Else) ~crx Then,

(if False Then Else) ~cex Else.

In other words, the final value of a program only depends on the correct branch of
an if-expression.

The programming language A can achieve the effect of an if-expression by rep-

resenting True and False as functions which throw away one of their two arguments:

df
True = \zy.z,

df
False = Azy.y;

and by encapsulating the Then- and Else-part in abstractions which delay undesired

evaluations:

d.
(i Test Then Else) L Test(Ad. Then)(\d.Else)l,

where d is a fresh variable, i.e., d € FV(Then) U FV(Else). The correctness of

this definition is verified by the following analysis. Assume T'est has the value True,

then

(if True Then Else) =, True(\d. Then)(Ad. Else)l
=, (Azy.z)(\d. Then)(Ad. Else)
=, (Ad.Then)l

=, Then.
Similarly, we get

(if Test Then Else) =, Else

if Test yields False.

52

Our representation of the if-expression blends in with the parameterization of
A over constant sets. All we require is that predicates in the constant set respect

our representation of truth values. For example, a constant zero? over the set of

natural numbers is defined by
§(zero?,0) = True and §(zero?,n + 1) = False.

Furthermore, with the definition of if, it is also possible to realize more elabo-

rate branching facilities like cond- and case-expressions by reducing them to if-

expressions.
Next we turn to the specification of recursive functions. A-abstractions provide

functions per se. However, the lack of a name for the entire abstraction in the

function body prohibits the usual, self-referential definition of recursive functions,

which is the main characteristic of a recursive function specification. Nevertheless,

recursion can be achieved in A. Consider a typical mathematical definition of a

recursive function

fz= s eBans el sen e
Using A-abstraction, we can eliminate the argument name and we can concentrate

on the use of f on the right-hand defining side to a single occurrence:

f=(_)\gx....:c...gel...geg...)f.

From this equation, a recursive function can be considered as the fixpoint of a

defining functional. Fortunately, it is well-known [51, 70] how to find such fixpoints

in the A-value-calculus. With the combinator
v, L s fo(let (g (Ag-FOz.g92)) (g 9)),

one can find the fixpoint of any functional F, i.e., Y, F' satisfies

Y, Fz =¢ F(Y.F)z for all z.

53

Thus, a recursive function definition is a syntactic abstraction of an application of

Y, to a defining functional.

yntactic form for recursive function definitions is the rec-

A more readable s

expression:

(rec (f 2) = Myz) L v, (\feMp).

ndicates that M’s free # and ¢ are bound by X s D

ntation of many iteration and looping

The notation Mfz 1

Recursive functions make the impleme

r the most basic loop-construct for a functional language,

facilities easy. Conside
the m-fold iteration of a function F over a value V. In other words, if F™V

namely,
then we are looking for an iterate-expression

stands for (F'. .. m-times - (FV).-)

that satisfies

(iterate F over V times m) ~CEK vV, m > 0.

In A this construct can be realized with a recursive function:

df i,
(iterate F' over V times m) = (rec (! m) = (if (zero? m) V F(l(17m))))m.

For the correctness prOOf of this claim let L = /\lm.(if (zero? 'm) 1% F(Z(1_7n))),

Since
Y, Lm =v L(YUL)m =, (if (zero? m)V F((:YUL)(_vl"m)))

by the fixpoint property of Y., it is easy to verify by induction on m, that

Y, Lm = F(...m-times ... (FV))= FTV

The realization of this iterate-construct does not rely on jump-operations; it is
solely based on functions. This is also true for other looping facilities like iterating a
My is the result of flling M fx.[] with M.

10 texts: Afz.

In terms of con

54
function while or until a condition holds for the current value. It is probably for this
reason that these control expressions and related imperative statements are called
structured: their effect can be explained by a simple mathematical transliteration

and is entirely independent of the program context.

Another important ingredient of programming languages is the domain of com-
plex data structures. Prominent examples are pairs, lists, vectors, trees, graphs,
and records. Often a restricted form of these structures is built into the constant
set of a particular A-language. However, A itself can perfectly simulate appropriate
data sets by means of functional abstraction. The set of arbitrary value-pairs, for
example, is isomorphic to the cartesian product of the set of values. Hence, it may
be defined via the specification of an injection function or constructor and two pro-
jection functions or selectors. If we let [+, -] be an infix-notation for the constructor
and (+); and ()2 infix-notation for the respective selectors, then their operational

specification is

([U, VI ~cex U and ([U; V)2 ~cex V,
for all values U and V. One possible implementation is

[+, *] = Auv.\m.muv,
()1 = A\p.p(Auv.u),

(+)2 = Ap.p(Auv.v).

The functions obviously satisfy the above operational specification. If the data
structures are only specified via the operational equivalence relation such that other
programmers cannot rely on the properties of the concrete realization, then they

can safely be called abstract. Programmers must use the combinators since they are

55

not guaranteed that the data structure is not implemented as
[,)] = Auv.\m.mou,
()1 = Ap.p(Auv.v),
()2 = A\p.p(Auv.u),

or something else.

The implementation strategy for pairs generalizes to vectors of arbitrary length.

Let
w B .
Ty = AW o o« Tiy o5 for 1 £ 4 < M
Then we can define an n-place constructor [+,...,+], and respective selectors (+), ;
as
4
[+yeceyddn = A2y ... zp. Amomay ... T,
, df
(*)n,i = Av.oml.

Their characteristic equations are
([m"'-7Wl])n,i =y ¥ for 1 SL _<_n'

Pairs and vectors are a good basis for the implementation of Lisp-like list struc-

tures. Recall that a list is either
— the empty list, or
— a node, consisting of an arbitrary value and a list.

Since the definition contains two clauses, we need two constructor functions. Follow-
ing Lisp, we call them NIL and cons. The selectors are car and cdr. The predicate
that distinguishes between the two cases is null?. In order to correspond to the

informal definition, the functions must satisfy

null? NIL ~crx True and null?(cons V L) ~cpr False

56
and

car(cons V' L) ~cpx V and cdr(cons V'L) ~crrx L

where L is a list. Our implementation of these list structures is

NIL = [True, False]
cons = Mvl.[False, [v, []]
car = AL((D2)1
cdr = AL((1)2)2
null? = AL(])1.

Again, the verification of the correctness of these definitions is straightforward.

With the preceding exercises we have indicated how to embed pure Lisp (with
higher-order functions) in A. Before we end this exercise on programming in A,
we reformulate some well-known Lisp-functions with our newly introduced syntax.
Given a list of numbers, the function ¥ produces the sum of the numbers:

L=(rec(sl) =
(if (null? 1) O
(+(car I)(s(cdr 1))

Another useful program is the map-functional which applies a function f to every

element of a list [and constructs a list out of the results:
map = Af.(rec (m [) =
(if (null? 7) NIL
(cons (f(car 1))(m (cdr 1))))).
With Lisp-lists we can define other data struc;tures using familiar programming

techniques and thus avoid falling back on pure A. For example, a binary tree

structure as defined in the introduction is an easy programming exercise. If we let

57

NIL stand for the empty tree, a node can be constructed with two cons-es
mk-nd = Muvr.cons [(cons v 7).

This is possible because we never ruled out lists as first arguments to cons. The
predicate empty? is of course equivalent to null?; the selectors Ison, rson, and info
are suitable combinations of car and cdr:
empty? = null?,
Ison = car,
info = B carcdr,

rson = Bedtedr.

Finally, the function ©* from the introduction becomes:
X' = (rec (s t) =
(if (empty? ¢) 0
(+(info t)(+(s(Ison t))(s(rson t)))))).
We have omitted an expansion of these definitions into pure A since the additional
syntax truly improves the readability of programs.

The programming examples in this section have illustrated how the language
can easily support a broad variety of additional features and that programming in
an enriched A is a feasible endeavor. However, as discussed in the introduction, A
like any other functional language fundamentally suffers from a lack of imperative
facilities. The addition of these facilities to A as a programming language is treated

in the next chapter.

3. Idealized Scheme: An imperative extension of A

The definition of an imperative extension of A as a programming language is the first
step in constructing a calculus for imperative higher-order languages. Originally, our

goal was a calculus for a Scheme-like core language, but in the course of our research
we discovered that some minor modifications simplify the resulting calculus' {15,

19]. Since the work is a feasibility demonstration, we take the improved version as

the new starting point and call it Idealized Scheme.

According to our framework, the definition of a new programming language re-
quires the specification of a syntax and a semantics. This is done in the first two

sections. In the third section we continue our meta-programining exercise from Sec-

tion 2.5 and show how to embed imperative programining facilities from traditional

and modern programming languages.
3.1. Ar,
The term set of Idealized Scheme is Ay, an extensi

on of A. The syntax is summa-

rized in Definition 3.1. The language contains two new classes of expressions:

— F-applications: (FM), which are control expressions; M is called the F-argu-

ment;

See section 7.3.5 for a discussion on this feedback relation between programming language design and
calculus design.

58

59
— o-capabilities: (oz.M), which roughly correspond to assignments; z is the

assignable variable, M is the o-body.

The set of values in Ax, includes o-capabilities. A term in the A-subset is called
pure.

When evaluated, an F-application applies its argument to a functional abstrac-
tion of its current continuation, i.e., the rest of the computation. This action gives a
program complete control over the continuation. Upon application, a continuation
performs the actions of the encoded rest of a computation, and, upon completion,
a functional continuation returns the final value to the point of its invocation. A
o-capability encapsulates the right to assign the o-variable a new value. It does
not bind the variable. The application of a o-capability to a value is called a o-
application. Intuitively, a o-application first assigns the variable the new value and
then continues to evaluate the o-body. The value of the o-body is the result of the
entire application. The meaning of the remaining constructs should be adapted ac-
cordingly: variables are assignable placeholders for values, abstractions correspond
to call-by-value procedures, and applications invoke the result of the function part,
possibly a o-capability, on the value of the argument part. If the result of the func-

tion part is a A-abstraction, the application is a function application; otherwise, we

refer to it as o-application.

The language satisfies our outlined philosophical criteria. First, it is a minimal
extension with respect to A; there is exactly one new form for evaluation control
and one for state manipulation. Second, the new expression types are orthogonal
to each other and to the original constructs in A. A-abstraction is still the only
binding construct, applications are the only evaluation vehicle. And finally, the
language syntax is entirely expression-oriented, whereas generally the introduction

of imperative facilities splits a language into a statement and an expression cate-

60

Definition 3.1: The programming language Ars

Syntactic Domains:

a € Const (constants)
G € Vars (variables)
M,Ne A (A-terms)

Abstract Syntax:

M:a=alz|(AeM)| (MN)| (FM)| (cx.M).

All conventions for A are applied mutatis mutandis.

gory. The advantage of our treatment is that the syntactic homogeneity permits a
straightforward transliteration of the framework from Chapter 2. This can already

be seen from the re-definition of the static semantics.

The concepts of free and bound variables carry over unchanged. For example,

the additional clauses for F'V(+) and BV(-) are
FV(FM)=FV(M), BV(FM)=BV(M),

FV(oz.M) = FV(M); BV(oczx.M)=BV(M).
All other syntactic definitions and conventions for A are adapted with changes

similar to these, e.g., the definition of a one-hole context becomes
Cl 1==[110zC[]| (] M) MC[]| (FC[]] (ez.C[].
The definition of an evaluation context does not change.

3.2. The CESK-Machine
The formal semantics of Ag,-programs is defined via an extension of the CEK-

machine to a CESK-machine. The additional letter S stands for the new store

61
component. A store is needed to implement the effect of assignments. Since contin-
uations are already present in the machine, the implementation of F-applications

only requires the addition of new transition rules.

Definition 3.2: The CESK-machine, part I: the computational domains

Computational Domains:

s € States = Controls X Envs X Stores X Conts (machine states)

¢ € Controls= Ary + } (control strings)

p € Envs = Vars == Locs (environments)

6 € Stores = Locs —— Closures (stores)

VE Closures = Values X Envs 4+ p X p-Conts (closures)

k € Conts = ret-Conts + p-Conts (continuation codes)

where Locs is an arbitrary infinite set

and p-continuations and ret-continuations are defined by:

p-Conts =stop + p-Conts X fun x Closures + p-Conts X arg X Ars X Envs
ret-Conts = p-Conts X ret X Closures.

Auxiliary Function:

- ® «: p-Conts X p-Conts — p-Conts
Kk ® (stop) = &
k® (k" arg N p) = (k @ x" arg N p)
% ® (k' fun V) = (k ® &’ fun V)

The necessary changes to the computational domains are summarized in Defi-
nition 3.2, part I. Environments are divided into an environment part and a store
part. The new environments map variables to locations; stores assign locations to

semantic values, or, in more traditional language, a location in the store contains a

62

s 2 i i i infini
value.? The set of locations Locs 18 a1t arbitrary, infinite set. In order to deal with
he domain of closures with o-closures

F-applications and o-capabilities, W€ extend t
and p-closures. A o-closure is simply 2 o-capability combined with an environment;
S

gged p—continuation structure.

a p-closure is a p-ta
9, k), where p covers all free variables

either of the form (M, p,
ns that occur in p Of i

he form (1,0,0,), where & is a

An initial state

A CESK-state is

n the environments that

in M and 6 is defined for all locatio

on k; or a state is of t

occur in the p—continuati
ntents of all locations n k.

n and 6 defines the co
0,8, ((stop) r

ret-continuatio

is of the form (M, 9,0, (stop)); (1, et V))isa prototypical terminal

state.
on 3.2, part II. The first

The CESK-transition function 1is displayed in Definiti
seven clauses aré adaptations of the CEK—transition function rules. Merging the
nt yields the CEK-transition function. We also

d the store compone

environment an
closed values. This is a minor re-

n still returns pUTe

assume that the §-functio
d any need for a relaxation. (CESKT) and

ave never exp erience

tion of an F-applicat
SIK10) define the effect of an assignment

striction, but we
jon and the application of a con-

(CESKS8) describe the evalua
(_CESKQ) and (CE

tinuation to a valué

application.
y corresponds to the informal descrip-

application directl

The evaluation of an F-
ction. The F-argument is applied to 7, which

atset of the first sé

tion of F at the o
uation. The curren

r the current contin

t continuation 1s transferred out of

stands fo
am total control over its use. In

closure and this gives the progr
inuation is left to the program

the register into a P~
hen to use the cont

e decision about W
. offer this option: it always copies the

particular th
Gcheme does 1o

The operation call/cc 10
m the program's perspective

prograin accessible structure. Fro

continuation into @
, semantic value in the store is arbitrary: see Chapter 5.

2
The decision to keep ever

Definition

The CESK-transition

(1,0,0,((xarg N p) ret V))
V)

(1,0,6,((x fun (\z.M, p)) ret
(1,0,6, ((x fun (f; 0)) ret (a,9)))
(FM, p,0,K)
ko)) ret V)

(1,0,6,((~ fun (P
6, k)

(a:z:.M, 05

(1,0,0,((x fun (oz.M, p)) ret V)

this is equivalent to saying tha

The application of
tion of the applied continua

evaluate the applied continuation
ation does not affe

to the point of applica

Scheme- continuations:

3.2: The CESK-machine, pa

States —

ta call/cc—continuation is im

a continuation in a AFo

tion to the current on

as if it were & function. If the applied continu-

ct 1ts continuation

tion. In this respec

When 2 progran invol

63

rt II: the transition function

function maps states to states:

CESE States,

according to the following cases:
(0, p,8,) = (80,8, (et (a,0))) (0)

(o, .6, 5) 5 (1,0,8, (et Hp(D))

(\z.M, p, 6, k) Cﬂ((1,9,0, (kret (\z.M, p))) (2)

(MN, p,b: %) CESK (3, p, 0, (narg N p)) 3)

GESE (N, p, 8, (s fun V) (@

CE_S—{\" (./\/f,/)[l' .= n|,0[n = V], &)
where n & Dom(0) (5)
GESE (50,6, (sxet GO (©

Cﬂ_‘j;\f (./WI’Y, ,0["/ = n]a e[n = <p7 5)]? (stop))

\';vhere n & Dom(0), v & FV(M) (7)
CESK (10,9, (k @ Ko ret V) (8)
CESK (1,0, 9, (kret (oz.M, o)) (9)
GESK (1, p, 8lp(2) = V] k). (10)

mediately invoked.

_program results in the concatena-

e. This causes the machine to

during the evaluation, the result is returned

t again, CESK-continuations differ from

ces a continuation in Scheme the
)

interpreter first discards its current continuation and then installs the invoked con-
tinuation in the continuation register. Put differently, Scheme-continuation objects
have an abortive effect on the continuation of their application point. We present
an implementation of call/cc in terms of F in the next section.

In order to clarify the abstract explanation of F and its comparison with call/cc,
we trace the evaluation of 17 (F(\k.k(k0))):
(1T (F(Ak.k(k0))), 0,0, (stop))
CESK™ ,
— ((F(Ak.k(k0))), 0,0, ((stop) fun 17))

T (ARKRO))7, {7 = 13, {1 = (p, ((stop) fun 1)}, (stop)).

At this point the continuation is captured although it is not yet under direct control
of the F-argument. If we replaced F by call/cc, this intermediate state would still

contain the old continuation:

(\E.k(K0))v, {v = 1}, {1 — (p, ((stop) fun 17))}, ((stop) fun 17)).

With the next few steps the example program reaches a continuation application:

((\k.Ek(k0))y, {y — 1}, {1 — (p, ((stop) fun 17))}, (stop))

7 (+
GESET (k(k0), po, 60, (stop))

(R0, po, b0, ((stop) fun (p, ((stop) fun 1))
il {+
C;E_Si <i, @, 907

((((stop) fun (p, ((stop) fun 1*))) fun (p, ((stop) fun 17))) ret 0))

GESE (4,9, 60, ((((stop) fun (p, ((stop) fun 17))) fun 17) ret 0)),

where
£0 :{’yl—)l,kl——)?}

60 = {1 — (p, ((stop) fun 1*)),2 — (p, ((stop) fun 17))}.

65
The actual invocation of the continuation does not discard the current continuation.

With call/cc, on the other hand, this intermediate state would have been:

(1,0, 60, (((stop) fun 17) ret 0)).

For functional continuations, as in the CESK-machine, the evaluation appends the
two continuations:

EZET (1,0, 60, (((stop) fun (p, ((stop) fun 1)) ret 1))

"ESKT ‘
GESE™ (3.0, 60, (((stop) fun 1) ret 1))

GESE (1,0, 60, ((stop) ret 2)).

The result is 2. This can also be deduced informally. The continuation of the
F-application in the program is an application of the function 1. A twofold ap-

plication of this continuation to 0 returns 2.

The effect of an assignment application depends on three different factors. First,
occurrences of variables are disambiguated via the environment, but the store con-
tains the associated current value. Second, the store component of a CESK-evalua-
tion is always present. The only operations on the store are extensions and updates.
Unlike the environment, it never shrinks nor is it removed from its register. The
transition rules (CESK5) and (CESKT) are responsible for store extensions. They
allocate a new location for every semantic value that becomes accessible to the pro-
gram. Allocating a new location means picking a location that is not in the (finite)
domain of the store. For the moment, we assume that this choice s fized for a
given set of locations. Third, the rules (CESK9) and (CESK10) jointly affect the
location-value association in the store according to an intuitive understanding of as-
signment. (CESK9) produces a o-closure for the definition of a o-capability, which
contains the current environment. Thus the transition rule (CESK10) changes the

value of the variable that was lexically visible at definition time. Because of the

66
constant presence of the store, every subsequent occurrence of this variable refers

to the new value.

Let us consider the evaluation of (\z.(oz.x)(Ay.z))0:

((Az.(0z.2)(\y.2))0, 0,0, (stop))

CESK* ((0z.2)(My.z), {z — 1}, {1 — 0}, (stop)).

At this point, the assignment application is about to be evaluated. After evaluating
the value part, the machine alters the appropriate store location, namely 1, and
continues with the o-body z:

CES'I\

(z,{z — 1}, {1 > (\y.z, {z — 11}, (stop))
T (3,041 — (oo, {z — 11}, ((stop) ret (\y.z, {z — 11)})).
The final value is a closure. The environment of the closure maps z to alocation that
contains the same closure: in higher-order languages with assignment statements it
is possible to construct circular values. Because of this problem, the definition of

an evaluation function for the CESK-machine is less intuitive than the one for the
CEK-machine.

A program evaluation on the CESK-machine begins in (3, 0,0, (stop)) and
terminates in (I, 9,6, ((stop) ret V)) for a store § and a closure V. Naturally,
we would like to map V to a syntactic value, but the possibility of continuation
structures or circular location references in V rules out straightforward solutions.
We therefore parameterize the evaluation function for the CESK-machine over an

unload function in order to permit a later re-definition:

Fvalafb[\ Unload = Unload(V, 8) if (M, 0,0, (stop)) Cf—% (},0,6, ((stop) ret 1)).

Unless stated otherwise, we assume that Unload maps V and 6 to the pair (V, 8).

The eval, ESK,Unload“funCtion defines the extensional semantics of Idealized

Scheme, the transition function the intensional one. Since Idealized Scheme is an

67
extension of the A-calculus and since furthermore, the two additional facilities are
included in order to express events and their ordering, the extensional semantics 1s
sequential. The sequentiality of the CESK-machine is also obvious. However, we
shall demonstrate in subsequent chapters that this is not inherent in the language,
but due to the granularity of event representations.

For manual program evaluations and comparisons, the CESK-transition func-
tion is just as unsuited as its CEK-counterpart. Indeed, the situation is even worse.
Because of the manifestation of side-effects in stores, we must compare the store
components of intermediate machine states for a comparison of program pieces.
However, these stores may contain garbage, i.e., locations that are disconnected
from the rest of the computation; and the stores may only be isomorphic to each
other. We demonstrate both phenomena with two small examples.

The first sample program is (Az.M)0 where z & FV(M). Intuitively, this

should be equivalent to just M in any store, but this is not true as can be seen from

the following calculation:
(Az.M)0, p, 8, &) FEEET (01, ple == n), 6[n = 0], 5).

The location n in the store is a typical garbage element. It cannot be reached from
M, nor from the rest of the store. These elements clearly prohibit a straightforward
comparison of stores. For the problem of relocated values, consider the expressions
(Azy.M)01 and (Ayz.M)10. Our intuition says that the two must be equivalent, but

the respective evaluations on the CESK-machine only produce isomorphic states:

ot
(Dey.M)0L, p, 6, &) T8 (M, pla := m]ly := n],8[m := 0][n = 1], ¥)

and

o+
((A\yz.M)10,p, 6, £) GESK (M, ply := m][z = n],0[m = 1][n := 0], k).

68
Although these problems are stringent, equivalence proofs are possible. The
central idea is to eliminate garbage from the stores and to compare the resulting
stores with isomorphisms. This, however, is hardly practical because the elimination
of garbage is generally complicated. An alternative to this technique is developed
in the following chapter. It relies on the observation that all store cells needed by
a computation are associated with the program text, and that all useless garbage

cells must provably be disconnected from the program text.

3.3. Programming with A r,

Next we give a brief introduction to programming and meta-programming with the
language. Without a reasoning system, the examples are necessarily informal and
rely on an operational understanding of the CESK-machine. We will resume most
of the examples in Chapter 6 after developing a calculus for Idealized Scheme. Like
in Chapter 2, we will then prove the correctness and properties of the programs

that we present below.

Before the actual introduction, we briefly compare F and o with their most
closely related counterparts in existing programming languages. This should help
clarifying their semantics. Also, some of the examples below may be easier to

understand in terms of these equivalence specifications.

As mentioned in the preceding section, F-applications are closely related to the
call/cc-function in Scheme. There are two essential differences. First, when call/cc
is applied to a function, it provides this function access to the current continuation,
but it also leaves the continuation in its register. This effect can be achieved by an
F-application if the F-argument immediately invokes the continuation. Second and
more important, call/cc applies its argument to a continuation object, which, when
applied in turn, discards the current continuation; an F-application, on the other

hand, simply provides its argument with a function that upon invocation performs

69
the same action as the current continuation. Hence, a simulation of call/cc must
pass a function to the call/cc argument which throws away its current continuation,
or, in terms of F-applications, the object must grab the continuation without using

it. Putting all this together produces the following equivalence:
call/cc = Af.F(\k.k(f(Qv.F(Ad.kv)))).

Landin’s J-operator [39] and Reynolds’s escape-construct [50] are also closely re-
lated language facilities. Both are syntactic variations on call/cc [14] and hence,
we omit a more detailed treatment. None of these facilities can implement an F-
application as a syntactic extension because of the abortive effect of their respective
continuation objects.

The assignment abstraction is more conventional. In traditional expression-
oriented languages, statements usually come together with a block statement like
begin (stmt) result (exp). This is a block that first performs the statement-part
and then evaluates the expression-part to return a result. Together with ordinary

assignment, this block can express an assignment abstraction as a function:
o.M = (\v.(begin z := v result M)) wherevisa fresh variable.
The inverse relationship is expressed by
begin z := N result M = (oz.M)N.

As motivated above, the .choice of o-capabilities over assignment statements 1s for
syntactic and technical reasons only.

With the introduction of imperative program facilities, 1t makes sense to con-
sider traditional Algol-style constructs like compound statements, while-loops, etc.

For example, a sequencing expression

(begin Ezp, ... Ezp,)

70
that returns the value of the last expression after having evaluated Ezp; through

Ezp,_, from left to right is equivalent to

n, Ezpy ... Ezp,.

This is a purely functional expression, but it only makes sense in the presence of
side-effects because the values of the first n — 1 expressions are thrown away. A

similar argument holds for a while-loop. It is implemented by
d
(while Cond do Ezp) Ef Y. (Awb.(if b (begin Ezp (wCond)) 1) Cond.

This transliteration is also functional, yet again, its use relies on the presence of
side-effects.

Beyond the class of imperative statements whose transliteration is functional,
there are also constructs that have functional appearances but are indeed inherently
imperative. This is especially true for control constructs that are simple uses of F-
applications. For example, a halt-function is realized by grabbing and throwing

away the current continuation:

<3

halt = A\z.F(A\d.z).

Since grabbing and throwing away a continuation is a recurring program pattern,

we introduce a general syntactic abstraction’

(throw LV).

Such a throw-expression invokes the function L on the value V after eliminating

the current continuation, i.e.,

d
(throw LV) :__}: F(M.LV).

3 This is only superficially related to Common Lisp’s throw-facility [60].

71

It resembles a parameter-passing goto-facility. With throw, the implementation

of halt becomes:
df
halt = Az.(throw lz).

In other words, halt acts like a goto to the initial continuation or, equivalently, the

final label.

A function-exit-facility is an equally simple use of F. It occurs in an abstraction

(function z Body),

which is like an ordinary function except that its function body may contain exit-

expressions of the form

(exit Ezp).
The effect of an exit-expression is an immediate return to the function caller with
the value of Ezp. When cast into continuation terminology, this description leads to

the obvious implementation of function- and exit-expressions: an exit-expression

resumes the continuation of the function-application:

(function ¢ Body) = \z.F(\e.eBody),
(exit Ezp) = (throw e Ezp).
We assume that exit’s e is bound by the € in the function-expansion.

The ES -function from the introductory chapter offers a concrete example for

the use of an exit-facility:
Ty = function t ((rec (s t) =
(if (empty?¢)0
(if (zero?(info t)) (exit 0)

(+(info t)(+(s(lson t))(s(rsont)))))))

72
The inner application of the recursive function s to the tree ¢ is an example of
a generalized loop. Hence, from this definition it should be clear how to build
any kind of loop constructs with exit-facilities. Although all of these programming
constructs look functional, the reader should be aware that the presence of F makes

them imperative.

Assignment capabilities are also imperative in nature, but they give rise to a
different class of programs. In conjunction with higher-order functions it is easy
to program reference cells with o-capabilities. The four operations on a cell are:
mk-cell, which creates a new cell with a given content; deref, which looks up the
current contents of a cell; set-cell!, which changes the contents of a cell to a new
value and returns this value upon completion; and, eq?, which compares the identity

of two cell-objects.

An implementation of the first three functions is:

mk-cell = \z.\m.mz(cz.z),
d
deref é Ae.c(dzs.x),
d,
set-cell! é Ae.c(Azs.s).

Upon application to a value, the function mk-cell returns a functional encoding of
a pair. The first component of the pair is thé current cell-value, the second one a
o-capability for the first component. Accordingly, the functions deref and set-cell!
take a cell and apply it to the appropriate selector-function. In particular, the
definition of set-cell! clarifies why we call a oz.-term “a capability for assigning ¢ a
new value.” When set-celll is applied to a cell, it returns the o-capability for the

variable z, which upon some later application changes the contents of the cell.

The function eq? is generally a “built-in”-predicate and relies on the address

space of the underlying machine. But this need not be the case: side-effects offer

73
an alternative solution [42:66].4 Two cells are identical objects if and only if an

alteration of the contents of one affects the other:

11155

eq? = Acicp.(let ((z1 (derefcy))(z2 (derefcs)))

(begin
(set-celll ¢ 1) (set-celll ey 2)

(let (e (= (derefer)?2))

(begin

(set-celll c; z1) (set-celllc z2)

e)))),

- : . ‘
where = is the usual equality predicate on natural numbers.

The inverse simulation of assignments with cells is more difficult. If assignable
variables are simply bound to cells, then every occurrence of a variable must be
dereferenced. This, however, requires a parsing and re-structuring of the entire
(lexical) variable scope. Because of this relationship, we have chosen to adopt a

simple assignment abstraction as our basis for the programming language.

The implementation strategy for single-value cells generalizes to full Lisp-cons
cells. The functions set-car! and set-cdr! are represented by o-capabilities and permit
the assignment of a new value to the selected field of a cons-cell. These operations

differ from set-cell! in that they return the new cell upon completion. This self-

4 This solution is indicated in Steele and Sussman’s treatise on interpreters and modularity [65:32].

74

referential effect is accomplished with recursion:

11

NIL = [True, False],

I

cons

Avl.Y, (Ae.[False, [v, 1, (ov.c), (al.c)l4]),

I

: d]
/\l.(l)27r‘f, set-car! ‘—_f‘_ /\l.(l)QW,;,
df

car

I

cdr = AL(D)gd, set-cdr! = AL(Der],

1%

null? = AL(1);.

The implementation of cells and cons-cells indicates how arbitrary data objects
with internal state may be built in Idealized Scheme. Furthermore, it 1s well-known
that a programmer can create circular lists with such cons-cells. These structures
may serve an interesting purpose and their existence underlies our concern about

store-comparisons as raised in the previous section.

The existence of circular or self-referential structures also offers an implemen-
tation technique for recursive functions. The essence of a recursive function is—as
discussed in Section 2.5—the self-reference of the function body (via a name). One
way to achieve this effect is by self-application as in the Y,-combinator. Assign-
ments offer another possibility. Suppose the defining function is evaluated in a block
where the function name is bound to a dummy value. If we immediately assign the
resulting function to the function name, the references to the function name in the
function body are the required self-references. The imperative implementation of

the rec-form thus becomes:

1%

(rec! (f &) = Bodys,) = (let (f I)(begin f := A\z.Bodyy, result f))

or, without additional syntax,

s

(rec! (f &) = Bodys,) = (M.(of.f)(Az.Bodys:))!.

75
Alternatively, a different, imperative fixpoint combinator can be defined. It also
takes a defining functional and returns the defined recursive function. With the new

rec-form, we can define this combinator as

Vi L 2 fi(rect (g 2) = (fgz)) = Ao(Ag-(0g.9)Ae.fgz))l.

When applied to a functional, Yi constructs a pseudo-fixpoint of the function f
with the imperative version of rec, calls it g, and passes g to the defining functional
£ On an ordinary sequential machine, building and using recursive functions is
faster with Y1 than with Y,, because variable lookups and assignments are cheaper
than function calls. Since the application of f to its fixpoint produces the required
recursive function, the Yi-combinator should behave like Yu, i.e., for an operational
equivalence ~~, Y1 should satisfy

Yi1Fz ~ F(\Y1\F)z.

We shall demonstrate in Chapter 6 that the calculus for Idealized Scheme can indeed

prove this equation.

A noticeable difference between the Yi-example and the cell-example is the use
of assignable variables. For cells and objects in general, the variable binds together a
set of functions that share the state of the variable. That is, the assignable variable
is hidden in the common lexical scope of some functions. The value associated with
the variable determinesrthe state of the functions,” and a change of the value that
belongs to the variable signals a state transition. This is particularly convenient
for modeling mathematical state variables or real-world objects. We therefore call

these variables state variables.

5

This makes them “non-mathematical” functions.

76

The Yi-combinator uses assignments in a different way. For the single assign-
ment in the A-body, the assignable variable mimics a certain relationship for some
expression, but this relationship is only established after the assignment takes place.
Once the assignment has happened, the value association of the variable is fixed.
This use of assignable variables and assignment reflects a lack of facilities for ex-
pressing certain syntactic relationships. Since there are an indefinite number of
such relationships, it is better to accept the basic language and to require a facility
for extending language syntax. We refer to this type of variable and assignment as

single-assignment variable.’

Up to this point, all example programs have taken advantage of either assign-
ments or F-applications but not of both. There are also many examples where
assignable variables play an irrllportant role in conjunction with continuation-access-
ing operations. Prominent representatives are implementations of backtracking as
in logic programming [27], of co-routines [29], and of intelligent backtracking [22].
They all share a common pattern, namely, the need of a variable that contains the
current and possibly changing control-state of the respective object, e.g., a clause

or a co-routine.

Unfortunately, while being practical and elegant at the same time, these exam-
ples are still too big for a demonstration of this technique to a novice. To avoid
size problems, we discuss the implementation of two simple constructs, which have
short, continuation-based implementations. The first example is a looping facility
that has both a straightforward functional equivalent and an imperative realiza-
tion. Given both in the same formalism, it is possible to compare programming

“styles, efficiency, and correctness proofs. The second example 1s derived from the

® Although this name is consistent with the literature, it is inaccurate considering such examples as import-

by-need [16] where two assignments are needed for establishing the correct relationship.

i
generator concept in the programming language Icon [24]. The two examples reflect
the above discussion on assignable variables. Whereas the looping facility needs a
single-assignment variable, the generator abstraction requires a true state variable
in order to model the changing control-state of the generator object.

The chosen looping example is the iterate-until-loop for the iteration of a
function over a value until a certain condition holds of the curre'nt value. The
syntax of this loop is

(iterate F over V until P).
F is a pure function and V a value such that F'V is defined for allz > 0. P is a
pure predicate that is defined on F'V for all 7 > 0. Given this, the result of the

construct should be
Fmyv where m = min{i > 0 | P(F'V) = True}.

A recursive implementation of the iterate-until-loop is only a minor variation
on the implementation of iterate-times and we state it without further explana-
tion:

(iterate F over V until P) i=f_ (rec (I v) (if (Pv) v I(Fv))V.
This implementation has an important characteristic: the application of the loop-
function [is a tail-call. This means, that with respect to this construct, there is
nothing left to do after the application is evaluated. A good compiler translates

this into a fast label-goto-statement a la
.z :=V; L:if (Pz) then skip else begin z := Fz; goto Lend;.,.,

where z is the result register.
The goto-translation provides the basic idea for an implementation with contin-
uations. Semantically, labeling a statement is equivalent to accessing and remem-

bering the current continuation; a goto to a label is an invocation of the respective

78
continuation with a simultaneous elimination of the current continuation. Our

transliteration of this into Az, is

dj
(iterate! F" over V until P) Ef(let (1)
(let (2 F(ollV))

(if (Pz) = (throw I (Fz))))).

The label [is a variable that contains the continuation representing the label. The
continuation rebinds z to a new value, initially V, then tests this value on the
property P, and finally, depending on the outcome of the test, returns the value z
as the result or invokes itself on Fz. During the 1-th invocation of the continuation,
z is bound to F'V, and hence, this implementation should return the correct value.

This argument will be the basis of our correctness proof in Chapter 6.

Generators are less common than looping facilities in traditional programming
languages, but they become increasingly popular in special purpose high-level lan-
guages. One example is Icon [24], which provides the possibility of generating con-
secutively the elements of a list or the components of a vector. Take, for example,
the vector vec = [1,2,3]. If we let G stand for a generator of vec, then three calls
to G return 1, 2, and 3. More generally, if (generator n vec) returns a generator G

for a vector vec of length n, then for all vectors [V1, ..., Va] the facility must satisfy

Vi,...,Va]n =~ (let (G (generator n [V1,..., Valn) [(GD), ..., (GD)]n).

The sequence of applications (G1) indicates that G’s result is independent of its
dummy argument.

The independence of the generator from its argument malkes 1t obvious that it is
not an ordinary (mathematical) function. Still, there are many different and feasible

implementation strategies for generators in an imperative higher-order language.

79
Since we are interested in the general technique, we present a continuation-based
solution that is easily adapted to similar constructs.

The idea behind our solution is simple. From the perspective of the internal
control flow, a generator is not called like a function, but is resumed at the place
where it had been at the end of the last resumption. It follows that a generator
return not only provides a value to the caller, but that it also remembers the current

control context of the generator. If we assume the existence of a syntactic form

(tocaller V),

which accomplishes a generator return with value V, the core of the generator code

is rather simple:
(begin (tocaller (7] vec))...(tocaller (m, vec))).

It is a sequence of n returns, each picking the correct vector component.

For the rest of the program, the generator must behave like a resume function:

Ad.(resume |),

where resume is the dual syntactic form to tocaller. Also, if we assume an ap-
propriate initialization, the code for creating a generator can return this resume
function as the O-th result. Given that the begin-expression already accomplishes
the appropriate sequencing for the tocaller-expressions, we can insert this 0-th call

at the beginning:

(begin (tocaller \d.(resume |))(tocaller (7} vec)) ... (tocaller (] vec))).

The implementation problem is now reduced to the realization of two syntactic

forms: resume and tocaller. Both must remember a control-state, and hence,

80
must be associated with two state variables: ¢ for the control-state of the caller, g for
the control-state of the generator. Assuming the existence of the two state variables,
the two forms are almost obvious: each grabs the current control context, assigns
it to its control-state variable, and finally resumes the thread of control associated

with the other control-state variable. In Idealized Scheme this is expressed as

dj
(tocaller V) :—_J: F(og.cV)

(resume V) % Floc.gV).

Because of our previous assumption that tocaller can be used at definition time,
the generator must accordingly set up the control-state variable ¢. The generator’s
control-state variable is uninteresting at definition time and is initialized by the
resume-construct. Putting things together, we obtain the code for a generator
abstraction:

df
(generator n vec) =

F(Ae.(let (g 1)
(begin
(tocaller Ad.(resume I))

(tocaller (] vec)) ... (tocaller () vec))))),

where ¢ and ¢ are bound variables for the tocaller and resume abbreviation.

It is again relatively easy to convince oneself that at the i-th resume-switch
to a generator, the control variable g continues with the i-th step in the begin-
sequence. Since the i-th step is a tocaller-switch with the i-th component of the

vector, the correctness of this implementation is almost obvious.

The preceding correctness arguments for the imperative implementation of the
iterate-until-loop and the generator-abstraction sound convincing. Yet, they
are not formal, testable proofs, and proofs are what we are really asking for. This
demand for formal proofs of imperative higher-order programs malkes the motivation

for a calculus more concrete. Its development is the topic of the next two chapters.

e to a Programl Rewriting System

4. From the CESK-Machin

d continuation codes in addition

ents, stores an

Th
e CESK-machine uses environm

n of programs- A

reasoning system for Idealized Scheme

f
o terms for the evaluatio

her hand, should re

late progratns directly to each other. Hence
= ~id

programs, on the ot
oriented rewriting semantics that is

ruct a program—

[0} 3
ir first goal should be to const
y instantiated

t to an appropriatel

end this rewritin

CESK-evaluation function

ext £ :
ensionally equivalen
g gemantics into an equa.tional

It s
should then be possible t© ext

theory.
ethod underlying the con-

ntics and the m

a rewriting sema
] idea behind the construction 1s

The centra
me. The first t

modifications to the transition

The construction of

his chapter-
wo steps are devoted to

st : .

ruction is the result of t
ponent at a ti
With some

gh the complete

to 1mi
el c 1 (
1minate one machme com

(JnViI' e ' .
onments 'd,Ild C()IltlIlllcl,thn coue-
ehmlnation Of StOI‘eS”

an be removed easily. Althou

functi
ion, they ¢
ponent solves the “garbage”-

g of the term and the store O

o the precedin a rather natural man
iral man-

s i il :
mpossible, a mergi
g chapter n

aIl(: (394 .
1 1somorph1sm”—problems fro

ner.

Enviro ament

4. b . -
1. Eliminating the
e state maps free variables in the control string

CESK-maChin

of an identiﬁe

ich in turn associates

The arivi
he environment of a
- is a locatiom, wh

to thei : i
their meaning. The meaning

81

82

the identifier to a (current) value. Environments play a similar role in the evaluation
of logical formulae. However, in logic it is well-known that environments are actually
unnecessary for determining the value of a term or formula. The process of quasi-
substitution! works equally well. When quasi-substitution is used, the meaning
function replaces free identifiers by their meanings and evaluates this semantically
enriched term instead of remembering the associations in a separate environment
argument.

An adaptation of this idea to the CESK-machine means that transition steps
which extend the environment must place locations in the control string. This
naturally requires some changes in the computational domains. All control string-
environment pairs are merged into control strings that contain locations. The con-
trol string domain is appropriately extended to the language Arsrocs- The sub-
stitution function is also adapted to work on the new control language. Since the
machine states are now triples of control strings, stores, and continuations, the re-
sulting machine is called CSK-machine. Its computational domains are formalized
in Definition 4.1, part I; its transition and evaluation function are defined in part 1L

The comparison of the CESK- and the CSK-machine is based on translations
that map states and state components from the old domains to the new ones. The
principal translation takes control string-environment pairs to AzgLocs-terms by

replacing all free variables with their meaning:
R((M, p)) = Mle1 = p(e1)]... [2n i= pla)] where FV(M) = {z1,..,2n},
R(($,0)) =1
the second clause is added for technical reasons.

Furthermore, since control string-environment pairs also occur in continuation

The term quasi-substitution was coined by Michael Dunn; the concept of value—containing syntactic
entities, so-called U-formulae, was invented by Raymond Smullyan [58].

83

Definition 4.1: The CSK-machine, part I: the computational domains

Computational Domains:

s € States = Controls X Stores X Conts (machine states)

¢ € Controls= AFsroes + 1 (control strings)

8 € Stores = Locs —o— Closures (stores)

V& Closures = Values + p X p-Conts (closures)

k € Conts = ret-Conts + p-Conts (continuation codes)

p-continuations and ret-continuations are

p-Conts =stop + p-Conts X fun X Closures + p-Conts X arg X AFeLocs
ret-Conts = p-Conts X ret X Closures,

and AFgrocs 18 the following variation of Axs:
M:u=al|z|n|(Qz.M)| (MN)|(FM)]| (¢X.M),

where n € Locs. X ranges over both Vars and Locs.
Values contains constants, variables, abstractions, and capabilities.

Auxiliary Functions:

- ® -:p-Conts X p-Conts — p-Conts
K @ (stop) = &
k® (k' arg N) = (k ® & arg N)
k® (" fun V) = (k ® &' fun V)

[:=]t Arorocs X Vars X Locs — AFsLocs

alz :=n] = a,
gz :=n]=n, ylt=n]=y (x Zvy),
niz = n] = n,

(\y.M)[z := n] = (A\y.M[z := n]),

(LM)[z := n] = (L[z := n]M[z := n]),
(FM)[z :=n] = (FM[z = n]),
(cX.M)[z := n] = (¢ X[z := n].M[z := n]).

RPN
T

84

part 1I: the transition function

Definition 4.1: The CSK—machine,

The C . ’
1e CSK-transition function maps states t0 states:

States C3K Siates,

according to the following cases:
{a, 8,) fﬁl_‘, <i,9,(f€ ret a))
(n,0,K) CSK (1,9, (s ret f(n)))
</\x.]VI,9, K) gﬂ (1,0, (rret \z.M))
(MN, b, K) CSK (M, 9, (k arg N))
(1,8, ((rarg N ¢SK (,9, (< fun V)
CSK (M[z = n], 0l = V], &)

(1,6, ((x fun \z.M) ret
where n & Dom(6)

(1,6, (s fum) et @) csK (4,9, (et 5(f,0)
(FM0,5) (M, 8l = (P F)]: (5t0P))
where n € Dom(9)
P ko)) ret V) EE‘]'\’ (1,9, (k & KO ret V))

(Jn.N[,G, K) EE—[}*
(x fun on.M)ret V) CSK (M, 8ln = V], K)

(1,6, ((x fun (
(:[:,9,(/6 ret on.M))

(1,6, (

The eval-function 18

M) _Unload(V, 9) ift

6”"alCSK,Unload(
(M, 9, (stop))

¢SE™ (1,6, ((stop) ret V).

(1)
(2)
(3)
(4)

(5)
(6)

(7)
(8)
(9)
(10)

85

etween CESK-continuations and

C()(les
= and o) 7 111
st res, we need auxﬂlary translations b

CSK-continuations:
Re((stop)) = (stoP)

Re((x arg Np)) = (Re(x)arg R((N, p)))s

Ri((x fun V) = (Re () fun R(V));

Ri((sret V) = (R () ret R(V));

and
between CESK-stores and CSK-stores:

Rs(6) = {{m R(A(n)) }-

p-closures in the store, we must add the clau
18€

A .
nd finally, in order to take care of

R((p, &) = (P Re (%))

t
o the definition of R.
states to CSI-states that

d a map from CESK-

these definitions yiel
press in what sense

Together,
pres o

erve initial, final, and stuck states. With these, we can ex
the C ; L.

ESK-machine 18 equivalent to the CSK—machine:

Lel
mma 4.2 (CSK-simulation). For any prograim M € Ars,
evaZGESK,UnloadR(M) iz evalcsf*',('v')(iw)v

< the pairing function.

where UnloadR(Y, 8) = (R(V): Re(9) and ()1

Pr
oof. The proof is an induct

th st
jons R, Rk, and Rs. This is

The Tmed
he basic claim is that the -

g CSK—evaluatio
re R({(M, 0)) = M. For the indu

o via the translat

b -
ue for initial states whe

CRQwe
ESK-transition step:

86

By case analysis, it is easy to show that

CSK
(R({et, p1)), Rs(8), Re(s1)) ¥ (R({e2, p2)), Rs(6), Re(w2))
and thus, the claimed relationship is an invariant of transition steps. The result

follows from the property that R preserves final and stuck states. O

Before leaving this section, we simplify the transition function in order to shorten
the following machine definitions. All transition rules that evaluate syntactic values,

i.e., (CSKO), (CSK2), and (CSK9), are now of the same form
- CSK . - Gy
(V,0,k) = (1,6, (kret V)). (CSK. Values)

Consequently, we can replace the three separate rules in the definition of the tran-

sition function with this new rule.

4.2. Eliminating the Continuation Code

The expected next step should be an incorporation of continuation codes into the
control string components. However, the notion of CSK-continuation codes is too
machine-oriented for a direct transition. The first transformation is therefore a
replacement of continuation codes by a more familiar, term-related concept. Then

the elimination of machine continuations follows quite naturally.

4.2.1. Contezts as Continuations

An inspection of the sample CESK-evaluations in Chapter 3 reveals that the contin-
uation code is a control string memory. Those pieces of the control string that are
of no interest to the current computation phase are shifted to the continuation stack
until a need arises for reconsidering them. From the perspective of the program as
a whole, the machine searches through applications until it finds a value in the left

part of an application. This is also true for F-applications which are immediately

87
replaced by proper applications. When the machine discovers a value, it remembers
this on the continuation stack and concentrates its search on the argument position
of the respective application. Once an application with two values—a redez?’—has
been found, a transition step replaces the redex by a new term. If the new term is a
value, the machine inspects the continuation for further instructions and eventually
continues the search. Otherwise, if the new term is an application, the cycle repeats

immediately.

Definition 4.3: The CSC-machine, part I: the computational domains

Computational Domains:

V€ Closures = Values + p X AppSConts (closures)
x € Conts = ret-Conts+ AppSConts (continuation codes)

where AppSConts is the set of applicative standard contexts:
Cl Ja=[1| VC]]]|Cl |M

with M ranging over A ryrocs, V over closures,
and ret-continuations are

ret-Conts = AppSConts X ret X Closures.

All other CSK-domains become CSC-domains without further changes.

While searching through the term for the next redex, the machine partitions
the term into a contezt and a current search area. Eventually, this search area will

be narrowed down to a redex. In the mean time, the context of this redex is shifted

2 We do not refer to the entire machine state as redex, but to parts of the program component. This should
not cause any confusion and is in accordance with the calculus terminology.

88

to the continuation component, and hence, term contexts may as well represent
continuation codes. Not surprisingly, the concept of an applicative standard context
captures the dynamic character of the search phase in the correct way. The context
hole corresponds to the current search area. Initially, the entire term is the search
area and the empty context [] can serve as the respective continuation. If a value
V is in the left part of an application VN, the search moves to the right, i.e.,
the current context C[| becomes C[V[]]. Finally, if an application MN with an
application M in the left position is encountered, the search space is narrowed down
to the left part: C[[]N] represents the new continuation where C[]is the old one.

The informal explanation of the correspondence between p-continuations and

applicative standard contexts demonstrates that an inside-out definition of contexts

1s more appropriate for the use of applicative standard contexts as continuations:
Cl l==[1lcll M]|CV[I,

but, of course, an inductive argument immediately proves this modification equiv-
alent to the .original definition. We shall use whichever definition is preferable.

The definition of applicative standard context requires two extensions. First,
since the control string language of the CSK-machine consists of expressions in
AFoLocs, all terms in a context must be in this term set. Second, values to the left
of the path from the context-root to the context-hole may be p-closures because the
machine evaluates syntactic entities to closures by putting them into the continua-
tion. The formal definition of applicative contexts, the new value and continuation
domains, and the transition function are displayed in Definition 4.3.

Roughly speaking, the CSC-machine is like the CSK-machine except for the
replacement of p-continuations by contexts. A formalization of the correspondence
is almost straightforward and is primarily based on a translation from continuation

codes to applicative standard contexts:

89

Definition 4.3: The CSC-machine, part II: the transition function

The CSC-transition function maps states to states:

States 228 States,

according to the following cases:

(v,8,C[1) 55 (1,6, (C[Iret V)) (0,2,9)

(n,8,C[1) £25 (1,6,(C[ret 6(n))) (1)

(MN,8,C[1) =5 (M, 8,C[1N (3)

(1,0,(CI[IN]ret V)y &5 (N, 6,C[V[1)) (4)
(1,8, (C[(Ax.M)[JJret V)Y &5 (Mz := n),8[n = V],C[)

' where n € Dom(6) (B)

(4,6, (C[f[Nret @)y €25 (1,6,(C[]ret &(f,a))) (6)
(FM,6,C[) &5 (Mn,6n = (p,C[DI,[1)

where n & Dom(8) (7)

(1,8, (CUp, Co[DI Tiret V)) 55 (1,6, (CICo[NIret V) (8)

(1,8, (Cl(on.0)[Jret V)Y E25 (M, 8[n := V],C[). (10)

The eval-function is

evalge Unload(M) = Unload(V, 8) iff (M, 0,[1) £557 (1,0, ([Jret V).

S((stop)) = [|
S((karg N)) =C[[|N] where S(x) = C[].

S((k fun V) = C[Sc(V)[]

The auxiliary translation S, is needed to replace p-continuation codes by contexts

90

within p-closures:
Se((p)) = (p,S(x)), and S(V) =V i V € Values.

In stores, p-closures must be transformed by a pointwise application of S.:

Ss(8) = {{n,Sc(6(n)) }-

The correctness lemma is of the familiar form:

Lemma 4.4 (CSC-simulation). For any program M € Ars,
evalopsy Unloads(M) = evalesc,(.,y (M),

where UnloadS(V, 8) = (S(V'), Ss(9)).

Proof. The proof follows the same pattern as the one for Lemma 4.2, with the

difference that we must show:
CSK
(c1, 61, K1) A0 (c2, 02, K2)

implies
(c1,55(61), S(k1)) 225 (ca,Ss(62), S(K2))-

This part is a case-by-case comparison of (CSKz) with (CSCi). O

4.2.2. Merging Control Strings with Contexts

The key idea for merging context-continuations and control strings into a single
component is simple. If we ignore the CSC-store for a moment, contexts and control
strings are always paired in each clause of the transition function. More precisely,
on the left-hand and right-hand sides of all CSC-transition rules there are only two

classes of states:

(M,-,C[1) and ({,-, (C[]ret V)).

vl

natural to fold the two components together by filling the

It is therefore quite
the two prototypic

al states become

co :
ntext holes with the respective terms, b Bey

(C[M],-) and (CIV];)-

e CSC—transition function according to this idea

he left-hand sides of (CSC. Values)

A naive transformation of th

onl " .
y produces a transition relation because t

(CSC3), and (CSC4) become identica
rules. Whereas @ co

trol string into a red

] to the right—hand sides. The reason is that

ntmuatxon-free transition function

the
sse rules are context search
ex and an applicative

. . L5 : f a CO”
assumes an a p’l‘ZO’I‘Z part1t10nlng o
i i « hCltly Searching fOI‘ the next redex ThlS

standard context, the CSC-funct

r to an actual mac

hine implementation, but inappropriate

latter strategy is close
s rendered superfluous during a

his kind of rule i

oriented rewriting system. Eliminating
=)

for
human consumption. Hence, t
ne into a program”

t \ g
ransformation of a machi
nsition system yie

1ds the desired continuation-

t1 -
hem from the naively constructed tra

free machine.
ction are formalized in Definition 4.5

The new CS-machine and its transition fun

ntic values includes
f CSC-states req
ing language: Wit

p-closures; the merging of the control string

S-
ince the set of sema
uires the inclusion of p-closures in

and continuation components 0

t : is m

he (syntactic) value set of the control str h this modification, the
%

fed to a finite map from Jocations 0 syntactic values.

store is simpli
n of the informal key observation

formal expressio

tion translation isa
ntexts to terms in the

The simula
new control string

It maps control strings and continuation €0

language:
(4, (Cl ret) = ClV);

T(M,ClL D)= c[M].

The correctness of this transfoxmation 1s expressed n

92

h .
Definition 4.5: The CS-machine

Computational Domains:

S€ States = AFgLocsp X Stores (machine states)
b€ Stores= Locs —o~ Values, (stores)

where Arsrocs p is
Mu=alz|n]|AeM)|(MN)|(FM)| (cz.M) | (p,C[]),

and Values, includes constants, variables, abstractions, capabilities, and p-

closures.

The CS-transition function maps states to states:
States e, States,

according to the following cases where applicative standard contexts are defined

over AxsLocs p-

(Clnl, 8) ¥E2s (Cl8(n)], 6) (1)
(Cl(Ae.M)V],0) ¥ (C[M[z = n]],6[n := V]) where n & Dom(8) (5)
(C[fal,8) 2 (CI8(F,)], 6) (6)
(C[FM],86) R (Mn, 8[n = (p,C[D) where n & Dom(8) (T7)

(Cl(p, Co[V), 8) =2 (CIColV]], 6) (8)
(Cl(on.M)V],8) +<25 (C[M], 6[n == V]) (10)

The eval-function is

. Cb-v *
evalag Unload(M) = Unload(V, §) iff (M,0) — (V,6).

93

Lemma 4.6 (CS-simulation). For any program M € Ar,,
evalgse,. (M) = evalgg . . (M).

Proof. The proof idea is again the same as in the previous simulation lemmas.
However, this time the lengths of the two evaluations differ by the number of search
steps in the CSC-transition sequence. For the search rules, it is now the case that

the CSC-machine performs a transition step:
'SC
(ct, 81, K1) 25 (ca, b2, Ka),

while the CS-machine rests in the state
(T(e1,k1),61) = (T(ca, K2), 02).
For the remaining transitions, we show that
(c1, 61, k1) F25 (cg, 0, K2)

implies
(T(e1, k1), 01) W5, (T(co, k2), 62)-

Otherwise, the proof remains the same. O

At first glance, the simplicity of the CS-semantics versus the CESK-semantics is
the result of an elimination of machine continuations in exchange for an extension of
the control string language. However, a further simplification shows that this is not
true. In the current version of the CS-system, an F-application grabs the current
context and packages it up into a p-closure; a continuation application places the
argument back into the respective context hole. Yet, a context can be perceived as

a term that is a function of its hole, and indeed, a p-closure of the form (p,C[])

94
behaves in the same way as the term Az.C[z]. When applied to a value within some
other applicative context, the value is labeled, placed into the hole of C[], and is

then immediately delabeled. Hence, the transition rules (CS7) and (CS8) can be

replaced by
(C[FM],0) — (Mn,8[n := (Az.C[x])]). (C8T)

The introduction of this rule not only reduces the number of rules, but it also
eliminates the need for p-closures in the control string language. This shows that

Ax, suffices for a syntactic treatment of programming language control.

A translation Tp from AzsLocsp t0 AFsLocs is simple. Tp parses a term until it
encounters a p-closure. Then the p-closure is replaced by the respective abstraction

and the translation continues:

T,((p,C[1)) = Aa.T,(Clz)).

We omit a further formalization of this rather straightforward change in the CS-
transition function and state the correctness lemma for the modified CS-machine,

called CS’-machine:

Lemma 4.7 (CS’-simulation). For any program M € Ars,

walCS,UnIoadTp(lw) = evalggr (.. (M),

where UnloadT,(V, 8) = (T,(V), Ts(8)) and Ts is the pointwise application of T,

to a store.

The proof of this lemma is also omitted. It essentially formalizes the above, informal

argument on the equivalence of p-closures and terms.

After the elimination of environments and continuations we are left with a

machine that is solely based on control strings and stores. This is close to the desired

95
rewriting semantics, but the realization of side-effects still relies on the existence
of cells in the underlying implementation machine. In the following section we
demonstrate that assignment can be interpreted in the syntactic world, and that this

interpretation is indeed an abstraction from the cell-concept of state in programs.

4.3. Replacing the Store by Sharing Relations

The role of the store is characterized by the three transition rules (CS1), (CS3),
and (CS10),> which use, extend, and modify the store. The crucial rule is (CS5). It
replaces all bound variables of a A-abstraction by a new, distinct location and thus
gradually builds up the store. All future references to a bound variable are resolved
via the always-present store: a request for the current value of a variable causes a
store lookup; an instruction to change the current value results in a modified store.
Hence, a deeper understanding of the store requires a closer look at the nature of
bound variables.

At this point we must recall the a-congruence convention about bound variables
in terms. According to this convention, the name of a bound variable is irrelevant
(up to uniqueness). Abstractions like Az.z and Ay.y are considered equal. This
actually means that the programming language is the quotient of A over =n. From
this perspective, a A-abstraction is an expression together with a relation that de-
termines which parts of the expression are equivalent. The relationship is displayed
by occurrences of the bound variable.

A unification of our ideas on the role of the CS-store and the nature of bound
variables directly leads to an abstracted view of the store. The intention behind the
replacement of bound variables by unique locations in the bodies of A-abstractions is

to retain the static a-equivalence for the rest of the computation, u.e., as a dynamic

3 The extension of the store in (CS’7) is an artifact of our choice of putting continuations in the store
instead of the environment.

96
sharing relation for term positions,* even after the Az.-part has disappeared. From
this argument it follows that an integration of the store into the control string
language necessitates a way of expressing this dynamic relationship syntactically.
The most natural solution is a labeling scheme. Instead of placing a location
into the program text and the value in the store, the value could be labeled in
a unique way and placed into the text as a labeled value.? With respect to the

transition relation, we would like to replace
(Cl(Az.M)V], 6) LR (C[M[z :=1]], 6]l :=V]) where | € Dom(6)
by a rule like
Cl(\e.M)V] —> C[M[z := V'] where is not used in the rest of the program.

V! is the labeled version of the value V. With the labeling technique it is indeed
possible to re-interpret lookups and assignments as term manipulations.

The emulation of a variable lookup apparently strips off the label from the
labeled value since the value is already sitting in the right position. The effect of
an assignment relies on the introduction of a new substitution operation. In the

extended term language, a o-application looks like
(U M)V

when it is about to be evaluated. The assignable variable has been replaced by a
labeled value; all other related variable positions carry the same label. When it

4 The idea of modeling the store as a sharing relation was already knov‘w_l to Landin [38], but his sharing
relations defined equivalent machine positions, not relationships of term positions.

5 Labeled terms have also been used for the investigation of the regular A-calculus [5:353]2 Al'r.houg.h our
problem is unrelated to these investigations we have adopted the notation in order to avoid the introduction of
an entirely new concept.

o T o

97

he above o-application; all these occurrences of an [-labeled
ed values V. To impl

1t of M[e' = V'] is a term that

1s time to perform ¢t
ement this, we introduce the

value must be replaced by [-label

con Me' = V']

labeled
wbeled-value substitut _ The resu
d subterms are€ repl

aced by !, With this new

iS 1' L

ike M except that all I-labele
ope 5 3)

peration, the assignment transition 1 definable as

Cl(eU M)V ciMle’ = .

and lookups has a minor

When

s for assignments

the new semantic
referential assignments.

Unfortunately,
flaw: :

© thus far, it cannot deal with circular oF self-
he equivalence—positions in

s not only i C[M] but also in V, b

-beled-value sub As an illustration, let us

the label | appea
stitution.

v

are not affected by the i
ical example for s
0 yields 2 circul

e rules proceeds

elf—referential assignments from Section 3.2

recall our prototyp
K-machine. A

The program (/\x.(dm_-it)(/\y-x))

ording to the abov

ar closure o1 the CES
as follows:

t 3
erm evaluation acc

nt this circular structure and in some sense it does: an
hat the positio
gsion ()\y-ol)

object, nanely, (/\y.Ol). For a

il
he last term should represe
v 0! is in the same

elabel 1 requires t

he entire expre

n occupied b

interpretatio
n of th
1 However, a lookup that

sharing equivalence class as t
e label pI‘Oduces
roblem needs
our dilemma- Fi
rential assignment builds a truly

simply strips off th a non-circular
ation this P

correct implement
rst, we could blame the

There are two obvious ways out of

ent and requir
lthough
jeve that it un

o find a mOre in

e that a self—refe

proach has bee

necessan'ly complicates a symbolic

assignment stat
eml
1 successfully employed

circular or infinite term- A this ap

we bel

nces [56];
telligent lookup transition

i '
n other circumsta
d, we call try ¢

—)
writing semantics. Secon

98
that is knowledgeable about circularities. In other words, the assignment transition
only updates the equivalence classes within the program and leaves the equivalence
positions within the new value alone. The complementary lookup transition is then

something like a by-need continuation of the latest assignment transition:
ClV'] — C[v[e' := V]

This version of the lookup transition simultaneously strips off a label and updates
all equivalence positions within the value. For the above example, this leads to the
correct final value of (Ay.(Ay.0M)).

The intuitive reason for the correctness of the new transition rules is the follow-
ing invariant: every outermost occurrence of a label is associated with the correct
current value. When the label is taken off, some inner occurrences may become
outermost, but they are immediately updated with the correct value. Assignments
place a label on the value, and hence, all self-referential labels within the value are

not outermost,.

Given the informal descriptions and correctness arguments, we proceed to define
the final machine in this chapter. The machine is a control string rewriting system.
Its only state components are expressions in the language Ayey, which is a proper
extension of Ax,. There are two new categories of terms: labfeled values and o-
capabilities with labeled values in the variable position. Whereas the latter kind is
included in the set of values, labeled values are not. Labeled values approximately
correspond to store cells, but they are more abstract. Unlike cells, labels may be
tagged at different values. For example, K!I'S! is a legitimate expression in Apey
with the unique value I. No such expression represents a legal state in the evaluation
of Ax,-programs, but its existence illustrates the difference between labels and cells:
labels only denote an equivalence class for assignments, cells are one out of many

possible implementation techniques for evaluations of Axs-programs.

99

Definition 4.8: The C-rewriting system, part I: the language

The term language Arey:
Mu=MN|FM |V |V Vu=alz| aM|oXM

where [ranges over Labels, X over Vars and Labeled Values.
Labs, the set of labels, is an arbitrary, infinite set, e.g., Locs.
Auxiliary Operations:

Lab: Apere — P(Labs)

Lab(MN) = Lab(M) U Lab(N) Lab(a) = Lab(z) = 0
Lab(FM) = Lab(M) Lab(\e. M) = Lab(M)
Lab(V') = Lab(V)) U {1} Lab(cX.M) = Lab(X) U Lab(M)
[=) Avew X Vars X Values U Labeled Values — Apew
(substitution)

gz =Ll =L, ylg:= L=y ify # =,

U™ % = L = O 2= L™,

(AyM)lz 1= L] = dy Mz i= L],

(MN)[z := L] = (M[z := L)N[z := L]),

(FM)z =1L = {(F Mg = L),

(oz.M)[z := V'] = (UVI.A/[[m .= V1)),
(ocy.M)[z := L) = (ocy.M[z := L]) if z # v,
(U™ M)[z := L] = (oU[z := L]™.M[z := L]).

[+ := +]: Apew X Labs X Values —> Apew

(labeled-value substitution)

zlo! ;= V] =g, U'le := V=V Umle = Vi =Ule = V"L # m,
(e M) = V'] = Ae.M[o' := V'],

(MN)[e := vl = (M[o := VI]N[QI = V1)),

(FM)[o = V] = (FM[e := V),

(cX.M)e = V'] = (cX[o := V].M[o := 7).

100
The C-transition function is conventional and uses the partitioning of control
strings into contexts and redexes that is known from the CS-machine. The details

of the formal machine description may be found in Definition 4.8, parts I and IL

Definition 4.8: The C-rewriting system, part II: the transition function

The transition function maps programs to programs:

¢
Arew = Arew

according to the following cases:

CIvi] % ov]e = V)] (1)
Cl(Aa.M)V] = C[M[z := V!]] where | € Lab(C[MV]) (5)
Clfa) == C[8(f, a)] (6)
CIFM] v M(A2.C[z]) where I € Lab(C[M]) (7)
Cl(aU . M)V] v CIM][of = V'] (10)

The eval-function is

. &Y s
evaly Ynload(M) = Unload(V) iff M — V.

Before we can prove the correctness of the C-rewriting system, we must explore

. . : s)

the extension of the a-congruence relation to the new term language. In Chapter 2,
we defined a-equivalence in an informal manner. Formally, a-equivalence can be

characterized® as a compatible equivalence relation that is generated by

Az M =4 \y.M[z := y] ify & FV(M).

€ Bee Barendregt’s exposition on this topic for a fuller treatment [5:Appendix].

101
An extension of this relation to labeled values should be based on a simple com-
patibility rule that compares the value parts of labeled values. However, this is
insufficient because the very same label can occur within these values. Such a
self-referential occurrence indicates that the value part of the respective position
is equivalent to the entire value, but for the comparison of binding relations, it
is only important that the inner label occurrences mark the same value. Hence,
stripping-off | and replacing inner occurrences with l—or any other arbitrary value—

guarantees a well-founded and correct definition:
VI = UI iff V[OI o]1] =a U[QI K—]1]
An example of this extended a-equivalence relation is

Ay.yo) =, (Az.z1').

It simultaneously shows the irrelevance of variable names and inner label occur-
rences. The soundness of the extended a-equivalence is captured in the following

proposition, which says that evaluating equivalent terms produces equivalent values:

Proposition 4.9. Let C[| be an arbitrary context. If M = N, evalc(C[M]) =

U, and evalc(C[N])) =V, then U =, V.

Proof. The proof is an induction on the transition sequence and reflects the above

informal argument. O

In order to be useful, a translation from the CS-system to the C-system must
produce a term in the appropriate a-equivalence class. It is therefore natural to
incorporate the idea of neglecting self-referential cell occurrences during the transla-

tion. Thus, the translation U from CS-control string/store pairs to C-control strings

102

chang
ges the contents of a cell to | once the cell is dereferenced:

U(z, 8) = %
U1, 6) = V(D) BLL= I,
U(rz.M,0) = Az UM, 0);

U(MN,8) = U(M, g U(N, 6),

U(FM,0) = FUOLY)
) = SU(X, VL)

U(cX.M, g
he statement of the correctness lemma:

Ui : :
s the required unload function for t

For all prograims M € AFo,

Lex
mma 4.10 (C-simulation).

evalCS’U(J‘VI) = evalg(_M).

on lemma 18 again the same

achine—simulati

Pro
of. The proof plan for this last ™
nsition step

g ones. The central claim 18 that a tra

—
s in the four precedin

(cl, 91> l—C——ni <02,92>

on
the CS-machine implies 2 transition st€pP of the form

U(cr, 61) C, U(er, B2)

unlike in previous simulation proofs, we must

n the rewri e However
i
riting system.)
s. In the previous proofs
=9

al
s0 address the issue of choosing 1€ Jocations and label

We
could rely on the convention that

ch that 1¢D

[su

d that this choice algorithm could never

unj b
1quely determined the new element, a1l
because the respective stores always had the same

int }
erfere with the simulation

domain.

103
In the present simulation of the CS-machine via the C-rewriting system, the
domain of a CS-store in (c, 8) and the set of labels in U(c, #) are not necessarily the
same. The C-machine only maintains labels that are reachable from the program

and automatically eliminates all others by (vacuous) substitutions. It follows that
we can add the clause

Lab(U(c;, 6;)) € Dom(6;) for i = 1,2

to the induction invariant. A verification of this condition is straightforward. The
condition implies that the simulation of the transition rules (CS5) and (CS'T) can
use the new location as a label on the respective values. In other words, given

that the choice algorithm for new labels accounts for previously used labels, the

simulation of the CS-machine by the C-rewriting system is perfect. O

The construction of the C-rewriting system and its correctness lemma point out
a crucial difference between program control and program state. Whereas for the
former Ax, suffices for formulating a symbolic rewriting system, the latter requires
an extension. The store (in a denotational or operational semantics) establishes
a relation among subterm occurrences in a program that is not expressible with
the syntactic constructions of Ax,. Nevertheless, as the above proof indicates, the

syntactic-symbolic model of the store has two crucial advantages over a semantic
model.

First, all locations that are decidably connected with the rest of the computa-
tion are located in the program text, i.e., they are in the set Lab(+). Due to the
replacement of environments and stores with substitutions, there is no accumulation
of garbage in C-terms as there is in CESK-stores. For example, (Az.M)V where ¢

is not free in M behaves equivalently to M in all computational contexts ¢l 1

Cl(rz.M)V] = C[Mlz := V'] =a CIM].

104

Similarly, if all occurrences of [are in labeled values V¥, an assignment (JVA'.AI)U
erases all occurrences of [provided that U does not contain I The equivalent
construction to Lab(+) in denotational frameworks is based on the notion of a pro-
gram cover [25]. It allows the same kind of equality arguments, but the required
mathematical machinery is complicated and not intended for use by programmers.

Second, with the elimination of garbage, the comparison of states in evaluation
sequences can be reduced to finding an isomorphism between label sets of programs.
The basis of the isomorphism-argument is an extension of a-equivalence. The cen-
tral idea behind the extension is that the identity of a label should be irrelevant for
a program just like the identity of a variable name is irrelevant for a A-body. In

short, we should identify programs that are equal modulo some renaming of labels.

Formally, we express this as label-equality:

Definition 4.11. Two programs M and N are label-equal, M = N, if there

exists a bijection ¢ between the label sets Lab(M) and Lab(N):
é: Lab(M) — Lab(N)

such that ¢(M) =, N.
The extension of ¢ on the entire term is:
S(MN) = p(M)P(N) dla)=a, $(a) ==
H(FM) = Fo(M) d(Az.M) = Az.¢(M)
(V1) = d(V)P) (o X. M) = op(X).6(M)

Warning, part I. Label-equivalence resembles an ordinary term relation, but it
is a program relation. Put differently, label-equivalence only applies to terms that
are used as programs. It makes no sense to embed related terms in contexts. For

example, 1t is true that the result of

(Azm.ma(ocz.x))0

105

as a program 1s label-equal to
Am.m0'(a0'.0"),

but that does not imply that the first expression evaluates to the second one in
arbitrary contexts: sharing relations always concern the program as a whole and
cannot be considered in isolation. We therefore recommend imagimng a unique

marker at the root of every program.” End

The soundness statement for label-equivalence is an adapted version of Proposi-

tion 4.9:
Proposition 4.12. If M =i N, evale(M) = U, and evalg(N) =V, U Zta V.

Proof. The core of the proof is an induction on the number of transition steps
in the evaluation. It depends on the following two claims about substitution and
labeled-value substitution:

(1) MV =ja NU implies M[z := V]| =iqp N[z := U], and

(2) MV =45 NU implies Mo := V'] =z N[o' := U'].

These claims express that sharing relationships commute with substitutions if the
relationships hold for the program. O

The relevance of label-equivalence to the comparison problem is captur ed in:
Corollary 4.13. Suppose the C-transition function can pick new labels randomly.
Furthermore, suppose that M =4 N, evalc(M) = U, evalc(N) =V, and U Za V.

Then there is also a value V' such that evalc(N) = V' and U =a V' St V-

Proof. Clearly, the random choice of labels for C-transitions instead of a deter-

ministic choice does not invalidate Proposition 4.12. Hence, U =iab V. But then

7 Yet another way to see this problem is to say that programs implicitly delimit th'e scope of m}l:eis.'tH'?n'cety
the introduction of an explicit first-class marker for program-terms would resolve this dilemma, but 1t 1s not
clear what such a marker would mean on an intuitive level.

106

there is an isomorphism between the label sets of U and V, and we can use this
isomorphism to rearrange the allocation of labels in the C-transition sequence from
N to V. This rearrangement yields the desired transition sequence from N to V.
O

Informally, even if we relax the constraint on the label-choice algorithm, we can
always reconstruct appropriate evaluation sequences that simulate the CS-machine
correctly. As a consequence, we do relax the constraint on the condition [& Lab(M)
and admit any fresh element outside of the label set. Furthermore, we adapt the
two conventions concerning bound variables to labels:

e Label-equal programs are identified [label-equivalence convention];
e Different label-names always denote different sharing relationships [label hygiene
convention)].
From a practical point of view, this is a solution to the program/store—comparison

problem. Recall the appropriate example from Section 3.2:
(Azy.M)01 and (Ayz.M)10.

In the rewriting system, the two terms yield the same result for all evaluation

contexts:

Cl(Azy.M)01] vZs O[M [z == OF][y == 1']]
=g C[M|[z := 0™][y := 1"]] =lab

Cl(Aey.M)01] v C[M[y = 1"][z = 0"]],
and can thus be considered interchangeable as desired. In semantic store models

this kind of reasoning is more difficult because of the mutual interference of garbage

and isomorphic re-allocations.

The result of the three sections in this chapter is summarized in a theorem that

connects the CESK-machine with the C-rewriting system:

107

Tl
1eorem 4.14 (C-Simulation)- For all programs M € AFe

6’L’alCESK,UnIoad(.M) — evalc(M),

where Unload(V, 9) = U(S(TP(R(V))), SS(TS(RS(V>)))-

says that, provided Unload is used as an interface,

The C-Simulation Theorem
ifferences between t

annot perceive any d

ction. The CESK-
(see Chapter 2)

he CESK-evaluation

i _
an outside observer ¢
Unload function 1s natural since

funct;
nction and the C-evaluation fun

Unload function

on A-values.

it coincides with the CEK-
portant, too. On one

The differences between the semantic frameworks are im
is only & I

h i i

and, the control string language Arew inor extension of the original pro-
ransition function solely relies on terms
a.utornatically eliminates use-

the C-t

gramming language; On the other,
CESI{-machine,

In
Arew, has fewer rules than the
o-comparison problem. We believe that

he program/ stor

less o
ss garbage, and solves b
. . _ : i
easoning about Idealized Scheme programs in the C-system 15 @ more viable alter-
hative.

iting system instead of the

ssment, W€ shall
hat all results

Based on this assé
em 4.14 guarantees t

ussions. Theor

In the next chapter the C-rewriting

CEQTe
ESK-machine in all future disc
al CESK—senrlant

t for the desig

1CS.

extended A;-

carr e
y over to the origin
n of reductions for an

SV« :]
ystem serves as a starting poin
calculus. Together with the reductions, the rewriting semantics will then i
8 re; .

reasoning system for Idealized Gcheme:

5. The /\U-CS—Calculus

r Idealized Scheme should remind

iting system fo
n of the Ay-stan

e standard reduction evaluation

A]
O‘\
ser look at the program T€Wr
dard reduction function

the T
ead
= er of the alternative characterizatio
1. Promoe
po ~ ¢ 4 ks

sition 2.8. According t0 this propOSitiOH, th

ontext and a By~ OF §-redex. Then, an
) [e

o an evaluation ¢
and finally, the standard

dex by a new te

g system works 1

ﬁrst .
partitions a prograin int
rm,

a,ppr .
opria i
te contraction replaces the re
n the same way
o)

The C-rewritin

plays 2 diffe All but one of

eVal .
uation resumes the cycle-
except th

at the context-redex partitioning rent role.
queness of the partitioning, and

d on the uni

the t Lt
ransition rules crucially deper
he entire prograi. We

s not only alter the redex but t

furth

ermore, two of the rule

Cha‘ra’(l %

“teriz . e
erize this property of transitions 83 contezt-senszthty.

chapter with a study of the nature of context

W : ;
e begin the first section of this
that achieve the same

Jesign a st ©

f term relations

sensitive
nsitivit
y. Based on thi
is, we
relations are special, context

e notions of reduction some
s the basis of the

effe
cts. While most ar
m relations form

This set of ter
his chapter 1

ction contains the co

sensiti
ive computation relations.
s devoted to the problems

nd section of t
n. The last s€
ntics with the ¢

na}]_ theor fO 1
y for reasoning about

Kyl
v-CS
_.C ~
alculus. The seco
rresponden
ce

of
consi
. —
tency and standardlzatlo
alculus and vice vers
sa.

machine sema.

th
e()r; .

ems, which connect the
is an equatio

The :
main result of the last section

iml)e . §
rative higher-order programs:
108

109

3.1. R "
eductions and Computations

11 into three different classes: con-

rCl S' ‘(’ e eW/

t’E\ .

y comprises just (C6), the second (C1)

Eie
ontext or displace it. The first categor

The division implies two reasons for context-

and
(C5), the third (C7) and (C10)-

SenSitiVity_
valuation contexts uniquely

o C-redexes and €

irst, partitioning programs int
e for the delabeling

jtion is to occur: This 18 obviously the cas

det -
ermines when a trans
1 in an exact order such that the

steps must happ€
CESK—machin

rule. -

Assignments and delabeling
eXtensi .9

ional sequentiality constraints of the e are satisfied. A freely

Bl el
pplicable reduction of the form

VI — V[OI = VI]
would ;3
uld interfere with this Ordering. Simllarly, a mOdlﬁed ﬁ‘redUCtion ala
[z = V]

()\z..M)V — M

_ ' _ : .
d establish sharing relations ot the wrong B¢ Since this is a rather subtle

problem with a

1 example: Consider the expression

poi
int, we demonstrate the

SN K))(Ax-<Ay.<ay.<Au.yu>>x>o>.

CESK—machine, it yields K. If we use the above pseudo-

W
hen evaluated on the
we first obtain

rela 1 .
tion to simplify the argument,

/\”LL.OIU)):U),

(O K))(Aa-(90'

and s 4 !
this expression in tur? produces Apu KU

110

and g-applications not only need to be

Sec
econd, the transition rules for F-
nipulate the entire

nd give their argument con

context 1n order to achieve

tlmed
correctly, they also must ma
plications remove & trol over

th .
e appropriate effect. F-ap
terms in the context.

ace a pumber of sub

the cur
urrent context; g-applications repl
Considering .
sidering these observations, there 1s 1O hope of inding an equivalent set of
COnteXt_- e]
. insensitive reduction relations: by their very nature, imperative effects must
appen 1 i | i
in a certain order. However, the second kind of context-sensitivity suggests
ns were only discharged at

perative transitio

a .
pa s L

rtial solution. It indicates that if im
em: all effects would be concerned

e no extent probl
triction of imper

oordinates the timing of effects

the
root of a term, there would b
ative transitions to the

with
proper subterms of the redex. A res
at it naturally v

Troot, -
has the additional advantage th
of term relations: reductions

design two sets

ne of reasoning, We
status as ordinary no

Following this li
tions of reduc-

r have the same
« to the root of a
ation performs the proper imper-

and .
computations. The forme
ation context. Once

o bubblea C-rede

n evalu

t1
on, and their task is t

the
redex has reached the root, 2 computation rel

eep this system

notions of red

consistent, computation relations must

atl
ive effect. In order to k
uction, they cannot be applied

Unlike
f — for denoting

hav ¥
e a sub-privileged status.
y using P instead 0

to g
ubterms. We indicate this difference b

co :
mputations.
embles a Tace All imperative redexes 1n

new system res
s the root of a term. Whichever

An evaluation in the
g up toward

at : _
erm simultaneously start bubblin
ms an imperd Sequentiality 1s preserved

g of arrivals.

Tre .
dex gets there first, perfor tive effect.
This certainly differs from a

an . :
d coordinated by a ProPet schedulin
an acceptable

Jus, but as We 5

nofa calculus.

hall demonstrate in the sequel, it is

t‘ [
raditional calcu

& .
generalization of the notio
¢ with respect to the Au-

an 1s that 1t is not conservativ

One disadvantage of our pl

111

calcul

us. B imi]
ecause of the timing constraints, Vel A-redexes must apparently move

Fortunately, we can recover the B,-relation

to t
he root before being contracted.
owed the implicit convention th

hus far, we have foll
ts, but this is only P

it is only the assignable kind that

at

Wit <
h a simple observation. T
artially true. Whereas

all :
variables are the same kind of objec

an a-equivalence,

varia, i
bles in general manifest
Non-assignable variables

is relationship.

mic continuation of th

Necessitates a dyna.
r solution is to divide the set of

p- Accordingl}ﬂ ou

do i ng
not require a labeling ste
r each category:

We call these subsets

Vari .

ables into two disjoint subsets; one fo
Var

3 for non-assignable and Vars for assignable variables.
it the transition rule for the appli-

riable set, W€ spl

Given this division of the va
ach of them

accounting for a variable

cati :
on of A-abstractions into W0 sub-rules, €

z € Van, (C5a)

Cl(ha.M)V] <, oMz =V

and
Cl(\a. M)V ., C[Mz =), @ € Vers, 11 fresh. (C5b)
presents B Consequently, Bu wrid 8

nsensitive and re
nal subset of Idealized Scheme.

for the functio

e original one. Hence, we must

Th :
e first is clearly context-

remaj
1 A . . s
n the basic notions of reductiont

The second sub-rule, (C5b), is equivalent to th
e computation relation

ation relations
in the emp?

to simulate it. Th

desi
esign reduction and comput
y context. In short, it has the

1S

only used at the root of a term, 06
sar 1

ne form as the transition rule without 5| i

/ .
[z = Vi, = € Vare, 118 fresh. (85)

()\x.JVI)V > M
of the new label [18 possible because we identify label-

i
he non-deterministic choice
plicitly applie

and this rule ex

s to programs only.

oy
quivalent programs,

112

ex for (C5b) appears nested in an evaluation context, 1t

Otherwise, if the C-red
he computation relatio

1 takes care of the empty

must bubble up to the root. Since t
tion of two

context, the inductive definition of evaluation contexts requires considera
more cases: the embedding of a C-redex to the left of an arbitrary term N and to
he (C-transition rule says that the modified

the right of a value U. In the first case, b

a new application- the way to move the C-redex

A-body and the term N form Thus,

up is to include N in the \-body:

cl((a.M)V)N] — Clpa-MNIV], @ € Vare.

and therefore we adopt the context-free

This new rule is clearly independent of C[]
variant as another notion of reduction:
(O MVIN — (e MN)V; @ € Vore: (Br)
Based on the symmetry of the two cases, We suggest for the second one:
(Br)

(U(()\x]\/[)V)) — (/\gj.UM)V, z € Vars.

reductions rely on the hygiene convention and assume
e
and U, respectl

tion and comput

Like the B-rule itself, thes

vely, does not contain .

that the set of free variables in N
ation relations is now

The simulation of assignment with reduc
straightforward. The computation relation 18

l.
(O'UI.]V[)VP.Z\/I[.I = V]» (_UT)

s way t0 the root of a term with rules similar

an embedded a-application can work 1t

to those for a /\—application:

W) — (o X UMDV (or)

U((_JX.,M
(JX.(MN))V (o1)

(X MV

113

hnique cannot be applied as easily to the

Unfortunately, the bubbling-up tec
a o-capability, a labeled value does

d slabel;
elabeling rule for labeled values. Unlike a A- or

sed to gradually incorporate the term context.

not, :
contain a subterm that can be u
lication of the form

A o
possible solution is introduce 2 delabel app

(D MV

wh . . I '
ere D is an improper symbol, V! the Jabeled value, and M is an arbitrary term

which i
is to consume the value of V*.
ations, we can design an

ur within D-applic

Assuming that all labeled values 0¢¢
e root of a

ns and computations. A D-application at th

a .
Ppropriate set of reductio
te : i it1
rm simply delabels the labeled value/accordlng‘ to the C-transition rules—and
applie
Pplies M to the resulting value:
(Dr)

(D Mvhe M(V[O1 = V)

pression N, the D-application must some-

onsumer expression

the entire application would

in order to move

If ,
(D MV") is to the left of some €X

how ; '
incorporate the argument N into the €

“clog 3
oser to the top. In a modified C_rewriting sySte™

ply M to the rest
pstracting fro®

1 \v.MuN, a0

Jting value, and finally, the result of this

this informal de-

ﬁ =
rst delabel V', then ap
the value of V',

pplication would absorb N. A
d hence, the two reductions

SCription | .
ription is captured in the \-abstractio

fc .
r D-applications are:
(Dr)

(D (/\:v..MwN)X)’
(Dr)

(D MX)N —
U(D MX)— (D (_)\:v.U(lW:v))X).
ubbling-up of delabeling re-

pplications. Two

Now that we have €X
d values into D-a

de
%)
es, we must clarify how to

114

Definition 5.1: The calculus language Acs

Syntactic Domains:

a € Const (constants)

€ Vars (variables), Vars = Vary U Vars
zy € Vary, (non-assignable variables)
2, & Vars (assignable variables)

V€ Values (values)
! € Labels (labels)
M, Ne A (A-terms)

Abstract Syntax:

Mu=a |z | Qe M) | (MN)|(FM) |
(025.M) | (cV'.M) | (D Mzs) | (D MV).

Constants, non-assignable variables, abstractions, and capabilities are referred

to as values.
X is subsequently used for assignable variables and labeled values.

Programs are closed terms possibly including labeled values.

Acs-contexts are defined by two clauses:

Cl Ju=[]| | Qz.Cl)] (Cl M) | (MC[])|(FC[]|
(V[.M | (eX.C[) | (P MV])| (PC[]X)
VI Ju=[1] Ga.Cl D | (eV] |.M) | (¢X.C[])

The separation of contexts and value-contexts is necessary to avoid category

conflicts in the value positions of o-capabilities and D-applications.

® injects Ary- and Apey-terms into Aggs:

B(zx) = 22, B(zs) =D lag, &V') =D I1B(V),
®(a) = a, ®(A\z.M) = 2. ®(M), ®(MN) = ®(M) B(N),
S(FM) = FO(M), ®(ox.M) = od(z).®(M), eV M) = s®(V) . B(M).

115
pPossibilities : i
ilities are feasible: the ﬂa—computation could actually substitute assignable
e =)
ons, or the language c

ons. The former altern

ould be defined such that assignable

V3 5 .
ariables with D-applicatl
ative has the advan-

vari

iables only occur within D-applicati
ge directly subsume
ily enlarging the lang

they cannot be included in the

s the programming language, but

tag .
ge that the calculus-langua
uage. Furthermore,

it al)
so has the disadvantage of unnecessar
ent labeled values,

SinCe .

as)
assignable variables repres
second solution bec

ause it syntactically

we choose€ the

set of val
ues. Therefore,
new language, the definition of

highl; i
ghlights this fact. Definition 5.1 contains the
(_and Arew)-

I\CS_
contexts, and a map that injects AFo
C-transition constructs

The respective

o
lnally, we deal with]:—applications.
Jabels it, and then applies the

F -application,

a i :
inction from the context of the
cling is due to th

eled value. The lab
n the store Sin

s to satisfy @ modi

e design of the CESK-

f
i
argument to this lab
ce this 18 unnecessary, we require

alues 1

mac] v
hine, which contains all v
fied rule:

the & :
-reduction and computation relation

C[fM] — M(A:v.C[w]). ()

on must apply the F-argument to the initial

ACC s
ordingly, the computation relati

y the empty context:

continyat:
nuation represented b

FM > M(A22) (Fr)

eously bubble up an F -redex

must simultan

plies that they
o their way n
jon. Conside
arly, the functio

on. The rest of the context
bl

FOI‘ T
eductions, (CT7) im

p- Again, W€ simply investigate the
(FM)N and

and
e
ncode the term context O
r the expression

n \f.fN is a correct

two inductive cases of a context definit
ext C[] Cle
f-applicati
tjon. putting thes

Su o e ‘
Ppose it is embedded 11 & cont
e context of the

her F-applic®

encodin e
oding of the immediat
e two parts of the

e (1
» C[], can be encoded by anot

116

continuation together 1s straightforward: fN represents the immediate continuation
hat follows this applicati
est the following notions of reductions:

on, and hence, x(fN) is the

of g
the F-application, « the one t
entire . i d

ire continuation. In short, these ideas sugg

(Fr)

)N ———>7:(/\H-M(/\f-/f(fl\7))),
(Fr)

(FM
U(FM) L FOR MO AU)))-

n and computation relations for F ends the design
=]

The definition of reductio
of reduction and comput

lculus. The notions

next steps in our d

ation relations

phase of the \,-CS-ca
evelopment are determined

a - .

re collected in Definition 5.2- The
procedure outline
of reduction in a si

formed, yielding the one-step re-

d in Section 2.3. According to this

b
y the calculus-construction

all notions

ngle term relation cs.

Procedure, we first collect
patible closure is

Bas

se . N
ased on this reduction, a com
must account for five

different syntactic

The compatible closure
onstraints of subt
into the definition of Acg-contexts

dIlction — s
abilities and D-

cons 5 .
structions and two value-ness € erms 1 o-cap
erations are built
s in the formal sp

relation of the one-step reduction

applications. These consid
ecification of the calculus.

an : St . i
d, for simplicity’s sake, we exploit thi

inally, we define the reduction and congruence

relation: see Definition 5.3
n of the traditional A.-

conventional extensio

lus is @ simple,
r Idealized Scheme, we must go

lis a calculus fo

how include the com

T
hus far, our calcu

calc .
ulus. However, since our 802

ructions and someé

putation relations

be
\4 .
yond conventional const
y interference of computations

To avoid an

In or @ .
rder to emulate imperative effects.
hosen to define a computation as -

Wi .
ith the compatibility construction; W€ have ¢
elations. The motivation

n —>cs and the five computation T

uni .
hion of the reduct1o
n simulate one C-transition step:

behind this step is that one computation step ca

up a redex to b

putation relation can

he root and a com

t N .
he reduction can bubble

117

~ Definition 5.2: Reductions and Computations

o . .
he notions of reduction are

fa—f——*Vif(S(f,):V,VEA (6)

(Az. .M)V———-*M[:z: = V] (6)
U((Oze M)V) — (o (UMY (Br)
(e MVIN — (252 (MN)V (Br)
U(FM) — FAL M(Mw.k(UV)) (Fr)
(FM)N — FanMOSA(FN)) | (Fr)
U((eXM)V) — (e X(UM)V (or)
(o X.MVIN — (o X(MN)V (1)
v Mx) — (P D (w.U(Mv)X) (Dr)
(Dr)

(D WX N ===t (D (/\U,NIUN)\)

over Vars and labeled values.

where 2, € Vars, U,V € Values, and X ranges

Noz-i :
Non-indexed variables are from Varx-

The &))
he computation relations are

(FM)v > M(\z.7) (F1)
(AZq M)VDM[:LJ . /'] where 18 fresh (8,)
(oU .M)VDM[= V'] (o7)

=7 (Dr)

(D MV Ml Ve
We refer tO the left-hand sides of computations as

with the above provisions:
(computational) redexes.
stitution are adapte

Substitution and labeled- value subs

new syntax:

d mutatis mutandis to the

118

i i tational
perform the imperative action. On top of this computation, we define computat:

: ion. These
equality as the smallest equivalence relation that encloses the computation

relations are also summarized in Definition 5.3.

Definition 5.3: The \,-CS-calculus

The basic notion of reduction is
CS:/3vU(SUTLU.?-RUﬂLU//J’RUULUJRUDLU'D[g.

The one-step cs-reduction — s is the compatible closure of cs:

.W[-—-—QSN
if there are P,), and an arbitrary context C'

(P,Q) € cs, M = C[P], and N = C[Q]-

[] such that

on 1 i ex1 transitive closure of
The cs-reduction is denoted by —».s and is the reflexive, trz

. . 5 e WAL =pp
—¢s. We denote the smallest equivalence relation gener dt.ed by s B
and call it cs-equality.

The cs-computation b.s is defined by:

Dcs:fTUﬁa-UUTUDTU—_—»CS'

1 1 i jon g s. We refer to
The relation =, is the smallest equivalence relation generated by Pes We

it as computational equality.

The result of our calculus design is an untraditional two-level system: on the
lower level, it is a conventional congruence, on the upper one, a simple equivalence
relation. When we talk about the \,-CS-calculus, we refer to the relation =cs.
We write M 2., N or \,-CS® FM = N for derivations on this level. Although
weaker, the congruence relation =5 is traditional and interesting in its own right.

We consider it as a sub-calculus and use the notation A,-CS =M = N.

119

5.2. Consi
onsistency and Standardization
the definitio
n of a calculus, the question ari i
ises how this calculu
@ s compares
are two problems of immediate concern, namel
, namely,

‘Vlt ()1 he A E WOrK there
l, b (0] >) a b]

consist,
ency and standardization. Howeve
n 1 1
an ordinary logic or calculus
By

look
at the nature of variables in our system. 1
e role in proofs; they are simply placeholders for

vari
riables do not play an activ
ntains the more sophisticated category of

val :
ues and nothing else. Although Acs co

we can still prove a compar

and let [be a label such that | &

able substitution property:

assig 4
gnable variables,

Theo
rem 5.4. Let z)y € Var, %o e Vars,

L .
ab(MV') U Lab(NV):
(L) e

+-CS® FMV = NV implies k~CB™ FM[zy = V] = Nzy = Vi;

2,-CS° FM[ze = y!] = Nlzo = el

(i) X,

) A\,-CS® FMV = NV implies
_CS FMlzy = v
_ V'] = Nlzo = VY.

(i1
) A\e-CS M = N implies e] = Nzy = V];

(iv))\
) \y-CS M = N implies h-CS FMloe
atements (i) and (i) are equivalent to the condition

Ren
1ark. The antecedents in st
ymmetric difference of the label sets of

that t
he label set for V is disjoint from the s

proof of M Zis N introduces in M and N cannot

M ‘
and N, i.e., the labels that a

?

Inte)
rfere with the labels in V. End
from an induction Ou the structure of the proof and

Py
oof. The claims follow
elies on & generali

Pro .
ositi - : 1
position 4.12. The induction T sed version of the substitution

lemma;
Mlz = X]Jy = Yl =X = My =Yl = %] ity ¢ FV(X);

on and Jabeled-value substitution:

and .
on a commutation lemma for substitut1
Ml o % ; _

[z := X][o! := Ulz := x]' = Mo = e = X] if | ¢ Lab(X). .

120

We shall use the theorem in the following section on the correctness of the calculus.

It is stated here because of its logical nature.

As mentioned in Chapter 2, the consistency of traditional calculi is implied
by a Church-Rosser theorem. This theorem shows the confluence of two reduction
paths that proceed in two different directions from the same term. For our two-level
calculus, however, this is insufficient. We must prove in addition that a computation
step cannot interfere with the Church-Rosser property of the reduction system, i.e.,
that 1t cannot cause a divergence of derivation paths in the upper-level equivalence
relation.

From these preliminary remarks it follows that our generalized Church-Rosser

Theorem must be of the form
Theorem 5.5 (Consistency).

(i) The notion of reduction cs is Church-Rosser.

(ii) The cs-computation satisfies the diamond property.

The proof of the first part is a modification of the Martin-Lof proof for the original
Church-Rosser Theorem; the second part is a simple case analysis and relies on the

first part. Details can be found in the subsection.

The theorem implies the important

Corollary 5.6. If M =.; N then there exists an L such that M B L and N v}, L.

This corollary guarantees that the calculus cannot prove every arbitrary equation
because there are distinct normal forms, and that a program reduces to a value if

and only if it has a value.
The second basic question about calculi is whether there are standardized deriva-
tion sequences. Standardized derivation sequences constitute the basis for a semi-

decision procedure for equalities and are thus crucial for finding values and normal-

123

forms of programs. We again proceed in two steps. First, we must show that
there are standard reduction sequences in the reduction sub-calculus. Second, we
must extend the notion of standard reduction sequences to standard computation
sequences and prove their adequacy.

The actual definition of standard reduction sequences follows Plotkin’s strategy
for the corresponding work on the \,-calculus. In order to facilitate the presentation
in Section 5.3, we use the technique of Proposition 2.8 to define the concept of a

standard reduction and a standard computation function:

Definition 5.7.

(i) The standard reduction function maps M to N, M+—ss N, if there are P,
Q, and an evaluation context C[| such that (P,Q) € cs, M = C[P], and
N = ¢@].

(i1) The standard computation function is an extension of the standard reduction

function with computation relations:

'-L-)SCS = F—>s¢s UfTU/BgUUTUDT.

By adding in the computation after extending the notion of reduction cs to a stan-
dard reduction function, we ensure that root-level computation steps cannot cause
inconsistencies.

The step from standard reduction and computation functions to standard deriva-
tion sequences—CS-SRS-s and CS-Scs-s—is a straightforward generalization of the
respective step in the A,-calculus: see Definition 5.8. Care is taken to permit com-
putations only at the root of a term. The Standardization Theorem is stated for

the calculus and the sub-calculus:

122

Definition 5.8: Standard reduction and computation sequences

Standard reduction sequences, abbreviated CS-SRS-s, are defined by:
1. all constants and non-assignable variables are CS-SRS-s;

2. if Ma,...,Mpm, N1,...,Np, and W,...,V; are CS-SRS-s, then

Az M ;. i, Ae Dy,

MiNt,...,MuNy, ..., M¢nN,,

FMi,...,FMny,

oz.M,... 00 My and oV My, ...,oV]. My, ..., 0V} Mpn

D Miz,...,D Mpnz and D MiV),..., D MaV{,..., D MnV]

are CS-SRS-s;
3. if M——gcs My and My, ..., My, then M, Mj,..., My is a CS-sRs.
All standard reduction sequences are also standard computation sequences, CS-
scs-s, and if M ——,s M, and My, ..., M is a CS-scs, then M, Mi, ..., M 1s

a CS-scs.

Theorem 5.9 (Standardization).

(i) M——?,, N if and only if there is a CS-sRS Li,..., Ly with M = Li and
L, = N;

(i) M 2., N if and only if there is a CS-SCS Li,...,Ln with M = Ly and

L, = N.

The proof of the theorem is presented in the subsection.

With the Consistency and Standardization Theorems in place, we are on firm
ground. Consistency gives us the security that equations in the calculus malke sense,
Standardization provides an effective procedure for finding values of programs. We

are now ready to investigate the correspondence between the \.-CS-calculus and

Idealized Scheme.

123

5.2.1. Proofs for the Consistency and Standardization Theorems

The proofs of the Consistency and Standardization Theorems follow the same pat-
tern. For both theorems, the validity of the statement about the sub-calculus implies
the claim about the entire \,-CS-calculus. Furthermore, traditional techniques are
sufficient in both cases for proving the statements on the sub-calculus. The presen-
tation closely follows Barendregt’s [5:59-63] and Plotkin’s [47:136-142] expositions.
In many cases we simply state the necessary lemmas and show some prototypical

proof steps. It should be no problem to fill in the remaining gaps.
We first treat the Consistency Theorem:

Theorem 5.5 (Consistency).

(i) The notion of reduction cs is Church-Rosser.
(ii) The cs-computation satisfies the diamond property.

Proof. Let us assume the correctness of point (i). Then we need to show that
whenever M b.s L; for i+ = 1,2 and Ly Z 1asL2, there exists a term N such that
L; pes N. We proceed by a case analysis on M Des Ly

1. M =(FP)> P(A\z.z) = L.

The only possibility for a truly distinct reduction is M—»cs(F Py) = L2 where

P——.sP. This immediately implies that
(FP) > P(A\z.2).
Since we also have
P(/\(L‘.IL‘)——*CSPQ()‘:E':C)’
we can take N = Py(Az.z).
2. M = (Ag:.P)V b Pla, 1= VI] = L, where [is fresh.

First, we must consider the case

M = (Aes.P)V b Plo, 1= V™M

124
where m # [. At this point, we can exploit the knowledge that computations

can only be applied to an entire program. Hence, it follows that the label sets
of
Plz, := V™) and Pz, := V']

are 1somorphic, z.e.,

L1 =iap Lo.

Since we identify label-equal programs, this case degenerates to
Li =iap Ly =tab N.

Next, we must analyze two subcases because M contains two subterms:

a) Ly = (Azs.P2)V because P—» Py.
But then

(Aeo.P)V b Pofzg := V']

and the Substitution Theorem (5.4) induces
Plzy = Vl]—»esPofe = V'],

The label [can hereby be reused because a reduction cannot introduce new
labels and therefore [is still available for the computation step. Hence,
N = Bz, := VI].

b) Ly = (Aze.P)Va because V —sVa.
This second alternative requires a variant of the Substitution Theorem,

namely, that
Plzy i= U']—»sPlzs := V'] if U—csV.

Given this, the rest is the same as in subcase a).

125
3. M = (eW' PV Ple:=V] = L.
There are again two relevant cases: a reduction of M either transforms P or V.
The claim follows from calculations like the preceding ones provided that we

can prove the following two properties of labeled-value substitution:
Plo' = Ul)l—esPlo' i= V] if U—»csV,

P[OI fe= VI]——»CSQ[QI = VI] if P—¢s().

4. M = (D MV M(V[e := V) = L.

For this case we need the property
Ul = U']—»V]o = V] if U—>esV.

Otherwise, it does not add any new problems.

5-]\’I—‘»csLl.
There are two subcases possible: the second step can be a computation or

a reduction. In the former case, we have a situation that 1s symmetric to a

previous one; in the latter, M —.;L2, and the consequence holds because of
the assumed Church-Rosser property for cs.
In order to complete the proof, we must still show the following four properties
of substitution and labeled-value substitution:
Pla, = [Py 7= V']
Ple = U']l—»esP[o’ := V']
Ple' = VI|—».Qle = V']
Ul = U'|—sesV[o = V']
if P—5Q and U —»5V . The first two claims follow from straightforward induc-

tions on the structure of P. The third uses a structural induction on the reduction

from P to @ and is based on the commutativity of substitution and labeled-value

126

substitution (see Theorem 5.4). Finally, the proof of the fourth claim is a simple

combination of the second and third statement. O

With the preceding proof we have reduced the consistency problem of the A.-
CS-calculus to the consistency problem of the sub-calculus, i.e., the Church-Rosser
property of es. The proof of this is an application of Martin-Lof’s method for show-
ing the corresponding result for 3. The first step is to define a version of the parallel
reduction relation — for cs. For the proof of the Standardization Theorem we
also define a notion of the size of a parallel reduction: see Definition 5.10. It follows

from this definition that a value can only parallel reduce to another value. The

relationship between —».5 and —» is shown by the following lemma:

Lemma 5.11. cs C

&8 C—o *es-
Next we show that unlike the cs-reductions, the parallel reduction relation trans-

forms the expression M[z := N] into M'[z :

= N'] in one step if M and N parallel

reduce to M’ and N’ in one step, respectively. That is, two [,-contractums reduce
to each other if the subterms do. Furthermore, following Plotkin [47}, we simul-
taneously prove a statement that is needed for the proof of the Standardization

Theorem, namely, that this new reduction is shorter than the one from (Az.M)N

to M'[z = N}k

Lemma 5.12. Suppose M —» M’', N —» N’, and N is a value. Then the
following holds:

Mz := N] —» M'[z := N'] and sp{p:= N]—M'[z:=N"] < SOz M)N M '[z:=N"]:
Proof. The proof is a structural induction on the reduction M —p» M'. For

each possible group in Definition 5.10 of parallel reduction steps, we explain the

major proof steps with a typical example. In order to shorten the calculations for

127

Definition 5.10: The parallel reduction

The parallel reduction over Acs is denoted by — and is defined as follows,
where spr——n or just s is the function which measures the size of the derivation

M — N and n(z, M) is the number of free occurrences of x in M:
1. M —» M, 8=

-‘)

L.

if M —» M', N —» N, U —» U,V —» V', and W —p» w
then

Az M)V —» Mz := ¥, 8= SM M’ T n{a, l\/II)SN_r—»N’ +1

(FM)N —>» FAeM'(Af.k(fN'))), s = SM—wM + SN—N' T 1

V(FM) —» FOsM Qv.k(V'v))), s = sM—wpr + V=V + i

(Aze MYVIN —» (Aze.M'NYW', s = SM——sM' F SN—wN' & SV 1" =1

U((Aze. MYV) —» (Aze U MYV, s = spr—whr + SUU" + SVV" T 1

((cz.MYV)N — (0. M'NWV', s = spsbtr + SN N7 + SV V" 4.7
U((O':E-I\/I)V) —1” (\O'(I:.U,A/I,)VI, S = S‘/\[_l__»_,yfl + ‘SUT—H’U’ + Sv_l__»vl +]_
(eW . MYW)N —p» (oW".M'N")V',

8 = SWwW' + SM M’ T SN—=N' + sy v t 1
U((cWL M) — (oW .U MV,

1 .
5= SWorst' + SM bt + U0 F Vv 1

(D Mz)N —» (D (Az.M'zN")e), s = sy + s + 1

V(D Mz) —» (D (\a.V'(M'z))z), s = sM——M' + SV =V =

(D MWHN —p» (D (Ao M'=NYW"),
S = SW_wW? + SM oM’ + SNN' T 1
V(D MW —» (D (X2 V(M)W),

S = SW ¥’ + SM b’ + SV v T 1

3.if M ——%F A.'[’, N — l\/v,’ and V —» Vvl then

A M —» .M, (FM) —p (FM"),
(cz.M) —» (oz.M"), (D Mz) —» (D M'z),
where s = spr—wnr
(VI M) —» (aV''.M"), (D MV') —» (D M'V™h,

where s = SV V! F SM M’
MN —» M'N',s= SM—nM' + SN——=N'

128

the second claim, we introduce two abbreviations:

SL = SA[[.E::z\’]—l—w\I'[.v::J\”]7

SR = S$(\z.M)N 4M'[x:=N"]*

Furthermore, we use the fact that
M')s r+ 1
SR = SM——M' T n(z, |)bN—f—"-’\
and that therefore, the second claim is equivalent to

N .
s < sar et + 1, MO)SN -

1. M — M = M'. The result follows from an induction on the structure of M.

2. A typical case from the second group in Definition 5.10 is:
M =V(FP) —» FOsP(v.s(V'v))) = M,

based on V.—» V' and P —» P'.
The first claim follows from:
Mz := N) = (V(FP))[z := N]
= V[z := N](FPlz := NJ)
— o FOk.P'[z = N'Ow.s(V'[z := N')))
by inductive hypothesis for
Plz := N] —» P'[z := N'] and
Viz := N] —» V'[e:= N']
= F(Ax.P' (Mv.6(V'v)))[z == N']

=Mz := N

3. For the third group W€ pi

129

The second claim 1s verified by:

8L = ‘SL’[x::z\’]_-l—»V’[x;zj\”] + SP[.t::/\’]—l—-»P’[x::N’]
7 :
< sy—»v' T n(z, V')syN' + B T n(z, P')sy N

by inductive hypothesis for

SP[x:zA’]-T-»P’[xzzN’] and

2:=N']

SV[J:::N]-—l—»V’[
| + [n(z, P+ (@ VOls

= [‘SV—I—-‘*V’ 3 SP—r-»P’
< 'S]W—-l-—»]\/[’ + n(:z:, A/'[,)‘SIV—T""N' + 1

= SR-
ck the case

M =PQ— PQ =M,

and @ — &

where P —» P’
pothesis it follow

But then by inductive hy s that
Nl —» Q'lz = N,

Plz := N] — Plz = N'] and Qlz ==

and
o PN s -
‘SP[xzzN]—l——-HP’[x::N’] _<, Sp-r‘"[” T I’L(.L, P)01\ —+N
. N rr
sq=N@E= < st n(z, @)SN—=N"

From this we immediately get
= Pz = NQlz = N]

Mz = N]
[z = NQ e = N]

1 P,

=M'[z = N']

130

and

S = Sp[z:_,:]\'r]_r_‘,pr[x::‘/\r/] + SQ[J:‘;N]—T-»Q’[xzzN’]

< spwrt (2 P')sy et + Q@ T n(z, Q')SN "

< [,sp_l__,,,p/ + 3Q - -Q’] + [TL(:L', P’) -+ n(:z:, Q,)]‘SNT*N’ +1

= spr—wpt’ + 12 M")sy =N’ = 5B O

s a simple extension showing that the two

For our purposes, Lemma 5.12 require
contractums of F- and D-redexes also reduce t0 each other in one —p» -step if the
respective subterms do- As before, we add secondary claims for the proof of the

Standardization Theorem:
Lemma 5.12 (part I). Suppose M =77 VN — N,V —» V', and
W — W'. Then the following statements hold:
(i) FOwMOAfR(FN)) =2 FOwM (A FN')))
SF(Ax.M(A fR(FN)) T F ORI FRUEND) S S(FM)N-=F s MO f£(IN)
(i) FOwMOw.s(V) —T FOw M os(V')
Sf(An.M(AU,N(Vv)))_r»f(m.M'(Au.x(va») < SY(FM)T#FORM/(er(VV))
(iii) (D (\z.MzN)z) =77 (D (/\x.M’xN’)m)
—(D (/\x.M'zN')x) < 8D Me)N—D (Az.M'z NY)z)

S(D (Az.MzN)z)
(D (/\x.V’(M’a:)):c)

(iv) (D (A;x.V(M:L')):E) i

50 (e ()P eV) < sy(D Ma)T=(P Qa V' (M')e)
(v) (D (w.MwN)W') = (D O M wN W)
S(D (. MuwN)W) TP (A M'wN)W) < S(D MW)N—(D (. M'wN)W")
(Aw.V'(M'w))W”)

(vi) (D Q. V(Mw))W) (D
@ Qv ()W) TP OV (M)) < sy(D MWH—T(D (w V' (M'w))W")
forward calculations:

Proof. We show (1) with two straight

131

(fN) — Mf-(=(FN)),

M —» M’ hence MOf(&(FN))) — *M,()‘f(ﬁ(fN,)))’
(M OF(R(END)),

o FORMOfAEND)

N —» N’ hence AfdR

and M. (M(Mf.(k(FN))) = A
and therefore .’F(/\nl\f(/\f’V(fN)))

Similarl
Y5
=gy M’ T SN+

SF(ARM(X f.rc(_f]\’)))—rﬁ"f()\rc.]v[’(/\ FE(FNT)
<51W-—r-+"ﬂfl + 31\'-—1——»]\” + 1

=S(FM)N—F s ML 5(FN))

The proofs for the other statements follow the same pattern. O
Remark. Similar statements also hold for M=y AR™> 9L> and op-contractums, but

heir simplicity- End

are omitted because of t
and prove the diamond lem

ma for the parallel

Everything is now in place to state

reduction:
e relation — 17 satisfies the diamond property, i.¢.; M —

Lemma 5.13. Th
—» N fori=1,2.

N such that Li

L; then there exists anl
Proof. The proof is an induction on the structure of the reduction M —p» Li.
Again, we discuss three pI’OtOtYPical cases:
1. M —» M= pick N = Lo

)VL = L.

) — (oz.U1 P
possible subcases for the reduction from

Since U is a value, there ar¢ only tWO

M to Lo:
z.Py)Va) because g — U2 p—» B,andV — T

he inductive hypot
and & — 717" p; fori = 1,2

a) Ly = Ua((0
hesis yields terms Us, V3, and P3 such

An invocation of t
The claim

v,-IV.%

that U; — U3
= (Jx.U3P3)V3-

then follows from getting N

132
b) Ly = (cz.Us Py)V3 because U —» Uy, P —» DP,and V —» TA.
As in the preceding case, the term N = (ox.U3P;)V3 constitutes the missing
piece and can be derived with the help of the inductive hypothesis.
Other cases in this group make also use of Lemma 5.12.
3. M = (D Px) —>» (D Piz) = L; because P —» Py.
But then the only alternative for Ly is (D Pyz) where P —» P,. Again, by
inductive hypothesis there must be a Py such that P, —» Pj3 for: = 1,2 and
consequently N = (D Psz). O

From this lemma, the Church-Rosser property of cs follows:

Corollary 5.14. The notion of reduction cs is Church-Rosser.

Proof. Since — ., is the transitive closure of cs, it is also the transitive closure
of — . As a result, the reduction —»s inherits the diamond property from the
parallel reduction relation. O »

With the Church-Rosser theorem in place, we can tackle the Standardization

Theorem:

Theorem 5.9 (Standardization).

(i) M——?* N if and only if there is a CS-SRS Li,..., L, with M = Li and
Ly, =N;

(ii) M I—D—->:cs N if and only if there is a CS-sCS Li, ..., L, with M = L and

Proof. For both parts, the direction from right to left is trivial. The other direc-

tions need some elaboration:

(i) For the standardization property of the sub-calculus, we follow Plotkin’s plan for
the corresponding theorem about the),-calculus. First, the sequence of — ;-

steps is replaced by a sequence of steps using the parallel reduction —p . This

133

follows from Lemma 5.11. Then we iteratively transform the parallel reduction

g.srs. The basis for this s

be completed, we can prove (i) with

tep is developed in Lemma 5.16.

sequence into a C
the proof of part (i) can

f computation steps in the sequ

(1) for forming a CS-SRrS from M

Assuming that
ence from M to N.

an induction on the number o

putation steps, we can use

If there are no com
st one computation step and we must have the

to N. Otherwise, there is at lea

following situation:

*
Ll))CSLm g Lm+1 Dcs Ln'

n form a CS-SRS ByswrpdSl for the reduction Li—>csLm

Again by (i), we ca
Since Lm is a comput

L1 and K1 = L.

f this CS-SRS whose t
1LL7 = | there is a computational redex

where K| = ational redex, there
erms are related via the standard

is a maximal prefix 0
for some J,

., such that

reduction function, &€
K; of the same kind as Ly

R *
Lll—-f":cs I&j—"""csLm > Lin+1 Pes Ln

e case that K j—ses Kj+1- At this point, we can employ the

and it is not th
and interchange the computation

proof of the Consistency Theorem, part (i1)

step with the reduction sequence:

B *
K;v P—""»csLnH-l D.s Ln,

*
Li—5cs

e recast as

for some term P. But this can b

> Tt *
L1 ¥ ses P b Ln

pin the sequence from Pto L,, an

and, because there is one less computation ste
esis produces @ CS-scs for this second half

application of the inductive hypoth

134

of the reduction. Together with the first half, this yields the desired CS-scs

from M to N. O

For completeness sake, we include a precise formulation of the prefix-property
for CS-SRS-s:
Lemma 5.15. If Ny, ..., N; is a CS-SRS where Ny is a computational redex, then
there exists a j, 1 < j < k such that for all i,1 < ¢ < j, Nyj—>s¢s Nit1, and for
all 1, j <1 < k, N;j—>,sN;11 and it is not the case that Nj—sc5 Nit1.
Proof. By case analysis on N and induction on k.0

We can now turn to the completion of part (i) of the Standardization Theorem.
What we must prove is that sequences of parallel reductions can be transformed
into standard reduction sequences:
Lemma 5.16. If M —» Ny and Ni,...,Nj is a CS-SRS then there exists a
CS-sms Ly, ..., L, with M = L; and L, = Nj.
Proof. The proof is a lexicographic induction on j, on the size of the proof M —p»
N1, and on the structure of M. We proceed by case analysis on the last step in
M — N and treat three prototypical examples.

1. For the second possible group of parallel reductions we treat the case:
M = (D PVQ —» (D (Mz.PizQ)V}) = M

where P —» P, Q —> Q;,and V —» V1. But then, M can immediately
be standard reduced to (D (Az.PzQ)V'). Furthermore, from Lemma 5.12 we
know that

(D (A\z.PaQ)V') —» (D (\z.PizQ)V})
by a derivation that is shorter than the one for M —p» Ni. Therefore, by
inductive hypothesis, we can find a CS-sRrS from (D (\z.P zQ1)V}) to Nj from

which we build the required CS-SRS from M to Nj.

135

2. The first half of the third group in Definition 5.10 is represented by
M = (02.P) —» (cz.P) = Ny,

where P —p» P;. This implies that all N; = (oz.P;). Thus, it is natural to
consider the sequence

P—» P,B,..., P

1
Since P is a proper subterm of M, the inductive hypothesis applies and there
is a CS-SRS from P to Pj. Building a o-capability from every element in this
sequence with oz. ... yields the required reduction sequence.

3. The third example is taken from the second half of the third group:
M= PQ —» PiQ1 = N,

where P — P and Q —» Q). In this case, we must distinguish the two

alternatives of forming the sequence Ny, ...Nj:

a) Ni,...,Njisthe result of merging two sequences P, ..., Py and G ;= «u 5 Q1
Definition 5.8 (2). As in the preceding case, the inductive hypothesis im-
mediately produces two CS-SRs-s P, ..., P and @, ..., Qi and merging the
two sequences results in a CS-SRS from M to N.

b) Ni,...,Nj is the extension of a sequence Nz, ..., Nj where Nir——scs Ny

Definition 5.8 (3). Now, suppose we can show that

M e Nl*—“‘"scs JVQ

commutes into

Mt K —» N

for some K. Then the result immediately follows from an application of the

inductive hypothesis. O

136
The last lemma in this subsection shows that parallel reduction steps and stan-

dard reduction steps indeed commute as required by the preceding lemma:

Lemma 5.17. If

M " Li—sss N

then there exists an Ly such that

M —t

SCS

Ly —» N.

Proof. An extension of Plotkin’s proof of his Lemma 8 [47:140] goes through
with almost no change. It is a lexicographic induction on the size of the reduction
M —» Ly and the size of M and is divided according to the last parallel reduction
step. The last case deserves some explanation.

Assume that M = PQ —» P,@Q; = Li because P —p» P, Q — Q1
and Li—ss N. We proceed by case analysis on the standard reduction step and

consider a typical subcase:
Ly = (FP)Qi—ses FORP[(A.6(fQ1))) = N.
But, given that P —» F P/, we claim that there is an R such that

P—* (FR) —» FP.

SCS
With this, we can derive

PQ—* (FR)Q—ses F(Ae.ROf.6(fQ)) —» F(As.P/(Af&(fQ1))),

SCs

and hence, Ly = F(A&.R(Af.6(fQ))).
The preceding analysis shows that the claim of the lemma reduces to the fol-

lowing two statements:

137
(i) if M — N where M is an application and N is a M-abstraction or a com-
putational redex, then there is a A-abstraction or computational redex L such
that M——}.. L —>» N;
(ii) if an application M parallel reduces to a constant a or a variable z, then M
standard reduces to a and z, respectively.

Both statements can be verified with a straightforward induction on the size of the

parallel reduction. O

5.3. Correspondence

As discussed in Chapter 2, the correctness proof of a calculus requires answers to
two questions:

1. Do the machine and the calculus compute the same answer for a program?
and

2. Does equality in the calculus imply operational equality on the machine?
Since we have generalized the concept of a calculus, we cannot expect that the
respective theorems hold without modification. Our task in this section is to re-
formulate the relationships and to reassess the impact of the modifications on the
reasoning system.

For the functional subset of Idealized Scheme, the CEK-evaluation function and
the standard reduction function produce the same value for a given program. To
prove the equivalent result for the A,-CS-calculus, we must show that the stan-
dard computation function satisfies the C-transition rules. The proof statement is

familiar from the simulation lemmas in the preceding chapter:
+
if M S5 N then &(M) ., B(N).

This obviously holds for 8,- and §-contractions. Furthermore, the design of the

reduction and computation relations for A-, o-, and D-applications is so closely

138
oriented at the respective C-rules that a proof of the above correspondence is prac-
tically built into the definition. Only the relations for F-applications cause some
problems.

An F-application in the C-system applies its argument to Az.C[z] where C[]is
the context of the application. In the calculus, however, the continuation function is
eradually constructed from the context pieces. If M 1s embedded in C[[|N] and
K represents C[|, M is eventually applied to Af.K(fN), which is equivalent to
Af.K(]]N) filled with f. Similarly, an F-application that sits to the left of a value
V in some context C[] represents the continuation as the function M. KX (Vv). In
short, an F-application in the calculus applies its argument to a functional encoding
of the context that is formed according to the following algorithm:

[FP], = \z.z,
[CU(FP)M]), = MICIFPIL(FM),
[C[V(FP)]], = M.[C[FP]].(Vv).
Civen this characterization, we can formally state how the calculus computes 1m-
perative actions:
Proposition 5.18. Let C[] be an evaluation context over Acs. Then the follow-
ing relationships hold:
CUD MV s, CM(V[e' = V],
Cl(Aze M)V] *—D+jcs ClM|z = V'), where [is fresh,
CUF M) ., MICIFPL,
ClleU' M)V] 2T C[M][e" := V'),
Proof. The claims follow from an induction on the structure of evaluation contexts.
[Z]
The major consequence of this proposition is that a naive version of the simu-

lation theorem fails. Whereas in the \.-CS-calculus continuations are constructed

139

to simmulate the behavior of contexts, continuations in the rewriting system are con-
texts. Thus, when a continuation is to be captured after another one is invoked,
the transition in the machine and the one via the standard computation function
diverge: the rewriting system simply captures the current context, the standard
computatioﬁ sequence encodes the term that simulates the former continuation for
a second time.

Let us illustrate the nature of the problem with an example. Suppose the

continuation Af.D[fV] is invoked on the value U in the context C[!
Cl(Af-DIf VU] = C[DIUVI].

Furthermore, assume that the application UV evaluates to E[FM] after some f3,-

steps. Then the C-transition reaches the term M(Af.C[D[E[f]]]). According to

Proposition 5.18, the corresponding reduction sequence in the \,-CS-calculus begins

with:
C([DI(FM)VII.U) = C(Af.[D[FML(FV)U] — s CIDIFPITU V).
The next few J3,-steps are correctly simulated by the standard computation function:

ClIDIF P (U V)] 2., ClIDIFPE[FM]].

Now, this last term also constructs a continuation—just like C[D[E[F M]]]—except

that the continuation encodes the term [D[FP]], instead of the context D[[:
ClID[F P E[FM]] ., MIC[[D[FPI]E[FM]].

But clearly, [C[D[E[FP]]]], is not equal to [C[[D[F P]] E[FM]]]. and therefore

the two evaluation procedures proceed in different directions.

For simplicity, we assume that none of the involved terms contains assignable variables and that the

terms exist in both languages.

140

The best we can hope for is that the standard computation simulation of the

preserves 2 fxed relation betwe

bove proposition and the example one may

C-transiti s .
ansition function en contexts-as-continuations

and terms-as-continuations. From the a

ion like Af.C[D[f]] 1s related to the terms [C[D[FP]]]

suspect that a continuat
ituation in our example could recur many

and MC[-/FP]]]CD[.?PH]C. However, the s

contexts composing a new one, we would have several

times. Instead of having two
ations, others newly generated evaluation

of them: some representing former continu
of the relationship must

er contexts and for recursive 1nstances

contexts. A formal definition account for all possible finite

decompositions of a given context into small
This leads to the formalization of the relation &2, in Def-

of the above example.

connects continuation Ie€P

resentations in Arew t0 continuation

inition 5.19, which

representations in Acs-

tions in Apew and Ags

respondence of continua

Definition 5.19: The cor
to those in Acs:

The relation ~p compares continuations in Arew
re.Cla] = [CLIEZ Gl k' _ColF Pl

[] of evaluation contexts such that

for all finite sequences Cif)i-- Ca

— a1,

— C[1= 01[02[...071[]]],

— and for all 7 2 1s Coi—1] 17 Céi—-l[] and Az.Cailz] R K3,

for arbitrary terms, W€ add

. it s pQNPPQ’ EP g, FP;
O’V, _PI CL‘ NI_)D Ixo', V Np

and V=p V

DI,

£ Py P, QR Q',

exts by setting [1=~ [-

and finally, we extend the relation to cont

141

Afier To B . . .
£ rmalizing the corres ondence of continu t ;
g P f inuation representations, we can

ation theorem that correctly connects the C-evaluation function

finally state a simul
with the standard computation function:
Theorem 5.20 (Simulation). For all programs M € Ars,

evalg(M) =V iff (M) ;-"—-»ch U for some U such that V =2 U

The proof of this theorem is rather technical and may be found in the subsection.

nstant only to itself, the theorem immediately

Since the ~p-relation relates a co

implies

Corollary 5.21. For all programs M € Ars and a € BConst,

evalc(M) = a iff (M) gy e

rollary is the correctness of the mathematical program

A consequence of the €0
the machine and the calculus each

arity m,

interpretation. Recall that for a given
and Zyy» respectively. Their definitions

am M: My

assign a function to a Progt

are:
o Oy &) | evalc(Mar - -] = o}

c) | X,-CB > May...0n = c},

The following corollary shows that

My = {{a1, -
f;[= {(al,...,an,

where the a;’s and ¢ stand for basic constants.

the two functional interpretations always agree:

Corollary 5.22. For alln 2> 0, I = M)
efinitions are only concerned with basic, observable

Proof. The two function d
ple consequence of Corollary 5.21, which

e, the corollary is 2 sim

constants. Therefor
riting system and cal

says that the two systemS”YGW culus—produce the same basic

constants. O

142
Another, more important implication of the Simulation Theorem and the asso-

ciated corollary is that continuations in the C-transition system and a RZp-related

function in Acg are behaviorally equivalent. No matter which one occurs in a pro-
gram, the program loops forever, gets stuck, or terminates; if the result is a basic
)

constant, this constant is uniquely determined. Because of this behavioral equiv-
2 bl

alence, the definition of an operational equivalence relation for Idealized Scheme

is independent of the particular evaluation mechanism. In order to express this

relationship, we first restate the definition of operational equivalence in a generic

form:
Definition 5.23. M,N € L are operationally equivalent, M =~ N, if for any
arbitrary context C[] over L such that C[M)] and C[N] are closed, the evaluation

is undefined for both, or it is defined for both and if one of the programs yields a

basic constant, then the value of the other is the same basic constant.

The two instantiations of this definition that are of interest to us are Z=¢, rew and

~c cs. The first is based on Arew and evale, the second on Acs and the standard

computation function. Since both subsume Idealized Scheme, we automatically

have an operational equivalence for it. We must only show that the two definitions

are equivalent:
Proposition 5.24. M ~¢ rew N iff ®(M) ~ccs D(N).

Proof. From the Simulation Theorem and its corollary we know that—provided

termination—a program M and its injected counterpart (M) produce =2p-related

values. Since A2, relates a basic constant to itself, the result is immediate. O
Proposition 5.24 is particularly important for the second half of our investiga-

tions into the correctness of the A,-CS-calculus. The general objective of this phase

is to establish a link between the calculi and the operational equivalence relation.

However, unlike for functional languages, the calculus and the evaluation function

143

are defined over two different languages. Without the above proposition, this could
cause some technical difficulties, but the proposition implies that comparisons can
be based on ~¢ cs. Any equation that is provable for Acs-programs also holds for
the source programs in Apey (or Az, if they do not contain labels). Because of this,
we henceforth use ~¢, omitting the qualification.

The most important property of an operational equivalence relation is that it is
a fully substitutional theory. In other words, it satisfies Leibnitz’s Law that equals

can be substituted for equals:
M ~¢ N = C[M] ~¢ C[N].

For reasoning about programs, this is desirable: to be reusable, verifications and
transformations of program pieces should be independent of the context. Since this
latter condition holds for the reduction-based sub-calculus, we can expect that cs-
equality implies operational equality. Because of the computation relations, how-
ever, the context-insensitivity condition rules out that operational equality sub-

sumes compu.tational equality. Our first result is thus of mixed nature:

Theorem 5.25.

(i) If \,-CS+M = N, then M ~¢ N. The converse is false.

(ii)) A\y-CS® FM = N does not imply M ~¢ N, nor vice versa.

Proof. The proof of (i) and the right-to-left direction of (ii) are adaptations and

generalizations of Plokin’s corresponding theorem [47]: see the discussion following

Theorem 2.14. For the left-to-right direction of (ii), consider proof steps like
(FAd.0) =5 0

in M ;CS N. They are specifically restricted to the root of a term and thus cannot

be built into a congruence relation. The term (FAd.0) is clearly different from 0 in

all contexts except the empty one. O

144
According to this theorem, equational reasoning in the calculus is admissible
as long as the equations do not include computations. But these relations are pre-
cisely the basis for the simulation of imperative effects and an equational theory
for these effects is our central goal. Consequently, we must try to exploit computa-
tional equality and computations in a different way so that we can establish valid

conclusions about operational equalities.

As pointed out, the major discrepancy between computational and operational
equality is the context-sensitivity of the former: computation steps are only appli-
cable in the empty context. On the other hand, computation steps are required
because reductions alone can only perform the first part of a C-transition step.
Together, the two classes of term relations form a program relation which proves

equations of the form:

C[M] £ K.

In these equations, the context-sensitivity is represented by the evaluation context
C[]. This context appears in a possibly altered form in K. Hence, it 1s natural
to wonder whether a universal quantification over this evaluation context implies a

context-insensitive equivalence for M and N, i.e., whether
C[M] 2.5 C[N]

implies

M ~c N.

Unfortunately, the answer is no.
Although the suggested condition is quite strong, it is not sufficient. Let us

first illustrate some of its benefits. The condition clearly rules out arbitrary o-

contractions. If C[| contains a label [, a redex of the form (_(IUI..M)V clearly

145

interferes with the context. In the derivation
Cl(cU' . MV] Z.5 C[M][o := V'],

the replacement algorithm on I affects all occurrences of [-labeled values in C[.
Similarly, but in a more subtle manner, the condition forbids arbitrary 8,-type

contractions of the form

Az M)V = Mz :=V'].
The reason is again that some C[] may already contain the label [in which case
is not fresh.

Warning, part II. These arguments should recall that programs, but not terms

are considered modulo =j. End

The failure of the current proposal is caused by admitting unrestricted D-
redexes. Delabeling transitions never depend on the particular context, but on
the evaluation-ness of the context. Arbitrary D-contractions may interfere with
pending assignments. The crucial part of this observation is that bad timing of a
D-contraction collides with the specific value parts of labeled values. This problem
can be avoided, if we prohibit a theorem of the above form to depend on labeled

values. We call such a theorem safe and formalize the concept in

Definition 5.26. A theorem \,-CS® M = N is safe if for an arbitrary evaluation

context C|[| and some arbitrary values Vi,..., Va
Ae-CS® FC[M][o" := V]...[o" := Vyh] = C[V][e" := Wi"]...[e" := V1]

where Lab(M) U Lab(N) = {li,...,ln}.

The adequacy of the safety condition is encapsulated in the central theorem of

our work:

146
Theorem 5.27 (Safety). If \,-CS® WM = N is safe, then M ~¢ N.

Proof. Let D[] be an arbitrary context and assume that D[M] evaluates to a

basic constant a:

A-CS® FD[M] -y, a.

If M plays an active role in this derivation, a closed and possibly side-effected

- I . .
version M’ must occur in an evaluation context C[|:

24

\-CS® FDIM] ot CIM'] o a.

S

Without loss of generality, we can say that M’ = M[z = Ully := Vrle = W]
where z and y are the free variables of M, and [is the affected label that occurs in

M. From the principal assumption that there is a safe derivation for
A-CS ® FM = N,

it follows that

Ap-CS ® FC[M'] = C[N']
where N’ = N[z := U]y := V™][o/ := W']. The Safety Condition guarantees that
control- and side-effects cannot interfere with the proof. The Substitution Theorem
provides for orthogonality of variable substitution: its antecedent 1s satisfled because

U and V were a part of the program all along.
Given this, we can replace the above derivation by

>

A:-CS® FD[M] = C[N'] = C[M') vy G-

This can be done for every occurrence of M in an evaluation context in the rest of the
standard computation sequence and therefore the entire derivation is independent
of M:

Xp-C8 T FD[N] = a.

147

By the Consistency, the Standardization Theorem, and the corollary to the Simu-

lation Theorem, it follows that

b ¥

A,-CS ® FD[N] —scs @

as desired. O
Theorem 5.27 provides the basis for a useful equational theory about imperative
effects. To this end, we define the set of safe theorems

ThieSe = (M = N | M-C87FM = N and M = N is safe}

and form its compatible closure

Thefe = {C[M] = CIN] | M = N € Théafe and C[] is arbitrary}.

duction calculus and we obtain a quasi-

now be added to the T€

This theory can
heoremhood in this ex

tended calculus is denoted by

calculus of safe-theorems. T

A,-CS U Thefe b M = N;

we also use the abbreviations

M =cs,safe N and /\U—CSMfe FM = N

s all lower levels, i.e., v- and cs-equality, as

This level of the calculus comprise

well as imperative derivations whose effect 1S 1nv1s1ble to an outside observer. This
ed calculus areé gathered in a corollary to the above

and other facts about the extend

theorem;

Corollary 5.28.
oS M = N implies A-CS* =M = N;

() oy F M = N implies P

148

(ii) A\p-CS*¥¢ =M = N implies M ~¢c N;
(iii) ~c is the largest, consistent extension of =¢s safe and =, that respects equality

on basic constants, and that satisfies

— M 2o N implies C[M| ~=¢ C[N],

— M =~¢ N implies C[M] has a value iff C[N] has a value for all (closing)

program contexts C[].

This last corollary is a good starting point for a summary of our development.
Altogether we have defined 5 new calculus-related comparison relations. On the
static side, there are the extended a-congruence relation: =, on terms and the
label-equivalence: =4, on programs. On the dynamic side, we have the reduction-
based cs-equality: =.; on terms, computational cs-equality: Z.s on programs. and
the quasi-calculus of safe cs-equality, all of which are conservative extensions of the
Ay -calculus.

The mutual relationship of the term relations is simple: «a-congruence, v-
equality, cs-equality, and safe cs-equality form an ascending chain of equivalence
relations. Similarly, a-equivalence, = ;-equivalence, and computational cs-equality
form a chain of program comparisons. However, whereas the former imply opera-
tional equivalence on the CESK-machine, the latter donot. The purpose of program
relations is to compare labeled programs and to determine the values of programs.
It is therefore natural to call the system of term relations the reasoning part of the
calculus and the system of computation relations the evaluation part.

The disappointing part of our work is that, unlike in the pure framework, the
evaluation part of the calculus is not equal to the reasoning part and vice versa. That
is, we need two different systems for manipulating imperative programs, depending
on whether we want to evaluate programs or compare expressions. This is the

major difference between functional and state-of-the-art imperative programming

149
languages. Although this is disappointing, we shall show in the next chapter that
it 1s possible to live with the available tools: reasoning about imperative programs
can proceed in almost the same algebraic manner that we are used to from the

functional world.

5.3.1. Proof for the Simulation Theorem

Due to the mismatch between continuation representations in the C-rewriting sys-
tem and the A,-CS-calculus, the proof of the Simulation Theorem requires two parts.
The first part shows that the standard computation function correctly simulates sin-
gle C-transitions steps on related terms as long as the program does not invoke a
continuation. This part directly follows from Proposition 5.18. In the second part,
we prove that the calculus also handles the invocation of continuations in the right
way. More precisely, when the C-rewriting system evaluates a continuation invoca-
tion, then sooner or later the standard computation function transforms a related
continuation invocation into a related term. Together the two parts suffice to prove

that related programs have related results.

The following first lemma is a partial simulation result for the non-continuation
related sub-calculus. Since the result is later applied in situations where the respec-
tive evaluation contexts are not related, we do not include any assumptions about
the evaluation contexts. If we do know that the evaluation contexts are related as
continuation representations, we can also show that the grabbing of continuations

vields related terms:

Lemma 5.29. Let C[] and C'[| be arbitrary evaluation contexts over Arew and
Acs, respectively. Then, for M =, M' and V =p V', the following relationships

hold:

S TTTRR—

150

(i) if C[(D MVH) s C[M V(e = V'] then

C'(D MV ot MV e = V),

S¢S)

(i) if C[(\e. M)V] -5 C[M[z := V]| then

C'(Aa. MYV sl O M [z = V'));

b}

(iii) if C[(Aze.M)V] = C[M[z := V'] then

> +

C'[(Azg MWV sl C'[M' [z := V']

(iv) if C[(aU' MV] s C[M][of := V'] then

C,{(UCTII..’\/_[’)V’] ,_>_,+ C’[A/_’[’][.I i V’I];

SCS

and, furthermore, since M =2, M’ and V =2 V', we also have
Mz := V] &p M'[z = V'],
Mz = V'] p M'[z = V"),

Mle' = V'] m, M'[e! = V"],

(v) Finally, if C[(FM)] L M(Mz.C[z]) and Az.Clz] =, [C'[FP]],, then

C'(FM] =, M'[C'IFP]),

and M(\z.Cz]) ~p M'[C'[F P]]..

Proof. Parts (i) through (v) are consequences of Proposition 5.18. For the state-

ments about substitution and labeled-value substitution we observe that occurrences

of free variables and labels are orthogonal to the relation /2,. O

151

The most important consequence of the lemma is that we can henceforth ignore
the issue of side-effects. The standard computation function simulates side-effects
and delabeling steps correctly, and we consider it therefore unnecessary to overbur-
den the rest of the proofs with respective clauses. Strictly speaking, the subsequent
statements are wrong in the sense that they do not subsume the possibility of side-
effects, but it is clear that they can easily be fixed with the preceding lemma. We
exemplify the abbreviated statements with the following summary of the first four

parts of the lemma:

Corollary 5.30. Let C[] and C'[| be arbitrary evaluation contexts and let M,
M'" be related terms, i.e., M = M'. Then, a rewriting sequence from M to a term

N in some evaluation context D[|:
o BT
C[M] — C[D[N]|

without use of the transition rule (C7) or invocation of a continuation implies that

there are N’ and D'[| such that

C'IM'] T, DN,

S
N zp N and D[| =, D'[.

Next we must consider the invocation of continuations. From the discussion in
the main body of this section and Definition 5.19, it immediately follows that the
standard computation function does not simulate every C-rewriting step of such
an invocation on a step-by-step basis. On the other hand, we know that there are
only three possibilities for the outcome of such a rewriting sequence within a given
context: it may terminate with a value, it may yield a (first) F-application, or it
may diverge. The following lemma treats the first two of these cases. The proof

requires a measure of the relationships of the involved continuations: we call the

152

degree of the relationship I &2, I simple if
K =)a.Clw] & [C[FP]]: = K';

the relationship

-

K = 326G [Cyl. . . Cplz] . . J] &2 [€] [K5Cyls K G IFP) . ol S &
is of higher degree than all of the relationships \z.Cai[z] ~2p Ky;. With this defini-
tion, we can perform inductions on the relationships between continuations:

Lemma 5.31. Let C[| and C’[] be arbitrary evaluation contexts and let K,

- . ; . . - -1
7. V. and V' be related continuations and values, respectively, .e., I¥) L,

b
V =, VY, Then,

(i) a rewriting sequence from KV to a value W within the context C[|:
oy C.F A
CIKV]+— C[W]

without use of the (C7) transition rule (grabbing of a continuation) implies

that there is a value W' such that
C'K'V') oy C' W]

and W =p W';
(ii) a rewriting sequence from some M to V:

CIM] BT

without use of the transition rule (C7) implies that for every related M,

i.e., M =p M’ there is a value V' such that

C'IM'] T

CcS

C'[v']

153
and V a2, V'
(iii) a rewriting sequence from KV to a first F-application FM within the
context C| |

. G+
CIKV] — C[D[FM]]

for some term M and context D[] implies that there are M’ and D'[|

such that

C'K'V] s O [FM),

SCS

and M ~2p M' and A\z.D[z] =2, [D'[F P]]..

Proof. The proof of the first part is a simplified version of the proof of the following
third part. In order to avoid repetitions, we omit it. The second claim is a simple
consequence of the first part.

The proof of claim (iii) is a lexicographic induction on the number of rewriting

steps and the degree of ' &2, K. Thus, suppose the relationship is simple, that is,
K =)\z.E[z] and K’ = [E'[FP]]..

Since E[] = [] is impossible—otherwise the invocation A'V would immediately
return the value V—we must consider two cases:
a) E[] = F[U]]] for some context F[] and value U. Then E'[| = F'[U'[]]

and the two evaluation sequences proceed as follows:
CIKV] = CIFIUV]]

and

C'K'V'| woes C'[[F[FPI(U'V")).

Depending on the outcome of the evaluation of UV, there are three possible

subcases:

154

al) the evaluation of UV yields a value W without grabbing a continuation:
pipy G T
C[F[UV]] — C[F[W]].

According to part (i), the standard computation function produces a related

value W':

C'([F'IFPLU'V)] o,y CIF[FP)W).

SCS

Now, we can interpret the term F [W] as a continuation invocation:
ClOz. Flz))W) = C[F[W]),

and, furthermore, we know that this continuation invocation rewrites to
the assumed F-application in fewer steps than the original continuation

invocation K'V. Hence, an application of the inductive hypothesis yields the

desired result:

C'IIF[FPW'] =, C'[D'[FM]).

a2) the application UV directly results in an F-application without invoking a

continuation:

CIFUV] S CIFIDIF M),

Corollary 5.30 implies that the standard reduction sequence leads to a re-

lated F-application:
C'([F[FPILU'V") ~oy,, ClIF1FP)D{[FM]
where Dy | &, D][]. It follows that the contexts

D[1= F[Di[]]

al)

and

D[| = [FIFP.Dy[]

satisfy the required relationship.
UV rewrites to a (first) continuation invocation V] that in turn leads to

an F-application:
clFuv]] s iR KN - CIFIC D [FMI])L
Once again, we apply Corollary 5.30 and accordingly claim that
C'[F[FPNUV) o, CUFFPILCIE V]

where C1[] =, C][], K1 =, K|, and V1 =, V/. Since the rewriting
sequence

CIF[CE] Vs CIFICD M)

is at least one step shorter than the original one, we can invoke the inductive

hypothesis and get

C'[[F'[FP)CLEV]) oy C'IIFIFPILCLD[FM).

The induction hypothesis also yields that
\z.Di[z] =, [D'[FP]].
and therefore
\z.F[Cy[Dy[z]]] =, [[F'[F P)1.Ci D} [F Pl

as required.

156
b) E[| = F[[]M] for some context F[] and expression M. This case is treated
like a).
The preceding arguments mostly carry over to the case when the relationship

between K and L is more complex, i.e.,

K = Aa.Elz| s, [E][KJE][... K] _(E.[FP]..]}]. = &'

n—1

for some finite decomposition Ei[|,...,En[] of E[]. The only interesting dif-
ference is the case Ej[] = []. Then, the two transition sequences develop as

follows:

CIKV] s ClEL[. .. Eno1[V]. .]]

and

C'IE'V') Loses C'IELL... ELFP]. (KL V"))

At this point, we can again apply our trick and consider E,_;[V] as the result of

applying the continuation Az.En_1[z] to V:
. C . :
C[EL[...(Az.Enci[2]))V)...]] = C[E\[. .. En1[V]. .]].

If this continuation invocation yields a value W without grabbing a continuation,
we have

ClEV] LT ORI .. Eaca[W). .]

with at least one step, and, by part (i),
'KV) CIELL .. E_y[FP).. W]

CS

such that W =, W’. Applying the same trick a second time, we see that

ClO2.Erl. .. Enosla] .. JW] =55 CIDIFM]).

157
Even though this rewriting sequence may have the same number of steps as the

original invocation, the relationship
Az.Eyl... . Epglz]...] & [El[... B, _s[FP]..]l

is clearly of lesser degree than K =2, L. Given this, we can apply the inductive
hypothesis and get the desired conclusion.

If the continuation invocation (A\z.En_1[z])V directly leads to an F-application:
CIELL .. (A2.Epei[2])V)..]| > C[EL[. .. Enea[D1[FM]]..],

then we can apply the inductive hypothesis: even though we may not have reduced
the number of rewriting steps as compared to the original rewriting sequence, the

relationship A\z.E,—1[z] &2, K] _| is of lesser degree than K =z, L. Hence,

C'l[EL[. .. By y[FP). . N (K_ V")) oy C'lEL - BL_,|FP].. JL.D}[FM]

SCSs

such that Az.Di[z] =, [D{[F P]]., and, therefore,

D[|=Ei[... Ena[Di] 1]]

and

D'[| = [E[... B\ y[FP).. 1.D][]

are appropriately related.

The remaining subcases where E[| is non-empty are essentially treated like

the subcases a) and b) of the first half of the proof. Since there are no other cases,
this completes the proof. O

We are now ready to prove the main lemma of this subsection:

158

Lemma 5.32. M =, M’ and M rewrites to V:
My
if and only if the standard computation function maps M’ to a value V':
M l——D—>:CS 1%
and V =, V'.
Proof. With the help of the preceding lemmas, we can now prove that rewriting

sequences and related standard computation sequences proceed in a synchronized

manner. Given Lemma 5.29 and Corollary 5.30, we must only consider the case
M & CKV] and M oy, CIE'V),

where C[| &2, C'[|, K =2 K', and V =, V'. If KV yields a value U, then, by

Lemma 5.31 (i), K’V produces a related value U’ and
Gl &g C{T]

Otherwise, if KV rewrites into an F-application, then, by Lemma 5.31 (iii), K'v!
computes to an F-application such that the two terms build related continuations:

- +
CIEV] 55" P(Az.D[z]) and C'[K'V] —,, P'[D'[FM]],

such that

P(A\z.D[z]) =p P'[D'[FM]]..
Finally, if KV starts an infinite loop within C[], then K'V’ will also diverge.
Although the standard computation function may build a different evaluation con-

text,? the reduction starting in K’V’ will sooner or later produce related redexes.

This is an indirect consequence of Lemma 5.31.

>
2 The respective evaluation redexes are always related when interpreted as continuations, but may not be
related as contexts.

159
It follows from this analysis by an inductive argument that the termination
of the rewriting process implies the termination of the standard computation pro-
cedure, that two related sequences end in related values, and that, furthermore,
non-termination of a rewriting process implies non-termination for all related stan-

dard computations. O

The Simulation Theorem follows directly from this lemma:

Theorem 5.20 (Simulation). For all programs M € Ar,,

evalc(M) = V iff B(M) —.

CcS

U for some U such that V ~p U.

Proof. Since ®(M) is related to M, i.e., M =, ®(M), the antecedent of the

preceding lemma is satisfied and the conclusion is immediate. O

6. Reasoning with the AU-CS—Calculus

eveloped an equational theory for imperative

In the
e two preceding chapters we haved
st demonstrate that reasoning with the A,-CS-

hig]
1er-or
gher-order languages. NOW W€ mu
s an interpretation of the

The key to this experiment i

calce i
ulu Vi v
s is a viable endeavor
major role.

.
orems and propositions in the preCeding chapter- Four factors play a
he use of the calculus 10 conjunction with

o demonstrate t
eces and their oper-

irst, our goal is t
SS proofs concern progran pi

corre
ctnes .
ness proofs. Since correctne
al to work with the theory

it is natur

atio)
nal equivalences to other
will generally be a mixture of

of saf,
vfe cs-equality. This means tha

derivations 1

nology

ional cs-equality. In

redueti

ct

ion-hased proofs and safe

use the perml nguish-
5 safely equi

N™ because of t

«M 1s operationally indisti

Many ¢y
y circumstances, W€ will
valent to V. This should not be

E‘L])le . 3 ;
: from N” after proving that M 1
he division of the cal-

“M evaluates to

plies the former unlike in the functional

confyus ;
fused with the statement

CulL - i
15 into two levels, the 1atter no longer 1

Wworld.
e can Carry over

alculus. Hence, W

3
econd, the \,-CS-calculus subsut®
nctional calculus. For

all
co :
nventions, theorems, and pr
nctions by recursion induc-

quivalence of two total fu

as if 1t wer

C}{arn
ple, we can prove the €
e a value when it is operationally

tio

I'l- W .

. we cag, Ereat an expression M
ae; or, We can call 2 function F pure when FV is

indigt; .
1stinguishable (:s) from & val

160

161
operationally indistinguishable from a value U for every argument V-—even if the
function is not a A-expression. However, the subsumption does not mean that every
statement in ~cpy is true for ~c. Whereas the first relation compares results of
terminating computations, the second relation compares results and effects. It is

therefore important that statements about functions are verified in the calculus.

Third, since the calculus is an equational extension of the C-rewriting system
(Theorem 5.20), we can freely mix reductions and C-transition rules in equivalence
proofs. Rewriting rules are of particular importance when we employ Theorem 5.27
for the construction of correctness proofs. We shall use this in many of the following
examples.

The fourth and final point is not a conclusion from the theorems but is a state-
ment about them. As pointed out at various places, the programming language and
the calculus have two independent fragments: the control and the assignment part.
Appropriate reformulations of the theorems hold for both subsystems. Indeed, the
two were developed separately [15, 18, 20] and only merged into a single system af-
terwards [17]. This natural fragmentation is welcome because it allows us to study
the two classes of programs in isolation.

The first two sections of this chapter are dedicated to the control and the as-
signment fragment. Each section has two parts. The first is a discussion of the
specific properties and principles of the respective system, the second a collection
of examples. The third section contains two examples that make use of the full

language and calculus.

6.1. Reasoning with Control
The control fragment of the \,-CS-calculus is rather simple. The language is that
of the classical A-calculus, enriched with F-applications. This means in particular

that the programming language and the reasoning language are the same. The

162

a:\’io .) N .
ms of the system are the 0-, the B,-relation, and the three F-rules. For the

reader’s or . . . _—
ler’s convenience, we have collected these notions i Definition 6.1.

Definition 6.1: The control fragment of A\-CS

Term lar
m language Ar:

Mao=alzl o.M | MN | FM

Reduet; :
uctions and Computations:

fa — 8(f,9)

(Ae. M)V — M [z := V] provided V is a value (B.)
(FMYN — ?:(/\k.A/I(/\m.k(mN))) (Fr)
V(FM) — F(Ak_j\/'(.,\'lz.k(\/n))) prOVided V is a value (Fr)

(FM)v M(\z.z) (Fr)

Meta-rule:

CIFM] — M(z.Clz))

<t C[|-

for every evaluation conte

The absence of labeled values greatly facilitates reasoning in this fragment.

ithout labels, safety considerations about Jderivations become superfluous. We

capty e sy
Ire this in a corollary to Theorer 5,27

COI‘OH&I‘Y 6.2. Let M and N be inAr. Then M =C N if \-CS” +C[M] = CIN]
for .

r all evaluation contexts C| | over AF.
Equipp o Wikl thicae general observations we continue the F-related program-

]j.ll ! 1 S 1 K 1 \Y
I e 1 . rDTesSSs ay a central role 1n W of

hese examples Intuitivelv (throw L V) ehmmates the current continuation and

conty e : o e T
Nfinues with the evaluation of L V. From the preceding chapters we know that a

163

valuation context. Hence, we call formalize

continuati v e B
nuation of a program p1ece 15 its e

ssions by analyzing their actions in these contexts:

tl A .
1e behavior of throw-expré

P . it .
roposition 6.3. Supposeé F is a value and M an arbitrary expression.

(1) ,\v_cssafe }'—F(throw i I/’) = (throw LV)?

(i) X,-CS*efe \(throw LV)M = (throw LV)-

Py
oof. The proofs are trivial, €.9-s

y = L F(M.LV) by definition

- (FAk.(Ad.LV)(/\v.k(F'u))

A,-CS FF(throw LV

throw LV). O

_ (FARLV) = (

.. * which i
ition to the correctness proof of X which 1s our

Next we apply this first propos

function with e

Xceptional fow of control. According to

Prototypical example of 2
. o binary tree unless the

its s . .
specification, the function is to

ase the function

must producc 0. Assuming the existence

a 0, the behavior of T on a tree

tre :
o ,e) . . s
contains 0, 1n which ¢

of 3 :
A predicate occur0? that tests the presence of

T &
can be specified by

(5o T) =¢ (if (occurO? 7)0 (S*T))

v* relies on the exit—facility, which in turn is based on
=0
* yses Proposition 6.3:

The
e implementation of
proof for X

th

row. It is therefore natural that a correctness

P . o
roposition 6.4. For all binaty pumber-trees T, 55 satisfies:

3oy - O =T = (if (occurO? 7)0 (£*T))-

—

164
Proof. Let us recall f in a slightly de-sugared form:
Sy = M. F(le.e((rec (s t) =
(if (empty?¢)0
(if (zero?(info t)) (throw € 0)
(+(infot)(+(s(lson t))(s(rson)))))))
1)) .

Since this function obviously manipulates its entire calling contéxt, we use Corol-
lary 6.2 for the proof.

Let C[] be an arbitrary evaluation context. Then an application of Ij to a

tree T in C|] proceeds as follows:
Ae-CS ® FC[Z3T] = C[FAe.e(S.T)] = (Az.Clz])(Se[e := (Az.Clz])] T),

where
Se = (rec (st) =

(if (empty?¢)0
(if (zero?(info t)) (throw € 0)

(+(infot)(+(s(Isont))(s(rsont))))))).

Now we must show that S, behaves correctly. Given that (occur0? T') is either True
or False, we can split the claim into two sub-claims:
(1) A\-CS*¥¢ b-(occur0? T') = False implies \,-CS*Y¢ (S, T) = (=*T)
(ii) Ae-CS*¥® (occur0? T) = True implies \,-CS**® H(S,T) = (throw €0)
Assuming that both hold, the rest of the proposition follows easily:

Ap-CS ® F(Az.Cz])(Z*T) = C[Z*T] = C[if False 0 (X*T)],

Ae-CS ® H(Az.C[z])(throw (Az.C[z]) 0) = C[0] = C[if True 0 (Z*T)].

The first derivation uses the convention that expressions with an operationally in-

distinguishable value are treated as if they were a value.

165

For the proof of part (i) observe that (occur0? T') = False implies
(zero?(infot)) = False

for all subtrees ¢ of T. Hence,
Au-CS*¥* 1= (if (zero?(info t)) (throw e0) (+(infot)(+(s(lson ¢))(s(rson t)))))
= (+(info t)(s(Ison ¢))(s(rson t))))
for all recursive stages in the evaluation of S.. By induction, the coﬁsequence of (1)
holds for the entire tree 7.
The proof of part (ii) is also an induction on the structure of T' but with the
hypothesis:

(Set) = (throw €0)

for all subtrees # containing 0. First suppose 0 occurs at the root of ¢. Then the
claim is immediate. Otherwise, 0 must be in one of the two subtrees. If the left

subtree contains 0, the inductive hypothesis yields:
Au-CS*% -(Sct) = (+(info t)(+(throw e0)(Se(rson t))).

But by Proposition 6.3 throw eliminates this kind of context—(info t) represents a

value—and therefore (ii) follows. If the left tree does not contain 0, then (S.(Isont))

1s equivalent to (Zf(Isont)) by (i). From this, we finally get
Ap-CS*% (S, t) = (+(info t)(+(Z*(Ison t))(throw €0))) = (throw €0). a

Beyond its immediate result, the preceding proof offers a strategy for similar
exit-programs. We call this strategy exit-induction. It applics to all programs that
are regularly recursive, except for some finite number n of exception conditions. The

strategy requires n+1 routine inductions on the primary information-structure: one

166

for the regular case, one for each exception. This is quite natural and corresponds

to the folk wisdom that calls for a similar testing strategy.

For a further illustration of exit-induction, consider the function II, which re-

turns the product of a list of numbers:

1L s rec (p) = (f (7D (x(carD)(p(ecdr DD

Although the function is correct, it 1 inefficient. Given that 0 collapses the product,

Il must satisfy
A,-CS* e H(IIL) = (if (occur0? L) 0 (IIL)).

But this looks almost like the speciﬁcation of Ep. & straightforward inversion of

the principle of exit-induction leads to the speciﬁcation of the function Il by
2,-CS*%F H(I L) = (if (occur0? L) 0 (ILD)).

a : ,
nd an implementation as

d
Ho_——i

(function L ((rec (P I =
(if (null? 1) 1
(if (zero?(carl)) (exit 0)
(*(Carl)(P(Cdfl)))))) L)).
In exchange for at most 7 extra tests, the function avoids all multiplications if the

list contains 0. The correctness of I 18 captur6d n

Proposition 6.5. For all lists of numbers L
A\, -CS*e (Mo L) = (if (occurO?L) 0 (IL)) = (IIL).

From the perspective of program developmeﬂt7 this second example is more rele-

vant. Instead of writing down @ prograi and mdependently verifying its correctness,

167
we have used the exit-induction principle for the construction of the program. As

usual, the proof is then a mere exercise.

Besides the use of F-applications for loop- and function-exits, there are few
other examples that use control information and solely rely on functions. In par-
ticular, continuations that are passed out of their original context—first-class con-
tinuations—are mostly useful in conjunction with state variables. We resume this

topic in the last section after investigating the use of side-effects in the next.

6.2. Reasoning with State

As pointed out at the end of Chapter 4, the assignment fragment as depicted in
Definition 6.6 is more complicated than the control fragment. The major difference
between the two systems is that the addition of assignment to a functional language
is insufficient for reasoning about programs in the extended language: another
necessary addition is a linguistic facility for expressing sharing relations, e.g., labels.
However, the presence of labels makes proofs of operational equalities more difficult.
To be useful, the resulting theorem must respect the full safe-ness condition as
formulated in Definition 5.26. Although this formal definition is easy to understand
and well-suited for the proof of Theorem 5.27, it 1s impractical for real work in the
calculus. It is therefore our first priority to develop more insight into the nature of
safe theorems.

A safe theorem is the result of some derivation in the top-level of the \,-CS-cal-
culus and a safe-ness check for the resulting theorem. The check consists of verifying
a set of derived equations as theorems. The easiest way to perform this second step is
to see whether modifications of the original derivation prove the modified equations.
From the converse perspective, we could say that if a derivation automatically

verifies derived equations, then its resulting theorem is safe. Accordingly, we call

such derivations safe.

168

Definition 6.6: The assignment fragment of \,-CS

Term language Ayp:
Mu=al|zy | Ae.M | MN |ozo.M | DMzs | cVIM | DMV
Reductions and Computations:

fa —s Vif§(f,a) =V,V € A (8)

(Az. M)V — Mz := V] (Be)
U((Aze . M)V) —> (Azo . (UM))V (Br)
(Aze. M)VIN — (Azo.(MN)V (BL)

(Ao MOV & Mz, = V'] where [is fresh (Br)
U(eX.M)V) — (e X.(UM)V (or)
((c X.M)V)N — (¢ X.(MN))V (or)

(cU' M)V > Mo := V'] (o)

U(DMX) — (D (M.U(Mv)X) (Dr)

(PMX)N — (D (M.MvN)X) (D)

(DMV!Ys MV[e := V'] (Dr)

Meta-rules: !

Cl(A\zs.MYV] — C[M[zs := V]|
Cl(oU' M)V — C[M][¢ := V']
| =&

C[DMV MV := V]

for every evaluation context C[].

A derivation is obviously safe if it transforms an Idealized Scheme expression
into another one: since such expressions do not contain any labels, they can neither
affect nor be affected by their context. This means that derivations can safely
establish sharing relationships if they are guaranteed to disappear in the theorem-
terms and that they can freely assign to and delabel such derivation-local sharing

relations. Although this sheds some light on safe derivations and is highly useful as

169
we will see later, it is not always possible to rely on theorems in Idealized Scheme.
Many of the intermediate steps in such proofs involve statements about terms that
contain labels, and it is therefore necessary to look more closely at what can happen
to a non-local label and its associated value during a derivation.
Due to the Consistency Theorem and its corollary, we can fortunately restrict

our attention to derivations of the form
Mp* L *a N.

According to this corollary, an equation M = N must have such a derivation.
Furthermore, because of the transitivity of safe cs-equality, we can always restrict

our attention to such fragments in a given derivation: if each piece is safe, the

composition is safe as well.

Next, we must analyze the effect of creating, assigning to, or delabeling labeled
values in such derivations. Thus, suppose a sharing relation is created during a
derivation and persists in only one of the terms in the resulting theorem. As men-
tioned in the discussions preceding the design of the fs-relation (Section 5.1) and
the definition of safe-ness (Definition 5.26), such a derivation cannot be safe because
it may establish a sharing relation too early. Put differently, a sharing relation of a
safe theorem may not originate within the derivation: an arbitrary replacement of

the labeled value will always interfere with the B,-step. Thus, if a sharing relation
is created during one half of a derivation, there must be a symmetric J--expansion
step in the other half.

Assignments (on non-local labels) corrupt the safe-ness of a derivation in a

cruder way. If assignments are discharged arbitrarily, they can only affect the

currently visible labels:

(oFalse’ (D | False'))True = (D | True').

170

The resulting theorems depend on their specific context and are incorrect in others,

e.g., replacing

(cFalse'.(D | False'))True

with

(D | True')
in an expression like

(Az.(D | False'))((oFalse! (D | Falsel))True)

would lead to the contradiction

True = False.

It follows that assignments—just like B,-steps—must come in do-undo pairs. That
is, an assignment in one derivation half is undone by re-assigning the old value, or
if there are assignments with a lasting effect in one half, there must be at least one

un-assignment in the other half to undo the effect. For example,
(cV (VI M)UW = Mo .= U'][e' := W] = (V. M)W

is a perfectly safe derivation: the final assignment to ! will be performed by either
term independently of the context.
Finally, delabeling steps need a more subtle analysis. Again, a single delabeling

step is unsafe, but consider the following situation:
Ko(D V) = Ko(V[e' :=V']) = 0.

No matter what the value V is, this equivalence holds in any context because the

value simply disappears. On the other hand, if the value is actively used in some

subsequent derivation step as in

(if (D | True') True False) = (if True True False) = True,

171
the derivation becomes unsafe: in a context where True' is first changed to False' this
equality cannot hold. A delabeling step like this can only be safe if it is preceded

by an assignment in the same derivation:
(o' .(if (D | Truel) True False))True = (if True True False) = (rml.True)True ;

the value part of the labeled value is then known, no matter what the use-context
will assign to it.

At this point, a clarification of the terminology “use of a value” is necessary. In
the course of an derivation, two things can happen to a value: it may or it may not
be a direct part of a redex (in the sense of a C-redex). That is, a value may either
occur in the function or in the argument position of an application; or, it is only a
proper sub-part of a redex. In the first case, we say that the value 1s used because
the value may impact the derivation. Furthermore, we distinguish the notion of
actively used when a value actually does have an impact on the derivation. For a
constant this means that it must be used in a é-transition; for abstractions actively
used means that they are in function position during a .- or fs-step. Other uses
of values are called passive.

Based on the preceding arguments, we can now precisely characterize safe deriva-

tions:

Proposition 6.7. A derivation
Mb>*L*N.

is safe iff it satisfies the following conditions on labeled values in M and N:
1. none of the labels in M and N originates from a f3;-step in the derivation;

2. if there are assignments to a label | in one half of the derivation such that the

value of a labeled value part is changed, there must be at least one assignment

to this label in the other half;

172

(9%}

if a labeled value is delabeled and actively used thereafter, the delabeling step
must be preceded by an assignment;
4. if a labeled value V' is delabeled, occurs in L, but is only used passively, then

there must be a delabeling step in the other half that yields this Vel := V7]

in L.

Proof. The direction from left to right is trivial. If suffices to show that the
negation of any point leads to unsafe theorems. This can be done with the coun-
terexamples from above.

For the opposite direction, we assume that the four conditions hold and show

that modified versions of the derivation also prove all theorems of the form:
ClM][o" == Vi"] .. [o" := V;h] = C[N][e! := Vi"]. . [:= V;b]

for an arbitrary evaluation context C[] and arbitrary values V; ...V,. First, since
C[] is an evaluation context, reductions carry over directly, computation steps
must be pre- and post-fixed with an appropriate series of reductions. Second, by
assumption 2 every assignment step with an impact on C[L] is undone by the other
half of the derivation. It follows from these two arguments that the derivation can
be embedded in C[| without problem.

Third, we must trace all values V; through the derivation and show that the
replacement cannot interfere with the derivation steps. Three cases are possible:
a) V! is part of a Br-expansion so that the label disappears. However, this is ruled

out by assumption 1 which says that none of the labels in M and N originates

from such steps.
b) V! is delabeled and actively used thereafter. This contradicts assumption 3,
which requires that an assignment precedes such a delabeling step. But given

the assignment, the replacement of the original value with V is irrelevant.

173
c) V! is delabeled, but not actively used. If L does not contain V(e := V], the
replacement is again irrelevant; otherwise, by assumption 4, there is a (n inverse)

Dr-step in the other half of the derivation that reconstructs the labeled value

1" and thus satisfies the replacement of the [-labeled value in the second term.
Since there are no other cases, this concludes the proof. O

Subsequently, we will rely on this proposition whenever we use computational
equality for the derivation of safe theorems. As a direct consequence, the proposition
vields a first meta-rule on stating safe theorems. The proposition requires that all
transitions with globally visible effects come in do-undo pairs. Thus, a derivation
of the form

C[M] Zc; D[V] Z5 C[M]

is automatically safe: the left part performs the effects, the right one undoes them.
Of course, this is a useless derivation. What we would really like to see is an equiv-
alence between non-identical terms. Yet, the idea behind tiliS case is important.
Suppose we can prove

Ae-CS ® +C[z] = D]

for some evaluation contexts C[| and D[|. Is it then possible to replace z by
an arbitrary term M since M is guaranteed to affect both sides of the equation

during its evaluation? The answer is positive provided M evaluates to some value
regardless of pending assignments:
Proposition 6.8. Let M be an expression, V a value; let Lab(M) = {ly,...,Ix}

and let {ki, ..., kn} C Lab(M). If for some evaluation contexts Ci[] and Cy|]
Ay-CS**% |-C)[z] = Ca[x] (1)
and if for all values V1, ..., Vi, and for some values Uy, ... U,

Ay-CS® = Mol := Vil e = V] =

fori1 = 1,2 then
A -CS*e -C1[M] = Cy[M].

Proof. The proof is simply.a matter of checking the safe-ness of the consequence
according to Definition 5.26:
A-CS ® F D[Ci[M]][e" := Ti"].. . [#" := V']

= D[C1[V]][8" := Vi"]...[eM := Vi,][ef := U1 F] .. 0" = U, %] by (2)

= D[Cy[V]][e" := Vi"1].. . [oM := Vi lm][8f1 := U1 F1] . [ohn i= 17, P

by substitution and (1)
= D[Cy[M]][e" := Vi"].. . [o" := V] by (2). O
Together with the Substitution Theorem, this proposition provides the foun-

dation for stating operational equivalences with implicitly universally quantified
(non-assignable) variables. Since these equations hold for all values, we are free to
replace all variables by labeled values—they automatically satisfy the antecedent—

or by arbitrary exzpressions with values if the variable occurs on both sides in an

evaluation context. A useful example is:
Ap-CS*e bnlay . an = a; for 1 < < n.

This equation means that for all (labeled) values Vi,...,V, the selection function
mi" picks the i-th value, and, by the second argument, that this ;-th expression can

be any expression if it has a value, i.e.,
=GP B By o B o s 8, = D forl <z €< m.

The importance of this particular statement is that begin-expressions are ab-

breviations for m-applications, and that side-effects in expressions can easily be

175
characterized as effect sequences in begin-blocks. It follows, for example, that if

an expression M in a begin-block is operationally equivalent to a value, then
Ap-CS* -(begin MM, ... M,) = (begin M, ... M,).

Convention. In the rest of this chapter we use assignable variables and labeled
values as abbreviations for delabeling applications of the form: (D | +). The moti-
vation behind this is that equivalence proofs never use D-reductions, but delabeling

C-transitions instead. End

After this theoretical, in-depth consideration of safe-ness, let us now apply the
fresh insight to the first assignment-programming example from Section 3.3: the
implementation of cells with higher-order functions and assignment abstractions.

Recall that the three major operations on cells are:

df ,
mk-cell = Azy.Am.mze(0zs.20),
df
deref = Ac.c(Azs.z) = Ae.emy,
dj
set-cell! Ef Ae.c(Azs.s) = Ae.cma.

The result of a call to mk-cell is a functional value with a new sharing relation:
A-CS ® Fmk-cell 2 = Am.ma' (o2’ .2").

The value is not operationally indistinguishable from the application because of the
newly introduced label [. Put differently, the calculus respects that every call to
mk-cell creates a new, distinct cell-object. To avoid some notational overhead, we
use the abbreviation

(mk-cell z).

It denotes a cell-object, indicating the sharing relationship [as a superscript to the
entire expression and the current contents as z. When necessary, we expand the

abbreviation to the above abstraction.

176
The effect of a set-celll-operation can be characterized by an operational equiv-

alence:
Au-CS™ =(set-celll (mk-cell z) y) = (r22/(cal.2!))y = (oal.al)y.
In the same manner, we can specify the result of a deref-operation on a cell:

Au-CS*Y (deref (mk-cell z)) = (rie!(oa'2)) = 2!

The disadvantage of these equations is that they are of a rather low-level nature.
By connecting specific operations on a cell with facilities in the underlying language,

they uncover too much about how cells are structured. More abstract equations in

the style of algebraic specifications are preferable. In the functional fragment—see

Section 2.5—such equations specify operations by showing their mutual interaction

without relying on the coding. For example, the effect of car is related to cons by
(car(consz y)) = z.

A transliteration of this algebraic style and the particular example to the cell-

world means finding an operational equivalent of
(deref(mk-cell z)).
With the above characterization of deref and mk-cell, this is rather simple:
A.-CS ® H(deref(mk-cell z)) = (deref(mk-cell)) = 2! = z.

The last step is valid because [is introduced by the derivation and cannot be part
of z. However, the essence of a cell is that it can change its contents with set-celll,

and that deref can fetch this new value. In other words, we should be able to show
Ay-CS*F I (begin (set-celll (mk-cell 2) y) (deref (mk-cell)

= (begin (set-celll (mk-cell z)' y) y).

17T
Because set-cell! does not return the cell, the begin is necessary in order to express

the appropriate sequencing of actions.! The proof is a simple calculation:

A:-CS* k(begin (set-cell! (mk-cell) y) (deref (mk-cell 2)') (1)
= W%((O’l‘l.l‘[)y).’lll (2)

— (awl.wg;lel)y (3)

= (o2 .2y = (set-cell! (mk-cell 2)! y) c {4

= (o' y)y (5)

= (_a:cl.vr%xly)y (6)

= m3((oz’ . y)y (7)

= (begin (set-celll (mk-cell z)) y). (8)

All steps in this proof, except (4) to (5), are simple reductions or safe statements
about the selection function #7; the transition from (4) to (5) is discussed below
in Proposition 6.10. The fourth step also yields a slightly simplified version of the

operational equivalence.

Continuing with the transliteration of the algebraic strategy, we ask what the
effect of an immediate assignment to a cell is. At first glance, the question is about
the term

(set-celll (mk-cell z) y),

but given this, another possibility comes to mind:

(set-celll (mk-cell 2)" y).

An appropriate theorem for cons—cells could be written more elegantly as

(car (set-car! x y)) = y.

178
This second term expresses the possibility that the cell survives the effect because

it already exists in several places. This is. for example, the case in the expression
(let (¢ (mk-cell z)) (begin (set-celll ¢ y) ¢))s

which we treat as prototypical.

Of the two possible cases, the first is the less interesting one. A simple calcula-
tion proves that the two operations cancel each other
A-CS ” F=(set-cell! (mk-cell z) y) = (set-cell! (mk-cell z)' y)

= (a:tl.ml)y
= y'

The second case requires a more sophisticated derivation:

Av-CS” = (let (¢ (mk-cell 2)) (begin (set-cell! ¢ y) ¢))

= (begin (set-celll (mk-cell 2)) (mk-cell 2)') (1)
= (73((o2' 2" yy)(mk-cell 2)") (2)
= (o2’ 722! (mk-cell))y (3)
= ((ca' (mk-cell 2)"))y (4)
= (mk-cell y)' (5)
= (mk-cell y). (6)

The proof step from line (4) to (5) depends on the uniqueness of [with respect to
the context; the fs-steps in (1) and (6) are the necessary inverses of each other so
that | does not survive the derivation.

Finally, we can ask what the interaction of two set-celll-operations is. Again,
there are two possible cases: the operations may affect the same cell or different

cells. A typical expression of the first kind is

(begin (set-celll ¢ z) (set-cell! ¢ y)).

179
Intuitively, the second operation must cancel the first, s.e., the first is invisible to
an outside observer. This is verified by
A,-CSsafe | (begin (set-celll (mk-cell u)l z) (set-cell! (mk-cell u)l y))
= ,-r.‘j(('au{,u[);L‘)((O'U]-U{)y)
= (o .r;;)u(((yaul.ul)@/))x
- (Jul.(aul.ul)y\)l'

= (ou'ul)y
= (set-cell! (mk-cell u)" Y).

The second case is treated similarly. We consider the expression
(begin (set-cell! ¢ z) (set-celll d y)),

where ¢ and d are distinct cells, and prove its equivalence to
(begin (set-cell! d y) (set-celll ¢) y).

With the following equality about the connection between deref- and set-celll-opera-
tions:

(set-celll (mk-cell z)' y) = (begin (set-cell! (mk-cell) y) y)
and the fact that nested begin-expressions can be linearized, the required calcula-

tion becomes

A\u-CS*Y |- (begin (set-cell! (_mk-cellu)[z) (set-celll (mk-cell v)* y))
= (begin (set-celll (mk-cell u)' @) (set-celll (mk-cell v)*) y)
= m (o' w')z)((ov* v y)y
= (ou1.7r§'u1((avk.vk)y)y)x

k

= (ou' (o0

7r33 u! U"y)y)x

180

k 1k

= [gv .(Jul.rrgu viy)z)y
= (avk.('aul.ﬁg u[y)x)y

= (avk.rg((aul.ul)a;)y)y
= (_av‘fw%v“(gu’.ul):L')y')y
= 7r§((ka.Uk)y)((aul.ul)a:)y

= (begin (set-cell! (mk-cell v)* y) (set-celll (mk-cell w) 2) y).

For the convenience of the reader, we have collected all of the above statements

about the three major cell operations in

Proposition 6.9. Let ¢ range over cells. Then

(i) \u-CS* \~(deref(mk-cell 2)) = ;

(ii) Ap-CS*Je 1=(set-cell! (mk-cell 2] Y] = W

(iii) Ap-CS*¢ (let (¢ (mk-cell z)) (begin (set-celll ¢ y) ¢)) = (mk-cell y);
(iv) A-CS*Y¢ -(begin (set-cell! ¢ z) (derefc)) = (begin (set-cell! ¢ 2) z);
(v) Ay-CS*J¢ ~(begin (set-cell! ¢ z) (set-celll ¢ y)) = (set-celll ¢ y);

(vi) Let d be a cell that is distinct from c:

Ay -CS** (begin (set-celll ¢ z) (set-celll d y))
= (begin (set-cell! d y) (set-celll ¢ z) y).

The proofs of the above statements share several characteristics. First, they all
rely on a partial expansion of syntactic abstractions into Acg-expressions. This is
bearable for small examples, but for larger ones we must develop strategies that
correspond to the right level of syntactic abstraction. Second, once the syntactic
abstractions are eliminated, the proofs are mostly manipulations in the reduction
system. This makes them automatically safe. Finally, the central parts of the
proof are some universal statements about o-capabilities similar to the one on the

selection functions #n*. We have also collected these statements:

181

Proposition 6.10.
(1) %y Cigente }—(rf'ul.((aul.ﬂf);r))y = (O'UI.A/[)LL‘,'
(if) Ay -C5% l—(rful.('(J'Uk.‘\[).z'))y = (_avl‘.((m/.ﬂ/f)y));v;

(iii) A\-CS* Y =(oul uhe = (oul.2)2.

Proof.

(4) A-CS ® F (ou'.((ou . M)z))y
= (ou M)zle :=]
= M[o' := yf][o' := 2]
= Mo :=z[o :=]| =, M[e' :=2'] (%)
= (ou' . M)a;
(1) A-CS® F(ou! ((ovf M)z))y
= (0" M)z[e := 4]
= Mo = y/][e" :=z[e' :=4]] -
= M[of := 2*][o := y[o* :=2F]] (¥)
= (ov*.((ou! M)y))a;

(iit) A-CS® (ou' u))z

=17 [0" == .Ll]
=2'[8' = 2] = z[e' 1= 2l][= &) =, z[o' = 2] (*)
= (aul.:v):v.

The three steps marked with (*) should recall that a-congruence ignores inner

occurrences of labels. Also, by writing

z[o =]

182

we indicate that z could be a value with occurrences of the label I This is possible

because [is not created during the derivation and desirable because z may represent
self-referential values. O

As a further illustration of the above principle, we prove a property of the
eq?-operation on cells

df
eq? =

Aciea.(let ((z1 (derefer))(ag (derefe)))

(begin

(set-celll¢; 1) (set-celll ¢y 2)
(let (e (= (derefcy)2))

(begin

(set-celllcy x1) (set-cell! ¢y 29)
e))))-
The operation compares the identity of cells as cells as opposed to contents. Hence,

eq? is characterized by:

Proposition 6.11. Let ¢ and d be distinct cells. Then,

Av-CS*¢ t-(eq? c¢) = True and A,-CS*¢ F(eq? cd) = False.

Note. A consequence of this statement is

Ae-CS*Y |(eq? (mk-cell 2) (mk-cell 2)) = False.

Proof. We prove the first half of the statement, the second half being similar. By

a minor generalization of Proposition 6.9, we can reduce the problem:

183

A-CS** t-(eq? cc) = (let (z (derefc))
(begin
(set-celll ¢ 2)
(let (e (= (derefe)2))
(begin
(set-celll ¢ 2)

e))))-

The rest 1s a simple calculation:

Ao-CS ® F(let (z (deref (mk-cell z)')) (1)
(begin
(set-celll (mk-cell z)! 2)
(let (e (= (deref (mk-cell z)!) 2))
(begin
(set-cell! (mk-cell z)' 2)
e))))
= (begin (2)
(set-celll (mk-cell z)' 2)
(let (e (= (deref (mk-cell 2)') 2))
(begin
(set-celll (mk-cell 2)' z)
€)))
= (let (e (= (deref (mk-cell 2)')2)) (3)

(begin

184
(set-cell! (mk-cell 2)' z)
e))e := 2]
= (begin (4)

(set-celll (mk-cell 2)! z)

The derivation is a degenerated instance of the safe derivations described by
Proposition 6.7. A term is simply reduced to a value. The safe-ness of the as-
signment steps is guaranteed because the second one undoes the effect of the first,
the safe-ness of the delabeling step is based on the embedding between the two
assignments. [

The lesson of this proof is simple. Proofs should rely as much as possible
on abstract specifications & la Proposition 6.9, but we cannot expect that these
specifications are always sufficient. If they are not, we must be ready to use a less
abstract way of reasoning and to generalize the low-level proofs to new high-level
characterizations. We return to this problem in the last chapter when we discuss
related and future research.

Up to this point, none of the discussed specifications concerned higher-order
functions. Although the underlying computations rely on function-valued functions
for modeling state variables, the abstract equations are independent of their exis-
tence. This is different for the Yi-combinator, which we discuss next.

The combinator

Yi = Af.(Ag.(0g.9)(Az.fgz))l

is an alternative means for creating recursive functions. The claim is that, given

185
a defining functional F for some recursively specified function, Y1 F returns the
fixpoint of F and hence the appropriate meaning of the definition. With all the

practice in correctness proofs about state variables, this claim is easy to prove:

Proposition 6.12. Let F be a value. Then,
Ae-CS* Y\ Fz = F(Y\F)z.

Proof. We calculate:

A-CS % FY1Fz = (\go.(0gs.90) (A2 . Fgoz))lz (1)
= (ol (2. Fl'e)z (2)
=(z.Flz)z (3)
= (\z.F(Ae.Fl'z) z)a (4)
=F(\2.Fl'z)e (5)
= F((ol N Fllz))z (6)
= F((A\go-(09s-9o)(Ax.Fgsz))l)z (7)
= F(Y\F)z. (8)

The strategy of the calculation is simple. Steps (1) through (5) unfold the term
Y1 Fz until there is the term of the structure FMz. Since F[|z forms an evaluation
context, the rest is equally simple: steps (6) through (8) invert the first four steps,
thus undoing the effects that make the first half of the derivation unsafe. [

The proposition finally verifies some old folklore among compiler builders. As
mentioned in Section 3.3, Y) builds faster recursive functions than the functional
fixpoint combinator Y, on ordinary machines. Therefore, compilers build recursive
functions with truly self-referential closures instead of self-application as in Y,. For

this reason, even implementations of functional languages provide recursion as a

186
built-in syntactic facility so that it can be realized with this imperative strategy
[36, 43, T1]. Since the two levels are separate, correctness arguments are generally
informal. The advantage of Idealized Scheme is that the two aspects can be treated
in the same language and reasoning system, and that the reasoning system is capable
of proving the fixpoint-property of Y.

A problem with our proposition is that it does not prove the uniqueness of the
fixpoint. Since in general there are many fixpoints of functions, it is not clear which
solution is produced by a fixpoint combinator. For the functional fragment it is
possible to prove that Y, produces the unique, minimal fixpoint with respect to an

approximation ordering [70]. Again, for Y; this is an open question.

6.3. Reasoning with Control-State

The two fragments of the A,-CS-calculus almost cover the entire programming lan-
guage Idealized Scheme. Programs requiring the expressiveness of the entire lan-
guage are those that must store control contexts in variables. In Section 3.3, we
discussed two such cases: iterate-until and generator. The first construct uses
a single-assignment variable, the second a true control-state variable. Both are
characterized by operational equivalences; we prove the correctness of these.

The purpose of the iterate-until-loop is defined by the following equation:
(iterate F over V until P) ~¢c F™V
where m = min{i > 0 | P(F'V) = True},

for all pure functions F, predicates P, and values V. That is, the loop computes
the values V, (F'V), (F(FV)),... and returns the first that satisfies P. The original
specification also requires that F' be defined on all values V, (FV), (F(FV)),... An

immediate consequence is that

P(F'V) =, False for 0 < i < m,

187

where m 1s as above.
A functional implementation of iterate-until relies on recursion:

daf

(iterate F over V until P) = (rec (I v) (if (Pv) v (Fv))V

= Yo(Muv.(if (Pv) v I(Fv))V.
The correctness proof for this version is a simple induction:

Proposition 6.13. Let F, V, P, and m be as specified above. Then

Ay -CS*¢ |(iterate F over V until P) = F"V.

Proof. We first prove the following invariant:

Au-CS*Y (iterate F over V until pP)

= (if (PV) V (iterate F' over V until P)).
This part uses the fixpoint property of Y,:

Au-CS*¢ |-(iterate F over V until P)
= (rec (I v) (if (Pv) v (Fv)))V
= Y. (Ao.(if (Pv) v [(Fv))V
= (if (PV) V (Yo(Alo.(if (Pv) v I[(Fv)))(FV)))
= (if (PV) V (rec (1 v)(if (Pv) v I(Fv)))(FV))

= (if (PV) V (iterate F over (FV') until P)).

The rest is an induction on m. Clearly, if m is 0, the invariant shows that
iterate-until yields V. Otherwise, m is greater than 0. But then (PV) is False,
and (iterate F' over (FV) until P) yields F™~!(FV) by the inductive hypothesis.

O

188
Our imperative version of iterate-until is an Idealized Scheme version of a
good compiler’s output. We refer to it as iterate!-loop:
(iterate! F' over V until P) 1(‘:Ji (let (i; 1)
(let {z Flol.LV])

(if (Pz) z (throw I, (Fz))))).

For the correctness proof we can actually follow the strategy of Proposition 6.13.

The important part is to re-prove the invariant:

(iterate! F' over V until P) = (if (PV) V (iterate! F over V until P)).
In order to show this, we use the upper level of the \,-CS-calculus:

A-CS*® C|(iterate! F over V until P)]
= C[(let (1, I
(let (¢ F(oly.1;V))
(if (Pz) z (throw I, (Fz)))))]
= C[(let (z F(ol .I'V))
(if (Pa) « (throw I' (Fz))))]
= C[(if (PV) V

(throw (\z.C[if (Pz) z (throw I' (F2))]) (FV)))]

At this point, we must use the assumption that (PV') either holds or doesn'’t.

In the second case, the result is obvious; in the first, we need a few more steps:
A-CS*® k... = C[(throw (\z.Clif (Pz) z (throw I' (Fz))])! (FV))]
= C[(if (P(FV)) (FV)
(throw (\z.C[if (Pz) @ (throw I' (F2))))! (F(FV))))]

= C'[(iterate! F' over (F'V) until P)]

189

Together, the two cases imply the above invariant. An appropriate proposition

follows:

Proposition 6.14. Let F, V, P, and m be as specified above. Then

K- CGE S F(iterate! F over V until P) = F™V.

The iterate!-example shares the folklore-property with the Yi-example. The
recursive version is a special case of a tail-recursive function, and good compilers
should eliminate tail-recursion in favor of goto-s and register assignments, i.¢., they
should generate the imperative version of iterate!. Once again, we have verified (a

parficular instance of) a well-known optimization technique.

The generator example is more complicated than the imperative iterate-until-
2 p p
loop. It is an inherently imperative construct and cannot as easily benefit from
8 3 p
proof techniques for some functional counterpart. The equational specification of

(generator n vec) is given in Section 3.3 as
Vi,..., Vuln ~¢ (let (G (generator n [Vi,...,Vuln)) [(G)), ..., (GD]n).

An expanded implementation of the generator-form is
(generator n vec) = F(Aco.(let (gr 1)
(begin
(F(ogs.co Ad.(F(ocs.go 1))))

(F(ogs.co (] vee)))...(F(ogs.co (7] vec)))))).

A first attempt at a proof of the above statement results in the following situa-

tion. For every evaluation context C[], we must show that the vector

b

[Gl,...,Glh

190
vields the above vector if G stands for the generator. Performing the calculation in
a naive way, we realize that every position of the vector function becomes the hole
of an evaluation context—from left to right, that is—and that in the end we really
obtain the desired vector. However, this method is too low-level, and it is indeed

possible to deduce a more abstract characterization.

A generalization of the generator specification directly leads to the envisioned
abstract generator theorem. Instead of considering the entire vector, we assume

that we only look at some evaluation context D[] with possibly free G-s in the

body of the let-expression:

(let (G (generator n [Vi,...,Valn)) D{(GD)).

The very same method now yields a more interesting result. Let us first introduce

the abbreviation
(generator n [Vi,..., Vy]n)¥!

for the value
Ad.F(oc* (Az.begin F(og . V) ... Flog vy,
which for some arbitrary ¢ and g and some fresh labels [and k, is the result of
(generator n [Vi,..., Vo]n).
It 15 hereby important that ¢ stands for an arbitrary value, i.e.,
A\p-CS*¢ = F(ock M) = F(od" . M).

This follows from
A\e-CS ® FC[F(ock M) = ((ocf . M)(Az.C[z]))
= M[e" =)\:U.C'[ar]k] =

= ((od* . M)(\z.C[z])) = C[F(ad".M)).

191

Under these provisions, we can derive the following:

Av-CS” FC[(let (G (generator n [14,..., Valn)) DI(GD])]
= C[D[GI][G := (generator n [Vi,..., Valn)"]
= C[D[(Md.F(oc* (Az.begin F(ag . Vi) ... Flog Vi) 1]
[G := (generator n [V1,..., Va])"']]
= ((oc".(A\z.begin F(og' Vi) ... Flog V)Y D)
(Ax.C[D[z]])[G := (generator n [Vi, ..., Va]a)*))
= (begin
F(og'.(\2.C[D[z][G := (generator n [i,..., Vi)' 1A)...
Flog .(\e.C[D[z][G := (generator n [Vi,. .., Vil)F] Va))
= ((0¢".(\2.C[D[2][G := (generator n [Vi,..., Vil V1)
(Az.begin F(og . 15)... F(od .V))
= C[D[V1][G := (generator n [Vi,. .., Vala)**]]
[01 := Az.begin f(agl-ckv'z) s j:(Ugl-C?kVn‘){]
= C[DVI][G := M. F(oct ((Ax.begin F(og . Vo) ... F(ad .V) D]

= C[D[V1][G := (generator n — 1 [Va,..., Valne1)]

This last step is justified by the above observation that ¢ in the abbreviation for
the generator-value is arbitrary. As before, the transition has again led to a term

from which we can extract a variant of the starting term by undoing one of the

previous steps:

... = C[(let (G (generator n — 1 [Vo, ..., V;]o—1)) D[V1])].

Clearly, the derivation is safe:

192

Proposition 6.15. Let C'| | be an evaluation context. Then
(1) forn > 1 and G possibly free in C[|,
Ao-CS* H(let (G (generator n [Vi, ..., Vi) Cl(GN])
= (let (G (generator n — 1 [Va,..., Vi]o_1)) Cvi])

(ii) for n > 1 and G not free in C|],

Ap-CS*Ye (let (G (generatorn [Vi;...,ls)) Cl(GN]) = Cc[W).

Proof Note. Part (ii) is a consequence of the proof of part (i). O

This proposition is a rather general statement about generators and can serve

as a specification. One of its consequences is the original generator-equation:

Corollary 6.16.

A -GS K14, ..., Vil = (let (G (generator n [Vi,...., Vala)) [(G1),. ... (GD]u).

Proof. The proof is a simple calculation in the safe level of the \,-CS-calculus:
A-CS*Ye 1(let (G (generator n [Vi,...,Vala)) [(G)),..., (GD]n)

= (let (G (generator n — 1 [V2,..., Vala—1)) [V1,(GD),...,(GD].)

= (let (G (generator 1 [V3]1)) [V1,..., Va1, (GD]n)
=[W,..., Val. O
This last example precisely illustrates what we mean by “[generalizing] low-level
proofs to new high-level characterizations.” A calculation in the \,-CS-calculus
would have been a perfectly valid proof for the corollary, but such a proof contains
recurring patterns. By extracting these patterns and unifying them into a general
form, we were able to prove an abstract generator theorem. The theorem itself is

probably more useful in other correctness proofs than the original specification.

193

At the end of this small feasibility study, it is appropriate to crystallize the
major points. First, we have treated two different categories of examples and two
different kinds of proofs. The first we call horizontal and it comprises the Xj-
example, the cell-example, and the generator example. For these examples, we
prove properties of and equivalence between programs, which could have been writ-
ten by an ordinary programmer. The point of this kind of proof is to show that
a program satisfies certain requirements, or that some more expressively written
or more efficient program is equivalent to some obviously correct, but in-efficient
or less ev:\:pressive program. The second category is appropriately referred to as
vertical. Such a vertical proof compares two unequal programs: one is written by
a programmer, the other is generated by a compiler (or meta-programmer). The
Yi-combinator and the iterate!-loop are typical cases. Whereas the first category is
the well-known kind of correctness proof that is found in the functional world, the
second one is made possible by the introduction of imperative facilities. To some
extent, these proofs capture the meaning of compilation, and we speculate that this

is a fruitful field for future research.

Second, a comparison of the proof and programming styles for the functional and
imperative world points to an interesting trade-off. In the introductory chapter we
argued that functional programs for modeling control and state transitions contain
repetitive patterns and are less modular than their imperative counterparts. The
inverse apparently holds for correctness proofs. A proof about functional programs
can formalize most conditions about its use-context as simple constraints on its
free variables. In many cases a correctness proof for an imperative program must
account for its use-context in the form of a universal quantification over evaluation

contexts. However, we hope that the preceding examples have shown that this is not

as stringent as it appears. Furthermore, a functional reformulation of imperative

194

programs also imposes an additional burden on the verification. It is not only
necessary to validate the correctness of the functionality, the proof must also show
that the representations of control and state information are treated and modified
appropriately in the rest of the program. Finally, given the choice of bad programs
with good proofs versus good programs with bad proofs, we opt for the latter.

Third and last, our set of examples is small and possibly non-representative.
Nevertheless, we believe that these examples are specialized instances of common
programming patterns, and that the theorems and proof techniques are general
enough to be carried over to related problems. This point requires an extensive

treatment of programming examples and certainly remains a topic for future re-

search.

7. Summary and Perspective

After developing a syntactic theory of control and state in imperative higher-order
programming languages, and after demonstrating the theory’s usefulness, we have
reached a first milestone in our project. It is time to look back, to compare, to

integrate, and to project. The following sections are devoted to these tasks.

7.1. Results and Limitations

The goal of our work was to extend the ,\U'-calculus to a calculus for an imperative
higher-order programming language. Beyond higher-order functions, the envisioned
system was to include first-class access to a functional abstraction of the current
continuation and unrestricted, lexical assignment. This would ensure that we could
syntactically express a broad variety of syntactic forms.

To understand the connection between programming languages and calculi, we
studied the),-calculus and its relationship to AE/IswiM. We then defined an
Imperative extension of AE/ISWIM, Idealized Scheme, with the two required im-
perative ahstractions: F-applications for the manipulation of program control and
o-capabilities for the manipulation of program state. The programming style was
illustrated with a set of meta-programs that embedded some commonly available

195

196
facilities. Based on this preliminary work, we developed a program rewriting seman-
tics for this class of languages, extended it to an equational calculus, and worked

out a set of example theorems in this theory.

The program rewriting semantics for imperative languages is an important step
towards understanding the class of imperative languages on a purely symbolic level.
With this semantics, a programmer can check the effect and result of an imperative
program by simple, algebra-like program manipulations. A program is rewritten
into another program until a value is reached. This semantics thus replaces other

models that require auxiliary means for the explanation of imperative effects.

The calculus for Idealized Scheme is an equational extension of the rewriting
system. It is a two-level system of reductions and computations. The reductions
are freely applicable term relations, the computations are program relations. This
division represents the context-sensitivity of imperative constructs. The calculus
subsumes the rewriting equations (Proposition 5.18), and it determines a set of
safe derivations that imply operational equivalences of programs (Theorem 5.27).
The advantage of the calculus over the rewriting system is that equivalence proofs
can generally rely on simple and safe reductions, but that rewriting rules are also

available when needed.

The example proofs in the preceding chapter illustrate that the mixture of
reductions and rewriting rules works well. The proofs reveal that there are some
recurring principles and proof techniques. Most of these are generalizations of well-
known counterparts in the functional world. A typical example of such a principle
is exit-induction, which in its simplest form is recursion induction. The technique
of undoing imperative, un-safe effects by inverting proof steps plays an important
role in proofs of properties of assignment-based programs. Even though the set of

examples is a good starting point, this area requires more investigation.

197

The major limitation of our approach is its concentration on computational
abstractions of sequential imperative programming languages. We have neither ad-
dressed the issue of strong typing, which is a part of many available programming
languages, nor the set of fundamental abstractions of less traditional languages.
Although the typing of variables is only remotely related to computations, it is an
important part of correctness proofs: getting the types correct often eliminates the
majority of problems. Our set of fundamental abstractions covers the standard vari-
ety but neglects such concepts as quotation and un-quotation, explicit parallelism,
or real-time constraints. In order to understénd interpretation and compilation,

operating systems, and real-time control within a single computational framework,

these abstractions must be incorporated in future research.

7.2. Related Work

The rewriting semantics and A;-CS-calculus constitute one possible symbolic-equa-
tional reasoning system for imperative abstractions in an extended functional lan-
guage. A different solution was worked out in two related dissertations at Stanford
University. These are Talcott’s thesis on continuations in higher-order functional
languages [70] and Mason’s thesis on the semantics of destructive first-order Lisp

[41, 42]. Both formulate reasoning systems within the framework of operational

equivalences—appropriately restricted versions of ~g— but each has a slightly

different emphasis. Whereas Mason is concerned with an equational theory for
reasoning about operational equivalences, Talcott primarily focuses on the inten-
sional semantics of programs and its relationship to extensional semantics. Neither

works out a purely symbolic semantics or a syntactic calculus in the sense of the

Ae-CS-calculus.

Mason’s theory is closely related to the assignment fragment of \,-CS. His

Programming language is first-order Lisp, but for the purpose of a comparison, this

198
1s only an infringement of expressiveness. The idea behind the theory is relatively
straightforward.
In principle, operational equivalence—referred to as strong isomorphism-—is an
operationally defined calculus. That is, while the relation satisfies the substitutional
inference rule:

e1 ™~ eg = Cle1] & Clea],

it lacks an axiomatic basis. Consequently, Mason develops a set of self-evident op-
erational equivalences, which he calls axioms. The method for developing this set
1s simple. Each of the equations captures the mutual interaction of two syntactic
forms. For example, the axioms for side-effects on cons-cells are appropriate modi-
fications of our cell-theorems in Proposition 6.9. The correctness of these axioms is
almost always obvious, but can also be derived from the formal definition of strong

isomorphism.

In subsequent chapters Mason explores the practicality of his axioms. He de-
velops notation and terminology for reasoning about lists, and with a “plethora
of examples,” he illustrates that the approach is well-suited for correctness proofs
of list-processing programs. The examples range from a simple eq?-program to a
structure editor for Lisp and deserve the attribute realistic. Mason also develops
some principles and proof techniques of general applicability for object-oriented
Programming.

The major deficiency of this approach is its ad hoc-ness. The approach attempts
to give a finite, axiomatic definition of the safe theory that is induced by the \,-CS-
calculus. The problem 1s that there is no sufficient finite axiom set for this relation.
When a correctness proof fails because of some yet-to-be-discovered axiom, the
pProgrammer has to go back to the store machine in order to find more information.

In particular. in a world where a programmer can extend the syntactic facilities of his
)

199
language, e.g., with macros, such a failure is likely to occur, and a syntactic calculus

should be provided so that new axiom-like characterizations may be established.

Mason’s work can be considered complementary to our own. Whereas we are
interested in the fundamental nature of programming languages and their symbolic
semantics, Mason attempts to study practical programming with and correctness
proofs in a given and fixed programming language. The importance of his work
with respect to our own is that he develops and explores a practical method for
correctness proofs. Together, this method and the A.-CS-calculus have a great
potential. The \,-CS-calculus provides the means to prove axioms in Mason’s sense
about new objects and syntactic forms for specialized application areas. These
axioms can then be used like algebraic specifications in the correctness proofs of
programs that employ the new entities. If the axioms turn out to be inadequate,

the programmer can backtrack to the calculus.

The approach of Talcott towards reasoning with continuations is more machine-
oriented. She does not search for axiom-like equations over control objects, but uses
a modified CEK-machine for performing program manipulations. By working out a
number of examples, she also develops and illustrates notation and terminology for
reasoning about special applications of control contexts. Recently, Talcott [69] has
experimented with an integration of the A,-CS-control fragment into her system.
This approach resembles our suggested integration of Mason’s method with the

assignment fragment, and it looks rather promising.

A more important aspect of Talcott’s system is the treatment of intensional
Properties of computations. Such properties are considered an integral part of pro-
grams and programming. There are mathematical and computational intensional
Properties. The former are captured with additional equalities and inequalities that

Programs satisfy under the assumption of instantaneous computation; the latter

200

account for the consumption of time and other resources.

The analysis of mathematical properties of programs is important for semantic
considerations. A classical example is the minimality of fixpoints produced by VY,.

Cnder an approximation ordering ,EL. that compares the set-theoretic containment

of expressions interpreted as functions, this is formulated as

forall f, Ff = f=> Y. F K, f,

where F is a functional. Talcott generalizes this setting and introduces a hierarchy

of equivalence and approximation relations that express various other properties of

functions and computations.

Computational resources are always scarce and it is therefore necessary to an-
'dlyze

M

heir usage. However, the analysis of algorithms is generally not a part of
forrectness proofs. The two are integrated in Talcott’s systems by means of de-

Tived programs. Derived programs transform intensional properties into extensional
SLAINs. € . &
Ones and measure such aspects as the number of function applications, the num-
| - Cls. & . . 4

|

(s

82 of primitives in use, €e. For example, the program (If t) and its counterpart
if (occur0?) 0 (S*) can be compared with respect to the number of tree nodes
Visited |y each. Talcott shows that for a broad variety of properties there is a

Tansformation for mapping @ Program to its derived program. The derived pro-
ation for

Stams that te these properties are structurally related to the original ones
‘ compu

and o ; , he primitive symbols.

and generally re-interpret some of the p ¥

Yot

L

The),-CS-calculus makes 10 attempt at an intensional theory of programs.
> Ap-Ub-calcu o

i the ealeulus is to be used for program specifications and transformations,
> calculus 18

Such o ik ¢ become & part of the system. We return to this topic in the
@ theory must ©

Neyt e possible avenues of future research.
Xt section where we discuss P¢

201

7.3. Future Research

The answering of mathematical questions almost always leads to new questions.
This is also true for our research. We have only begun to explore the syntactic
theory of fundamental programming abstractions, yet, there is already a host of
practical implications and further theoretical questions. In the following subsec-
flons. we present some of the most obvious and interesting problems and discuss
possible solutions. The first four subsections are theoretical and address such is-
sues as an extended set of fundamental abstractions, the treatment of syntactic
abstractions, a systematic analysis of proof principles, and the incorporation of in-
fensional properties. The next three subsections contain discussions of practical
Proposals, namely, an exploitation of the rewriting semantics for a visual display
of program evaluation, two new implementation strategies, and the extension of
Idealized Scheme with a new fundamental abstraction. The last subsection is a list
of less developed ideas, among others the typing of the A\,-CS-calculus. We hope

that this analvsis somewhat clarifies the limitations of our approach and how to

overcome them.

7.9.1. Fundamental Abstractions

The design of programming languages is concerned with abstractions of recurring
Patterns. The expressiveness of programming languages is proportional to the set of
facilities that it can express as syntactic abstractions. In this sense, Idealized Scheme
1s highly expressive because it subsumes almost all of the traditional programming
langua,ges’ however, it is not the penultimate language. It lacks some important

f

acilities for quotation and un-q

findamental abstractions such as the call-by-name parameter-passing technique,
wotation, and an abstraction for trial computations,

JUSt to name a few.

In his original work on the correspondence of programming languages and cal-

202
culi, Plotkin [47] shows that a call-by-name based language requires a calculus about
values with the original S-rule. More precisely, the interesting results of calculations

are values—as opposed to normal forms—but the basic axiom is the [-relation:
(Ae.M)N = M[z := N] (B)

for all M and N, where N is not necessarily a value.

Plotkin also investigates the relationship between call-by-value and call-by-
name. There are two main techniques for simulating call-by-name with call-by-
value. The first relies on freezing and thawing argument expressions, i.e., the in-
troduction and application of dummy abstractions to prevent untimely evaluations.
The second is based on a transformation that employs a continuation-passing strat-
egy. The realization of both techniques requires more than just syntactic abstrac-
tion. The same holds for the inverse direction. Hence, call-by-name is a fundamental
abstraction with regard to Idealized Scheme and should be integrated to broaden
the semantic basis. It is relatively easy to see that a G-rewriting rule for a Aname-
abstraction can fit into the rewriting system, but the open question is whether and
how the B-relation meshes with the A,-CS-calculus.

The Lisp-quotation form poses an entirely different problem. An expression
(quote exp) yields a value that represents the (abstract) syntactic counterpart of
ezp. The introduction of quote requires a constant set rich enough to model the

syntactic variable domain and the improper symbols. The expression domain can
Ll - C C

be represented with lists and vectors, e.g.,

(quote (Az.y)) = (cons (quote A){(quote z), (quote y))).

It i Immediatel

Norma] f fFectively comparable, expressibility of quote implies a solution
~Hal forms are eftectlVey

clear that quote maps all expressions to normal forms. Since
y clear t

203
and hence, quote cannot be an ordinary

to the
e pr m
ogra i
gram comparison problem,
as a new form

he introduction of quote

COInb' -
nator [46:32]. On the other hand,
n no longer conclude

Cl‘eates
re .
ferentially opaque term positions 48], 162 W€ ca

(quote z) = (quote y)
from
T = y
Re
uote becomes inherently context—sensz’tive.

al feld of retfica-

asoning i

n ' :

g 1n a system with q
to the more gener

o short stepP
on and reflecti quotation

Fror
n the quote-facility it is only
on is about

ton,
and ; _ :
P reflection [57). In simple terms; reificatl
and un- ;
I-quotation; more technically, reification and reflection refers to the capability
computational state. Thus far, these

of
a pr
ograr s .
gram to inspect and alter 1t8 current
tional semantics. In this

k of denota
an at any time
Ation [57, 78]

the framewo

prograins ¢

Cap v
abilit;
ities have been studied in
access and

n means that

ext -
)) . 2 .
, reification and reflectio

d the continu

ChaIl()‘
ge (par
(part of) the program text

Eve
1 thouel
ough quote and its generalized relat
reflection capa-

W

known reiﬁcation and

hat reification and reflection

1t]
I8
ever ; :
- theless an interesting question ho
Uity
n be expressed in the rewriting sY sterth
ese capabilities in

e
ans wi

S W1 ! o :

v th regard to a rewriting semantl

ary
ous f;
T2 .
st could lead @ & more genet al th
s trial computation.

nt fundameflt

OU.I‘ '
final example of a differe
y’s amb—

tri&l
computation is a variant of McCarth
a limited

formed for
allotted time, the

ue after the

ing experiment by

i(ie
Q th
a
t a computation is per
tation returns a val
itself and

a.anL
1 .
nt of time. If the compu

1
Iea.v PI‘Ogra 1
ds t quit:n(?};ng with variable-value bi
e different, langnage paradigms i

j i i t
ndings a8 first-class objects 18 an interes
q !

23].

204
trial is successful and the value is its result; otherwise, the trial is unsuccessful and
returns a suspended computation. A trial is useful in circumstances where there
are alternative ways to make progress on a computation, but it is unknown whether
the various sub-computations terminate. Practical examples of this kind include
operating systems for time-shared computation and search situations in artificial
ntelligence programs. Once again, we would like to have a rewriting semantics
and a calculus description, which could provide new insights into the nature of
these computational primitives. Whereas the first part is obviously feasible, the
second part constitutes a true problem. With a trial facility added, expressions
not only determine a value, but the time it takes to compute the value. Hence, a

calculus for trial computations must include a facility to reason about both aspects

of expressions.

7.3.2. Syntactic Abstractions

Dual to the concept of fundamental abstraction is that of syntactic abstraction.
Syntactic abstractions are those linguistic facilities that can be explained as abbre-
viations of fundamental expression patterns. They hide details of these patterns
and thus facilitate the writing and reading of programs. This, however, is contrary
t0 the way we treat syntactic abstractions during correctness proofs. Our informal
rule is to expand these abbreviations as far as possible. What we would really like
to have is g system where proofs are on the same level as programs. In other words,

there should be a method that seamlessly incorporates syntactic abbreviations for
s e C

Idealized Scheme into its syntactic theory.

One promising approach seems to be the following two-step procedure. First,

every syntactic abbreviation 1s analyzed as to how its sub-expressions are evalu-
, 5 5 ;

ated. Since the expansion determines a unique sequencing for the evaluation of

Sub-expressions. this defines when a hole at a sub-expression position in the abbre-
£t 9

205
viation can become the hole of an evaluation context. Second, once it is known
in which order a syntactic abstraction evaluates its pieces, we can try to estab-
lish general theorems about the various cases with respect to the possible set of
C-redexes.
Let us illustrate these two steps with the simple examplé of begin-expressions.

A begin-expression was defined with the following equation:
5 daf
begin My ... M, = (Az1...2q.20) My ... M,.

The rewriting semantics determines that sub-expression M; becomes the fill term
of an evaluation context after M) through M;_; are reduced to values. This can be

stated on the level of a begin-expression as:
begin V1 ... Vi-1 [| Miq1... M, for1<i<n

are evaluation contexts. For the second step we must now analyze how a given

redex in this new class of contexts behaves. Consider the case of a o-redex, i.e.,
begin Vi ... Vici ((oa' . M)y) Mip1 ... My.

A brief look at the expansion shows that this is equivalent to
(02! begin Vi ... Vioy M M1 ... My)y.

With thege new equivalences, the proof of statement (1v) in Proposition 6.9 becomes

more perspicuous:

begin (set-cell! (mk-cell 2)' y) (deref (mk-cell z)')
= (aa:{.begin 22y
= (a:c[.:vl)y = (_U:L‘I.y)y
= (ax(.begin 2ly)y

— begin (set-cell! (mk-cell :1:)1 y) Y.

206
se of this method, can be found

Mor
-xXam S
ples, where we have made implicit

tow,
ards the
1e end of the preceding chapter

s and the particular abbreviation technique

For
I maI r
1y :
y of the syntactic abstraction
would

that
& VVe 111\79
ave ernx . .
nployed, 1t seems that these two steps can be mechanized. This
like characterization of his syntactic

Mean t}
1at
a programmer can explore the axionl-
program. Such automatically generated

eXtens;
slons f
s to a language with the help of a
ofs.

aluable help in larger correctness pro

oncerns the target langu

the
O]_‘em
S a vyw
and rewriting rules would be of inv
age.

A

Unti] nl::erent issue about syntactic abstractions ¢
. The’ :1’\1’; have used Idealized Scheme for this purpose: Another possibility is
Programs. A erence between the two 1 that, In addition to all Idealized Scheme
, Acs can express all values and intermediate program stages: Because
an be formulated with Acs, but not

1‘7 tl1e e a
T e a] O 1S

Wit
h Idealized Scheme
For

consider an abstraction called once.

pective expansio

programnl. At other

In
order to i
to illustrate the difference, W€
n must ensure

very o
Ccurrence of (o .
nce erp) in a prograi the res

evaluation of the

he solution

ETP is
s only evaluated once during the
At first glance; th

value of ezp-

tir
Neg
S (OllCe e .
hag " p) i1s to return the first
S SOmeth;
m(/t].—llng to d K r -] .
o with an expression that memorizes its result:

_afa.'v)(Ad-v)))-

(let (fs Nd.ezp) (let (v (fo) (

HO\V@
Ver
1
magine that (once ezp) 1

()\x.x:v)()\d.(once ezp))l-

into the above expression,

nsion of a once-

If v
is that the expa

ances of the original

inst

207

d version of the above expression achieves

oceygry
urrence of eg A .
p. A partially evaluate

s
e Proper effect:

(let (v (()\d.e:zp)l) (J(:Ad.e:tp)l.?;)(/\d.'u))).

essed 11 Idealized Scheme; is precisely

T}
1€ s}k i
. '1"‘ .
anng relation /, whi
n I, which cannot be expr

What 3
18 neede
ded to track the distribution of ezp.
Unf
ortuna :
itely, the extension of the semantic target language interferes with
tion relations.

stractions to reduc

rtho A0
gonality of Idealized Scheme—based ab
y be expanded a

n is an interestin

¢ the beginning of an

A
Cs~b.
S-based sv .
syntactic abstractions can onl
g issue for

eval
Uatio
n. We - ;
e nevertheless believe that this extensio

furt}
€T research.
and Progro™ Development

7.9
! TOO P . .

0 f Principles, Proof Techniques;

e

- Precedj

>ced 3} i
ing chapter on reasoning with the ,\U—CS-calculus and the comparison

acquire more

¢ made it clear that we must

cerns: proof principles,

of
01.11‘ Wi ¥
ork with that of Mason hav
g, There ar€ t1

graim develop

1ree main con

exp .
er
lence on \’V()I'l'.) .
cing with Rl
ment.

Proof
5 teC}. .
niques, and their impact o pro
what the

ces requires t
roceed. Guide

wo major insights:

A
Corr
eC- 2QQ .
tness proof for progran pie
Jines for answering

oof should P

the
;Ol‘ern
theg should be and how the PT
~€ quest; . .
luestions are proof principles. Two of these We have :dentified above, €
cts. Howeven we believe that

£ mutual effe

abou
alized generator-

eXit)
“Indyet;

ction and object-axioms
For exampleés the gener
ection between objects and

t]
lep
e »
- are
S mis . : PR
any more interesting prmaplCS-

the
“Orem
(Proposition 6.15) indic
at this connection

cope-
. +s With respect to

th F, explore

im
Hl()(i.
“Alate
ev : o .
aluations within a given S

neiple

Ca
nh
(&))
abstracted into a general pri
e;{periment wi

we must

me related pr

‘

ntrol contexts
oof principles.

ant
I‘()]_ e

ffects and first-class co
d derive 50

ltg
]_lsef
= ulnp e D .
ess 1n different situations, an

T 208
e call for
more proof techniques 18 related to the one for proof principles,

to prove 1t; some
¢ this is the expansion of

general term manip-

Once
and how

1t le dee
s decided what to prove

ulati
on t
echni
ques become important. One example ©

a])brev

another is the inversion of proof steps

n this field are d

S
which we decided to avoid;
ifficult, but in any

as
Predictions ©

deseri 7
scribed

ed in Proposition 6.7
observed and €0

Jlected.

y Such technj
echniques should explicitly be
n, the

n conjunction with exit-inductio

s highly important.

ilt under guidance

Fi
nally
aw
, as we have mentioned above 1
Few pro-

ram design 1

applic 5
1 atl

on of proof principles to prog
prograns are bu

o
slam
S ar
e aCtUaHV WOI‘tl i 3
3 h proving correct, bu if
A good ex-
Ag 3

ey are correct improves:

of s0
some
) I)r . .
oof principle, the likelihood that t!
Tam considers all possible cases

am
ple
of this i
his . . ,
is data recursion. If @ recursive Proé
ition, 1t has & good chance of being cOITECt.

ations works on

es of

of the :
Llle lnd .
uctive data structure defin
proper sub-piec

Fy
rth
ermore. ;
Ie] . . .
2 dat , if every recursive function 1nvOC
pect that the function ter As we have seen

induction.

minates.

a s
tructure, we can ex
Other exception—like situations

in g
ectio
n 6 :
.1, this also works for exit-

L (1 . 2]

plementat
¢ data tyP®

£ implement

A s
b].I]Jl]..
1’ ~
ar case can be built for the im
a point

abstrac
jve efficien

This should also 1

s has gotten to

ations of types:

&bstract d
The theory of

ata objects.

atically der
ETL [55]- se possible for

resting 0

Wh
ere .
Such
ch systems can autom

extent

Sea tl
) 1e dev
elopment of the language S
find out to what

ould be inte
r there is an

abst
Stract

data objects like cells. Tt W
ines an implementation, and whethe

an
equat.
10N s
»nal specification determ
g such spec

ifications:

alg ;
< Ol‘ltl
im fo
r . .
completing and/or enhanci

1.5
8.4, Calonis
culi for Intensions
m calculi 18 the domain of compilation
ations rely on

n of progrd
sform

The
- INo :
st M
I 1)01't&].'1t applicatio

rograil tran

0
r, More g
gener
rally, of prograit transfor

‘

209

obse
Servatic
1onal equi
L re . . .
i juivalences between expressions and 1mplementatlon-dependent in-
HWvalenc
enices. The),-CS-cal s . o ;
i {agg .-CS-calculus 1s 2 good basis for establishing equivalences, but
ac KS
1 ~ -
ties for deriving inequalities. Talcott’s work indicates how these

aSpect,
-tls co) .

uld be combined into a single system:
atical and computational proper-

mathem
tensional relation-

The

“re ar s

es, 7 re two sides to the problem:
i alCOt o

t has shown that the latter ¢af be integrated into €X

ould also work fo
butes of the underlying

r the calculus. How-

shipg v
S Vla, (1 o

erived programs. This strategy sh
depend on attri

d and possibly P

ey
el‘ .
» SInce many of th ' i
y of the derived properties
arameter-

t be elaborate

eVal .
uaty
on S g
mechanism, the approach mus
alculi for different

suggests that a set of ¢

iZed
& OV(.xr
T ev: .
aluation systems. This also
jon, may be a

with respect t0 @ given intens

Mten«:
ns, ; :
, i.e., theories of inequalities

D(_)gg_\'

o510 e]

} C ’Illc'ttive

) SYStem are (3Xplessed Wit h. appr()ximth;iOIl

Mat}

athematical ;

ematical intensions in Talcott’
The maximal approximation

Order.
> ln S e .
gs that are based on a CEK-like machine:

re]y+:
alf of ~CEK"

» 18 a symmetric h

7
SMOER = C,N&e:
I}
rde
to determine Operational a.pproximation, Talcott establishes some axiom-
; reasoning with strong iso-

5 approach fo

 whether there 1s 2 syntactic

lik
- tlleo ~
rems. This is similar to Mason

Mo
Tphyj

SH]_. g . '
Coy Given this parallel situation, we
Nter

-I'Dar . ' ‘

Word t to OPeI'atlonal approximatlon that cor _ In other
r
S
y We are e . .
are looking for a syntactic relation Co

i\/j _[;v ./V = ‘/\/[rgv G
ible, for example, to prove syntactically

I‘()V-id
ed sue
such calculi exist, 1t should be poss

the
min .
mality of Y,- and Y;-fixpoints:

‘

210

1.8.5
J.0. Feedback
back Information for Languege Design
culus was desi gned arou

call/cc. As explained

Orig;
glnall\r’ th 5
e control fragment of the ,-CS-cal nd Scheme’s

contr
rol o .
perati :
on call-wzth-current-contmuation, abbreviated
argument to the continuation of the entire appli-

in Ser .
,thn 3 D)
.2, call/cc applies its
onal abstraction of

Catio
0. The di
ifference between the continuation and the functi

ntinuation of its invocation.

the

continuati .
ation is that the former eliminates the co
nt total control over t

s the default continuation

Fy
rthe
oTIY
nore, call/cc d .) '
oes not give 1ts argume he continuation
plication remain
ads to rather baro

ired. The first captures

Since th
e continuation of the call/cc-ap

c-argument. This le

que reductions

for
the av:
evaluation of the call/c

and
com
Putations . :
tions. Two different sets of relations are requ

the 1,
ehavior ¢
vior of an abort-application (AM):

(AM)DM,

V(AM) — (AM),

(AM)N — (AM);

J explains BoW call/cc provides 1ts

th
@
S SeCO
nd o
group resembles the F _relations an

SUIn
W : : :
ith an abstraction of 1ts control context:

(call/cc M) P .M(_/\;L‘./LL‘),
— (call/cc ARV (

(call/ce Me.(

M(_/\m..A(k(Vm))))a

L*(call/cc A/[)
(callfec M)N — M(/\m..A(_'k(_vm\/)))N)).
essary t0 ensure that all contin-

sides are D€C
s upon applic

ntrol context

ation.

The A

applicati
plications on the right-hand

u?lti

On ob; .
jects immediately eliminate their €O
ntains some regular patterns: The most out-
e term N. If we omit the

Th
€ sec
Seco . :
nd group of reductions co

all/cc—cont ., th

e

S
he replication of the ¢ ext, #¢

(C
XCCurrence £} 21
ce that 1s §
outsi] 1
de of the continuation; W€ obtain simpler reductions:

(C M)v M\ Az),

c M) — (€ /\Ar.(zx.f(/\m.A(k(Vm)))),

(C ,\k.(_A/[(_/\m.A(_k(mN))))a

(C M)N —
raction:

and we
> can sti
n still i
ill implement call/cc as @ syntactic abst

(call/cc M) = C(/\k.k(;\rfk)).

Unlik
€ call
/cc, C can express A—applications:
(AM) = C(Ad-M) where d & FV(M)-

The i
© Iverse re
«r; i 1
> relationship is:

(CM]= (_call/cc (_,\k.A('Mk))).
ial improvement for the axiom SyS-

an essentl

Alt}
lOL n .
1gh the introduction of C 1s

te
In
the
ne
Oceygy w reductions and the com
enc
e ()f the fOI'm (./4- e "
g = c(Md- -). It 18 easy t

of)
lese
additi
ditional C-applications Jeads to the

Givep P F-relations in their current form.
. s higl
1

gher degree of e\pIess f the axioms, F is an

 meta-languas® Jike Scheme:

jnstance of

n object: In
is not the m

v a design PTo-

IIII
Pro
\IG)II
“Inent
for a semanti
well-known lav

Wi
1at,
we 1 .
1ave just e:{perienced is an
our case, the design of

desig
d that call/cc

n on the
ost expressive

Ce
4Sg
h I“)r() o
vide
o) :
feedback informatio

as revealec
itera-

alized 5¢ hem

replaces call

a
cal
culy
13 fc
s for control contexts h

Jec, we feel justiﬁed calling

gues all three con-

f‘u
ndy,
<(H1ent
al control abstraction. Ide

ess. SINCe *

at pla

1() |
()15 t k] 0 tl
e ~ >S1 Il |
(IELI(.lQlllJ.S (1(1“'é; I) ¢ e
])1 IIl

th
e
>3 I‘ 2
esult Schem
e. There 1, however, &

tro)
cal
Cl_lh
and whose solution nec¢

"
,()Il
tro] ¢
! construet

212

e division of the calcu
such that the root of

T}l()
> probl .
em that we refer to 18 th]i into two levels. A

oduce a top-level m

ntrol computation re

Possible .
i e and obvious fix is to intr arker
Program j
am 1s . . .
B is uniquely identified. Then, the c0 lation becomes
ue reduction:
(#(FM)) — (_#(M(_/\x.x))).
jvision by pushing it into the language

Unf
Ortunate v
itely, this solution eliminates the d
rged into

egory of #—a,ppli
e. Instead of allowin

jon as a new first-cl

cations can be me

Synt
ax H
: OWi
wever, the new syntactic cat
g only one #-

the
® Set of ex ;
eXpressions with a relatively simple mov
luce the #—applicat ass

ming abstraction.

applicat;
ation ;
n at the root of a term, W€ introc

Con
S
truct it e .
erpret it as a fundamental program
calculus is a minor extension of the original:

il
e
grammar for the control

M =z | .M | MN | FM | #M.
ations. Since programs should

osed #—applic
#—argument

P
rOg "
ram
8 B b i
are identified as the set of cl
ion relation.

ditional reduct

n can return t

Once the

I‘(—)d
Uce t
O Vg
alues, we need an ad
his value:

is ¢
Te
>y
1ced to a value. t} : it
alue, the entire applicatlo

(# V)=t Vv if Visa value.
plies the #-

omatically sup

g

We
Now)
assume that an interactive CEK—machme aut

D%Lrt
to a
program, a dialogue with

213

In
Ot’hF‘I‘ v
°T words, .
for the control fragment # corresponds to the prompt of an inter-

interprets the prom

ited control domain W

pt as a program control

activ
€ machj
chine
line. Our construction thus

mmer to define a lim

delim; g
1m
ter and allows a progr
a henever 1t

is o,
Ppropri
ate.
f the feedback information is the gseamless
s and the associated

Given that a

The
LT ;
ue challenge behind the use 0
program-

anguage semantic

does not seemmt diffi

1 manipulate its con

ifl(:or
Poration ;i
tion into the original 1
cult.

ming
Paradigms
gms. For #-applications this
trol con-

o e
pphCaf'
i
on marks the extent to which a programt 5l
ack marker and a knowledgeable stack copy func-

te\{t .
A, 1t iS i
m
plementable with a st
s in search—and—backtrack

tion

il -y
#-application also has some obvi
sult. Further-

| context
e of control opeé

determines the next re
they are also

Situat:
atio
ns
, where a part of the contro
rations,

delimit the scop
control. For

Mo
re .
) Sl“c
e #-applications
mamic

well.
ram must con
erally responsl

is hard to enfor

SUited { 2
or situations when a PTog&
ble for opening and

s on files is gen
plica.tions this

[‘28]. With a #-

’ 00T
program that work
ce because

CIOS‘
g the file. I
. In a world without #-ap
app]jcat-ion, the

c
Ontrol .
y get around the close operatlon

Teq
SPect;
*Ctive
e code | .
hecomes stralghtforward:

(begin (open file)(# A)(close file))
jeve that this work and similar

We bel
yield additi

nto the

Whe
re M
. 1S ¢
code for the manipulation of file.
onal insights 1

Mvegs:
“Stigati
ions ;
ns for the assignment calculus will

deg;
~1gn
of programming -
y 1ing languages-
-3
es for Impemti'ue Languages
the structure of program-

o realize this for

h6. N
ew
Implementation Strategt
mation O

provides infor
e of the first t

ntation- On
sed Curry’s

R

N g
& luat‘ .
jngl lonal semantics not only
anguapes
€ co ges, but also on their impleme
Mpilat g 1atracti
rtion of AE/IswiM was Bure 7]. He® 2, 13} ApPesiess

214

algorithm for _
N Inapplrl‘; A-expressions into combinator expressions to capture the
com :
e e p'llatlon- The translation eliminates hound variables, the predom-
achine related notion. An evaluation 1n combinatory logic simulates
est of a compilation process is the

Partg

v Of cons

nstant folding and extraction. The r
n of combinatory

as an exploitatio

Opt' .
Imizat;
ation
phase, which can also be interpreted

eq

hnique to the compilation process

For
a IOH e
g time, an application of the same tec
r obstacle being

nsidered impossible, the majo

of iy
nper-lt'
srative lansuae
languages has been co
e tried to exploit

ead, people hav

alculus. Inst
de generation 13,

the 1
ack of ;

an appropriate equational ¢
cs for the sp€
t the strategy fo
n and evaluation

cification of co

var;
T10
us ki
inds
s Of =Y sy
denotational semanti
r writing deno-

03, 73). Th l
S re
, however, has the disadvantage tha

arameters of a translatio

tat;
lon;
al ser
h elnant. -
ics predetermines many p
1 of combinatory

_.CS to a suitable extensio

Sche
“Ie, A i
logic A direct translation from Ao
VVOU].d a‘VOld l .
this predetermination. It would concentraté On the essence of
pen. In particular, the choice

arameters ©
ould still be un-

CQIn ‘
Pilatj
LL10O .
i and would leave the other P
techniques W

a(”I = . ate ()[)tlln'
1e al ‘I]]E)- s] l)[l) ;04
€ C 1C a p ¢

den:
_l(f(jlded
na sequential or

f evaluating prograimns !
evaluation func-

0
Jne Of
th .
e open choices is the one ©
m defines an

ation syste
CESK—evaluation

Par
n and comput

alle] ,
manner
nner. The reductio
nt to the

tic
)Il f()r I(le
s extensionally equivale
an best be seen from the

alized Scheme that 1
arallel systerm This ¢

jon 1n Deﬁnition 7.1

17 .
lnctmn but
) 1t 1s 1]
is intensionally a P

Tefo
rmul, "
(l,tl(
on of the standard evaluation funct
1y all applications, that is, the prin-

Thi
1S functior
ction definition reveals that practica
sons in paral
¢ bubbling-up

lel. The syn-

hrough th

an F -application

(:jp
al
ev .
aluation vehicl
>hicles, can evalua

chy

0ni7 5
zation

of control- and side-effects happens

naturally t

occurs when

e

Mg
Ve
“Ment
0
f the redexes. The only exception

215

7.1: The Eval-function
alues, that 1s, F-, D-, o-, and A-
{ N, P, and Q over arbitrary terms;

Definition

Lef 7

and ¥
range over values; S over semi-v

applic
“ation
s
(whose variables are in Vars); ¥

and X B
ve
r labeled values. Then the Eval- functlon is defined as:
Eval(N[z :=V"]) if seval(M) = (A\z. NV
Boni Eval(N(\z.z)) if seval(M) = (FN)
(M) = { Eva(N[e" :=V"]) £ seval(M) = (@U"N)V
if seval(M) = (DNV™)

E'U(Ll(.’\/v‘/‘[.” = Vrn])

Where seval(M) otherwise.
seval is defined in four inductive clauses:
seval(V) =V and seval(S) = 9;
and
G seval(M) = U and seval(N) =V then
seval(MN) = {seval(P[:r. =V)]) if U= Az.P, z € Var
vV otherwise;
ang,
| = G then

lf Se
val(M) = U and seval(N) =

(\z.UP)V s i
seval(] FIs.P /\'.v.fc(UU)) if S =
it (UXCLUI(D); | 5= (e X.P)V

) D (/\v.U(Pv)X) g = D PX;
nd, g, =
'\dly if .5'(3‘7)(1,[(‘/‘\/[) = 3. S
(it PNV 5= (ha.PYV
v) S = FP
seval(MN) = i/\\h]) V/\)f i b g 5= (o XY
'D(/\U.PUN)X e = T PX,

C()Hl(xw
i This indicates that the program may

3 the fypes:
unction part of an applica,tmn.
plication, and that an early eval-

Ney,
part of an ap

Wa,
0t to o
o evaluate the argument

216

f Computational resot
t constitutes the only

irees. The situation

uaty
216)s}
of thi
1S aro
s argument may be a waste 0

C()rregpo |
->PONds to
= are o NXTE . .
parallel evaluations 1 & call-by-name world. 1

stem.

CaSP
2of g
LpeClll{ 3
1lative par . :
e parallelism 1n such a sy
29. According
Ll g

sed on Corollary 5.

ations 18 ba
m if we are only

Anot}
1 _—
er possibility for parallel evalu

ation strategy for a progra

to 4
is ¢
corollar
lary we can use any evalu
aluate all existing

intere
>sted §
8§ ob A
servable values. One conceivable strategy is tO €V
aturally, this

hble movements can

is a rather nalve

redyets
Ctlon
and .
computation redexes simultaneously. N
essful if the bul

and
d
Spec
eculati
i
ve scheme, but it may prove succe
advances in

ble. Then, the 1m
f such architect

nd the approach

plementation relies on
alize their

”Ont .
a
Ined as much _
as possi
ures ever Ie

the g
S eid of
i _
called functional architectures: I
to the

Dl‘()ln-
lSed
potential. i :
ntial, it will be almost straightforward to exte

Im
DIG‘m
-lentat;
101 3 :
1 of imperative higher—order languages:

1.8 7D
our work. It

Ynam)
plication of
Cur-

er practical ap

he
- Tewrit:
: T1t
Ing semantics g ,
s gives rise t0 anoth
stepper OF debugger-

Dr()v'
ldeg
= the 7
theoretical underpinning for a dynamic
programmer to

am text leaving it to the

I‘entl
Y, Su
, Such
tools work on the static Pro&f
ewriting semantics, this can be changed.
machine state. A division be-

he control aspeé

ey
a,gl
ne t}
L1 . .
€ dynamic process With tl
£ displ ss. With theé r
*Played prog .
program text can represent the entire

cts

t\vee

y clarifies t

immediatel
aring rel

ationships

cur
rent
redex and current context
1 needed, sh

idden unti
e of the under

of
lying

Q
DrO(r
2ram i
’ s
dlsbl , variable contents can be h
d to know t
allocation s

he structur

ayed
whe ‘
en. 1 -)
equired. There 15 10 nee
cheme for registers,

Wy
Chin
e) tllq .
e organization of the run-time stack, the

Or o
Simj
11;)
Si
1 3 (press tr'i,ditional ro-
is poweiful enough t© expr 2 p
and can b

Nce]
- WS uw Tt

nderlying language

vel of expressive-

gl‘a
nln .
llng
[& Q .
onstructs, such a tool 13 Janguage mdependent

War
syntactic le

ds
Part;
1c11] -
ular applications. In or

217
actions requires ai extension of the rewriting
(&)

above 1 Subsection A

HeSS

S, an al S
dc

lition of syntactic abstr

3.2, and we

.rules
= Thlg T
is related to the problem addressed

1
rated into a dynamic stepPer:

10pe t}
© that t} 3

1e discussed solution can be integ
On one hand,

; a dynamic stepper.
d experimenting with

s, but it

W,
e I)() ~ *
3rcelv
elve two major ol i
‘ application areas fo

understanding an

1t o
‘Ons 3
tltutes a pron
1ising learning tool for
propriate notion

Prog
Dr&uns I .
. . 1t 1s operati
Salso perational enough t0 communicate the ap
achine-i
e-inde .o

pendent enough to teach abstract pr1nc1ples. On the other hand,

] for profession

ur theoretical work

al programimers:

ight debugging t00

ad

“Yhamj

Hllc 3T e

b stepper may be the r

any c l

S Case, t}

; the dynami '
ynamic stepper is another exal ple where ©

Illay :
Yiel
da practical result.

&
9.8, M
1scellaneous
here is a series of interesting questions that we want to
pics of syn-

-yond t}
1,\
ese problems, t
nsion On the to

Men+:
Bl
n wit}
1011 ‘
t further discussion. The frst is an €Xpa
Jus has become

ics. The traditional \-calcu

f'tl
“ACte
> a,bgt
Stractions
ns and 111<)deling semant
sllggest investigat—

the

> Sta
Ndarc
rd tare
target language for denot

ing the ational semantics: We
of \,-CS-calculus for this role and expect that this may offer some

Ay,
ges,
aises concerns about @ (direct) mathematlcal
to have such

Th'
s cona:
considerati .
Mo {eration immediately T

o us what it really means

r the classical \-calculus, it

el for
. the p 1
“ oqe) ! \y-CS-caleulus. It is not clear t
. Ly but oq)
given the insight models have provided fo

18
Certainly
The typed

A

an i N
interesting problent.
CS—calculus.

fa typed Av-
problems 0

1‘(31ated
matter is the c01lstructiorl 0
. 0 f self-

elf—references

cumvent the
perhaps would

~ca]
cy|
us w v
as 1 "
ntroduced and studied in
and

uld avoid s
prograims:

lcatio
\ . A
b}led som i /\v‘CS—Calculus WO
ght on the problem of types and type for imperative

inferenc®

218
ming languages. Those too, define a language semantics and provide a framework
for inspecting and verifying programs. Noticeably the work on Floyd-Hoare logics
has received a great deal of attention. The relationship to this work is not clear.

but merits consideration.

7.4. Concluding Remarks

We have reached the end of our endeavor. Our contribution to the study of pro-
gramming languages should be perceived as an attempt to reconcile two diverging
currents in the programming language community. The syntactic theory of control
and state in imperative higher-order programming languages combines the best of
both worlds: capabilities for expressing control and state transitions and a svmbolic
semantics for direct program manipulations. The beneficiary is the programmer who
can succinctly express his thoughts about problem solutions and still reason on the
level of program equivalences. The contribution does not answer all open questions,
indeed it opens a series of new ones. But, we sincerely hope that this is only the
end of a first step, and we expect that a further exploration of the \,-CS-calculus

will yield more fruitful insights into the nature of computation.

References

alculus model of programming; Janguages: Journal

1. A
BDAL
I, S.K. A lambda-c
303-320.

Of C()n pop
wuter Languages (Pergamor Press) 1, 1976, 287-301;
AN. Gtructure and Interpre-

y witH J. SUsSM
S, Cambridge;

no

- ABELS
ON, H. AND G.J. SUSSMA
Mass., 1985.

) tation of Computer Programs. MIT Pres
| ::PPEL’ ke SGmantz'cs-directcd Code Genemtion. Ph.D. digsertation, Carnegie-
lellon University, 1985.
1 1
BOuM, ¢. Alcune proprietit Jella forma /3¢]_normali nel /\—K—calcolo. Pubbli-
Ty
azioni dell’ Istituto par le Applicazioni Jel Calcolo, Rome, 1968-
rev.

Q. B
DREGT, H.P. The Lambda

ed S
e tudies i i
dies in Logic and the Foundatl

Ame
Msterdam, 1984
6. B
. BErp | |
9 Y, G. Séquentialité de 1'evaluation formelle des \-expressions In Proc.
ord Int ' 3
N ternational Colloguaum 0% Programming 1978.
i
g T ochniques: Addison—VVesley, Reading,

. By
RGE
, W. Recurswe Programmin

Mass.’ 1975,

o

220

chine Intelligence 2, edited

ny, New York,

o0

- BURs
TALL, R.M. Semantics of assignment. In Ma
by E. D:
v E. Dale and D. Michie. American Elsevier Publishing Compa

1968, 3-2
y 3—20.
guage for abstract data types

9. By
R
STALL, R.M. AND B. LAMPSON. A kernel lan
cs of Data Types.

ymposium 0T Semants

New York, 173, 1-50.

and
modules. In Proc. [nternationa;l]
r-Verlag, 1

ter Science 173. Springe

Lec

ctur _
ture Notes in Compu
on. Princeton Universit

10. ¢
. H ‘
URCH, A. The Calculs of Lambda-Con‘l}ET'Sz y Press,

PriIlCe
ton, 1941.
heme for & higher-level

p M. WAND. A sc

antics, edited by J- Reynolds and

11. ¢
. LIN 3
GER, W.D., D.P. FRIEDMAN AN
Seny ;
lantic algebra. In Algebraic Methods in Sem
s, London, 1985, 237-250-

M. Niv,

Nivat, Cambridge University Pres
2. Cyu .

RRY, H.B. Grundlagen der kombinatoriSChen Logik. Amer. J. Math. 52,

1930. 5na_x
0, 509-536; 789-834.
L North—Holland,

13

. Cu)
RRY, H.B. AND R. FEYS. Combinatory Logic, Volume
AIIlsterdam, 1958.

14, .
FELLEISEN, M. Reflections on Landin’s J-operator: A partly historical note.
Toun I

Urnal of Computer Language? (Pergamon Press), 1987 £ appear:

15, ' .
FELLEISEN> M. AND D.P. FRIEDMAN: Control operators the SECD-machine,
8 lited
‘d the A-calculus. In Formal Description of Programmi™g Concepts I, ecite
by v terdam,

2 Wirsing. Elsevier Science publishers B.V. (North—Holland), Ams

16 .
FELLEISEN M. aND D.P FRIEDMAN A closer look at export and import
State ' o 11, 1986, 20-

atements. Journal of Computer Languages (_Pergamon Press)
37.
L7 . . o
. FELLEISEN M D.P P RIEDMAN A reduction semantics for impera
’ . AND o ¥

B

221
nference 0T Parallel Architectures and

tive hj
e hig}
1er-or
gher-order languages. In Proc Co
ecture Notes 11 Computer

Lanyg;
f]lba,ges !
Seie s Europe, Volume II: Parallel Languages: L
Clence 259 .
. Springer-Verlag, Heidelberg, 1987, 206-223.

A calculus for assignments in higher-

18,
- YELLEIS

EN, M. AND D.P. FRIEDMAN.

Principles of Programming

order lar
ange .
guages. In Proc. 14th ACM Symposium 0T

La
nguages, 1987, 314-325
DUBA, AND J. MERRILL. Beyond

niversity Computer Science

19. p
. FELL
EISEN, M., D.P. FRIEDMAN, B

contiy
ations. Technical Report No 21¢ I
eport NO 916, Indiana 0

De
Partment, 1987
LBECKER, AND B. DUBA. Reasoning

Logic im Computer SELence;

0. p
- FELLEIS
EN, M., D.P. FRIEDMAN, E. KoH

wit]
) conti
B ltlll il
uations. III P'I"OC, lbrét Sy7np057:'l//fn on

1986
» 131-141
In Proc. ACM Conference 07

9
2 F

. M.J. Lambda calculus schem
SIGPLAN Notices T(1)

ER. Programmi

ata.

1972, 104-109

Proy;
ovn
q ASqe.. 3
: sertions Abo ,
out Programs;
ng with

p E. KOHLBECK
and ngmmmm
274.

2. B
AN, D.P., C.T. HAYNES, AN
Tmnsformations

Heidelberg,

g Enuironments,

contip

uatic

lations. In Program
1985, 263~

edited

by

¥ P. Pepper. SPI‘inger—'\/’erlag,
N. Environrnents as first

p T. LONDO

n on Pprinciples of Progmmming

s GEL
ERNTE
R, B., B JAGANNATHAN, AN
ACM Sympm"”

Cla.sv .
S objects. In Proc. 14th

Lan
s, 1987, 98-110
Progmmmz’ng Language.

2 GRIS
WOL
D, R.E. aNnD M.T. GRISWOLD- The TN
N.J., 1983

Py
entice H,
all, Englewood Cliffs,
The semantics of

KHTENBROT.
c. 11th ACM Symposium

o
(@14

p B.A- TRA

- Ha
LPE

RN, J.Y. A.R. MEYER, AN
free? In fr

IO(‘
,al sto
rag
wge, or What makes the free-list
245/257.

wages 1984,

0
n PTZ"ILCZ'plPS
s of Programming Lang

26.

Do
~J

30,

31.

33.

34,

Co
ot

36

. Hay
NES
, C. T. Logic cont

- Hay
NES
, C. AND D.P. FRIEDMAN.

- Hay
NES, C
.T., D.P. FRIEDMAN, AND

2. Knp
GHT, T
, T. An architecture for m

B
P
, P.J. A correspondence bet

222

E.L. WIMMERS, aANnD T.C. W INKLER.

Hapr,

P

ERN, J.Y., J.W. WILLIAMS
rules for FP. In Proc. 1

s, 1985, 108-120.

oth ACM Symposium

De
*notati
tational serr :
1al semantics and rewrite

on PT'?:TI ;
ciples of Programming Language
inuations. J- Logic Program: 4, 1987, 157-176.

ng continuations in procedural

Embeddi

g. Syst; 1987, to appear:

ohj
Jects.

In ACA/[T7‘(L7L5. PT()gra,*rn, Lan
1ing coroutines from

M. WAND. Obtair
(Pergamon Press) 11, 1986,

contir .
lmuations. Journal
nal of Computer Languages

143-153
HEN
DERSON
, P. Functional ngmmmmg: Application and Implement(ztion.
n, 1980.

P re
ullt. e- H
C]. IIl] (0]
l (]
re er g(fnel

R. Clompletion semnantics and interp

inciples of Progmmming Languages,

HEeNg
(e}
5 N, M.C. AND R. TURNE
allon, IIl P
roc. 9th ACM S'ymposz"u,m on Pr

1989 o
<y -427<254:
] languages: In Proc. 1986

ostly functiond
1986, 105-112.

rogmmmmg,

AC’M
Confere
: ference on Lisp and Functz’onal B
ECK { i)
PL D ER, E. Syntactic Frtensions in the Programmind Languag® Lasp-
. a (JJ.,S“.\ 4
sertation, Indiana University 1986.
n Proc. SIG-

for Scheme: I

SIGPLAN Notices 21

KRra
Nz, D

., et al. ORBIT: An optimizing compiler
Constmction, (7),

PrLa
N 1
986 Symposium omn Compiler

ambda

1986, 9
» 219-233
ween ALGOL 60 and Church’s 1

Il()tati

O Y

n. Commun. ACM, 8(2); 1965, 89-101; 158-165-
nces i Progmmmmg and Nomn-
Vork, 1966

aeh, 1B Adva

x, Pergati©

New

Lan
DIN

. P.J. A \-calculus appr©
by L. Fo

n Pl’CSS7

n'ltm ‘
€Ticq
I Computation, edited 1

37.

38,

40,

41,

43

44

46,

- LAN
DIN, P
J. An abstract machin

- Mas
ON, I
. A. The Semantics OfDC’St

. MA
UNY
, M. AND A. SUAREZ.

Mg
ZURK
1

EwIcz, A.W. Proving a

- Mg
CAR
TH
Y, J. A basis for a Il

97-14
ks
¢ ALGOL 60. In Formal Language De-

IN, P :
J. A formal description 0
dited by T.B. Gteel. Elsevier

Scription [
L Lanqgqua 2
gquages for Computer Programmings

Scien
ce Publishers
. ishers B.V. (North-Holland), Amsterdam, 1966 966-294
ANDIN | | .
s Pade T "
1e next 700 programming Janguages- Commun. ACM 9(3),

1966, 157-166. <
e for designers of computing Janguages- In

Proc
-

FIP Congress, 1965, 438-439.
expressions: Comput. J- 6(4),

LAN
DIN. P
) J L :
. The mechanical evaluation of

1964
)4, 308-320
Lisp programs: In Proc. First Sym-

MAS
ON, I

. A. Equivalences of frst-order
117.

pOSiu,n,
Lo o

v Logic in Computer Seience, 1986, 1057
h.D. dissertation: Stanford

ructive L8P P

versity
sity, 1986.
1ctional languages in the Cat-

I
e on Lisp and Fu

Implementing fu
netional

1986 Conferent

Oreyns
“B0rical
Abstract Machine. In Proc.

P']‘O
gramm
maing, 1986, 266-278.
Inf Control

Jgorithms by tail functions: In

18
° 1971, 2
, 220-226
heory of computations. In Com-

athematical t
nd Hershbers.

cdited DY praffort &

Put
er P
roqgra ‘
gramming and Formal System®

963, 33-70-

Ph.D.

No
rth-
Holland, Amsterdam]
Mo ’
RRIg
J .
, J.H. Lambda-Calculvs Models of Pprogrammi™d Languag®s

digg
Sertation, MIT, 1968

48,

49

(@4
Do

ot
=7

- REY
NOLDs,
J.C. Definitional interpr

- REYN
NOLD

B d L GEDANKEN/A simp
.o concept:

. Rosg
ER, J ;
.B. Highlights of the 1

- 8oy
MIDT
) D 5
'A. Denotational Semantic

" SM
ITH
s B, .
C. Reflection and GemantiCs

224

put. '
Sci. 1, 1975, 125-159
QUINE

, W.V. Word and Logic

REES
J. A
ND W. CLINGER (Eds.).

guage Sc
ge Scheme. SIGPLAN Notices 21(1

gUdopS
I:
n Proc. ACM Annual C’onfmence

le

ciple of ¢
3 completeness and the referenc
308-319 o

ambda

1
984, 337-349.

Proe
o vvbrk,
shop on Programs a@s Data Objectss edited bY
- Gcience AN Springer—Verla.g,

Jo
nes, T,
. e &= J
cture Notes in Computer

1086 5935,

<

CS!

Opm
Lent ’XH
4 \"I]_ N
and Bacon, Newton, Mass:s

Jrary
nms
ng wi
g with Sets: An Introduction 10

Puter
Scle a
nce. Springer-Verlag, New York,

s elimina,tion 0

SET
HI R (Y
. Circular expressions: €

but. p
rogram. 1, 1982, 203-222.

on p..
Tines
ciples :
or Programming Language®

. PLOT
KIN, G :
.D. Call-by-name, call-by-value,

ic. MIT Press, Cammdge,

- Scy
MIDT
. An 1mplementation from 2 dire

ln_ L] p In

5), 1986, 3719

1972 ’17—740.

typeless 1

Clommun.

calculus.

A Met/wdalog
1986.

KY, AND

1986.

f static envir

1984, 23-35.

and the \-calculus.

The revised3 report on the algor

eters for 1’1igher—order programming

anguage bas

ACM 13(5), 1970,
Ann. Hist. Comyp. 1

ct semantics de

H. Ganzinger anc

y for Langua

- and Monog rap

i onments.

Theor. Com-

Mass., 1960

-ithmic

lan-

ed on the prin-

(4);

finition. In

IN.D.

.o Heidelberg,

ge Devel-

. SCHONBERG. Pro-

hs in Com-

Gei. Com-

A cM Sympos S3UM

SS'SMULLYA 225
) AL Furst-Or : s
srst- Order Logic. Sprlnger—\/’erlag, Heidelberg, 1968.

Languages for Computer

59,
d.). Formal Languag® Description
1), Amsterdam,

s B.V. (North—HoHanc

Py
Ograr i
: nmai :
ng. Elsevier Science I
clenc Publisher

1966.
al Press, 1984.

60
. STER
LE, G
) . G :
ommon Lisp— The Languege Digit
declarative- Memo 379, MIT Al Lab,

61
. ST
ELE, G
) L. Lan
o ambda: The ultimate
62
2. ST
ELE
, G.L. Macs . %
Macaroni is better than spaghetti- In Proc. Symaposium 0™
)i

Artific;
icial ['IZ,t(JZ["
igence and Progmmming Languages S]GPLAN Hotsoes 12(8

4, MIT AI Lab,

63
. STER
iLE, G
) J
. RABBIT: A compiler for SCHEME. Memo 47

1978,
64
.L. AND G.J. SUSSMAN. [,ambda: The ultimate imperative: Memo

353
» MIT Al Lab, 1976.
. or, the modu-

-
ELE
, G.L.. AND G.J. SUSSMAN.

ALty cor
5 omplex. Memo 453, MIT Al Lab,
The SCott-Stmtchey Approach to Pro-

ST
oy
) JE
. Denotational Semantics:
e. Mass

g'f‘a/,n .
ming I,
anguages. MIT Press, Cambridge: 1981.
A mathematical se-

Gr\
. AND C.P. WADSWORTH: Continuatmns:
chnical Mono

R,esearch

graph pPRG-11; Oxford Uni-

Illanti
cs for 1
or handling full jumps. Te
Group, 1974

Programrnin g
d lambda

Vera
CT th
1ty Compu
J ommniii
mp tlllg L'cLbOI’&‘LtOI'Y,
r for extende

n interprete

68
! SUS
SMAN
G
Caley .J. AND G. STEELE. Gcheme: A
6. 5. Memo 349, MIT AI Lab, 197>
ory function and control abs racti

Ta
, C. Rum: An intensiona,l the

226
tional Programming, 1986.

Inp
roc. W
. Workst ,
10D 0N Foundations of Logic and Func

to ¢
0 appear,
f the Intensional and Exten-

70, 7
. TALCOT
Ty, C
. The Essence of Rum—A Theory ©
Stanford Univer-

SZOTL(LZ A
SPGCtS 0 e
f Lisp-type Computation. Ph.D. dissertation,

» 1985,
n technique for applicative languages-

- TUR
NER
. A new unplementa.tio

Sqﬁ7

w.

Pract. Ezper. 9, 1979 31-49
tion strategies- J. ACM

~

» WA I:
N ? NI C‘()l t f
1Nuc '] n-r o m tr’]n Tl a
uatio ~])a.b‘(3d l)rogra @ s10 : '

27(1)
, 1980, 164-180.
n semantics.

a representation of continuatio

. Wa
. Deriving target code as
% 1982, 496-51T-

ACM
T}"(]/] v
1s. Program. Lang. Syst. 4(3
ns using contin-

» M. AND D
.P. FRIEDMAN. Compiling lmnbda-exprGSSiO
n Press)

puter Languo (Pergamo

ges (

uati
10ns
S and fs ;
actorizatic
ations. JO'u,rn(Ll of Com

led: a non-

3
31978 9

» 241-263
e tower revea

M Conferent

mystery of th
Proc. 1986 AC

=3

ot

e on

. WA
ND
, M. A
ND D.P. FRIEDMAN. The

ve tower. In

g, 208-307

refle
E A'Cfiv
. € (ege T «
lescription of the reflecti

Lis
‘p (I;']’L(] F
unctional Programming, 198

Matth Vita
atthias Felle
Fr s elleise
gI:I.Il the U niv(:: (::Itl ea?'ned a Master of Science degr
lénleur df?“'ra; f‘L"I y of Arizona, Tucsom in 1981 and & Diplom V
981 to 19585 rom the Universitat Kar 1
3 3 &) [e
Tuhe, 3 he was a programmer for
of his studies,
a Fulbright

Duri

ne tl i . v

g Uh1s first pe]_‘lod I\/’[atthla
FeHowship.

Teein:
1p1e
nt of <
ot a Konr
wrad-Ader
Adenauer- and

S
} HeEEIL arll -L%O(.HLt(i

Ind;
1dis
= dn-d IJ .
niversi
iversity, Bloomington I
gton.
Austin,

Oft e
‘ (ll'e T(a(‘l,
Year of his C{Oliolo};y Program at the MCC in
octoral studies, Matthias Felleisend recewed ¢
Associatio for Clomputiné

]5?311
Owshj
B,
pP. He has been a member of the

chiney
Cly SinCe 1981

	00003279 (1)
	00003280
	00003281
	00003282
	00003283
	00003284
	00003285
	00003286

