Distributed Genetic Algorithms
by
Jung Y. Suh and Dirk Van Gucht

Computer Science Department
Indiana University
Bloomington, IN 47405

TECHNICAL REPORT NO. 225

Distributed Genetic Algorithms
by
Jung Y. Suh and Dirk Van Gucht
July, 1987

To appear in Butterfly Parallel Processing, P. Waterman, Ed.

Distributed Genetic Algorithms

Jung Y. Suh
Dirk Van Gucht

Computer Science Department
Indiana University
Bloomington, Indiana 47405
(812) 335-6429
CSNET: jysuh@indiana, vgucht@indiana

1. Introduction

1.1. Genetic Algorithms

Suppose we have an object space X and a function f : X — Rt (R* denotes the positive real
numbers) and our task is to find a global optimum for that function. Genetic algorithms are a class
of adaptive algorithms invented by John Holland [16] to solve (or partially solve) such problems.
Genetic algorithms differ from more standard search algorithms (e.g., gradient descent, controlled
random search, hill-climbing, simulated annealing [3, 4, 18] etc.) in that the search is conducted
using the information of a population of structures of the object space X instead of that of a single
structure. The motivation for this approach is that by considering many structures as potential
candidate solutions, the risk of getting trapped in a local optimum is greatly reduced. In Figure
1 we show the layout of a genetic algorithm, which we will from now on call a standard genetic
algorithm.

P(t) denotes the population at time t.

t«—0;
initialize P(t);
evaluate P(t);
while (termination condition is not satisfied)
{
t — t+l;
select P(t);
recombine P(t);
evaluate P(t);

Figure 1. Layout of a Standard Genetic Algorithm

The initial population P(0) consists of structures of X, usually chosen at random. Alter-
natively, P(0) may contain heuristically chosen structures. In either case, the initial population
should contain a wide variety of structures. Each structure z in P(0) is then evaluated by apply-
ing to it the function f. The genetic algorithm then enters a loop. Each iteration of that loop
is called a generation. The new population P(t+1) is constructed in two steps, the selection and
recombination steps. In the selection step, a temporary population (say P'(t + 1)) is constructed
by choosing structures in P(t) according to their relative performance. For example, if we are
maximizing f, the structures with greater than average performance will be selected with higher
probability than the structures with below average performance. This resembles the survival of the

1

fittest principle of natural evolution. After the selection step, the temporary population P/(t + 1) is
recombined. (The resulting population is the new population P(t+1).) Typically, recombination is
accomplished by applying several recombination operators, such as crossover, mutation, inversion
[7, 16], or local improvement [25], to the structures in P'(t + 1). After the recombination step is
completed, the new population is reevaluated and a termination condition is checked for validity.
Genetic algorithms have been applied with great success by De Jong [7] to a wide variety of
function optimization problems defined over object spaces of the form R", i.e., each structure z
consists of n real numbers z[1]...z[n]. They have also been applied to other problems such as
optimization of simulations [12], image processing tasks [10], evolving production system programs
for AI [24], combinatorial optimization problems [5, 6, 11, 14, 15, 23, 25] etc. This wide variety of
problem domains suggests that genetic algorithms are robust and flexible optimization algorithms.
They suffer a serious drawback however: their implementation as sequential algorithms on sequen-
tial machines typically run slowly when compared to problem specific optimization algorithms. On
the other hand, it is clear, by looking at Figure 1, that genetic algorithms can easily be parallelized
and run on multi-processor machines which would greatly improve their efficiency. It is our intent
to show a variety of parallel versions of genetic algorithms, which, by the way, better resemble
natural evolution, and to show the results and measured speed-up of running these algorithms as
simulations on sequential machines and as real parallel algorithms on a multi-processor machine.

1.2. Parallelizing Genetic Algorithms

There have been many proposals to improve the quality and performance of standard genetic
algorithms. Many of these are intended to improve the robustness of the algorithm, mainly by
preventing the premature convergence problem [7, 8, 16] by maintaining enough diversity in the
population, either by normalizing the performance value of the structures in the population [1]
or by introducing random noise systematically [21]. Another improvement of genetic algorithms
resulted from the proposals indicating that domain specific knowledge could easily be incorporated
in the recombination operators of genetic algorithms [14, 15, 25]. Still another proposal indicating
that it is sometimes sufficient to provide approximate, but typically quickly obtained, function
evaluations to the algorithm resulted in dramatic speed-ups of the algorithm in problem domains
such as image processing [10]. In this paper, we readdress the problem of speeding up genetic
algorithms by parallelizing themt}. As one can observe, by looking at Figure 1, one can easily devise
a parallel version of a standard genetic algorithm by considering a pool of processors which perform
function evaluations and recombination operations and another processor which is responsible for
assigning structures to the processors for evaluation and recombination and which furthermore
performs the selection step of the genetic algorithm (in fact this is close to one of the algorithms
introduced by Grefenstette [13]). We will show that one can go a lot further by also parallelizing
the recombination step and the selection step of the algorithm. In Section 2, we propose a parallel
version of a standard genetic algorithm in which the evaluation step and the recombination step are
parallelized. We will call this algorithm the centralized genetic algorithm since it still uses central
control because the selection step is performed by a master processor which also synchronizes the
actions of the processors which perform the evaluations and recombination operations. In Section
3, we propose a framework in which genetic algorithms become totally distributed algorithms which
we will call distributed genetic algorithms. This is accomplished by replacing the selection step by
local selection routines which are distributed over the processors which already contain routines
for evaluation and recombination. We will furthermore argue in Section 3 that distributed genetic
algorithms yield similar performance as standard genetic algorithms, that their implementation is
straightforward, uniform and natural, that they are reliable algorithms, that they allow for effects

i This problem has been considered by other researchers such as Grefenstette [13].

2

not possible in synchronized implementations, and that they offer more tuning opportunities to
control problems, such as the premature convergence problem, than standard genetic algorithms.
In Section 4 we compare the centralized and distributed genetic algorithms with parallel versions of
genetic algorithms introduced by Grefenstette [13]. In Section 5, we provide experimental results
of centralized and distributed genetic algorithms for the traveling salesman problem and show that
their performance is as good as standard genetic algorithms but that they run faster due to the
speed-up obtained from the parallelism. Finally, in Section 6, we draw some conclusions and discuss
some directions of future research.

2. Centralized Genetic Algorithms
In this section, we present an algorithm which parallelizes the standard genetic algorithm shown
in Figure 1 and comment on some of its shortcomings.

Consider a pool of (identical) processors (called slave processors) which each contain a struc-
ture of the population and which can evaluate structures and perform recombination operations,
such as cross-over, mutation or local improvement, and consider another processor (called the mas-
ter processor) whose task it is to instigate and synchronize the evaluation and recombination steps
and to perform the selection step. In Figure 2 we show the code executed by a slave processor and
the code executed by the master processor.

SLAVE PROCESSOR

if the master processor requests evaluation then
evaluate the local structure;

if the master processor requests recombination then
perform recombination to the assigned structures;

MASTER PROCESSOR

while termination condition doces not hold
{

while any slave is active WAIT;

perform (global) selection (this involves
reassigning structures to slave processors);

request evaluation from the slave processors;

request recombination from the slave processors on
assigned structures;

Figure 2. A Centralized Genetic Algorithm.

As can be seen, parallelization and the accompanying speed-up is achieved by distributing
the work required in the evaluation and recombination step over the slave processors. Notice,
however, that the selection step is central to the task of the master processor. In fact, stated from
a different perspective, it is because of the selection step that a master processor is necessary. This

3

is the case because selection, as described in the current literature, is a global process requiring
knowledge about the values of all structures of the current population. It is for this reason that we
call this algorithm a centralized genetic algorithm. Although, this algorithm is a natural parallel
implementation of a standard genetic algorithm and achieves the speed-up it is designed for, it has
disadvantages:
i. the algorithm is not reliable: indeed, as can be seen from the code shown in Figure 2, if the
master processor or one of the slave processors fails, the algorithm halts.

ii. synchronization delays may occur because evaluation and recombination operations may not
all require the same time when applied to different structures and therefore processor time is
wasted in the form of idle time.

iii. the algorithm does not appear natural because selection is centralized. Tt seems to us that, in
a broader sense, selection is a process that should not be centralized to a single processor; it
certainly is not implemented as such in nature. In fact, in nature, selection, as a global effect,
is achieved through the continuous interaction and competition of individual structures and is
not controlled by a central agent. In Section 3 we will see how to overcome this very problem
and obtain a more natural and uniform parallel genetic algorithm. It should also be noted
that a slow-down of the algorithms can be expected because selection is not parallelized as
opposed to evaluation and recombination.

3. Distributed Genetic Algorithm
In this section, we propose a framework in which the principal components of genetic algorithms
can be implemented as local processes. We then argue why we think this implementation is more
natural and at least as efficient as the standard implementation. Our framework consists of a pool
of processors which execute identical or nearly identical tasks in parallel. Each processor has a local
memory large enough to store a small number of structures, one of which will be called the local
structure. The collection of all these local structures in the processors constitutes the population
of the genetic algorithm, hence rather than a having a global memory to store the structures of
the population, the structure are spread out over the processors in the form of local structures of
processors. Furthermore, each processor is capable of performing local tasks and communicating
with the other processors. In this framework, we can describe a new way of implementing genetic
algorithms. As indicated before (see Figure 1), a genetic algorithm breaks down into the repeated
application of an evaluation step, a recombination step and a selection step. It is straightforward
to implement the evaluation and recombination steps. In the evaluation step, each processor
evaluates its local structure and stores the outcome in its local memory. The recombination step
which usually consists of a cross-over step and a local improvement step is implemented as follows:
i. For the cross-over step, each processor p elects to communicate with another processor ¢, with
some locally controlled probability. After communication is established, processor p reads in
the local structure of ¢, after which communication between p and ¢ ceases to exists. Processor
now performs cross-over between the structure just read in and its local structure and one of

the offsprings becomes the new local structure of p.

ii. For the local improvement step, each processor probabilistically determines to perform local
improvement on its local structure.

The novelty of our approach comes from the fact that we also propose to implement the selec-
tion step by local processes. In the standard genetic algorithm, the selection step is implemented
by a single process which gathers the performance value of the structures, computes their average
and “duplicates” the structures according to their relative performance with that average. If one
wants to faithfully replicate this process, one has to introduce a special processor for this step of
the genetic algorithm. In our opinion, this is unnatural as well as unnecessary. It is unnatural

4

since we do not believe in a supervising agent which, for each structure, assigns its rating and
calculates the number of offsprings (certainly, nature does not seem to behave that way). It is
also unnecessary since selection can be implemented, as will be seen shortly, by local processes.
There are several ways to implement a selection step using local processes. What is common to
all of them, though, is that they all implement a notion of the survival of the fittest principle. We
next outline five different, but related, selection steps, called Selection 1, Selection 2, Selection 3,
Selection 4 and Selection 5.

In Selection 1, each processor p, with some locally controlled probability elects to communicate
with another processor g, if the value of the local structure of p is better than the value of the
local structure of g, processor p overwrites the local structure of ¢ with its local structure after
which communication is ceased, otherwise p undertakes no action and communication is ceased
immediately (notice that processor ¢ is passive in this process). In Selection 2, each processor p,
with some locally controlled probability elects to communicate (not necessarily simultaneously)
with k other processors ¢;(1 < i < k), p reads in the value v; of the local structure of ¢; and
stores the processor number of ¢; and ceases communication with g;. Processor p computes av =
1/k Ei-;l v;, the average value of the v;’s, and compares the value v of its local structure with av.
If v > av then p randomly selects another processor ¢ and overwrites the local structure of ¢ with
its local structure, otherwise p undertakes no further action. In Selection 3, the following action is
undertaken by processor p: if v > av then p randomly selects one of the processors g; (remember
p has the processor numbers of the ¢;’s in its local memory) and overwrites the local structure of
¢;, otherwise p undertakes no further action. In Selection 4, the following action is undertaken by
processor p: if v > av then p overwrites the local structure of the processor among the k processors
g; with the worst v;-value, otherwise p undertakes no further action. In Selection 5, the following
action is undertaken by processor p, if v > av then p overwrites the local structures of ! processors,
with I = [min(k,v/av)|, of the selected processors g;, otherwise p undertakes no further action.
It is interesting to notice that Selection 1 is a special case of Selection 4 and Selection 5 for £ =1
and that Selection 5 is quite related to the standard selection step of sequential genetic algorithms.
It should also be noted that we can easily incorporate normalization techniques as suggested by
Baker [1] within these selection schemes.

In Figure 3 we summarize the above discussion by showing the code each processor executes
during the course of a run of a distributed genetic algorithm. Notice that we do not require that
a processor executes the four statements in the while loop in the specified order or that p;, p. or
ps are the same for all processors.

{

while termination condition does not hold

{
evaluate the local structure;
perform local improvement on the

local structure with probability py;

perform cross-over with probability p.;
perform local selection with probability p;;

}

}
Figure 3. A Typical Processor of a Distributed Genetic Algorithm.
We are now ready to give a description of a distributed genetic algorithm. A distributed

genetic algorithm (DGA) consists of a pool of processors as described above which are initialized
by assigning to each of them a local structure and are then run asynchronously with each processor

5

executing its local code as shown in Figure 3. The DGA adopts the following synchronization policy:
if a processor p wants to communicate with another processor ¢, p places a lock on ¢ which is released
when communication between the two processors ceases; if during this communication another
processor r wants to communicate with ¢, communication between r and ¢ is not granted and r
proceeds by trying to communicate with another processor. Notice that this simple synchronization
policy can be implemented by local processes as well.

1

jii.

iv.

vi.

There are certain observations we want to make about distributed genetic algorithms:

. they yield similar performance as standard genetic algorithms: experiments with DGAs on

function optimization problems and combinatorial optimization problems yielded performance,
both in speed and in robustness, of the same quality as experimental results with the stan-
dard sequential genetic algorithms reported in the literature. In Section 4, we compare the
performance of a DGA and a standard genetic algorithm for the traveling salesman problem.
their implementation is straightforward and uniform due to the introduction of the local selec-
tion process: in standard genetic algorithms, the selection step is a globally controlled process.
This results in an asymmetry in their implementation since selection has to be considered
separately from the evaluation step and the recombination step. In the distributed version,
this asymmetry is removed and uniformity is obtained by localizing the selection step and
therefore localizing all major components of the genetic algorithm. The global effect of a
genetic algorithm is obtained because the processors communicate when performing crossover
and selection. From an implementation point of view, also notice that we do not need so-
phisticated locking and scheduling mechanisms and that there is only a minimal contention
problem [22] since processors rarely will be competing for the same memory locations.

their implementation is more natural: in our opinion, the distributed genetic algorithm resem-
bles closer the evolutionary process found in nature. In nature a pool of structures communi-
cate and operate on each other in the form of local processes to yield the effect known as the
evolutionary process. It does not appear likely that there is a supervising agent which controls
this process or even parts of this process such as the selection step. In fact, we strongly believe
that selection in nature is achieved through local processes which perform a kind of survival
of the fittest strategy.

they are very reliable algorithms: the failure of a processor only slightly alters the flow of
the algorithm, in the worst case, the processor that fails has a lock on another processor and
therefore disables that processor upon failure, but this will not have a major effect on the
communication and the actions of the other processors, resulting in only a minor change in
the flow of the entire algorithm. It should also be noticed that is is very easy to repair or
insert processors without affecting the algorithm much.

. they allow for effects not possible in synchronized implementations of genetic algorithms: due

to the asynchronous behavior of the algorithm, different processors may display different be-
haviors. For example assume we have a processor g with a “good” local structure and a
processor b with a “bad” local structure. It is likely that processor b will spend more time
improving its structure by performing local improvements on its local structure, whereas pro-
cessor g may in the mean time spend his time communicating with other processors through
crossover or selection. Clearly this effect is by-passed in synchronized implementations of
genetic algorithms such as the centralized genetic algorithms.

they offer more tuning opportunities: since the crossover probability p., the local improvement
probability p;, the selection probability ps, as well as the actual crossover, local improvement
and selection routines are local to each individual processor (in contrast, in the standard
genetic algorithms all these parameters and routines are the same) a DGA allows for more
tuning opportunities by setting these parameters and operators not necessarily equal in all the

6

processors. It is, for example, quite likely that the parameters should change over the course
of the algorithm and may change according to the properties of the local structure of each
processor. This ability offers, for example, additional techniques to overcome the premature
convergence problem found in most genetic algorithms. In fact, we have already observed this
phenomenon in our experiments with DGAs.

4. Comparison with Other Parallel Implementations of Genetic Algorithms

There have been other proposals to parallelize genetic algorithms, the most noticeable among these,
the proposal of Grefenstette [13]. We will state Grefenstette’s assumptions, give two of his parallel
genetic algorithms and along the way, compare and contrast his approach with ours.

Grefenstette’s main assumption is that the dominant cost in a genetic algorithm is the amount
of time spent in doing function evaluations. In other words, he assumes that the evaluation step
takes the most time and the recombination and selection steps are merely small overhead. While
this is a reasonable assumption in some applications, such as optimizations of simulations [12]
and evolving production system programs for Al tasks [24], this assumptions is not valid in other
applications such as some combinatorial optimizations problems like the traveling salesman problem
or puzzle problems such as the sliding puzzle problem [25], where in fact as much time or even
more time is spent in the recombination step as in the evaluation step due to the incorporation
of heuristics in the crossover and local improvement operators [14, 15, 25]. Given Grefenstette’s
assumption, it is difficult to compare his algorithms with the distributed genetic algorithm, but it
is still interesting to contrast both approaches. We state two of his algorithms next. Algorithm
1 is an algorithm with a centralized concurrency control mechanism (we show this algorithm in
Figure 4). Much like the CGA described in Section 3 it consist of k¥ + 1 processors, one master
processor and k slave processors. The master process maintains the population of structures and
performs the selection and recombination steps of the genetic algorithm. The slave processors are
responsible for structure evaluation.

Comparing Algorithm 1 and the CGA is left up to the reader. Algorithm 1 and the DGA
basically coincide in that they both distribute function evaluations but greatly differ in the way
recombination and selection is performed. In Algorithm 1, the master processor is responsible
for these processes, in the DGA, recombination and selection are distributed in the form of local
processes. As mentioned by Grefenstette, Algorithm 1 has rather poor reliability characteristics.
If the master process fails, the entire algorithm halts. Furthermore, the synchronization mecha-
nism employed relies on the fact that all slave processors successfully complete their actions. As
mentioned in Section 3, the DGA is highly reliable, i.e., failure of a processor does only marginally
affect the performance of the entire algorithm.

Algorithm 2 uses distributed, asynchronous concurrency control. There are £ identical proces-
sors, one of them is shown Figure 5.

Although this algorithm is closer to a DGA since the evaluation and the recombination steps
are distributed, it differs from a DGA in two ways:

i. selection is not localized since each processor has to update the selection probabilities of all
structures of the population, and

ii. Algorithm 2 does not distribute memory, instead there is one global memory which stores the
structures of the population. This can lead to contention problems as indicated by Grefenstette
and can thus result in a slow-down of the algorithm. In contrast, in the DGA, there is no notion
of a global memory which stores the population of structures, rather, the pool of processors
with their local structures serves in the role of the population of the genetic algorithm. As
indicated in Section 3, this implies that a simple locking mechanism with little contention
problem suffices to implement successful communication, resulting in maximal speed-up given

7

SLAVE PROCESSOR

while there are unevaluated structures in the peopulation
{
choose a subset $j1,...,3jn
of size n (where n = (size of the population)/k)
from the set of unevaluated structures
in the population;
evaluate each of the chosen structures;

MASTER PROCESSOR

while termination condition does not hold
{
while any slave is active WAIT;
perform the (global) selection step;
perform the recombination step;

Figure 4. Algorithm 1 of Grefenstette.

while termination condition does not hold
{

remove n unevaluated structures from the population;

evaluate the chosen structures;

recombine the chosen structures;

{ enter critical section
insert the structures into the population;
update the selection probabilities;

} leave critical section

Figure 5. Algorithm 2 of Grefenstette.

an implementation on a multi-processor machine.

5. Experimental Results with Centralized and Distributed Genetic Algorithms
In this section, we present two sets of experimental results about centralized and distributed genetic
algorithms. In the first set, we compare the results of a simulation of a CGA and a DGA on a
sequential machine, a VAX 8800. In the second set, we compare the results of implementations of
both algorithms on a multi-processor machine, a Butterfly machine with 16 processors [2].

The algorithms are applied to the Traveling Salesman Problem (TSP) [19, 20]. Those who are
not familiar with this application, we refer to [11, 14, 15, 25] where standard genetic algorithms

8

are described to (approximately) solve this problem. Before discussing the results in detail, we
would like to point out that genetic algorithms for the TSP do not satisfy the central assumption of
Grefenstette [13]. As mentioned in Section 4, Grefenstette assumed that the evaluation of structure
takes more time than the recombination operators. But, in case of genetic algorithms for the TSP,
the recombination operators, i.e., the cross-over and local improvement operators, take as much as
or more time than the evaluation.

5.1 Simulation Results on a Sequential Machine
Three different TSP problems were analyzed, their names and definitions are shown in Figure 6.

kralak ekl Gl il -

. 200-cities
lattice elshes

Figure 6. Three Traveling Salesman Problems.

The simulation of the CGA corresponds exactly to the standard GA. In the simulation of
the DGA, we used Selection 1 as the local selection procedure, i.e., if processor p (with a certain
probability p,) elects to communicate with a processor ¢ then if the value of the local structure of
p is better than the value of the local structure of g, processor p overwrites the local structure of
q with its local structure.

In Appendix 1 we show the results of running the simulations of the above described DGA
and CGA. The most important observation is that the performance of the DGA which uses a local
selection method is similar to that of the CGA which uses the standard selection method. This
result indicates that it is possible to safely use the more natural distributed genetic algorithms and
still obtain similar results. If there was a difference in the performance of the two algorithms, it was
in the fact that local selection seems to add another source of maintaining the diversity because of
its more noisy behavior. As indicated in previous work, this can only add to the robustness of the
algorithm. In fact the noisyness of the local selection allowed us to use fewer local improvements
(mutations) than was necessary for the CGA.

5.2 Some Parallel Implementation Results

The experiments described in this section were done on a Butterfly [2] machine with 14 available
processors. Only one of three traveling salesman problems, the Lattice problem with 20, 60, and
100 cities was looked at in these experiments (we expect similar results for other TSP problems).

9

‘We ran each algorithm with a varying number of processors. This requires some comments because
our algorithms are originally designed in such a way that one processor holds only one structure.
What we mean by this is that, if we run for example a DGA with 100 structures on 2 processors,
we allocate 50 structures on each processor and one processor sequentially simulate the task of 50
processors. So even in case of 14 processors running, each processor has to simulate 7 or 8 processes
sequentially. The ideal case would be to run 100 processors in parallel. The purpose of running the
algorithm on a varying number of processors is to find out how far the algorithm is parallelizable
by deriving the curve of “effective processors”. In most cases, using k processors does not result
in k-times speed-up due to the overhead of communication or a section of program which cannot
be parallelized. If we run a program with a single processor and then run it with k processors, we
can find out how much speed-up k processors produced, by dividing the execution time of single
processor run by that of k processors. For each k, we can derive the speed-up factor and draw a
corresponding graph. This curve is usually a convex (sublinear) curve. The less convex it is, the
better. In our actual experiments, we could not calculate these curves as stated because we were
unable to run the program on a single processor because of its size. Instead, we calculated the
speed-up factor against the running time of 2 processors. The speed-up curves for the experiments
using the CGA and the DGA are shown in Appendix 2. As can be seen, these curves are not
smooth. This is due to the fact that for experiments with different number of processor, different
random seeds have to be used in the different processors, resulting in a slightly different behavior of
the algorithm. In the case of the CGA, the speed-up is better as the size of problem increases. The
reason is that the overhead the CGA carries, due to the global selection and the synchronization
delays of the master processor, is sufficient to slow down the speed-up in this small size problem.
In the case of the DGA, there is no global selection and fewer synchronization delays. So the
speed-up curves show less change as the size of the problem increases although it still appears
that speed-up is better in larger size problem. We would like to note that as the local selection
we used is a variant of Selection 2: we take 5 samples and when we overwrite a structure, we
make sure that it is overwritten by a better structure, if the one to be overwritten is better, no
overwriting occurs. As local improvement method we used simulated annealing [3, 4, 18, 25] where
the initial temperature is chosen to be some fraction of the standard deviation of the values of the
population and this temperature is decreased exponentially. Also we used a stopping mechanism
which is different from the standard stopping mechanism which consists in just counting number
of evaluations. A more detailed version of this DGA is shown in Appendix 3.

6. Conclusion

We have shown that genetic algorithms can be modified to become distributed asynchronous
algorithms, which we called distributed genetic algorithms. This is done by localizing the selec-
tion step and distributing it together with the evaluation and recombination steps to a pool of
processors. Qur experiments indicate that the solutions obtained by DGAs are as good as the
ones obtained by the standard genetic algorithms which we implemented as centralized genetic
algorithms. The advantage of DGAs are that they are reliable, natural algorithms which, when
implemented on a parallel machine, can result in very fast search algorithms. Other, more conven-
tional, sequential search algorithm are much harder to parallelize. This point is well explained in
[17]. In short, many such algorithms accumulate improvements on a single structure. This implies
that one cannot easily break up those improvements into small pieces and use a pool of processors
to perform them independently, i.e., it is usually the case that one piece of improvement has to
be done first in order for another piece of improvement to become effective. Distributed genetic
algorithms do not suffer from such complications. Despite the contention problems (which are min-
imal), speed-up factors can be expected to be much higher than speed-up factors obtained for other

10

search algorithms, for example [9]. It would be quite worthwhile to conduct an empirical study
comparing the performance of DGAs with that of parallelized versions of other search algorithms.

References

[1] J. Baker,“ Adaptive Selection Methods for Genetic Algorithms”, Proc. of an Int’l Conf. on
Genetic Algorithms and Their Applications, pp. 101-111 (July 1985).

[2] BBN Advanced Computers. The Uniform System approach to programming the Butterfly
parallel processor. Rep. 6149, Version 2.

[3] E. Bonomi, Jean-Luc Lutton, The N-city Traveling Salesman Problem: Statistical Mechanics
and the Metropolis Algorithm ” SIAM Review Vol. 26 No. 4 October 1984 pp 551-568

[4] V. Cerny, “ Thermodynamical Approach to the Traveling Salesman Problem: An Efficient
Simulation Algorithm” Journal of Optimization Theory and Application Vol.45 No. 1 January
1985 pp 41-52

[5] L. Davis, “Job Shop Scheduling with Genetic Algorithms”, Proc. of an Int’l Conf. on Genetic
Algorithms and Their Applications, pp. 136-140 (July 1985).

[6] L. Davis, “Applying Adaptive Algorithms to Epistatic Domains”, Proc. of 9th IJCAI, pp.
162-164 (Aug 1985).

[7] K.A. De Jong, “Adaptive System Design: a Genetic Approach”, IEEE Trans. Syst., and Cyber.
Vol. SMC-10(9), pp. 556-574 (September 1980).

[8] K.A. De Jong, “Genetic Algorithms: a 10 Year Perspective”, Proc. of an Int’l Conf. on Genetic
Algorithms and Their Applications, pp. 169-177 (July 1985).

[9] Raphael A. Finkel, John P. Fishburn ¢ Parallelism in Alpha-Beta Search” Artificial Intelligence
19(1) September 1982, pp 89-106

[10] J.M. Fitzpatrick, J.J. Grefenstette and D. Van Gucht, “ Image Registration by Genetic
Search”, Proceedings of IEEE Southeastern April 1984, pp 460-464

[11] D.E. Goldberg and R. Lingle, “Alleles, Loci, and the Traveling Salesman Problem”, Proc. of
an Int’l Conf. on Genetic Algorithms and Their Applications, pp. 154-159 (July 1985).

[12] J. J. Grefenstette, “Optimization of Control Parameters for Genetic Algorithms”, IEEE Trans.
Systems, Man, and Cybernetics (1985)

[13] J.J. Grefenstette, “Parallel Adaptive Algorithm for Function Optimization” Technical Report
CS-81-9 Computer Science Dept. Vanderbilt University November 1981

[14] J.J. Grefenstette, R. Gopal, B.J. Rosmaita and D. Van Gucht, “Genetic Algorithms for
the Traveling Salesman Problem”, Proc. of an Intl Conf. on Genetic Algorithms and Their
Applications, pp. 160-168 (July 1985).

[15] J. J. Grefenstette, “Incorporating Problem Specific Knowledge into Genetic Algorithms”, To
appear

[18] J. Holland, Adaptation in Natural and Artificial Systems, Univ. of Michigan Press, Ann Arbor
(1975).

[17] P. Jog, D. Van Gucht, “Parallelization of Probabilistic Sequential Search Algorithm”, Tech-
nical Report, Indiana University, April 1987 To appear in the Proc. of the 2nd Int’l Conf. on
Genetic Algorithms and Their Applications.

[18] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, “Optimization by Simulated Annealing”, Science
Vol. 220(4598), pp. 671-680 (May 1983).

[19] E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan and D.B. Shmoys (Ed), The Traveling Sales-
man Problem, John Wiley & Sons Ltd (1985).

[20] S. Lin and B.W. Kernighan, “An Effective Heuristic Algorithm for the Traveling Salesman
Problem”, Operations Research 1972, pp. 498-516.

1

[21] M. L. Maudlin, “ Maintaining Diversity in Genetic Search”, Proc. of an Int’l Conf. on Genetic
Algorithms and Their Applications, pp. 247-250 (July 1985).

[22] R. Rettberg, R. Thomas “Contention is No Obstacle to Shared-Memory Multiprocessing”,
CACM December 1986, pp. 1202-1212

[23] D. Smith, “Bin Packing With Adaptive Search”, Proc. of an Int’l Conference on Genetic
Algorithms and Their Applications, pp. 202-206 (July 1985).

[24] S.F. Smith, “Flexible Learning of Problem Solving Heuristics Through Adaptive Search”,
Proc. of 8th IJCAI (Aug. 1983).

[25] J. Y. Suh, D. Van Gucht, “Incorporating Heuristic Information into Genetic Search”, Technical
Report, Indiana University, February 1987 To appear in the Proc. of the 2nd Int’l Conf. on Genetic
Algorithms and Their Applications.

12

APPENDIX 1

*% T]llustration on Parameters and Tables of Statistics **
** On TSP Experiment. e

the number of population on given time.
the length of structure (in this case,

the number of citles).
the portion of population undergoing
cross—-over. the rest will undergo
the local improvement.
1f you mutiply this ratio to the structure
length, you will get the number of local
improvement attempts to be done for a structure.
Selection Rate : the probability that each strucuture will
undergo the LOCAL SELECTION.

Population Size
Structure Length

Crossover Rate

Local Rate

** How to read a table **

Population Size = 100
Structure Length = 100
Crossover Rate = 0.5
Selection Rate = 0.5
Algorithm DGA CGA
Local Rate 5 10 %
lattice exp. 1 101.6 (139:14000) 100 (188:16910)
exp. 2 101.6 (149:15000) 100.8 (200:17786)
exp. 3 100.8 (179:18000) 100 (207:18865)
exp. 4 100.8 (139:14000) 100 (237:22538)
exp. 5 102.0 (189:19000) 100.8 (163:13650)

First 3 parameters above the table are those of both DGA

and CCA. The last one "Selection Rate" 1s that of DGA.

The above table is for TSP experiment for Lattlice problem.

We conducted 5 experiments for two different algorithms.

The first row shows the result of DGA with Local rate 5 %.
The description "exp. 1" means experiment 1.

nnn.n (ggg: tttt) means that nnn.n is the best solution after
ggg generations which took tttt trials. ggg and tttt for DGA
are approximate values.

** In what follows we show the results obtained for the three TSP pro-
*%2 blems shown in Filgure 2.

1. LATTICE problem

Population Size = 100
Structure Length = 100
Crossover Rate = 0.5
Selection Rate = 0.5
Algorithm DGA CGA
Local Rate 5 % 10 %
lattice exp. 1 101.6 (139:14000) *+ 100 (188:16910)
exp. 2 101.6 (149:15000) 100.8 (200:17786)
exp. 3 100.8 (179:18000) 100 (207:18865)
exp. 4 100.8 (139:14000) 100 (237:22538)
exp. 5 102.0 (189:19000) 100.8 (163:13650)
exp 1: 101.6 0 1
exp 23 101.6 =p 2 100.8

FLf]

i)
s

3

exp J: 100.8 =p 3: 100.0

i
i

4: 100.0
exp 4: 100.8 =%

g

exp St 102.0

%—E
s ;
Sy
i
ER

2. KROLAK problem

Population Size = 100
Structure Length = 100
Crossover Rate = 0.5
Selection Rate = 0.5
Algorithm DGA CGA
Local Rate 5 % 10 %
krolak exp. 1 22169 (319:32000) 22293 (373:29435)
exp. 2 21869 (489:49000) + 22714 (386:30361)
exp. 3 21552 (369:37000) 21702 (403:31536)
exp. 4 21671 (259:26000) 21976 (627:49482)
exp. 5 21591 (409:41000) 21651 (679:49745)

exp l: 22169

exp 2: 21869

exp 3: 21552

axp 4: 21671

exp 5: 21591

L S

ep 1 A,9%

o 22 4,71

ep 3t 2,74

ep 4 2,293

ap 5: 4,61

3. 200 cities

Population Size = 100
Structure Length.-= 200
Crossover Rate = 0.5
Selection Rate = 0.5
Algorithm DGA CGA
Local Rate 5 % 10 %
200 exp. 1 160.2 (939:94000) 154.8 (679:52312)
exp. 2 154.6 (719:72000) 158.4 (999:78890)
exp. 3 153.8 (919:92000) 158.0 (711:57030)
exp. 4 152.9 (699:70000) 158.5 (768:60148)
exp. 5 155.5 (679:68000) 153.6 (946:72553)
exp 1: ap 1: 154.87

fi

axp 21

i

exp 1: 153.8

i

e 2 158.4

m@

ep 3: 155.08

Vs

i

exp 4: 152.9 ep 4: 18.5

%
bl

exp 5: 155.5 op 52 1.67

i
i

APPENDIX 2

Speed-up Curve of CGA

20 cities

speed-up factor

2 (against 2 processors)
/fﬁﬁhxhh’_,—/ﬂf”/’hﬁﬁ‘ﬂv/’,/‘“___‘_-___HHH““‘__*_¢_____
e (3.02 sec)
1
(6.29 sec)
/ 2 3 49 5 g 7T & % Ml n g2 Iv I¥

number of processors

60 cities
g 51 s¢c
speed-up factor ~, /////’ E3 sec
‘\\
. (against 2 processors) s
2 '

| :
(159 sec: 2min 39 get)
(154 Sec i 2min 34 se)

T + L + 4

I 5 3 4 8 ¥ 9 & 1 w @ g 3 ¢

100 cities number of processors

5 speed~up factor (g8 gec: I min 28 5¢eC)
4 (against 2 processors)
3% (90 sec i { mia F0seq)
2
1 /////fp

(397 sec @ & nin 39 sec)

(595 sec 1 § min 355€C)

/2 3 &4 5 4 7T & 9 (o I 12 12 l¢

number of processors

Speed-up Curve of DGA

20 cities

speed-up factor

(against 2 processors)

5.a) (1.1 second)

4.7 (1.4 second)

;| 1.0 (6.6 Sccondo

< 5 ¢ 7 g e ! 12 13 4 number of processors

S
]
L]

60 cities

» speed-up factor

(against 2 processors)

6.20 (13 second)

.58 (/6 second)

W)

f 1.0 (9} Seconds

Ly

/ ke 3 < 5 ' 7 £ » 9] " 12 /3 /4 ” number of processors

100 cities

speed—up factor

(against 2 processors)

g.0¢ (¢2 second)

1,0 (500 secnd)

/ 2 2 4 5 ' 7 g+ 9 10 1 12 1z I number of processors
List of Solutions of CGA List of Solutions of DGA
1. 20 cities 1. 20 cities
Optimal Solution : 20 Optimal Solution : 20
Population Size : 20 Population Size : 20
Processors used : 14 Processors used : 14
best solution experiment 1 21.23 best solution experiment 1 20.00
experiment 2 20.00 experiment 2 20.00
experiment 3 20.00 experiment 3 20.00
experiment 4 21.23 experiment 4 20.00
experiment 5 20.00 . experiment 5 20.00
2. 60 cities 2. 60 cities
Optimal Solution : 60 Optimal Solution : 60
Population Size : 60 Population Size : 60
Processors used : 14 Processors used : 14
best solution experiment 1 60.00 best solution experiment 1 61.99
experiment 2 61.65 experiment 2 61.65
experiment 3 60.82 experiment 3 61.99
experiment 4 60.82 experiment 4 60.82
experiment 5 61.65 experiment 5 61.41
3. 100 cities 3. 100 cities
Optimal Solution : 100 Optimal Solution : 100
Population Size : 100 Population Size : 100
Processors used : 14 Processors used : 14
best solution experiment 1 100.82 best solution experiment 1 101.41
experiment 2 100.82 experiment 2 101.65
experiment 3 100.82 experiment 3 100.82
experiment 4 100.00 experiment 4 100.82
experiment 5 100.00 experiment 5 100.82

APPENDIX 3

Detailed Description of the DGA
Parameters

! : the number of cities.
m : the size of the population (equivalently m = number of processors)
P : the population.
t = (to,%1,...,tm—1) : array of private clocks of the processors.
Each initially starts with 0.
conv = (conuvg, convi, ...,conv,_1): array of private counters,
used for determining the convergence of the algorithm.
Each initially starts with 0.
C : the set of all possible tours.
Rt : the set of positive real numbers.
f : the function of C to R*, which returns the performance measure of tour, i.e., the length of tour.
Pe,Ps, pi: the probability that a tour will undergo cross-over, local improvement (simulated
annealing), and local selection respectively.

Setting

a. There are m processors, procg, procy, ...,proc,_1. Each processor proc;
has one local tour ¢; in its local memory.

b. ¢; is stored in an array cur;. There is another array new; in the local memory
which is used to hold a new tour derived by cross-over or local improvement
(simulated annealing).
There are two additional arrays, mom; and dad;. They are needed to avoid the problem
of structures being overwritten while they are being used for other operations.

c. There are other local variables cv; which holds f(ecur;).
nv; is the same kind of local variable which will store f(new;), if necessary.
In the same fashion, momuv; and dadv; hold f(mom;) and f(dad;) respectively.

DGA()

begin
GenTaskEachProc (Initialize, 0); /* m processors run Initialize in parallel */
GenTaskForEachProc (Operation, 0); /* m processors run Operation in parallel */
J¥E%% QutputBest () ¥*4r/
Output the best tour ¢* and its length f(c¢*);

end

Initialize ()
begin
/* assume that the local memory has ¢; */

Randomly generate a tour ¢; and store it in cur;; /* initialize a tour */

Compute f(cur;) and store it in cv;; /¥ initialize the length of tour */
=0 /* initialize a local time step */
conv; = 0; /* initialize a convergence counter */

end

Operation ()
begin
/¥ assume that the local memory has ¢; */

Repeat

lock the array cur; and its performance cv;;
copy them into mom; and momu;;

unlock cur; and cv;;

with probability p.:
begin
Randomly pick a tour ¢; from cur; in the local memory of proc;;

lock the array cur; and its performance cvj;
copy them into dad; and dadv;;
unlock cur; and cvy;;

Do cross-over with mom;, dad; to produce new;;
compute f(new;) and store it into nv;;

lock cur; and cv;;
swap cur;, cv; with new;, nv;; /[* locally update the population */
unlock cur; and cv;;

end;

with probability p,:
begin
Do simulated annealing with mom; to produce new;;
lock eur; and ecw;;
swap cur;, cv; with new;, nv;; /* locally update the population */
unlock cur; and cv;;
end;

with probability p;:
Do local select;

i+ +;
Until (locally converged());

end

cross-over ()

The cross-over operator used here is the so-called heuristic cross-over operator. It is designed to ensure
that the resulting configuration is a valid tour and a possibly better one. This kind of cross-over was
introduced in [14]. It goes as follows:

note : In the below, an edge means a line connecting

two cities.
Pick a random city as the starting point for the child’s
tour. Compare the two edges leaving the starting city in
the parents and choose the shorter edge.
Continue to extend the partial tour by choosing the shorter
of the two edges in the parents which extend the tour. If
the shorter parental edge would introduce a cycle into the
partial tour, then extend the tour by a random edge. Con-
tinue until a complete tour is generated.
(This phrase is taken from [14])

simulated annealing ()

This operation replaces the random mutation operator used in previous genetic algorithms. As men-
tioned in [25], it plays a critical role in improving the efficiency of GA. It was inspired by the 2 —opt operator
of Lin and Kernighan [20]. Several researchers used it to devise an efficient algorithm for the TSP. Especially
some of them saw it as a good way of generating a new tour from the existing one in the application of
simulated annealing to the TSP [3,4,18]. Ours is a modified version of the version used by Cerny [4] and
basically is the following:

Pick randomly 2 edges ep, e; where eg

is from city zg to yo and e, from 2 to y;.

Make sure that all 4 cities are different.

Let dy be an edge from z; to y; and d;, from ; to yo.

Let the new tour 7 be the modification of the old one where edges
dg, dy replace ep,e; respectively and those edges between
ep and ey are reversed.

Let Ae = [eo| + |eq,

Ad = |do| + |dy]
As can easily be seen,
the length of 7 = (the length of old tour) + Ad — Ae;

If (Ad— Ae<0) /* new tour is shorter */
accept T
Else
with probability exp((Ae — Ad)/T)
accept 7 where /* new tour is not shorter, but still acceptable */
T= Tﬂptiy
Th: initial temperature,
p: cooling ratio, (0 < p < 1)
t;: the local time step;
(Tb, p) is called annealing schedule

otherwise keep the old one.

Repeat the above operations a specified amount of times
/* This number of repetition should be specified by an user */

3

local select ()
begin
/* assume that ¢; is in the local memory */

Randomly pick ¢; in proe;;
if momu; is better than cv; then
begin
Randomly pick jo, ..., j4;
= E:=o cvj, [5; /* rough estimate of mean of population performance */
if momu; is better than u then /* probably ¢; is good enough */
begin
lock cur; and cvj;
cur; = dad;; /* overwrite ¢; */
cv; = dadv;;
unlock cur; and cv;;
end
end
end

Note on local select

In this routine, good tours attempt to overwrite bad ones. In this way good tours are propagated and
bad ones are eliminated. To achieve this, we need to ensure that a good tour is actually a good tour in the
global context. That is, it should be good among those in the whole population. The criteria for a good tour
is to be above the average tour length. Since it is out of the question to compute the population average
(this would defeat the gains obtained by adopting local selection rather than global selection), we use, in
this case, a sample average of five tours as an alternative. This is clearly the approximation of the average
tour length. If, now, a structure is better than this sample average, we are almost certainly guaranteed that
it is a good structure.

locally converged ()
begin
/* € is an external constant which is quite small */

Randor::ly pick jo, ..., Ja;

= Dk=o 3 /5
/* does the population appear to be converged 7 */
if |p—cvi| < € conv; + +;

if conv; > t; /10 return(true);
else return(false);
end

Rationale for using this stopping algorithm

In the CGA, the average performance is smoothly going down and the variance of population perfor-
mance is almost monotonically decreasing. The population eventually converges and the time to get to the
converged population stays more or less constant for a given instance of problem. In contrast, the DGA
shows a more noisy behavior. The average performance does go down and the variance shrink, but they
tend to fluctuate much more than those of the CGA. It is hardly exepected that the variance of performance

4

of population converges to 0, and even if it does, it takes an unreasonably long time. It is usually the case
that the best structure is found well before the convergence occurs. There is another problem with the
convergence pattern of DGA. Many times the population looks converged and no further improvement of
population appears possible, only to diverge and a better structure emerges. That is, DGA often shows
“false convergence”. Thus it is not reasonable to use the convergence of the population as a criterion for
stopping the DGA. We need to look for another alternative. It should be the one which reflects in some
way the degree of convergence but is not so rigid as to base everything on the convergence of the population
itself. So we adopt the following approach: In each generation, we pick the sample of small size and compute
its average performance. If the performance of current structure is close to this average, we increment a
counter by 1 (The closeness is decided, for example, by whether they are within a few percent of standard
deviation of the initial population). As the counter increases, it shows that the population is converging. If
the counter is eventually goes beyond some fraction (in our case, fraction is 10 percent) of generations taken
so far, the processor signals that it reached a converged state. If all processors reach this state, the DGA
stops.

The advantage of this routine is as follows:

1) It works in noisy environments: It does not matter if the variance fluctuates or not. As long as the
instance of close convergence far outnumbers the other, the DGA will stop.

2) It does not stop due to false convergence: When theDGA enters a false convergence state, it does
not stop there but goes until the instances of converged states in the processors occurs enough times, does
enabling the population to diverge again and produce better structures.

3) It may serve as an general stopping routine since it is problem and problem size independent.

Some of Actual Data Structures in Butterfly Implementation

Here, CurPop , NewPop ,CurF and NewF are implemented as arrays of pointers which points to cur;,
new;, cv;, nv; respectively. That is,

xCurPop[i] = cur;
*NewPop[i] = new;
*CurF[i] = cy;
*NewF[i] = nv;.

Each processor has its local copy of these four arrays. This is again for avoiding contention. In the case
of CGA, these pointers are updated synchronously after Operation is done. Since each structure is updated
asynchronously in DGA, pointers to its storage and to its performance are updated at different times. By
knowing the location where a pointer is stored instead of that pointer itself, we can update them locally and
still other processor can access correct pointers. Pointers itself can change but the location of their storage
remains unchanged.

