A Software Tool
For Building Supercomputer Applications

By

Dennis Gannon, Daya Atapattu, Mann Ho Lee & Bruce Shei

Department of Computer Science
Indiana University
Bloomington, IN 47405

TECHNICAL REPORT NO. 224

A Software Tool
For Building Supercomputer Applications
by
Dennis Gannon, Daya Atapattu, Mann Ho Lee & Bruce Shei
August, 1987

This report is based on work supported in part by the Air Force Office of Scientific Research Grant No. AFOSR-86-0147,
and University of Illinois Subcontract No. 87-102.

il
B S

A Software Tool For Building Supercomputer Applications.

Dennis Gannon
Daya Atapattu
Mann Ho Lee

Bruce Shet

Department of Computer Science
Indiana University
Bloomington, Indiana

ABSTRACT

We describe a software tool that consists of an interactive environment
for helping wusers restructure programs to optimize execution on
parallel /vector multiprocessors. The system is used to help programmers fine
tune codes that have already been passed through an automatic parallelizing
system or codes have been designed from the start from new parallel algo-
rithms. In particular, programs optimized for one machine can be easily
reoptimized for another using this system. To accomplish this task, the tool
provides mechanisms to give the programmer feedback concerning the poten-
tial performance of his code on the chosen target machine and allows the
user an interactive means to guide the system through a sequence of
automatic program transformations.

1 INTRODUCTION

Five years ago the subject of Parallel Computation was an exotic sub-field of computer
science that consisted largely of theoretical studies of potential parallel algorithm perfor-
mance, a few university hardware projects, even fewer software design efforts and (with the
exception of Denelcor) no industrial products. Five years later, we now find that all U.S.
supercomputers, and over one dozen mini-supercomputer vendors have entered the market
with some form of general purpose parallel processing system. It is expected that every com-
puter company will offer a scalable multiprocessor by the end of the decade.

Unfortunately, very few of these systems provide a software environment for building
parallel programs that goes beyond a standard sequential language compiler and a micro-
tasking library to support parallelism. None of our most widely used programming
languages (C, Fortran, Lisp) have been given official extension to support concurrency and
no two vendors agree on any of the unofficial extensions. The task of porting parallel codes
from one machine to another now involves large amounts of recoding to make a program
work, and large amounts of restructuring of the algorithm organization to make it work
well.

The primary concern of the vast majority of users is to be able to exploit the power of
a supercomputer without sacrificing portability. Consequently, these users want an
automatic system such as those provided by Pacific-Sierra or KAl which will provide sub-
stantial improvement in a code without any effort by the programmer.

On the other hand, there are still a large number of hardy users of these new systems
who are not content to live with the results of an automatic vectorizer or parallelizer. These
are the users who are willing to invest a “reasonable’” amount of extra effort if it might
mean a doubling of performance beyond what the automatic system delivers. The key to
this extra performance is the cost. How much is a “reasonable’” amount of extra work?

In this paper we describe a programming tool designed to help users of parallel super-
computers retarget and optimize application codes. In a sense, the system can be viewed as
a tool to help users “fine-tune” the output of an automatic system or, if he or she has been
so inspired, optimize the design of a new parallel algorithm.

The system is an interactive program editing and transformation system that helps the
user with this task. Each program that enters the system is completely parsed and all data
dependences are recorded. The user then works with the system to restructure his code to a
form suitable for a given target architecture. If the target is known to the system, it moni-
tors the users transformations to the code. If the user attempts to transform the program in
violation of the original semantics of the code he is warned that a change in the meaning of
his program has taken place. At any time the user can ask the system to tell him what
legal parallelizing transformation can be applied to 2 segment of selected code. More impor-
tant, he can ask the system to make the program modifications the user desires. In this
mode, the user is assured of the correctness of the changes in his code.)

In its current form, the system, known as the Blaze Editor or “Bled”, can support
either FORTRAN (with Cedar and Alliant 8x extensions) or Blaze (a Pascal based fune-
tional language designed by Mehrotra and Van Rosendale [14]). In the future we plan to
support C, C++ and Cedar Parallel C [9]. The target machines supported currently include
the BBN Butterfly, the Alliant FX/8 and the Cedar System [7].

This tool is one part of a much larger programming environment known as the Faust
Project. This effort, based at the Center for Supercomputer Research and Development in
Urbana, Illinois has designed a common software platform for a2 number of programming
tools including a performance analysis package, a program debugger, Bled, and a graphics
based program maintenance system. All the software has been written to use the X system
from the MIT project, Athena and, therefore, it will run on any Unix-based workstation.

In this paper we describe the current Bled system as well as two important extensions
that are being added at the time of this writing.

One extension is a performance prediction package that can be invoked from within
Bled to help the user choose which formulation of his algorithm will run best. There are
two components to this performance prediction package. First is a code generation estima-
tor that can give the user feedback in the form of estimates of such quantities as the ratio of
vector instructions to data movement, or the amount of code devoted to synchronization
overhead. Second, this package provides estimates of cache behavior and local memory utili-
zation.

The second extension is a portable runtime environment that supports a dynamic
“microtasking” facility that incorporates ideas from the Argonne Schedule package [5] and
the MIT multilisp system [10].

2 A SAMPLE USER SCENARIO

To illustrate how a user would interact with this system we shall step through a very
simple example. The Blaze subroutine below is a simple matrix times vector routine.

2.

Procedure MatVec(n,A,x) returns: y;
param A: array[l..n, 1..n] of real;
X,y: array[l..n] of real;
n: integer;
begin
for j in 1..n loop
for iin 1..n loop
yli] == y[i]+A[i.i]*x[i];
end;
end;
end;

The user loads this program into the system as if he were entering a text editor. The result
is a window displaying the program and a list of menu headers (as illustrated in Figure 2.1).
The first thing he may wish to do is to tell the system which machine is the intended target
of this optimization. Currently this menu only lists three active choices: the BBN butterfly,
the Alliant FX/8 and the Illinois Cedar. (We plan to extend this list to include the IBM
RP3, the CRAY 2, the Connection Machine, and the ETA-10 during the next two years.)

The significance of having the user tell the system about the choice of target is three-
fold. First, and most obvious, we would like to have the system generate code for the given
target. We will say more about this later. Second, it is important that program transfor-
mations that are inappropriate for the target machine be disabled. Third, and of most
immediate concern to the user, selecting a target will enable the appropriate performance
estimators which are described below.

File Edit Unparse Transform Dependence Target

Interchange
vectorize
Select locus: For { distribute
unroll by k
scalar expand
Forall

Sour| split node Uep. Graph

doacross
Procedure Matmul(A x) returns (x);

param A:array(l.n,l.n]of rea;
x: arrayll.n lof reai;
const n = upper(x);

x[1.n]=00;
Foriin 1.n loop
For jin 1 .n loop
xli] := xlil + ali,jl*y[jI;
endfor;
endfor;

end;

Figure 2.1. BLED Screen After Program Load.
The Window on the Right is the Data Dependence Graph.

3.

Optimizing Code For The BBN Butterfly _

To begin working with the system the user selects a segment of code, which we call a
‘focus’, on which to apply the tools BLED provides. For example, suppose the target is the
BBN Butterfly and the user picks the innermost loop (by a mouse selection) as his focus.
Among the menu headings he has at the top of the screen, is one called “Transforms”. This
menu contains a list of program restructuring transformations that can be used to expose
concurrency or make parallelism explicit. For example, the user may have decided that he
wishes the innermost ‘“for” loop to be run in parallel. By selecting the transformation
“forall” the system will first verify that the transformation can be legally applied. This
requires a search of the data dependence graph to make sure that the appropriate conditions
are satisfied so that the transformation can be legally applied. (A more detailed discussion
of this process is given in Section 3.) In this case the transformation is legal-and the code
now takes the form

for j in 1..n loop
forall i in 1..n do
yli] == y[i]+A[Li]*x[i];
end;
end;

Following this operation, the user could invoke the code generator, but a better use of
the system is to first invoke the analysis tool. This involves the selection of a menu item
“analysis: Parallel Loop”. Because the target machine, the Butterfly, executes such loops at
the cost of a function call and an atomic increment to the index, the reply will be in the
form

Loop Overhead to Body ratio > 50%.
Suggestion: increase granularity by blocking,
merging or loop interchange.

Of the three suggestions, loop interchange is the easiest. After this operation the loop takes
the form

foralliin 1..n do
for j in 1..n loop

N yli] :== y[il+AlL5]*x[i];
end; ’

The “forall” loop body will now be large with respect to the loop overhead, but another
problem that may inhibit performance is memory contention for shared data. In this case a
second analysis tool called “analysis: Cache Management” can be invoked. As will be
described in more detail in section 4, this tool will report the following information when the
program focus is the “forall” loop.

Cache/Local memory analysis for iterate i:
Suggest local copies of: A[i,1..n], x[1..n]
for n=—100 hit ratios will be 0.99, 0.9999

This (too cryptic) message suggests that local copies of these variables be made in each pro-
cessor. A major shortcoming of this form of the analysis is that the user is not informed of
the penalty for failing to take this advise. In section 4 we discuss the future extensions of
‘this analysis that will provide expected improvements in multiprocessing efficiency as a

4.

result of this memory management. The resulting program will take the form

foralliin 1..n do

var: x_local, A_local: array[l1..n] of real;
A_local(l..n] := a[i,1..n];
x_local[l..n] := x[1..n];
for j in 1..n loop

y[i] :== y[i]+A_local[j]*x_local[j];

end;

end;

Clearly z_local need only be initialized once per processor but in Blaze we have no way to
express this, so this task is left to the code generation step.

Optimizing Code For The Alliant FX/8.

Suppose the target machine were chosen to be the Alliant FX/8. Each processor on this
machine has a vector instruction set and a vector register set that generalizes and extends
the M68020 which forms the basis of the rest of the processor design. The execution of
parallel loops requires almost no overhead, but best performance is achieved only if the
shared cache memory and the vector instruction set is optimally utilized.

To optimize the matrix-vector routine for the FX/8 we would begin by recognizing that
the vector instructions operate from registers of length 32. For this reason, the user may
wish to “block” the inner loop in vector segments of length 32. This requires two steps.
First the user selects ‘“‘block by 32’ from the transformation menu as illustrated by the
screen dumps in Figures 2.1 and 2.2. In the second step the inner loops are vectorized.

The result of these two operations is shown below.

File Edit Unparse Transform Dependence Target

Bled Transcript

1 Setect locus: For i
{ Spiit loop For i by 32 =>Loop For k

1 Procedure Matmul(A x) returns (x);
; param A:arrayll.n,l.n]of real;
x: arrayll.n]of real;
const n = upper{x);
x[1.n]=00;
Forkin 1.n/32 loop
tmpl = (k-1)°32+]

tmp2 :=k*32;
For i in tmp1.tmp2 loop &
For jin 1.n loop
xli] := xlil + ali.jl*ylj]. |8
endfor;
endfor;
endfor;

Figure 2.2. System State After Loop Blocking Transformation.

5l

for j in 1..n loop

for k in 0..n/32-1 loop
k1l := 32*k+1;
k2 := 32*(k+1);
y[k1:k2] := y[k1:k2] + Alk1:k2,j]*x[j];
end;
end;

At this point, a third component of the performance analyzer can be invoked. The Vector
Code Analyzer will make an estimate of the quality of the vector instruction utilization for
this loop. In this case it will report

Vector instructions Frequency
Load/Store 2*n*n/32
Multply-Add 1*n*n /32

Arith. Efficiency = 33% (for n=100)

The vector efficiency term is computed based on the fact that for diadic vector instructions
the processor is capable of two floating point operations every clock cycle. Vector loads and
stores do not contribute to the total number of arithmetic operations but they do consume
large amounts of time. If we look at the inner loop we notice that the indecies on the vector
segments for y do not depend upon j. In this case one simple “loop interchange” transfor-
mation will bring the j loop inside and the processor need only load and store each y seg-
ment once. The rest of the time it can remain in a vector register. Parallelizing the outer
loop gives the code below and the corresponding statistics.

forall k in 0..n/32-1 do
k1 := 32*k+1;
k2 := 32%(k+1);
for j in 1..n loop
y[k1:k2] := y[k1:k2] + Alk1:k2,j]*x[j];
end;
end;

The output from the code analyzer is now

Vector instructions Frequency

Load/Store 2*n/32

Multiply-Add 1*n*n/32

Arith. Efficiency = 99% (for n=100)
Notice that this simple transformation has had the effect of a three fold improvement in vec-
tor unit efficiency. The resulting code is, in fact, the fastest matrix-vector form for this
machine.

3 SYSTEM ORGANIZATION AND THE TRANSFORMATION MODULES.

The system is organized as a set of four interacting modules: the parser/analyzer, the
transformation module, the performance estimator, the code generator, and the user inter-
face manager. In this section we describe the Parser/analyzer, the user interface and the
program transformation modules.

The Program Parser and Analyzer.

At the time a program module is loaded into the system it is completely parsed and a
full control dependence graph and symbol table is constructed. The control dependence

6.

graph is based on a statement level version of the PDG of Feranti and Ottenstein [6]. Each
program statement is represented by a graph node in the control dependence graph. An arc
goes from one node to another if the latter is “control dependent” (in the sense of [6]) on the

former. In the case of structured programs this graph is always a tree as illustrated in Fig
3.1.

The nodes of the control dependence graph, called BIF nodes, represent program state-
ments, declarations and control forms. Of course, this is not enough detail to describe a
program. Within each program statement there are one or more expressions describing the
parameters of the statement. For example, a “for loop” in Blaze or FORTRAN takes the
form

For <var> from <lower_bound> to <upper_bound> by <increment>.

For i in 1..n loop

X[(if 1‘1-)5: [’For iin 1..n]]
if(1 > 3) then
xli]:= 2; / \
else 57 e
ylil - 3: (xlil : 1.5]] (ir(i > 3))
endif;
endloop; (xlil=-2) (vlil==3)

Figure 3.1. Program Control Dependence Graph

Each such expression is represented by a low-level dataflow graph which is attached to the
BIF node which forms a template for the statement. While there is nothing new about this
type of representation, we have found that its simplicity provides for great generality in the
language it supports. Hence, the same graph can be used to represent several different pro-
gramming languages. '

The basic program graph has been defined with a general imperative programming
language in mind. Using the same internal structure we currently represent either Blaze or
FORTRAN programs. The extensions to support C are not complete, but only require the
addition of a pointer type and the corresponding dereferencing operators. The way this
works is that common control constructs, i.e. “for” loops, if-then-else blocks, case state-
ments, variable assignments and function calls, form the core of the common semantics of
each of these languages. There is one node type for each of these fundamental forms. For
those features that exist in one language but not the others, we add extra node types. For
example, FORTRAN has a ‘“‘goto” statement and Blaze does not; also Blaze and C have
record type variables and FORTRAN does not. The most important point is that, at the
level of program semantics, and, especially in the area of control structures, there is very lit-
tle difference between these languages. This means that we can write general program
transformation modules that work at the level of common semantics.

We provide a special parser and ‘“unparser” for each language. The unparser is the
devise for recovering the original source for display in the text window of the system. This
works by simply traversing the control dependence graph and, using the symbol table gen-
erated by the parse, reproducing the original source up to, but not including the
programmer’s use of white space. (We do save comments and try our best to put them back
in the original positions. This can be difficult if the “original position” no longer exists after

.

a transformation step.) By labeling each graph with the source language type we know how
to resolve any minor differences at the control structure level.

It is important to note that this syntactic independent internal representation of the
language does not give us the ability to parse a FORTRAN program and unparse it as a
Blaze program. Rather, it gives us the ability to design program transformation and
analysis tools that are relatively independent of the syntax of the original program. The
most important shortcoming of this program dependence graph is that it is limited to
representing simple imperative languages. Higher order constructs such as Object and Class
structures or first class functions and continuations have not been addressed.

The data dependence analyzer adds data flow information edges to the Control Depen-
dence Graph. These take the form of distance vectors representing flow, anti, output or
input dependences in the form described in [4] and [15]. In addition we have added special
information about the structure of uniformly generated dependences so that cache perfor-
mance modeling can be done. This is deseribed in more detail in section 4.

The data dependence analyzer is invoked each time the program is modified by
transformation or special dependence information is needed by another unit of the system.
To keep this from creating excessive computational overhead the dependence analyzer works
in an incremental manner. In the case of structured programs where the control graph is a
tree, this works in a manner similar to the Cornell Program Synthesizer which uses an attri-
buted grammer to build an internal representation of a program. '

The User Interface And Program Transformation Modules.

The style of user interaction is identical to that of most modern software tools. The
user is given a ‘““work space” into which the program under study is loaded. By means of
menu selection, the user is also equipped with a large palette of tools that he can apply to
selected parts of his program. They take the form of program editing, transformation and
evaluation tools.

Because the system is built on top of a solid library of graphics, menu and text mani-
pulation routines provided by the FAUST environment, the user interface is the simplest
part of the system. It consists of a loop which responds to user generated events. Events
are interpreted as either a resetting of the program focus or as a call to invoke one of the
tools and apply it to the current focus.

The program transformation module is organized as a collection of routines that each
implement one of the transformation theorems. (These are given in various places in the
literature, see [18], [17], [11], [13], (1], [2], [4], [15], [18]). Each routine first verifies that all
the conditions are satisfied to guarantee that the transformation is correct, then it carries
out the transformation, updates the dependence graph and redisplays the text on the screen.
For example, to interchange two nested loops in a program segment we must invoke the
theorem

LOOP INTERCHANGE: Let L; and L;,, be a perfectly nested pair of loops
with L, C L;. The two loops can be interchanged if and only if doing so will
not violate a data dependence constraint associated with any statement or
pair of statements nested within L;,,.

The data dependence constraint translates into a simple mathematical condition on the
distance vectors associated with the dependence. (In particular, if interchanging the i* and
(+1)* component of the distance vector causes the vector to have a negative leading non-
zero term, then the constraint will be violated.) The loop interchange module first checks to
see if the current focus is rooted by a loop and that the next level down is a loop perfectly
nested. within the first. The dependence test is then made. If the test is passed the opera-
tion is carried out. If the test fails, the user is notified as to why the transformation could
not be applied. ' -

8.

The user is free to override the system and to insist that the transformation be done.
There are two reason for allowing this. First, the data dependence analysis may not be able
to completely decide if a dependence is real. (For example, subscripts in arrays that involve
function calls). In cases where it cannot decide if a dependence exists, the system takes a
conservative approach and assumes the dependence is there. The programmer may have
additional information that the parser and dependence analyzer does not have. For exam-
ple, knowing that the function call in the index expression is of a special form that would
rule out the existence of a dependence. In this case it may be safe to complete the transfor-
mation. The second reason for overriding the system is that the user may, in fact, wish to
change the meaning of the program.

4 PERFORMANCE ESTIMATION

The performance module consists of two main components: The cache/local memory
modeling package and the vector code generation estimator. It is important to understand
that this is not a performance evaluation package that gives a detailed analysis of program
behavior based on actual execution statistics. Rather, it is a tool that makes a priori esti-
mates of potential program execution behavior. The objective is to provide the programmer
some immediate feedback about the suitability of his algorithm constructs and potential
problems he may encounter during execution as the code is being designed. Once the code is
running on the target, the programmer will probably switch to a performance evaluation
package to do final fine tuning. For the most part, this component of the system is far from
complete and only a simple prototype is currently running.

The Cache/Local Memory Modeling Package

The Alliant FX/8 has a unique memory organization. All 8 CEs are connected by a
crossbar switch to a shared cache. The bus bandwidth between cache and main memory is
approximately one half of the total bandwidth between the cache and processors. While this
provides a simple solution to the cache coherency problem, it does have major implications
in the way parallel programs are organized. In particular, if one processor is using a large
amount of data that is not used by the other processors, it can cause the cache to be filled
at the expense of the performance of the other processors. Consequently, it is best to organ-
ize the code so that processors can share cached data if possible.

For the Butterfly machine a different problem dominates system performance. In this
machine every word of memory can be reached by every processor. However, the memory
that is local to a processor is significantly faster to access than that part of the address map
that is nonlocal. A related issue is that of memory ‘‘hotspot” contention. This refers to the
degradation problem caused by a large number of serial accesses to the same data item by a
large number of processors (see [16]). It has been shown that by careful use of local
memory, many of these problems can be avoided (see [3]).

Both the cache problems of the Alliant and the local memory problems associated with
the BBN Butterfly can be treated by using a new theory of memory management based on
dependence analysis that we have designed [8]. The key idea behind this work is that each
data dependence is described by a cacke window, which is the set of data values which when
kept in cache after being referenced by the head of the dependence, will result in a cache hit
after the tail of the dependence. It is shown in [8] that an algebraic model can be given to
the structure of these cache windows. The model is powerful enough to allow us to give a
first order estimate of both cache and local memory behavior and tell us how to optimize the
program to improve memory hierarchy use.

Vector Instruction Efficiency Estimator

Like the multiprocessors from Cray and ETA, the Alliant makes extensive use of a vec-
tor instruction set. Our experience has shown that one of the first things a programmer
wants to know when he is optimizing code is how well his FORTRAN 8X was translated

9.

into vector and parallel code. In many cases he can decide to restructure a program if, for
example, he realizes that the current form does not permit the code generator to use any
diadic operations. On the Alliant, this type of reorganization can provide a 30% improve-
ment in performance.

One of the estimation tools that we are adding to the system works by a pass over the
selected program focus and makes a simple estimate of scalar code and loop overhead, as
well as an estimate of how well the Alliant Code generator will be able to generate vector
code.

This tool is related to another tool that we are adding to the Faust Workbench. We
are building a code analysis package that will examine the output of the compiler and give
statistics about the density of vector operations and the frequency of use of parallel con-
structs. Of particular concern in both tools is the effective use of diadic operation and a
measure of how much time is spent moving data in and out of registers.

5 GENERATING TARGET SYSTEM CODE

Once a program has been optimized for a given architecture, a programmer will want to
have it run. This means that code will need to be generated for the target. Our approach
to this problem follows the tradition of other restructuring systems. Rather than generate
object code, we output source code that utilizes the language extensions and special function
calls that.are specific to that machine. The advantage is that we can take advantage of the
native code generators and optimizers that exist for that machine.

In the case of FORTRAN, we generate Alliant vector-concurrent FORTRAN 8X for
that machine. For Blaze programs we generate C code for the Alliant. In the case of the
Butterfly we generate a C program that utilizes the BBN “uniform system” runtime
environment for both FORTRAN and Blaze. '

The first problem that one confronts in mapping the computational model defined by a
parallel programming language like Cedar Fortran or Blaze to a target like the Alliant or
the Butterfly is the following:

How does one provide efficient parallel execution of 2 language that is histor-
ically rooted in sequential stack based semantics?

The first instance of where this problem arises is in the execution of concurrent loops
where the body of the loop contains references to names defined outside the loop. We would
like to have a runtime stack which, at the point of a parallel loop invocation, can branch so
that each processor has a private stack branch, but they share the part of the stack before
the parallel execution call.

With the Alliant FX/8 the solution to this problem is built into the hardware. There
are special instructions to set up this type of ‘“‘cactus stack” and have each processor start
execution at the appropriate place and time.

Unfortunately, the Butterfly presents a different computational model. Using the “uni-
form system” on that machine each processor gets a copy of the C program static data and
has its own stack in private memory space. All shared data must be explicitly allocated in
global memory. Consequently, if one processor updates a static variable or pushes an item
on the stack it is invisible to all other processors. The solution to the problem for the
Butterfly is to make the code generator allocate a copy of the activation record in global
memory that is reachable by all processors. Any reference to data outside the scope of the
loop is made through this record.

It would seem that the Alliant solution is by far superior, but there are other problems
when one tries to extend the semantics in directions suggested by Schedule [5] and other
portable concurrency packages. Dongarra and Sorenson have argued that parallel program-
mers should have the ability to write code that permits tasks to be generated dynamically
and scheduled for execution when the appropriate data is available. It is important that

10.

these tasks be *‘light weight”, i.e. unlike a Unix process, the creation and scheduling of a
task should involve no more overhead that a typical function call.

The ability to do this was supported directly by the hardware of the Denelcor HEP, but
is missing from most of the current designs. The logical extension of the light weight task
idea is the future used by Halstead in MultiLisp [10]. The principle concept is that any
function call

z = Foo(a,b,c,d)
can be replaced by
z = future(Foo, a,b,c,d)

The use of future causes a task to be created and start executing when the appropriate value
for the parameters are known. Meanwhile, the calling task continues to execute until the
value of z (or any other value computed by Foo and assigned by side effect) is needed. At
that time the caller must be suspended until Foo terminates.

The key problem is that suspending the caller cannot keep a processor tied up or a
deadlock situation will result. Consequently, the system must encapsulate a state for the
caller. Because we must assume that any processor is able to continue the execution of the
caller, we cannot keep this state on the private stack of any one processor. Consequently,
the task state must be saved in the global heap. :

We are currently extending the code generator to support this future construct. There
are a number of problems that we are trying to solve while completing this task.

1. How do we generate the synchronization mechanisms needed to schedule the futures?
2. How can we find an efficient implementation for our list of target machines?

3. How do we keep the implementation of futures consistent with the execution model
for parallel loops?

4. Can we detect when a function is a good candidate for execution by futures rather
than a straight sequential call?

5. In what way can we use this execution model to help us implement object oriented
programming?

8 REFERENCES

1. J.R. Allen, "Dependence Analysis for Subscripted Variables and Its Application to Pro-
gram Transformations," Ph.D. Thesis, Rice University, Houston, Texas, April 1983.

2. J. Allen, and K. Kennedy, “A Parallel Programming Environment,” Technical Report,
Rice COMP TR84-3, July 1984.

3. W. Crowther, J. Goodhue, E. Starr, R. Thomas, W. Milliken, T. Blackadar, "Perfor-
mance Measurements on a 128-node Butterfly Parallel Processor," Proceedings of 1985
International Conference on Parallel Processing, pp. 531-540, 1985,

4. R. Cytron, "Compile-time Scheduling and Optimization for Asynchronous Machines,"
Ph.D. Thesis, University of Illinois, Urbana-Champaign, Aug., 1984.

5. J. Dongarra, D. Sorensen, “SCHEDULE: Tools for Developing and Analyzing Parallel
Fortran Programs,” in Characteristics of Parallel Algorithms, Jameson, Gannon,
Douglas, eds. MIT Press, 1987, pp.363-394. .

6. J. Ferante, K. Ottenstein, J. Warren, "The Program Dependence Graph and Its Uses in
Optimization," IBM Technical Report RC 10208, Aug. 1983

11,

7,

10.

11.

12.

13,

14.

15.

16.

17

18.

19.

D. Gajski, D. Kuck, D. Lawrie, A. Sameh, “Cedar - A large Scale Multiprocessor”,
Proc. of the 1983 International Conference on Parallel Processing, IEEE, Aug. 1983.

D. Gannon, W. Jalby, “Strategies for Cache and Local Memory Management by Global
Program Transformation,” Proc. of 1987 International Conference on Supercomputing,
Athens, Greece, June 1987, Springer-Verlag Lecture Notes in Computer Science.

V. Guarna, ‘“VPC - A Proposal for a Vector Parallel C Programming Language,” June

1987, Center for Supercomputer Research and Development, University of Illinois,
Urbana, Illinois. Technical Report No. 666. :

R. Halstead, “Implementation of Multilisp: Lisp on a Multiprocessor,” Proc. 1984 ACM
Symposium on LISP and Functional Programming, pp.25-45, Aug. 1984.

K. Kennedy, “Automatic Translation of Fortran Programs to Vector Form,” Rice
Technical Report 476-029-4, Rice University, October 1980.

J. Kowalik, Parallel MIMD Computation: Hep Supercomputer and Its Applica-
tions, The MIT Press, 1985.

D. J. Kuck, R. H. Kuhn, B. Leasure, D. H. Padua and M. Wolfe, “Dependence Graphs
and Compiler Optimizations,” Conference Record of Eighth Annual ACM Symposium
on Principles of Programming Languages, Williamsburg, VA., January 1981,

P. Mehrotra, J. R. Van Rosendale, "The BLAZE Language: A Parallel Language for
Scientific Programming,” Report No. 85-29, ICASE, NASA Langley Research Center,
Hampton, Va. (May 1985). (to appear in Journal of Parallel Computing).

D. Padua and M. Wolfe, “Advanced Compiler Optimizations for Supercomputers,”
Communication of ACM, Vol. 29, No.12, Dec. 1986, pp. 1184-1201.

G. Phister, A. Norton, “Hot Spot Contention and Combining in Multistage Intercon-
nection Networks,” Proceeding of the 1985 International Conference on Parallel Pro-
cessing, IEEE 1985, 790-797.

C. Polychronopoulos, “On Program Restructuring, Scheduling, and Communication for
Parallel Processor Systems,” Ph.D. Thesis, University of Illinois Center for Supercom-
puter Research and Development. CSRD TR.595, Aug. 1986.

Wang, K.-Y., Gannon, D., “Applying AI Techniques to Program Optimization for
Parallel Computers,” in AI Machines and Supercomputer Systems , Hwang,
DeGroot, eds. McGraw Hill, NY, 1987.

M. Wolfe, “Optimizing Supercompilers for Supercomputers,” Ph.D. Thesis, Dept. of
Computer Science, University of Illinois, Urbana-Champaign, 1982.

iz,

