DEBUGGING IN APPLICATIVE LANGUAGES

by
John T. O’Donnell and Cordelia V. Hall

Computer Science Department
Indiana University
Bloomington, Indiana 47405

TECHNICAL REPORT No. 223

DEBUGGING IN APPLICATIVE LANGUAGES

by
John T. O’Donnell and Cordelia V. Hall
June, 1987

E
i

e

e

Debugging in Applicative Languages
John T. O’Donnell and Cordelia V. Hall

Computer Science Department
Indiana University
Bloomington, Indiana 47405 USA

Abstract

Applicative programming languages have several properties that appear to make de-
bugging difficult. First, the absence of assignment statements complicates the notion of
changing a program while debugging. Second, the absence of imperative input and out-
put makes it harder to obtain information about what the program is doing. Third, the
presence of lazy evaluation prevents the user from knowing much about the order in which
events occur. Some solutions to these problems involve nonapplicative extensions to the
language. Fortunately, the same features of applicative languages that cause problems
for traditional debugging also support an idiomatic applicative style of programming, and
effective debugging techniques can be implemented using that style. This paper shows
how to implement tracing and interactive debugging tools in a purely applicative style.
This approach is more flexible, extensible and portable than debugging tools that require
modification to the language implementation.

Categories and Subject Descriptors: D.1.1 [Applicative (Functional) Programming]:
Debugging techniques; D.2.5 [Testing and Debugging]: Tracing, Debugging aids; D.2.6
[Programming Environments]; D.3.2 [Language Classifications]: Applicative lan-
guages;

General Terms: debugging, languages

Additional Key Words and Phrases: applicative languages, interactive programs, streams,
lazy evaluation.

1. Introduction

Applicative programming languages have a number of apparent advantages over im-
perative languages. They have clean and simple semantics, are well suited for correctness-
preserving program transformation techniques, and their outputs are independent of eval-
uation order, making them promising candidates for programming massively parallel com-
puters.

These advantages come at a cost: most of the experience we have with imperative
languages does not carry over very well to applicative languages. Therefore entirely new
programming styles must be developed. This situation is analogous to some of the early
efforts at structured programming. Merely telling programmers that they should avoid

1

goto statements did not show them how to write well-structured programs. Programmers
often have a similar reaction to applicative languages: they see a set of missing features
(no assignments, no commands, no I/0) instead of a new style for expressing algorithms.

Debugging is a good problem domain in which to study these issues. It is inherently
important, since anyone who writes an applicative program will want to get it to work.
Debugging also presents several serious problems for the applicative style, and debugging
tools are more complex than the typical toy programs that are often used to demonstrate
the advantages of applicative languages.

Debugging involves low level activities, such as obtaining information about what a
program is doing, and high level activities, such as managing the entire program devel-
opment process. In this paper, we are concerned with supporting the low level activities,
which is prerequisite to implementing higher level programming support. The basic prob-
lem is that conventional low-level debugging methods lead to numerous difficulties for
applicative languages [4, 8, 9, 14].

There are two opposing approaches for debugging applicative programs. One is to
add special features to the underlying language implementation. These extra features
often result in nonapplicative extensions to the language. The other approach is to find a
way to express debugging algorithms in the applicative style itself. The central thesis of
this paper is that tools for applicative debugging should be implemented in the applicative
language itself.

We will show how to implement several debugging tools in an applicative language.
The main result of the paper is an interactive debugging tool that allows the user to observe,
control and modify the execution of a program. There is no performance penalty in the
parts of the program the user isn’t directly interacting with. This tool is implemented
purely applicatively.

This paper contains the following sections:

Introduction

Problems with applicative debugging
Alternative debugging methods

Overview of Daisy

Imperative debugging with lazy evaluation
. Applicative tracing

Order of evaluation and divergence
Interactive debugging

ol S o ol

Conclusion

The first part, Sections 1 through 4, describes the general difficulties with debugging
applicative programs, and it outlines a number of methods that have been proposed.
Some of these methods involve modifications to the language implementation, and we
do not consider them in detail. The second part, Sections 5 through 9, gives a detailed
presentation of several debugging approaches that can be implemented directly in the
applicative language itself.

Section 2 defines the problem, showing how the restrictions of applicative languages
interfere with conventional debugging techniques. Section 3 discusses several solutions that
have been proposed, and argues for the advantages of using debugging tools written in the
target language instead of modifying the underlying machine. Although our techniques
will work in many applicative languages, the examples in this paper are all written in
Daisy, which is described in Section 4.

The paper then develops and compares several debugging tools in Daisy. One obvi-
ous approach is to graft imperative features onto an applicative language, but Section 5
discusses the resulting problems. Section 6 develops a truly applicative debugging style in
Daisy. In this method, the user’s program is transformed automatically into another pro-
gram which produces a trace of execution in an output stream. Although the tracing tool
is very useful, Section 7 points out some awkward behavior that results from combining
idiomatic programming techniques for lazy languages with a deterministic debugging tool.
Section 8 improves on tracing by implementing an interactive debugging tool that does not
require a transformation of the entire program. Finally, Section 9 considers the various
approaches and discusses their impact on the general usefulness of applicative languages.

2. Problems with applicative debugging

The primary focus in debugging a program must always be on the underlying al-
gorithm, and how the program implements the algorithm. However, debugging also has
several mechanical aspects, which must be supported by the programming environment.

1. A program’s normal output is sometimes insufficient to isolate bugs, so programmers
often insert extra print statements in order to examine intermediate variable values.
This technique requires some sort of output facility.

2. Inserting extra print statements into a program and repairing bugs in it both re-
quire changes to the program’s text. The programming environment must allow the
programmer to carry out such modifications.

3. In order to make sense of a program’s output, the programmer needs to know some-
thing about the order of events that occur during execution. For example, the pro-
grammer should know that

print x; print y;
will print the value of x before it prints the value of y.

4. A practical programming environment must provide some way for the programmer to
break out of infinite (or excessively long) loops and cancel uninteresting output.

Each of these requirements poses a serious challenge for applicative languages, for the
following reasons.

1. Imperative output statements cause side effects, and applicative programs don’t have
any side effects at all. Therefore an applicative program cannot contain any statements

3

that print intermediate information for debugging (or for any other purpose). The
system will simply evaluate the program and print the result.

2. Modifications to the text of a program also constitute side effects, so they are impossi-
ble in an applicative programming environment. This problem transcends debugging:
if the programmer guesses what is wrong with a program, without using any debug-
ging tools at all, it is still necessary to repair the error without executing any side
effects.

3. Lazy evaluation is a crucial implementation technique for most practical applicative
languages. Unfortunately, the programmer has little knowledge about when events
occur during the execution of a program with lazy evaluation. Even if imperative
output statements existed in the applicative language, and even if it were possible
to insert them into a program, lazy evaluation would cause the output to appear
in a completely unpredictable order. Such output would be worse than useless for
debugging. In discussing the development of ML, Milner remarks (8]:

“ML does not use lazy evaluation; it calls by value. This was decided
for no other reason than our inability to see the consequences of lazy
evaluation for debugging (remember that we wanted a language which
we could use rather than research into), and the interaction with the
assignment statement, which we kept in the language for reasons already
mentioned.”

Section 5 discusses these issues more fully.

4. The language must provide some sort of nondeterminism in order to allow the user to
stop execution at any time. Most languages—both applicative and imperative—lack
nondeterministic features.

- This paper concentrates on debugging tools which address I /O and lazy evaluation.
The broader problems of modifying a program and interrupting infinite loops belong to the
programming environment or the operating system, not to the debugging tools. A simple
applicative programming environment appears in [10], and a more complex system will be
described in [12, 13]. These systems solve the problems of modifying function definitions
and interrupting computations, so for the rest of this paper we ignore those issues.

3. Alternative debugging methods

Imperative programming languages have motivated a large amount of work on de-
bugging tools, but comparatively little has been done yet for applicative languages. This
is partly because applicative languages are most commonly used for research in language
and architecture issues, and they are not yet widely used for applications programming.
Most applicative programs that have been published are small, and do not illustrate the
difficulties that often arise with large pieces of software. On the other hand, applicative
languages will never become popular without practical program development tools.

Several kinds of debugging support have been proposed for applicative languages:

4

e Use techniques borrowed from imperative languages (see Section 5).

e Claim that applicative programs are so good they don’t need to be debugged anyway.
e Return error values that tell the user something about how an error occurred [20, 5].
o Trace the execution of an abstract machine model for the programming language.

e Use an exception handler in the language to capture debugging information [6]. Most
applicative languages don’t have adequate exception handling features for this to work.

e Modify the underlying machine to make it produce debugging information when re-
quested [17].

e Write a meta-circular interpreter for the language in itself, and install debugging
facilities in this interpreter [16].

o Develop debugging tools written in the applicative language itself.

We argue that the last of these methods is best, but it is useful first to discuss some of the
alternatives.

Most conventional debugging techniques have relied heavily on imperative language
features. It is natural to try out such methods in an otherwise applicative language—there
is no reason to develop new methods if the old ones are adequate. Section 5 shows why
this approach is a dead end.

Many authors have claimed that the good semantic properties of applicative languages
make them more reliable and reduce the need for debugging. In our own experience this
is true, to a limited extent. That is, we have found that moderately complex applicative
programs work correctly the first time more often than equivalent programs in conventional
languages (such as Pascal, C, etc.). But that does not mean that debugging is obsolete for
applicative languages.

Several applicative languages use error values to aid in debugging. The dataflow
language Val uses error values to describe what went wrong with arithmetic primitives
[20]. For example, there are special values that represent “positive overflow”, “negative
overflow”, etc. In addition, Val provides an algebra that defines combinations of the error
values. However, this system is mainly oriented toward handling exceptional numeric
conditions, and it doesn’t support general purpose debugging.

Daisy also returns error values in many cases. There is a special type for error values,
and a primitive function that receives an error value as an argument will generally produce
an extended error value. The “unbound identifier” error value |ubi:var|indicates that
the interpreter tried to evaluate var but the environment contained no binding for it. If
another function is applied to var, the resulting error value will describe the sequence
of error propagations. For example, add : [var 100] produces |nnO/ubi:var|. These
error values are useful, but they often become too large to really help the programmer.

A basic problem with error values is that they don’t tell the programmer anything
unless the system thinks that it has detected an error. If the programmer writes a function
that computes a wrong answer, but doesn’t generate a numeric overflow, or any other type

5

of runtime exception, then the function’s result will be an incorrect data value rather than
a helpful error value. Error values correspond to exception handlers, but they are not
general enough for debugging.

An interesting generalization of error values is to make every primitive function return
a message that specifies its inputs, even if the inputs are valid and there is no exceptional
condition. For example, add: [x y] would return add: [3 4] if the environment contains
the bindings x=3 and y=4. The programming environment could contain two definitions
for each primitive: the normal one, and the debugging one. That allows the programmer
to switch back and forth between the two sets of primitives while testing the program.
(This idea is also useful for providing alternative semantics for a system specification;
see [11].) Unfortunately this approach is better at producing massive quantities of output
than helping the programmer to pinpoint errors. However, the method of shadow variables,
described in Section 6, is a useful generalization of this technique.

A good way to debug programs in conventional languages is to trace their execution
on an abstract machine. This allows the programmer to watch the program’s execution,
following assignments to variables, procedure calls and returns, branches, etc. Some of
these tools are very sophisticated, and they support concurrent processing and exception
handling as well as sequential constructs. Such tools are also useful for teaching beginners
how the language works.

Most of the abstract machine models used for applicative languages are poorly suited
for direct tracing. The SECD machine is too low-level, and tracing combinator reduction
is even worse [18]. Applicative languages derive part of their appeal from clean, machine-
independent semantics; debugging tools should not force the programmer to give up those
advantages.

A much better alternative is to modify the underlying abstract machine in order to
produce debugging output at the level of the source program. Toyn and Runciman have
done this for both eager SECD and lazy combinator reduction machines [17]. Their lazy
combinator reduction system attaches annotations to expressions as they are reduced.
These annotations are ignored during the normal course of the execution. If the program-
mer interrupts the machine, a debugging system called glide uses the annotations to
provide a readable snapshot of the current state of the computation. First, glide reduces
all the reducible combinators (but not the reducible primitives). The effect of this is to
move data values to their corresponding function argument positions, making the program
graph more readable. Second, glide traverses the partially reduced graph, using the an-
notations to describe the function applications and parameter values that are active. After
studying the snapshot, the programmer may resume the execution of the program.

The glide system allows the programmer to debug at the source language level,
without worrying about combinators, and its overhead is relatively low. Since glide
involves modifications to the abstraction algorithm and the combinator reduction machine,
it is not easily portable among language implementations, and the programmer cannot
easily make modifications to tailor it for specific debugging situations. However, this

6

approach appears to be definitely superior to the earlier methods for debugging applicative
programs.

Sterling and Shapiro present a meta-circular debugging interpreter for Prolog [16].
This would also work well for applicative languages, and it does not depend on how the
implementation works. However, the meta-circular interpreter must still solve all the
problems with I/0 and lazy evaluation that would appear anyway, and the direct solution
we give in Section 8 is much faster.

In Sections 6 and 8 we develop another alternative: instead of developing the debug-
ging tool at the machine level, we write it in the applicative language itself—hence the
title of this paper. That leads to portable debugging tools which the programmer can
easily modify, and it is also interesting to see how debugging tools can be expressed in an
applicative style. Furthermore, the debug system in Section 8 allows the user to control
the execution of a program, and change the values bound to variables while it is executing.
Most of the alternatives described above cannot do that.

There are many advantages to a complete programming environment for an applica-
tive language, which is implemented in that same language [1, 19]. The programmer should
not have to think about machine-level details of the implementation. Debugging packages
should be portable enough to work with interpreters, SECD machines, combinator reduc-
tion, native-code compilation, or any other kind of implementation. Finally, it is useful to
allow the programmer to modify or enhance the programming environment to meet special
needs.

4. Overview of Daisy

Daisy is an applicative language with lazy evaluation based on a suspended list con-
structor [2]. Daisy implements I/O using streams, and its programming style encourages
data recursion and infinite data structures [3]. Since Daisy is similar to other applicative
and functional languages, this section just gives a brief overview of its notation. For a
complete description of the language, see [5, 7.

Daisy has two types of atomic object: identifiers (like xyz) and numerals (like 123).
A list is a sequence of objects in brackets, such as [a b [1 2] c]. The programmer can
quote an object with the ‘*’ character. For example, abc will evaluate to the binding of
abc in the current environment, but ~abc will always evaluate to abc. The elements of a
list are written in square brackets, as in [a [b ¢] 3]. Daisy represents a list using the
standard cons box method. The fields of a box are called the “head” and “tail”. The
syntax [a ! b] denotes a cons box whose head is a and tail is b.

Daisy has an explicit cons function, but it is usually more convenient to construct a
list with “evaluated list syntax”, which is a sequence of expressions written in brackets.
For example, if zero and one are bound to 0 and 1 respectively, then [zero one] will
evaluate to the list [0 1].

Every function in Daisy takes exactly one argument (which may be a list). The infix
operator denotes function application, so £: [a b] evaluates to the result of applying

€,?

T

function £ to the list of the values of a and b.

Daisy’s conditional expression is similar to that found in many languages: if b then
z else y fi will produce the value of z if b evaluates to true and it will produce the value
of y if b evaluates to false. If b diverges then the entire conditional expression will diverge
also.

An abstraction is written as \formal . ezpression, where formalis an identifier or a list,
and ezpression may be an arbitrary Daisy expression. When an abstraction is applied to an
argument the interpreter binds the value of the argument to formal, and then it evaluates
ezpression in the resulting environment. If formal is a list, the interpreter automatically
probes the value of ezpression in order to find the value of an identifier that it needs. This
feature is similar to the use of pattern matching in many functional languages (except that
the programmer can specify only one pattern for the formal). For example,

\[a [bc] d] . add:[b d] : [1 [2 3] 4]

evaluates to 6.

There are two more ways to bind values to identifiers: let and rec. The expression

let x = inc:2
¥y = inc:8
in add:[x y]
will evaluate add: [x y] in an environment with x and y bound respectively to 3 and
9. The interpreter builds a let environment nonrecursively; i.e., the right hand sides of
the equations are evaluated in the environment that existed before x and y were bound.
The rec expression is similar to let, except that the right hand sides of the equations

are evaluated in the environment that exists after the left hand sides are bound. (Lazy
evaluation is useful for making this work!) For example,

rec £ = \n . if zero?:n then 1 else mpy:[n f:dcr:n] fi
in £:5

defines and uses a recursive factorial function.

Data recursion is an important programming technique in Daisy, and the debugging
tools use it heavily. The equations in a rec expression may be used to define a recursive
data structure, just as the previous example defined a recursive function. Thus

rec x =[12 31! x] in x

evaluates to a circular list that will print (forever) as [1 2 3 1 2 3 ..., but the represen-
tation of x contains only three cons boxes.

Later sections of this paper contain examples using the following Daisy primitive
functions:

inc :x = z+1
der ox = zz-1
add : [x y] = z+y
mpy : [xy] = =z-.y
zero? :x = &=
head : [x!y] = «x
tail : [x!y] = y

5. Imperative debugging with lazy evaluation

It is interesting to see what happens when the most common debugging technique—
inserting imperative print statements into the program—is combined with an applicative
language using lazy evaluation. The results would be similar if the system used parallel
graph reduction, or any other surprising evaluation order.

The problem is that the program has no understandable evaluation order, so the
debugging outputs may be scrambled unrecognizably. This is the main difficulty with
programming a lazy system; the programmer cares about the output, not the internal
sequence of events during execution.

We illustrate this difficulty with a series of examples. Daisy provides imperative input
and output functions, called console and screen respectively. Of course, pure Daisy
programs never use console and screen except for their interface with the nonapplicative
host operating system. However, these functions are quite useful for experimenting with
some of the effects of lazy evaluation.

The screen function prints its argument on the terminal screen when the application
occurs. If a screen application is suspended, then the output will not appear until that
suspension is probed. This makes it possible to write impure Daisy programs whose output
depends on the lazy evaluation order.

Another primitive function called seq is often useful for controlling screen. (The real
purpose of seq involves nondeterministic computation, and is beyond the scope of this
paper; for example, see [12]). The expression seq: [a b] evaluates a and then returns b.
Thus seq is equivalent to if a then b else b fi.

Using seq and screen, we can define a function that prints its argument with an
identifying tag to help us interpret the output, and then returns its value.

print = \[tag x] . seq:[screen:["***" tag x newline] x]
Note that print:x will produce output only the first time that the program demands its
value.

let x = print:["x" 5] in [x x x]
[*** x 5
5 5 5]

Now consider a function build which imperatively prints its arguments and constructs
them into a list.

build = \[a b] . [print:["alpha" al print:["beta" bl]

In a sequential imperative language with left to right evaluation of arguments, any ex-
pression containing build: [1 2] would always print 1 and 2 before constructing the list.
With lazy evaluation, the imperative print applications will not produce any output until
the corresponding piece of the list is needed by the rest of the program. If we Jjust ask for
the result of a build application, the printer will traverse the data structure from left to
right, producing the same output that we would expect in an ordinary imperative system.

build: [1 2]
[*** alpha 1
1 #**% beta 2
2]

Note that the system printed the first token of output (the ‘[’) before it probed the head
of the list. The print outputs “#** alpha 1 *** beta 2” appear interleaved with the
normal result [1 2].

The following examples show that the imperative outputs only appear when the pro-
gram needs the corresponding parts of the data structure:

head:build:[3 4]
**% alpha 3
3
head:tail:build: [5 6]
**% beta 6
6
let x=build:[7 8] in add:[head:x head:tail:x]
*%% alpha 7
*** beta 8
i5
let x=build:[9 10] in add:[head:tail:x head:x]
*** beta 10
*** alpha 9
19

These examples have a sequential flavor, but consider what would happen if Daisy add
expressions (which happen to demand their arguments from left to right) were replaced
by very complex expressions, or by nondeterministic computations. This would cause the
output to appear in a seemingly random order. Experience has shown that even sophis-
ticated programmers using a lazy language know very little about the actual evaluation
order (although sometimes they think they know!).

It is occasionally possible to obtain useful information from imperative output, as long
as all outputs are identified by unique tags. However, there are still a number of problems
with this approach:

10

¢ The debugging output is very hard to understand, since it consists of randomly ordered
debugging outputs, interleaved arbitrarily with the correctly ordered “normal” result
of the program.

o A parallel implementation would face an even worse problem with interleaving. Sup-
pose that two processors are executing print:[alpha 1] and print:[beta 2] at
about the same time. Unless the system automatically provides mutual exclusion for
screen, outputs like alpha beta 1 2 and alpha beta 2 1 would be possible. This
would destroy the usefulness of tagging the output. Since applicative languages are
frequently claimed to be appropriate for parallel processors, this is a serious drawback.

o Many applicative languages have nothing like the screen primitive. New architectures
are being designed specifically for applicative languages, and they may be unable to
support imperative hooks just to help in debugging. Therefore the print approach is
inherently non-portable.

o Imperative output seems like very bad style in an otherwise applicative program. This
claim may sound unconvincing, but many applicative programmers find it compelling.

We have found that print is sometimes helpful for debugging small programs, but it is
certainly not a good foundation for a complete debugging methodology.

There may be a way to integrate I/O primitives like screen and console into an
applicative style. Notice that an interaction between the user and the computer can be
described by a program of the form

screen : £ : console : prompt

where the system outputs prompt whenever it is looking for input from the user. We could
view screen and console as components of a window on a modern high resolution terminal
or work station. The debugging system could open up a new window for interactive
debugging at various points in the program selected by the user. Since output caused by
different invocations of screen would go to different windows, the lazy evaluation order
would not cause serious problems. The system could provide a stream of windows, which
the program could use in the ordinary applicative style. For example, if a program needs
to open a new window, it could evaluate

let [[console screen] ! windows'] = windows

in screen = f : console

However, there are numerous difficulties in this approach, and much research is needed for
understanding how applicative systems should treat I/O devices.

6. Applicative tracing

An applicative program is an expression that has a value. The system evaluates the
expression and prints the resulting value; there is no other way to produce output. Thus
the traditional small recursive programs used in teaching Lisp (factorial, append, etc.)
are applicative programs. A debugging tool must provide a sequence of messages for the

3l

user, interleaved with the program’s intended output. This section gives several methods
for doing that.
The essential idea is to transform a function

firzy
into a function that returns extra debugging information d in addition to the result:

faeb 1z [y d].

This technique appeared earlier in [4]. The debugging value would typically specify the
inputs that the function receives, any local computations that it performs, and its final
result. We refer to d as a shadow variable. By including d in the output of a program we
produce a trace, and merely failing to include d in the output expression prevents the lazy
system from computing it.

There are two problems to solve, both of which are related to the composition of
functions. First, each function must be capable of receiving the debugging values that
are embedded in its inputs. Second, there must be some way to output the debugging
results of any auxiliary functions. For example, consider the application g:(f : z) where
f:ar— band g : b — c. The transformed functions faeb and ggq.1, produce debugging
outputs in addition to their results. But that means that the type of f4ep must also be
modified to accept the debugging outputs from g4.p. Thus we must have fi.p : [ad] — [bd']
where d is the debugging output produced by the input to fiep, and d' is the debugging
output produced by faep, itself. Clearly, d' must contain the information in d as well as
a description of what f is doing. Furthermore, any function may be applied to a value
produced by some other function. Consequently, all functions must be transformed in this
way.

The auxiliary debugging variables d and d' are called shadow variables, because the
program can examine them to trace its execution, and the program can ignore them if the
trace isn’t needed. Debugging with shadow variables works very well with lazy evaluation
and pattern matching of formal parameters.

Suppose that every Daisy function, including all primitives and all user-defined func-
tions, has the form .

f H [ao aj as ...aj] = [bg b] bz ...bk].

Two changes are needed in the debugging version. First, each component of the formal
parameter list must be prepared to accept debugging information as well as a value. Sec-
ond, the output of the function must contain all the debugging information. Therefore the
transformed function is

fdeb : [[ag dg] [01 d]] - [a,j dJ]] = [bo bl bz . .bk [do 'dl see dj df]]

The transformed function fge, returns debugging information which contains all the pieces
of debugging output d; for 0 < @ £ j produced by its input expressions, and also a
description dy of what f is doing with its inputs.

12

This scheme works very well with lazy evaluation, because the debugging values will
never be computed unless the user asks to see them. By placing debugging outputs after
all the normal outputs of a function, the caller doesn’t even need to know about the
debugging outputs. That means that we don’t need separate production and debugging
versions of the program; the lazy shadow information will not consume much execution
resources unless it is needed.

Since Daisy does not enforce static typing, it is perfectly valid for a function to ignore
debugging components of its inputs. Thus the type of the program’s inputs may depend on
whether we output the debugging information. Consider the following function £, which
accepts debugging inputs and produces debugging outputs.

£ = \[[a deba] [b debb]] .
let x = expressioni
¥y = expression2
z = expression3
in let result = expressiond
in let debout = [deba debb x y z result]
in [result debout]

If we simply want to look at the result that £ returns, the arguments don’t need to contain
debugging components. That means that deba and debb will be undefined, but that causes
no harm.
let [val deb] = £:[[1]
(2] 1]
in p
In order to look at the debugging information produced by £, we must define its debugging
inputs—e.g., the input [1] becomes [1 "constant"].
let [val deb] = f£:[[1 "constant"]
[2 "constant"]]
in ["trace: " deb "final result =" vall

Unfortunately, we now need a convention that each argument to a function must be
in a list, so we cannot just write £: [1 2]. Languages that enforce correct types would not
allow us to ignore debugging values so freely.

The following example illustrates the use of shadow variables. The recursive factorial
function fact would normally be written as
fact = \n .
if zero?:n
then 1
else mult: [n fact:dcr:n]
£i

13

We use a debugging version mult of the primitive mpy function. Since mult is essentially
a primitive, it doesn’t need debugging inputs, but it produces a result and debugging
outputs. When we transform fact into a debugging version with shadow variables, the

result is

fact = \[n debin] .
if zero?:n
then let result=1
in [result
[debin "fact receives" n "returns" result]]
else let [fres fdeb]l=
fact: [der:n
[debin "fact receives" n]]
in let:[mres mdeb] = mult:[n fres]
in [mres
[fdeb mdeb "fact returns" mres]]
fi

mult = \[x y]
let result = mpy:[x y]
in [result
["mult receives" x y "returms" result]]

f=\n.
let [result trace] = fact:[n []]
in [trace newline "final result =" result]

Computing £:4 with this program produces the following output:

CCCCCCCCCCO] [fact receives 411 [fact receives 3]] [fact receives
2]] [fact receives 1]] fact receives O returns 1] [mult receives
1 1 returns 1] fact returns 1] [mult receives 2 1 returns 2] fact
returns 2] [mult receives 3 2 returns 6] fact returns 6] [mult
receives 4 6 returns 24] fact returns 24]

final result = 24]

With a moderate increase in complexity, we can greatly improve the output of this
program by properly indenting the output and getting rid of all the irrelevant list structure.
A naive approach would be just to append together all the debugging output lists to flatten
the output. However, that would entail recopying all the output, which is unnecessary
overhead. We have found that the philosophy of “recopying the output to format it better”
often leads to several levels of recopying and a devastating degradation in performance.

14

Instead, we construct the final output stream directly, using cons to attach the next
output token onto a data continuation which represents the entire future output of the
system. The data continuation dc must therefore be another parameter to fact.

fact = \[n depth dc] .
if zero?:n
then let result = 1
in [result
indent: [depth
["fact receives" n "returns" result ! del]]
else rec [fres fdc] =
fact:[der:n inc:depth
indent: [depth ["fres =" fres ! mdc]]]
[mres mdc] =
mult:[n fres inc:depth
indent: [depth ["mres =" mres ! resdc]]]
[result resdc] =
[mres
indent: [depth ["fact returns" result ! dc]l]
in [result
indent: [depth ["fact receives" n ! fdc]]]
fi

mult = \[x y depth dc]
let result=mpy:[x y]
in [result
indent: [depth
["mult receives" x y "returms" result ! dec]]]

indent = \[depth dc]
rec loop = \i . if zero?:i then dc else ["| " ! loop:decr:il] fi
in [newline ! loop:depth]

£=\n .
rec [result debug_out] =
fact:[n O [newline]]
in [debug_out newline "final result =" result]

Now £:4 produces much more readable output:

(L

fact receives 4

I fact receives 3

| | fact receives 2

15

fact receives 1
| fact receives 0 returns 1

I I |

I | |

I I I fres = 1

I I I I mult receives 1 1 returns 1
| I | mres = 1

I I ! fact returns 1

| I fres = 1

I I I mult receives 2 1 returns 2
| I mres = 2

| | fact returns 2

| fres = 2

I | mult receives 3 2 returns 6

| mres = 6

| fact returns 6

fres = 6

| mult receives 4 6 returns 24
mres = 24
fact returns 24]

final result = 24]

It is usually better for the main function to output the tracing information before the
result of the target function. This is because the target expression might diverge. If we
output the final result before the trace, and there is no final result, then we will never see
any of the trace. The following expression correctly defines the debugging output, but all
we get 1s an opening ‘[result =.

let [result debug_out] = fact:[-1 0 [newline]]
in ["result =" result newline debug_out]

[result =

The problem, of course, is that our definition of factorial diverges on negative inputs. By
outputting the trace before the final result, it is easy to see what is happening.

let [result debug_out] = fact:[-1 0 [newline]]
in [debug_out newline '"result =" result]

[C

fact receives -1

I fact receives -2

| I fact receives -3

I I I fact receives -4

| | | I fact receives -5

16

| I I I] fact receives -6
I I | | I I fact receives -7
| | | | I | | fact receives -8

*** interrupt ***

When the programmer wants to see the debugging output only if there actually is
a bug, it is better to put the normal function result first. The applicative programming
environment [13] can output the normal result first and allow the programmer to interrupt
the computation to see the debugging output at any time.

7. Order of evaluation and divergence

It is interesting to consider how these tracing programs deal with order of evaluation.
Since Daisy uses lazy evaluation (through the suspended list constructor), the programmer
normally knows nothing about the actual time when each expression is evaluated—and yet,
the tracing programs don’t take this into account, imposing an arbitrary evaluation order
on the program. Therefore these tracing programs would be unreliable if they were used in
a sequential strict language with undefined order of evaluation (such as Pascal or Scheme).
If a particular language implementation used right-to-left evaluation, for example, and the
subexpressions produced side effects, then the trace would cause those side effects to occur
in the wrong order.

To understand how these tracing algorithms behave in a lazy language with no side ef-
fects, we must consider two separate issues: the convergence or divergence of an expression,
and the value that the expression has if it converges.

Most applicative languages have the “Church-Rosser property”, meaning that all eval-
uation orders which can be used to reduce an expression e will either converge to a unique
value v or else diverge. In other words, picking a bad evaluation order may cause an infinite
loop, but it cannot lead to a wrong answer. Let us assume temporarily that the debugging
version of a program does not diverge (unless the original program does also).

We don’t know anything about the “real” order of evaluation, but the important point
is that since there are no side effects, the order of evaluation does not affect the result or
the outputs—therefore a debugging tool can assume any conventent order of evaluation
without harm. And there does not even exist a unique “real” evaluation order for an
expression, since components of that expression may be demanded in different ways by
different programs.

Programmers who are first learning about lazy evaluation sometimes fall into the trap
of thinking too hard about when each evaluation takes place. Thisis a hopeless task, and it
is also a pointless one. Applicative languages need their own idiomatic programming style.
Just as an advocate of structured programming should think about program structure
instead of avoiding goto statements, the applicative programmer needs to concentrate on
the value being defined while ignoring the particular sequence of steps the system will use
to compute it.

g

The tracing functions will produce debugging information for all the values that are
defined, regardless of whether those values are used. This is called full tracing. Since the
debugging version of a program doesn’t know which values will actually be demanded by
the execution, it may try to print irrelevant values. Full tracing leads to three distinct
problems: uninteresting error messages, inefficiency, and divergence when the program
should converge. We illustrate each of those situations below.

The debugging package may print uninteresting error messages when the program
defines values that are sometimes erroneous. Programmers accustomed to strict sequential
languages don’t often deliberately define erroneous or divergent computations. However,
this is a common programming style in Daisy. A typical example is the definition of list
substructures which might not exist. Using a sequential style of programming, we might
write a function that increments every element of a list by writing

inclist = \x .
it nil?:=
then []
else [inc:head:x ! inclist:tail:x]
fi
It may seem cleaner to begin the function with one or more equations that describe the
structure of the inputs, and then use any of these defined values which happen to be needed
to produce the result. The new inclist function begins by using an equation with pattern
matching to define h and t to be the head and tail respectively of x. If it later turns out
that x is nil, then the function ignores h and t, which are erroneous values anyway.

inclist = \x .

let [h!t]=x
in if mil?:x
then []
else [inc:h ! inclist:t]
if
The tracing version of inclist would evaluate and print h and t, regardless of the value
of x. This would result in output of the formh = ...error: head:[]...t = ...error:
tail:[]... whenever inclist is called with an empty argument. Such irrelevant error

messages are not harmful, but the programmer might not want to see them.

This example is too small to show any advantages for the second inclist, but in
larger and more complex programs this style often leads to more compact and readable
definitions. This programming style is of course somewhat controversial, but programmers
do use it and a debugging system must be prepared to deal with it.

A related problem is inefficiency that results when the debugging package evaluates
and prints irrelevant expressions. Consider a tree search program which either finds the
value it is looking for at the root of a tree, or looks for the value in one of the subtrees. A
tree is represented as a triple (v [7], where v is the value at the root, and [and r are the
left and right subtrees respectively.

18

search = \[key tree]
rec loop = \tree .
let [v 1 rl=tree
in let lv=loop:1l
rv=loop:r
in if nil?:tree
then false
elseif same?:[key v]
then true
elseif less?:[key v]
then lv
else rv
£1
in loop:tree

The tracing package will always carry out a full search of both the left and right subtree,
even though many of these searches may be unnecessary. This can greatly increase both
the execution time and the quantity of output.

Even worse, a programmer may define a divergent value which will never be needed.
Here is another way factorial could be defined:

fact = \[n]
let r = fact:[dcr:n]
in if zero?:n
then 1
else mpy:[n r]
fi

The full tracing version of this function will always result in an infinite loop, since the base
case is 0 and fact:0 defines r=fact:-1 which diverges. However, fact only demands the
value of r when n is positive or negative. If n is negative, fact diverges anyway, and if it
is positive then r is well defined.

In each of the three situations described above, the tracing version of a function gets
into trouble trying to print a value that is not demanded by the program. An obvious
way around this would be to introduce some sort of primitive into the language which
determines demand. However, there are several compelling reasons for not doing that. In
particular, it has bad implications both for the language semantics and for the architecture
that implements it. Another reason we avoid that idea is that it violates our debugging
philosophy, which is to implement the necessary tools in the applicative style, without
resorting to nonportable and nonapplicative extensions to the machine.

So we are left with the problem of dealing with expressions that will not be demanded.
Several possible approaches are:

19

o Let the debugging function print all values, regardless of whether they are demanded. If
a value that is not demanded produces an error message, the programmer can ignore
it. If the evaluation diverges, takes too much time or produces too much output,
the programmer can cancel the remaining output and go on to the next step in the
debugging package. This requires the facilities of the full applicative programming
environment [13].

o Modify the format of tracing versions, so that a guard predicate controls the output
of each expression. The debugging function prints the value of an expression only
if the associated predicate (which may be a function of the inputs and other local
values) is true. For example, a useful guard for p in the definition of fact above
would be positive?:n. These guard predicates could be supplied either manually by
the programmer, or, in some cases, by an automatic analysis of the program.

o Instead of using a transformation of the program which outputs a full trace, use
an interactive debugging package. This way, no value would be printed unless the
programmer asks for it, and no e priori decision needs to be made about which values
will turn out to be worth looking at during the course of the computation. We believe
that this is the best way to proceed, and the next section shows how it works.

The tracing version of a function is complex enough to require automatic construction
using a source-to-source transformation function. If programmers had to write all their
code in the style of fact above, they would never use this technique. We have actually
implemented such an automatic transformation system for a subset of Daisy, which con-
verts a set of functions into tracing versions. This causes considerable overhead, but it is
often quite helpful. In most cases, the interactive debugging technique described in the
next section turns out to be better than tracing.

8. Interactive debugging

The techniques shown in Section 6 use a purely applicative style, but they have several
serious limitations. First, they just produce tracing output. It is usually better for the
programmer to be able to interact with a running program, examining only those parts of
the program which are suspect, and modifying incorrect values in order to recover from
errors. Such interaction requires handling input as well as output in an applicative style,
and it needs a mechanism for “changing” the values of variables without using prohibited
side effects. Another limitation of the tracing method is that the entire program must be
transformed into a debugging version. To be really useful, this transformation should be
performed automatically, and it results in a large space overhead.

This section introduces a better applicative debugging tool, called debug, which solves
those problems. This approach uses several techniques that were first developed for a
general applicative programming environment [10, 12, 13].

The main ideas behind the interactive debugging package are:

20

The debugging package maintains an input stream as well as an output stream, along
with the normal results of the target program’s expressions.

The debugging package traverses the original source program, responding to the user’s
inquiries. However, the debugging package is not an enhanced interpreter; when asked
the value of an expression, it uses the standard interpreting machine.

The main loop in debug uses an accumulator to hold the current value of each param-
eter and local variable of the target program. When the user types a command that
changes the value of a variable, debug reenters the main loop with that new value for
the corresponding accumulator.

When the user enters a deeper level of interaction, debug creates a continuation that
will resume the current level, and passes that continuation to a recursive call to debug
in order to carry out the nested interaction.

Thus the interactive debugging package is analogous to a structure editor: it traverses a
data structure (i.e., the target program), producing only the outputs that are requested.

Before showing how debug works, it is useful to see what it does. In order to simplify

the implementation of debug, we assume that all user-defined functions are written in the
form

fun = \[a0 a1 ... aj]
rec x0 = f0:[...]
x1 =f1:[...]

xk = fk:[...]
in xi

It is relatively straightforward to extend debug to handle all the language forms, but we
do not show the details here.

Now we shall debug a factorial function that relies on user-defined sum and product

functions.

factorial = \[n]

factorial: [der:n]

¥y = product:[n x]

f = if zero?:n then 1 else y fi

Irec X

in £
product = \[a b]
rec ¢ = product:[dcr:a b]

d = sum:[b ¢]
P = if zero?:a then O else d fi
in p

21

sum = \[a b]
rec x = sum:[dcr:a inc:b]
s = if zero?:a then inc:b else x fi
in s
Now we can test these functions by typing factorial: [5] , Which unfortunately returns
445. We can directly apply debug to factorial; it isn’t necessary to perform a program
transformation to create a debugging version. The debugging system must be supplied
with the name of a function and its argument values. It prints a message saying that
it has “entered” the function, and it also prints the local variables defined within the
function:

debug: [factorial [5]]

enter factorial at depth 0
with arguments [n] = [5]
and variables [x y £]
The debugging package has now entered an interactive dialogue [10] with the user. The

prompt ‘==>’ indicates that debug is waiting for a command. It is often useful to type
show, which asks for a listing of the values of all the parameters and local variables.

==> show
n=2>5
x = 88
y = 445
f = 445

We already knew that £ would be 445, and the goal is to figure out what went wrong. Since
x should be equal to factorial: [4], the recursive call failed. However, before examining
what happened during the recursive call to factorial, it would be useful to pretend that
x had received the correct value, and see whether factorial would then proceed correctly.
So we type an assign command, which tells debug to “change” the value of a variable
(we can also “change” the value of an input parameter to the function). Once x has been
given the correct value, we tell debug to recompute the value of y with a redo command,
and then eval y will give us the new value.

==> assign x 24

==> redo y

==> eval y

125
This provides a real clue—even assuming the recursive call had worked correctly, fac-
torial still computed n - incorrectly. So we should figure out why the multiplication

got a bad result; there is no point in examining the recursive call to factorial yet. The
enter y command tells debug to enter a new interactive dialogue with the computation

22

of the expression bound to y. The current dialogue with factorial will be suspended
temporarily.
==> enter y
enter product at depth 1
with arguments [a b] = [5 24]
and variables [c d p]
==> show
a=25
b =24
c = 100
d = 125
p = 125

Comparing the parameters and local variables with the definition of product, we see that
d = sum: [b c] =24+ 100, and yet debug says that d is 125. So the problem seems to be
in sum.
==> enter d
enter sum at depth 2
with arguments [a b] = [24 100]
and variables [x s]

==> show
a = 24
b = 100
x = 125
s = 125

The inputs to sum are correct, and the first error is in the value of x—which resulted from
a recursive call to sum.

==> enter x

enter sum at depth 3
with arguments [a b] = [23 101]
and variables [x s]

The recursive call received the correct inputs. This is a hint that the base case is wrong—
and the definition says that if a is zero, then sum:[a b] is inc:b instead of just b.

Since sum is called so many times during the evaluation of factorial: [5], it makes
sense to get out of debug, fix sum and try again. The done command pops out of all the
interactive dialogues, and returns a final result.

==> done
back to sum at depth 2

back to product at depth 1
back to factorial at depth 0

23

result is 445

After fixing sum, we can quickly try sum: [100 24] to see that it is correct (or at least,
less seriously incorrect). This returns 124, and factorial: [5] now produces 120.

The rest of this section shows the implementation of the debug package. More details
on the full applicative programming environment appear in [10, 12, 13].

The central function is main_debug, which carries out an interactive dialogue with
the user in the context of a single function application. Each time the user types an enter
command, the main_debug function will be called. The form of the definition is

main_debug = \[function_name depth argvalues dis k]
....output stream....

The purpose of main_debug is to evaluate an application of the function function_name
to the list of argument values argvalues. The “debugging input stream” of commands
typed by the user is dis, and k is a continuation that specifies the outputs that should
be produced after the current interaction has ended. The continuation needs to know the
result of the application function_name:argvalues (which may be modified by the user)
and the stream of input commands that have not been used up by the current invocation
- of main_debug. The depth parameter is the number of surrounding interactions that have
been suspended. The result of main_debug is a stream of outputs that contains all the
responses to the user’s commands.
The debug function provides a convenient user interface for main_debug.

debug = \[function_name args]
[newline ! main_debug :
name of function being debugged

[function_name
' debugging interaction depth

|
0 I
args | top level arguments
parse:keyboard |
\[result dis] |
["result is " result newline]]]

debugging input stream
top level continuation

The initial debugging input stream is simply a stream of commands from the terminal
keyboard, and the top level continuation prints the final result of function_name:args.
The main_debug function begins by extracting the various components of the function
being debugged. Since Daisy uses an interpreter, the source code is already available.
Systems based on compilation would need facilities for examining the source code and
evaluating expressions. Recall that the function being debugged is in the form

fun = \[a0 a1l ... aj]
rec x0 = £f0:[...]
x1 = f1:[...]
zk = £l ..]
in xi

24

The main_debug function begins by defining
[arglist local_variables local_exprs result_var] =
extract:function_name
which is equivalent to the following definitions:

arglist = [a0 al ... aj]
(X0 21 ... xk]
[(fo:[...1] #£1:[...]1 ... #£k:[...]1]

xi

local_variables

local_exprs

result_var

Next it defines variables to be the set of parameters and local variables, and defines exprs
to be the expressions that correspond to the variables. The initialization of main_debug
concludes by computing normal_values, which is the set of values that would be bound to
the variables in a normal evaluation of funct ion_name:argvalues. Using this extensive
set of definitions, main_debug defines an accumulator-style loop which carries out the
interaction with the user. The loop receives a debugging input stream and the current
set of values bound to the variables. It defines cmd to be the next command in the
debugging input stream, and executes the corresponding expression.

main_debug = \[function_name depth argvalues dis k] .
let [arglist local_variables local_exprs result_var] =
extract:function_name
in let variables = append:[arglist local_variables]
exprs = append: [mk_exprs:arglist local_exprs]
in let normal_values =
evalrec: [append: [arglist variables]
append: [quote_all:argvalues exprs]
variables]
in rec loop = \[dis values] .
let [cmd!dis'] = dis
in if same?:[cmd newline]
then loop:[dis' values]

elseif same?:[cmd "...."]
then

elseif same?:[cmd "...."]
then

else

fi

in loop:[dis normal_values]

The rest of main_debug consists of a set of command implementations of the form

25

elseif same?:[cmd "...."]
then

We will only show a few of these in order to illustrate the important techniques.

It is frequently necessary to evaluate an expression in an environment where the
variables are recursively bound to a corresponding set of expressions. The debugging
package contains a function called evalrec which does this. For example, if

variables = [a b cl
values = [inc:b 100 add:[a bl]
result_var = ¢

then evalrec : [variables values result_var] evaluates to 201, since ¢ = a+b =
b+1+b = 100+1+100. The definition of evalrec using Daisy’s primitive functions is beyond
the scope of this paper. However, any applicative language must have some equivalent
evaluation primitive in order to be able to support a programming environment.

The simplest command is eval, which tells main_debug to read another form from
the debugging input stream and evaluate it using the current values of the variables.

elseif same?:[cmd "eval"]
then let [exp!dis'']l=dis' in
[evalrec: [variables values exp] newline prompt !
loop:[dis'' values]]

The assign command takes two parameters from the debugging input stream: a
variable to be modified, and an expression giving its new value. Of course, there is no
imperative side effect to the variable. Instead, the implementation of assign merely calls
loop with the new value of the variable substituted in place of the old. The update function
does not execute a side effect to the environment; it merely creates a new environment
which is like the old except that 1hs has been rebound to value. The applicative language
must implement tail recursion properly for this code to work.

elseif same?:[cmd "assign"]
then let [lhs!dis'']=dis' in
let [rhs!dis''']=dis'' in
let value=evalrec:[variables values rhs] in
[prompt !
loop: [dis''' update:[variables values lhs value]]l]

The redo command simply evaluates the expression corresponding to the specified
variable and updates the value. It is similar to assign, except that the user doesn’t
provide the new value to be assigned to the variable.

elseif same?:[cmd "redo"]
then let [lhs!dis'']=dis in
[prompt !
loop: [dis'"'

26

update: [variables values lhs
evalrec: [append: [arglist variables]
append: [argvalues values]
getcode: [1hs variables codes]]]]]

Several commands allow the user to enter and exit dialogues, so they must create and
use the data continuations. The ok and done commands return from a dialogue, so the
use the k continuation. The enter command must create a new continuation.

When the user types ok, main_debug produces a prompt “==>" and then applies
the continuation to the current value of result_var and the unused inputs. That ends
the current dialogue and pops back to the most recently suspended one. Notice that the
function does not execute an imperative command to print the prompt; it merely uses
cons to put the prompt in the output stream.

elseif same?:[cmd "ok"]
then [prompt !
k: [evalrec: [variables values result_var] dis']

The done command is similar, except that main_debug gives dis (whose head is
done) to the continuation instead of dis', ensuring that the surrounding invocation of
main_debug will also execute the done command. That forces the program to pop out of
all the suspended dialogues, back to the top level.

elseif same?:[cmd "done']
then k:[evalrec:[variables values result_var]
dis]

The enter command recursively calls main_debug to evaluate the expression bound
to one of the local variables. The current invocation of main_debug creates a continuation
which will resume itself when the user exits from the the recursively entered invocation.
That continuation prints a message telling the user that the current level is back in control,
and updates the variable that was “entered” with the result of the recursive call.

elseif same?:[cmd "enter"]
then let [lhs!dis'']l=dis' in
let exp = get_expr:[lhs variables exprs]
let fcn = get_fen:exp
argcods = getargcode:exp in
let args=evalrec:[variables values argcode] in
main_debug :
[fen
inc:depth
args
dis''
\[result dis]
["back to" function_name "at depth" depth

27

newline prompt !
loop: [dis
update: [variables values lhs result]]]

The actual implementation of the debug package is more general and supports a
number of additional commands. However, the implementation techniques are similar to
the ones above.

The debug tool is efficient because

e it requires no source-to-source program transformation;

® it uses the system’s own interpreter to evaluate the expressions at full speed, as long
as the user does not “enter” them:;

o it responds to the user’s commands efficiently (for example, extensive output filtering
is unnecessary); and

e it produces only the output requested by the user (unlike tracing).

When a programmer wants to explore a program to isolate a bug, debug is very effective.
The tracing techniques from Section 6 are still useful when the programmer wants to watch
the entire execution of a program.

Many enhancements to these debugging tools are feasible. There are several ways to
combine tracing with interactive debugging and editing, and there are many more useful
commands for the interactive debug package. It would also be interesting to experiment
with higher-level debugging tools, like Shapiro’s algorithmic program debugging methodol-
ogy [15]. The important point is that all of these extensions are possible because they just
require modifications or additions to an existing applicative program. If the debugging
tools were built into the language interpreter or a special-purpose applicative language
architecture, that would not be the case.

9. Conclusion

Conventional imperative debugging techniques, based on inserting print statements
into a program, are not generally useful for applicative languages. It is possible to add
debugging features to the language’s implementation, but such tools are not portable
and the programmer cannot tailor them for special situations. The ideal way to support
debugging in an applicative language is to develop a set of tools in that language itself.

The two basic methods for writing a debugging package in a purely applicative style
are:

1. Transform the target program into a version where each function returns a pair of the
form [result debug-info]l. The transformed program produces a result and a trace of
its execution. The entire program must be transformed.

2. Use an interactive debugging function that traverses the evaluation of the target pro-
gram, reading commands from the user, executing them, and printing the results.

28

Streams are used for all input and output. The debugging function uses the sys-
tem’s evaluator to compute the values of expressions unless the user asks to enter an
evaluation interactively.

We have found both of these methods to be useful, but the second is preferable in most cases
because the user can reduce the amount of irrelevant output by directing the debugging
package to the parts of the program that are causing trouble.

There are several advantages in implementing the debugging tools in Daisy (or any
other applicative language) rather than in the underlying machine. A user who wants
to understand the debugging system deeply can look at the code, and even modify it if
necessary. Similar debugging tools can be implemented for any other applicative language.
Finally, a library of similar programs is useful for teaching novices how to write applicative
programs.

Comparing the ease of debugging in applicative and imperative languages is a subtle
problem. It clearly takes more work for a programmer to set up debugging streams in an
applicative program than to insert a print statement into an imperative program. This
seems to be an inherent disadvantage of applicative programming, but there are two mit-
igating factors: (1) automatic debugging tools make the process transparent to the user,
and (2) the applicative debugging tools work correctly in a parallel environment.

Applicative debugging tools can be automated, either as program transformations
(Section 6) or through on-the-fly traversal and interpretation (Section 8). These tools
become part of the programming environment, and they are transparent to the user.

The applicative program (complete with debugging streams) is guaranteed to produce
exactly the same output on a sequential machine or on a parallel machine. In contrast,
consider what would happen to a programmer who inserts some output statements into
an ordinary imperative language.

function P function @
x := 3 y := 4
print (" x is ") print (" y is ")
print (x) print (y)

Now, this program will always produce the same results on a sequential machine,
given the same inputs. However, a parallel implementation might execute applications of
P and Q simultaneously, interleaving the output from the print statements and producing
any of the following results:

x is 3 y is 4
y is 4 x is 3
x is y is 3 4
xis y is 4 3
yis x is 3 4
yis xis 4 3
X LF e e Y AE T e &

29

The first of these results is what the programmer expects. The last one is especially dam-
aging, because the programmer may fail to realize that interleaving has led to misleading
output.

Of course, mutual exclusion algorithms for preventing such undesirable interleavings
of output are well known. However, the imperative programmer using a parallel machine
must know when to use mutual exclusion. If it isn’t used where necessary, incorrect output
will result. If it is used where unnecessary, performance is likely to suffer through “hot
spot contention”. Either way, the programmer cannot simply insert some print statements
and hope for the best.

The applicative program with debugging streams already contains all the synchroniza-
tion needed for safe parallel execution. The programmer doesn’t need to analyze each part
of the program to see where mutual exclusion is required; the program explicitly states
the exact ordering of all output even if the program runs on a parallel machine.

A fundamental decision is whether to support debugging at the machine level or the
language level. Turner points out that it is hard to understand a partially evaluated
program after it has been compiled to combinators [18]:

“... run-time error reports are very opaque. Descriptions of the run-

time state in terms of the configuration of combinators on the stack are
quite unintelligible to users.”

The problem here is precisely that the compiled form of the program is at a lower level
than the original program. Similarly, a programmer using a high level language should not
need to look at machine language, or core dumps, or interpreting machine registers while
debugging. The programmer should be able to debug at the same level as the program
itself—and this implies that it is better to support debugging in the language, instead of
augmenting the underlying machine with special features.

There are many ways to implement a given applicative language: interpretation, com-
pilation to combinators, compilation to host native code, sequential graph reduction, par-
allel graph reduction, etc. Debugging techniques that use the language’s own facilities are
portable, and will work regardless of how the implementation works. The advantages of
applicative languages stem from their semantic properties, and it is better to exploit those
properties while debugging rather than subverting them in order to examine the machine
state.

These observations also apply to the entire software environment. An ideal system
would consist of a massively parallel architecture supporting an applicative language, with
the operating system and programming environment written entirely in that language.
Experience with applicative debugging makes this goal seem more plausible.

Acknowledgements

We would like to thank Steve Johnson, whose efforts in designing and maintaining
the Daisy system made this work possible.

30

References

1.

10.

11,

12.

13.

14.

Delisle, N. M., Menicosy, D. E., and Schwartz, M. D. “Viewing a programming en-
vironment as a single tool”, Proc. of the ACM SIGSOFT/SIGPLAN Software Engi-
neering Symp. on Practical Software Development Environments (Apr. 1984), 49-56.

Friedman, Daniel P. and Wise, David S. “CONS should not evaluate its Arguments”,
Automata, Languages and Programming (Michaelson, S. and Milner, R. (ed.). Edin-
burgh University Press, Edinburgh (1976), 257-284.

Friedman, Daniel P. and Wise, David S. “Unbounded computational structures”, Soft-
ware Practice and Ezperience 8 (1976) 407-416.

Hall, Cordelia V. and O’Donnell, John T. “Debugging in a side effect free programming
environment”, Proc. 1985 SIGPLAN Symposium on Programming Languages and
Programming Environments (June 1985).

Johnson, Steven D. “Daisy language manual” (working title), Computer Science De-
partment, Indiana University, Bloomington (1987) (in progress).

Kieburtz, Richard B. “A proposal for interactive debugging of ML programs”, Proc. of
the Workshop on Implementation of Functional Languages, Report 17, Programming
Methodology Group, Chalmers University of Technology, Goteborg, Sweden (1985)
151-155.

Kohlstaedt, Anne T. “Daisy 1.0 reference manual”, Technical Report 116, Computer
Science Department, Indiana University (1981).

Milner, Robin. “How ML evolved”, Polymorphism, the ML/LCF/Hope Newsletter
(Cardelli, L. and MacQueen, D. (ed.) 1, 1 (Jan. 1983) 1-6.

Morris, James H., Schmidt, Eric and Wadler, Philip. “Experience with an applicative
string processing language”, Conference Record of the Seventh Annual Symposium on
Principles of Programming Languages (Jan. 1980) 32-46.

O’Donnell, John T. “Dialogues: a basis for constructing programming environments”,
Proc. of the ACM SIGPLAN 85 Symposium on Programming Languages and Pro-
gramming Environments (June 1985).

O’Donnell, John T. “Hardware description with recursion equations”, Proe. of the

IFIP 8th International Symposium on Computer Hardware Description Languages
and their Applications, North-Holland (Apr. 1987).

O’Donnell, John T. “Communication structures for interactive applicative programs”,
Computer Science Dept., Indiana University (1987) in progress.

O’Donnell, John T. “An applicative programming environment”,” Computer Science
Dept., Indiana University (in progress).

Peyton-Jones, Simon L. “Directions in functional programming research”, Distributed
Computing Systems Programme (Duce, D. A. (ed.)), Peter Peregrinus Ltd., London,
(1984) 221-245.

31

15.
16.

17.

18.

19.

20.

Shapiro, Ehud Y. Algorithmic program debugging, The MIT Press, Cambridge (1983).

Sterling, Leon and Shapiro, Ehud. The Art of Prolog, Advanced Programming Tech-
niques, The MIT Press, Cambridge (1986).

Toyn, Ian and Runciman, Colin. “Adapting combinator and SECD machines to dis-
play snapshots of functional computations”, New Generation Computing 4 (1986)
339-363. .

Turner, David A. “A new implementation technique for applicative languages”,
Software—Practice and Ezperience 9 (1979) 31-49.

Wertz, H. “An integrated Lisp programming environment”, Proc. of the ACM SIG-
SOFT/SIGPLAN Software Engineering Symp. on High-Level Debugging (1983) 91—
95.

Wetherell, C. S. “Error data values in the data-flow Language VAL”, ACM Trans. on
Programming Languages and Systems 4, 2 (Apr. 1982) 226-238.

32

