TECHNICAL REPORT NO. 221
A Tactical Framework
for Hardware Design
by
Steven D. Johnson, Bhaskar Bose & C. David Boyer

May, 1987

COMPUTER SCIENCE DEPARTMENT
INDIANA UNIVERSITY
Bloomington, Indiana 47405-4101

A Tactical I'ramework for Hardware Design
by
Steven D. Johnson, Bhaskar Bose, and C. David Boyer

Computer Science Department
Indiana University
Bloomington, IN 47405

Appears in VLST Specification, Verification and Synthesis, Graham Birtwistle and P. A. Subramanyam
(eds.), Kluwer Academic Publishers, pp. 349-384.

Research reported herein was supported in part by the National Science Foundation, under grants numbered

DCR 84-05241 and DCR 85-21497, and by the Westinghouse Educational Foundation.

A Tactical Framework for Hardware Design

A Tactical Framework for Hardware Design*

Steven D. Johnson, Bhaskar Bose, and C. David Boyer
Computer Science Department
Indiana University
Bloomington, Indiana

Introduction

This work explores an algebraic approach to digital design. A collection
of transformations has been implemented to derive circuits, but “hardware
compilation” is not a primary goal. Paths to physical implementation are
needed to explore the approach at practical levels of engineering. The poten-
tial benefits are more descriptive power and a unified foundation for design
automation. However, these prospects mean little when the algebra is done
manually. Hence, a basic, automated algebra is prerequisite to our experi-
mentation with design methods.

The transformation system discussed in this paper supports a basic design
algebra. At this early stage of its development, the system is essentially an
editor for deriving digital system descriptions from certain applicative specifi-
cations and for interactively manipulating them. It is integrated with existing
assemblers for programmable hardware packages, such as the PAL components
used to implement the examples presented in Sections 3 and 5. The trans-
formation system and back-end assemblers are implemented in Scheme [18],
a Lisp dialect, by Bose [2].

The coherent manipulation of design descriptions is a significant problem.
Digital engineering is governed by a variety of theories addressing orthogo-
nal problem aspects. It is not enough to unify these treatments in some

*Research reported herein was supported, in part, by the National Science
Foundation, under grants numbered DCR 84-05241 and DCR 85-21497, and
by the Westinghouse Educational Foundation.

A Tactical Framework for Hardware Design

metalanguage, for they must also be integrated. In any design instance, inde-
pendent aspects become dependent facets, and hence, designs simultaneously
decompose in distinct hierarchies. In this paper, we look at the separation
of algorithm and architecture, the logical hierarchy of functional units, and
the organization of physical components. The direction of this work is to
find ways to maintain orthogonal views of a description as it is manipulated
toward an implementation.

The examples in this paper are implemented as externally clocked sys-
tems, often called “synchronous systems” or “clocked sequential systems.”
The underlying model of sequential behavior is simply realized by a global
clock. There is nothing to preclude other realizations of timing, although
we have not done so. The examples show a transformational approach to
synchronous design. They follow a structured digital design strategy to ob-
tain comparable implementations. They also reflect a more general design
methodology.

Section 1 is an informal discussion of how the approach is related to
standard methods. The key idea, and central subject of this paper, is a class
of transformations called system factorizations. These are used to isolate a
level of detail while maintaining the global coherence of a circuit description.

We use an algebra on applicative notation. Section 2 gives a brief look
at this language and its use to describe sequential systems. Functional recur-
sion equations are used as specifications. Part of the algebra is to correctly
translate these specifications into sequential-system descriptions, and Section
2 concludes with a simple characterization relating the two forms of descrip-
tion.

Section 3 is a first example of design derivation, and it serves several pur-
poses. Most important is the illustration of the transformation algebra, and in
particular, the factorization of subsystems. At the same time, a generic treat-
ment of synchronous communication is discussed. We then explain how the
transformation system is integrated with PAL assemblers to obtain physical
implementations. Integration with VLSI tools is in progress. Section 3.3 is a
brief discussion promoting the free use of functional abstraction in describing
sequential systems. This notion is not explicitly used later, so Section 3.3 may
be skipped.

Section 4 explores system factorizations in more detail, laying out basic
laws from which transformations are composed. The parameters in factoriza-
tion are discussed.

Section 5 reviews the derivation and implementation of a garbage collec-
tor. This example shows how the basic algebra presented in this paper applies

A Tactical Framework for Hardware Destgn

to a non-trivial design exercise. The accompanying figures (5-1 through 5-6)
are developed directly from representations used by the transformation sys-
tem. It is the form of these figures, not their content, that is of interest. They
are included to convey the sense of engineering in this syntactic framework.
Boyer gives details of the collector’s design [4].

The garbage collector’s derivation is targeted to a bit-slice implemen-
tation in PAL components. Repeated factorizations lead to an appropriate
physical decomposition and bring a substantial portion of the design into pro-
grammable technology. This derivation strategy also bypasses the problem
of incorporating representations in higher level descriptions. This issue is
discussed in the conclusion.

1. The Relationship to Conventional Synchronous Design

Synchronous design isolates the algorithmic aspect of a problem—often
specified as a finite-state machine, flowchart, or procedure—and refines a pre-
liminary architecture once control is understood. We view this as a translation
between dialects of recursive expression, a perspective that is projected in the
ideogram

Seyr — Joyr — Coyr — Crll€F — -

This formula expresses nothing formal beyond the notion of transformation.
§ is a problem specification, which for us is a system of function definitions. §
is expressed in terms of a vocabulary, © /T, of primitive constants, operations,
predicates, and so forth, called the basis, or “ground type.” The basis is an
aggregate of complex objects (8) and concrete objects (T'). Some examples are
arrays of integers, queues of characters, sets of points. The complex/concrete
distinction is subjective and hierarchical; I' represents an intended level of
description.

The first engineering task is transforming § to a form conducive to hard-
ware implementation. Previous papers develop this phase of design derivation
[12, 14, 13]. I stands for “iterative”—that class of recursion schemata that
characterizes sequential control. In software, § — I is sometimes called
“recursion removal,” but implementing recursion in © is not precluded. An
explicit treatment of control is one argument for the power of a functional al-
gebra, but that is apart from the subject here. In this paper, all specifications
are iterative to begin with.

A Tactical Framework for Hardware Design

C is a sequential-system description. We have shown that such descrip-
tions are mechanically derivable from iterative specifications [14]. The trans-
formation J — C is implemented and this phase of design derivation is au-
tomatic. C has the same ground type as I, but its interpretation is “behav-
ioral.” Where before, variables ranged over values, in C they denote sequences
of values. We are interested in other interpretations of C as well, such as its
description of physical connectivity or graphical layout [16, 3].

C is an abstract description because its sequences hold complex objects.
It is refined to a more concrete description by factoring © as an abstract
component. The formula C’||© is meant to suggest a communicating system.
C' is subject to further refinement and T' to further decomposition. What
makes this kind of transformation a factorization is that terms inside the
sub-system © may be retained in C'.

One purpose of a system factorization is to segregate problem dependent
concrete terms from terms that are intrinsic to the type abstraction. The
entailed analysis may depend both on the structure of the basis and also on
prior assumptions of how © is implemented. Our present concern is exploring
how to parameterize syntactic transformations in support of such analysis.

For the purpose of contrast, we would describe standard synchronous
design methods as
Ir|®r — Crf€r — -

The engineer makes an estimate of the architecture required to solve a prob-
lem, then develops control algorithm I to govern that architecture. A hard-
ware realization of control is then compiled or systematically derived; that
is, C' is ®’s controller. Communication is implicit in the control specification

A Tactical Framework for Hardware Design

language. For example, in finite-state [10] and ASM [22] notations, variables
denote the presence of a value now; and this is also true in higher level hard-
ware description languages.

The basis ©/T of a functional specification corresponds to the estimate of
architecture. The initial transformations secure the global design description
as control is isolated. That is, a correct description of connectivity is main-
tained as the control is incorporated in architecture. However, complex (i.e.,
complex typed) behaviors arise in descriptions thus derived. Factorizations
isolate concrete terms that are actually implemented from those that serve to
preserve the global coherence of a description. It is a thesis of this work that
many aspects of digital engineering can be addressed in this manner.

2. Notation and Background

Descriptions are built from applicative terms, such as f(z,c), where oper-
ation symbols like f and constant symbols like ¢ come from a given basis and
z is a variable. Functional values are allowed; the lambda-expression A X.£
denotes the function with rule £ and parameter X. In function definitions it
is conventional to suppress the lambda, writing

AndNot(u, v) L and(u, not(v))

instead of
AndNot = A(u,v) . and(u, not(v)).

Function names are written in slanted font, variables in ¢talic font and con-
stants in sans serif font. The names of defined functions, such as AndNot, are
capitalized. Product formation is expressed with brackets. For instance, we
might describe a multiple output function

s = parity(a, b, cin)

. d
BitSum(a, b, cin) = [s,cout] where {cout = Saraiivle b

A recursion equation is a simultaneous system of function-defining equa-
tions. There are examples throughout this paper. Function definitions usually
involve conditional expressions, sometimes written as

P> EE

A Tactical Framework for Hardware Design

and sometimes as case-statements such as

per instruction viz @ : E;
R: Eg
W: Eg

This form expresses a simple selection; the per-expression is always a variable
and the case labels are always constants.

An expression is simple if it contains no recursively defined function sym-
bols; otherwise it is recursive. A simple function definition is called a combi-
nation. A recursive term is tailrecursive if its only defined symbol is in the
outermost applied position. A recursion equation is iterative if each branch of
every conditional is either simple or tail-recursive. All but one of the examples
in this paper are iterative.

Circuits are also described with applicative expressions, but the interpre-
tation is sequential. The signal (X,@) denotes the sequence S in which
S; = f(Xi,c). The boxes are a convention to distinguish the sequential inter-
pretation and are omitted later. Signal variables are upper case.

Abstraction is extended so that, for example

[AndNot|(4, B) = [and](4;[not] (B))

and

Alw,v) . flu,g(w,))|(X,Y) = [f](X[9](X, 7))

The two-way selector |if| is a sequential conditional.

Sk, if Py is true,

If X=(P'S’S’) then Xk:{S,‘;, if P is false.

The operator ‘I’ prefixes a value to a signal. It expresses storage or delay.
f X=%!S then Xo=9and Xpy1 = k.

A system description is a collection of simultaneous signal-defining equations.
For example,

Toggle(C,T) £ Q
where

Q=¢!(C, 1 Z)

A Tactical Framework for Hardware Design

describes a storage element that is cleared to false whenever signal C is true
and otherwise inverts its content whenever signal T is true. The symbol ¢
stands for an unspecified value; it can mean “don’t know” or “don’t care” or
“don’t care to say,” depending on the context. In Toggle ¢ € {true, false}.
According to the sequential interpretation, the recursively defined signal Q is
given by
_) false if C = true

Qr+1= Z, if C =false

7. — | mot(Qx) if Tj; = true
=10 if T, = true

The left-hand sides of signal equations may be groupings when the defining
expression involves multiple-output operations. For example, one might de-
scribe an adder using the BitSum combination:

Adder([Ay ... Aol, [Bn...Bol, Co) & [Cnt1 Sn -+~ Sol
where [C1, So] = BitSum(Ao, By, Co)

Qo=¢ and

[Cns1, Sal = BitSum(A,, B,,C,)

The Adder combination is “combinational” and could stand in either the
discrete or sequential interpretation (From here on, the boxes are omitted).
Our system currently has no means to recognize ellipses, or to understand
making n a parameter in Adder. Such constructs are desirable and are used
throughout this paper.

At the core of this work is a proposition relating recursion equations to
system descriptions. If P, T, and R; are all simple expressions, the function
definition

F(Il!“‘azn) =P — TIF(R].!"')R!‘I]
is equivalent to the system description
C(%1,...,%,) £ [P T]

where X; =%, 1R,

Xn=in!2n
P=7p
T=T

A Tactical Framework for Hardware Design

That is, in C(v1, ..., v,) the signal T contains F(vy, ..., v,) as soon as P con-
tains true [14]. Thus, a function with F’s form transliterates to a sequential-
system description with the same terms.

The system C has the characteristics of externally clocked synchronous
hardware: all combinational feedback passes through storage. Under minimal
assumptions, an instance of C can be constructed from any iterative recur-
sion equation. Thus, iterative schemata serve as a conservative specification
language for synchronous-system designs.

3. Derivation of a Single Pulser

The Single Pulser is from a textbook by Winkel and Prosser on digital
design [22]. This first example of design derivation is presented to give an
intuitive idea of the algebra and to show how implementations are assembled
from lower level system descriptions.

A second purpose is to develop a treatment of communication. In the
general system description C at the end of Section 2, the “ready” signal
P is scant acknowledgment that circuits coordinate with external behaviors.
The Single Pulser, being almost purely communicative, sheds a harsh light
on that characterization, making it plain that more expressiveness is needed.
We attack the problem by introducing communication as an attribute of the
ground type. This approach is self serving because it is on the abstraction of
communication that we illustrate the notion of system factorization.

We begin with a specification of a two state process that outputs a unit
pulse for every pulse on its synchronized input 1.

ACK(i) = now?(:) — put(true, NAK (next(z))),
put(false, ACK(next(z)))

NAK (i) = now?(:) — put(false, NAK (next(3))),
put(false, ACK(next(3)))

Let us call the basis of this specification PORT, whose intended model is
boolean communication, and let P be its domain of values. Input involves
two operations: the predicate now?: P — {true, false} gives the current value
and next: P — P gives subsequent behavior. put: {true,false} x P — P
builds output. Two laws for PORT, used later, are now?(put(b,p)) = b and
put(now?(p), next(p)) = p.

Each branch of ACK and NAK performs input and output exactly once.
This is essential since (1) is to be considered a specification of synchronous
control.

(1)

A Tactical Framework for Hardware Design

3.1. Construction of a System Description

In order to construct a system description, an iterative specification is
is needed. Let us abuse the notation by moving the puts inside the calls to
ACK and NAK. The assertion “{now?(0)}” stands as a reminder that this
was done.

ACK(i,0) = {now?(0)} now?(:) — NAK(next(:), put(true, o)),
ACK (next(3), put(false, o)) @)
NAK(i,0) = {now?(0o)} now?(:) — NAK(next(z), put(false, o)),
ACK(next(t), put(false, o))

A single function is built by first introducing a parameter, ¢ € {ack, nak}, to
indicate whether ACK or NAK is in control; then extracting a combination for
the conditional; and distributing it across recursive calls. This transformation
is discussed in [12], [13], and [14], with many examples; it is an instance of
Harel’s compendium of folk theorems [9]. The result is

Select(p, d, Yo, V1, V2, 93) d= perp vig ack : qg — Y, V1
nak:qg — vy, vs
SP(c,%,0) = {now?(0)}
SP(Select(c, now?(3), nak, ack, nak, ack),)
Select(c, now?(s), next(z), next(z), next(z), next(s)),
Select(c, now?(z), put(true, o), put(false, o),
put(false, o), put(false, 0)))

For any ¢ and o, SP(ack,i,0) = ACK(¢,0). Since SP is an instance of C,
according to the characterization in Section 2 the corresponding sequential-
system description is

SP(%,8) = now?(0)
where
C = ack ! Select(C, now?(I), nak, ack, nak, ack) @)
I= 1! Select(C, now?(I), next(I), next(I), next(I), next(I))
O = & Select(C, now?(I), put(true, O), put(false, O),
put(false, 0), put(false, O))

The term now?(O) replaces [P, T] in the characterization. The signals
clearly simplify, but it serves our purpose not to simplify them too much. I’s

A Tactical Framework for Hardware Design

selector isn’t needed and O’s is needed only for put’s first argument.

SP(%,8) = now?(O)

where
C = ack ! Select(C, now?(I), nak, ack, nak, ack) (5)
I= 1! next(l)

0= ¢! put(X,0)
X = Select(C, now?(I), true, false, false, false)

I and O range over ports; they are complex signals that do not describe
physical hardware. However, the surrounding system is concerned not with
their content but only with the result of the operation now?. Therefore, let us
encapsulate the defining expressions as combinations presenting the desired
gignals. In general, there are problem dependent subterms that should be
retained, but the one instance in this case has already been identified as the
signal X. Defining appropriate combinations INPUT and OUTPUT yields

SP(1,3)=0'
where
C = ack ! Select(C, I', nak, ack, nak, ack)
I' = INPUT(¥)
0’ = OUTPUT (5, X)

X = Select(C, I', true, false, false, false) (6)
and

INPUT(#) & now?(P) where P = 5! next(P)
and

OUTPUT(, B) & now?(P) where P = 3! put(B, P)

A schematic can be drawn from these equations:

i e

true -
fatse—select [-A—foutput |9
false

Component abstractions INPUT and OUTPUT hide the complex behaviors
over ports from the concrete boolean signals in (6), leaving a description that

L

i

10

A Tactical Framework for Hardware Design

could reasonably be implemented. This encapsulation is one kind of system
factorization.

From the laws of PORT in the sequential interpretation, INPUT(p) = p
and OUTPUT(p, B) = B. Hence, we may rewrite (6) as

C = ack ! Select(C, I, nak, ack, nak, ack)

SP(I) = O where {0 = Select(C, I, true, false, false, false) (™)

Description (7) is obtained more directly from the specification

ACK(i,0) =1 — NAK(z,true),
ACK(1, false)
NAK(5,0) =i — NAK(S, false),
ACK(4,false)

(8)

That is, the treatment of communication in PORT can be incorporated in
the specification notation, as surely it should be. A refined semantics—at
the very least a typing discipline—is needed to make sense of specifications
that implicitly use PORT. However, this understanding is not needed in the

transformation process; the same construction used to build (4) from (1) yields
(7) from (8).

3.2. PAL Implementation of the Single Pulser

From (7), boolean equations are generated and targeted both to a PAL
programmer and into VLSI layout facilities. Both (7) and the garbage collec-
tor in Section 5 are built with PALs. “PAL” stands for Programmable Array
Logic, a general purpose logic device that also contains storage elements. Once
programmed, a PAL circuit has the description

AT ¥0) e IR s X0 X0 X0

where
Xf= fl(YIJ"'stXf$"'=an:Xf!"'=Xf)
X? = FilWnns Y By X, XL o0 X0

X = frilVusonn; Yo X0y X2 X0, X8

r

Xf = '?s . fm+r(Y11---:Ynixf:-“)xgvxfa-“)xf

11

A Tactical Framework for Hardware Design

Each f; is a boolean function subject to certain restrictions, such as the num-
ber of or’s it can do. The values of n, m, and r vary in different packagings.
Outputs X° are combinational and signals X¢ are stored in clocked, D-type
flip-flops. A PAL “program” is a description of the functions f;.

Recall that the selector combination for the single pulser is
Select(p, g, vo, v1, v2, v3) i perp viz ack: g — g, v;
nak:qg — vy, vs

The method for implementing (7) is to generate a state assignment for each
selection branch. This is a standard synthesis technique following [22]. The
state associated with alternative v; is the binary value of %; represented in
signals [Si, So]. Boolean equations are developed in conjunction with an
assignment of truth values for the symbolic constants. For (7), with nak
represented as true, the following is essentially the input generated for the
A+PLUS simplifier [1].

C?= (8, ASo) V(81 ASo)
0*=5,A8,
Si=(CAI)V(CAI
Ss=(CAT)v(CAI

The simplifier reduced the system to

S$=1
S{=cC
0%=5;AS,
=35

This is directed to the Altera LE-2 fuse burner to obtain a working single
pulser in an Altera EP310 PAL [1].

The simplifier is understandably reluctant to remove signals, but the
equations could clearly reduce further to

C=ack!]

SP(I] =0 where {O = wad(], iot{E}) 9)

as was the outcome in Winkel’s and Prosser’s text. Version (9) might be de-
veloped by a direct symbolic expansion of (7). We have not implemented this
kind of analysis and make do with a state encoding passed through available
simplifiers.

12

A Tactical Framework for Hardware Design

3.3. A Comment about Modeling

Since the ideas discussed below are not explicitly used later, this section
can be skipped or read lightly.

The Single Pulser presents an opportunity to discuss the use of func-
tional abstraction in bridging levels of hardware description. The underlying
principle is that describing something as a function is the purest form of
specification, carrying no suggestion of representation. A more complicated
mathematical foundation is needed if functions are allowed in a basis, and
Boute makes credible claims that functions aren’t needed in this way [3]. Fur-
ther examination of the issue is warranted; it is too early to preclude the free
use of functions in hardware modeling.

The version of SP below uses AndNot, from Section 2, to suppress details
of O’s defining equation in (9).
C=¢ll

SP(I) = O where { 0 = AndNot(I, C) (10)

Now, consider AndNot’s truth table with the idea of abstracting its second
argument to a function on the first.

u v AndNot(v, u) u: v — {true, false}
true | true false

true | false false u(v) = false
false | true true
false | false false u(v) =v

The right-most column shows that the functional abstraction of u is
Abstr(u) Lu— (Av.false), (Av.v)

The version of SP below uses the abstraction, treating signal C as a
component whose function is governed by I.

C = ¢ ! Abstr(I)

SP(I) = O where { 0=c() (11)

For this system description to be meaningful, it must make sense to apply
signals. Let us revise the sequential interpretation of application to allow it.

¥ X=F(-S8:) then Xi=F(-5i--).

13

A Tactical Framework for Hardware Design

L =\[v].v | Voltage abstractions

H = \[u] .\[v].v e
| Symbolic interface

repr = \[A]. (A:<\v."L">):<"H"> | repr: value --> name
REPR = <repr #*> | REPR: values --> names
e —

SP = \I. <H ! I>:<I> | SP(I) = (delay I)(I)
R
REPR:< SP:<LLLHHHHLLHLLHHLLHHHLLL>>
[LLLHLLLLLHLLHLLLHLLLLLE]

The language is Daisy, a lazy dialect of Pure Lisp, whose use for hard-
ware description is discussed in [14,16]. Sequences are represented
as stream-like lists. <x ! %> a CONS-expression, evaluates to the list
[*!]; ‘:* means application; ‘\’ is a lambda. REPR maps repr over
a list. SP, taken from equation (12), maps I delayed over I.

FIGURE 3-1. EXECUTABLE DESCRIPTION OF SP

The interpretation of a base operation is then a constant sequence

Fl= {11

The values {(Av.v), (Av.false)} suggest a pass transistor with a pull-false
resistor. If] were already abstracted, and taking

Delay,(I) £ 211
we get
SP(I) = (Delayg I)(I) (12)
Hence, we might consider implementing SP in NMOS as

. o

| -

14

A Tactical Framework for Hardware Design

However, it remains to solve for independent basis of values, in order to elim-
inate the false in {(Av.v), (Av.false)}. A set that works is {(Av.v), (Au.)v.v)}
as is demonstrated by the program in Figure 3-1. Whether this is a useful
transistor model is a matter for study. Also of interest is the manner by which
a logic description transforms to a gate description, and in general, the role
of function abstractions in developing such transformations.

4. Factorization of System Descriptions

A system factorization encapsulates a subsystem in order to remove some
collection of operations from the surrounding description. This is called “ab-
stract component factorization” in [12] referring to the use of abstract data
types in decomposing software systems into information hiding modules. Af-
ter building a basic vocabulary of elementary transformations, we look at a
small example to get a sense of what a factorization does.

Identification is giving a name to an expression by adding a signal equa-
tion for it. Identification of like terms by a single equation has the effect of
eliminating redundant circuitry when the occurrence of a term corresponds
to an instance of physical hardware.

Grouping is the collection of terms into a single equation. A set of equa-
tions {X; = S;} may be rewritten as

[ovedavas] & (e8]

Grouping is sometimes done to develop physical decompositions. The expres-
sion [:--5;---] might describe a physical package; recall the n-bit Adder in
Section 2, in which BitSum combinations stand for groupings.

As before, combination is the formation of a lambda-combinator, or
“macro,” or “repeated-pattern symbol” in drafting terminology. Examples
are AndNot, BitSum, and Adder in Section 2; Select, INPUT, OUTPUT,
and SP in Section 3.

Distribution is the symbolic application of a distributive law. A key
instance is the law for selection that says

if[p, f(z),9(y)] = (iflp, f,d]) (if[p, =, y])

This rule extends to Select combinations—it was used in equation (5) of Sec-
tion 3.1 to get the signal X— but we shall explore its use with the binary
selector, as above.

15

A Tactical Framework for Hardware Design

Generalization is the introduction of extraneous don’t-care arguments. It
is typically done in order to distribute selection over non-uniform alternatives.

if[p, f(z,9), 9(u, v, w)]

is rewritten as

(ifp, f', 9)) (if [p, , u], if[p,y,], if[p, $, w])
with f extended to
f'(a,b,¢) & £(a,b).

Collation is a merging of signals by instantiating ¢s. An example is to

replace
X=if :3:¢ . -
{Y = if{i,¢,t}]} with {XY = if[p,s,]}

We sketch this elementary algebra in a small example involving two sig-
nals with a common selection predicate.

U = if[p, add(A, B), inc(C)] 5

X = iflp, der(D), add(E, F)] @)
The operations’ names suggest arithmetic functions and it is assumed that all
signals enjoy a uniform representation. The goal is to reduce the number of
components by distributing selection in the system. With this in mind, (1) is

expanded to
U = if[p,V,W]

V = add(if[p, A, ¢], if[p, B, ¢))
W = inc(if[p, ¢, C])

_ @)
X = -'-f[p’ Y: Z]
Y = der(if[p, D, ¢])
Z = add(if[p, ¢, E|, if[p, ¢, F))
We get a single add by collating V and Z.
W = -illC(I.f{Ps é, C])
VZ = add(if[p, A, E), if[p, B, F)) (3)

X = ifp,Y, V2|
Y = der(if[p, D, ¢])

16

A Tactical Framework for Hardware Design

The arguments to inc and der also merge and we can express W and Y as a
single signal

WY = (if [p, der, inc])(if [p, D, C)
The component-expression if p, dcr, inc| is represented in concrete terms by

encoding dcr and inc in an instruction signal ranging over symbols {up, dn}.

U = iflp, VZ, WY]

X = if[p, WY, VZ]

VZ = addl(iflp, 4, E], iflp, B, F))
WY = UPDN(if[p,dn, up], if[p, D, C])

Instructions are interpreted by a synthesized abstraction of WY’s behavior.

UPDN(I,S) & per I viz up: inc(S)
dn: dcr(S)

Of course, there are alternative decompositions. For instance, one could in-
troduce a component abstraction for each of ' and X. Unary operations in
(1) are generalized to get a uniform actual parameter:

U = if[p, add(A, B), inc'(C,)]

i)
= if[p, der'(D, ¢), 2dd(E, F)|

and two combinations are introduced, with synthesized instruction signals.

U = ADDINC(if[p, add, up], if[p, A, C], B)
X = DCRADD(if[p,dn, add], if[p, D, E], F)
where
ADDINC(I, S,T) & per I vis add: add(S, T) (©)
up: inc'(S,T)
and

DCRADD(I, S, T) & per I viz dn: der'(S, T)
add: add(S, T)

Abstract components UPDN, ADDINC, and DCRADD are system fac-

torizations. These kinds of transformations are motivated by a variety of

17

A Tactical Framework for Hardware Design

global considerations, such as physical packaging, routing, and logical decom-
position. One function of the transformation system is to execute the steps
of a factorization correctly. The process has several implicit steps, including

(A) Determining a set of subject terms.

(B) Isolating these terms in the surrounding description.
(C) Executing some collation tactic.

(D) Generating a symbolic instruction signal.

(E) Synthesizing a correct component specification.

(F) Incorporating the component in the description.

The subject terms are those that apply an operation which is to be en-
capsulated. We have implemented two ways of doing (A). The first, called a
general factorization, is to state the set of operations that are to be encap-
sulated. The subject terms are those in which one of the set is applied. The
second, called a signal factorization, encapsulates a signal; in this case the
subject terms are those in which that signal’s name occurs as an argument.

Descriptions (3) and (4), above, are general factorizations. In (3), the set
of subject terms are those using add; in (4), subject terms develop from the
set {inc, dcr}. Description (6) results from two general factorizations of (1),
each restricted to a single signal equation. Subject terms are determined by
{add, inc} for signal U and {add, dcr} for signal X.

In a signal factorization, the encapsulated operations are those applied
to a named signal. The combinations INPUT and OUTPUT in Section 3.1
are examples. The purpose is often to isolate (more) concrete signals from
(more) complex signals. Subject terms {d;(T),...)} are identified and grouped
with the signal of interest, which typically has the form

T =1t Select(--- ¢;(T,...) ---)

If the basis is © /T, then T has type ©; the operations c;: (@ xI'") — O, inside
T’s equation, build new complex values; and those d;: (© x I'*) — I'™ in the
surrounding system extract concrete values. The component abstraction en-
closes all references to and operations on T, taking an appropriate instruction
signal as an input:

oL I,...) 4 [---di(T,...):]

where T =£! per I viz --- instruction;: ¢;(T,...)---

18

A Tactical Framework for Hardware Design

© specifies how any implementation must behave in relation to the surround-
ing circuit. However, © is itself an abstract behavioral description. We do not
derive implementations from such specifications and would like a compatible
means of verification for establishing the correctness of implementations.

The factorizations now done by the transformation system are entirely
syntactic and depend on convention. Factorization steps (A) through (F)
raise theoretical and analytical issues. For example, generalization depends
on assumptions of type-compatibility among the subject operations. It is not
always possible to form reasonable combinations from a set of subject terms,
due to clashes in collation. Factorizations are often motivated by unstated
assumptions about the implementation. Despite these problems, we find this
way of manipulating design descriptions to be natural and powerful. Fairly
simple factorizations seem adequate for decomposing designs at levels of de-
scription that are typical in digital design.

5. Derivation of a Garbage Collector

This section sketches a non-trivial design exercise that has been carried
to hardware. The accompanying figures are intended to be smpressionistic
and are included mainly to give a sense of the derivation process. Figures 5-1
through 5-5, at the end of this paper, are developed directly from the repre-
sentations used in the transformations system, but they are highly condensed.
They convey little of the logical design, whose details are explained by Boyer
[4]. The transformation system is due to Bose [2].

The derivation strategy is governed by architectural considerations. The
design is targeted for a bit-slice implementation in PALs. We have the means
to prototype quickly in this technology, using a Logic Engine [17], which
provides a large wire-wrap panel, secure power and clocking, and good digital
display facilities. In addition, the Logic Engine houses a general purpose
microprogramming environment, which is used to implement the peripheral
system needed to exercise the design. The collector has been tested against
heaps generated by a Scheme implementation [5].

PALs have a good switching capacity, and a bit-slice implementation of
the collector eliminates the need for an internal register bus. On the other
hand, bit-slicing in PALs precludes a direct implementation of arithmetic, due
to intolerable propagation delays. Hence, conventional arithmetic components
are used in the design.

Figure 5-1 is a specification for a stop-and-copy garbage collector [7].
This kind of collector divides memory into two semispaces, only one being

19

A Tactical Framework for Hardware Design

active at any time. When the allocator exhausts available space, the collector
copies and compresses the heap image into the inactive space. The roles of
the two semispaces are then exchanged. The specified collector compresses
a heap that includes binary list cells, vectors, and relocatable segments of
data; there is also a provision for bypassing non-relocatable segments. Details
of the collection algorithm and representations of collected objects are not
important to what follows. They are explained in [4]. Relevant details can be
seen in the following portion of Figure 5-1.

DRIVER (M1, M2, H, D, C,U, A,GO, R) =
eq?(U,A) — IDLE(Mz, M1, H, D, C,U, A, GO, true),
NEXT (M1, M2,read(M1,U),D,C,U, A,GO, R)

The formal argument describes the “registers” at this level of description.
Parameters M1 and Mz have type MEMORY and are subject to operations
read(*, x) and write(*,*,%). The design uses two distinct physical memories
for the semispaces, and operates simultaneously on both during collection.
Registers H and D each hold a CONTENT, with field manipulations ptr(x),
tag(x), and cell(x,*). C, U, and A are of type ADDRESS with arithmetic
operations inc(x), dcr(*), add(x, *), btow(*), addinc(x,*), and incadd(x,).
The btow operation rounds byte offsets to word boundaries; addinc and incadd
are combinations of addition and incrementing. The remaining parameters,
GO and R, are boolean communication ports. Ports are treated in the manner
of Section 3.1.

Figure 5-1 is an unstructured register-transfer description. Each recur-
sive function is a point of control, whose invocation could be thought of as a
parallel assignment to the registers and a transfer of control. This suggests
that the NEXT branch in DRIVER literally exchanges M1 and Mz. Since
this is unreasonable in standard technology, the alternative used in this design
makes explicit the fact that memory paths are switched, and not memories
themselves. A boolean register W records which memory is active. For in-
stance, DRIVER becomes

DRIVER (M1, M2,H,D,C,U,A,GO,R,W) =
eq?(U,A) —
IDLE(M1,M2,H,D,C,U, A, GO, true, not(W)),
W —
NEXT(Mz1, M2, read(M2,U), D, C,U, A, GO, R,W),
NEXT(Mz, Mz,read(M1,U), D, C,U, A, GO, R, W)

and similarly for the whole of Figure 5-1. Since all memory operations are
predicated by a test on W, the size of the specification is nearly doubled. The

20

A Tactical Framework for Hardware Design

manner of introducing W reflects the planned implementation. W might be
seen as an input to a TWOMEMORY component abstraction and would then be
added as an argument to read and write. However, the PALs provide enough
gates to switch the data paths internally. Making W a selection predicate
leads to this implementation.

The design’s selector, SEL, in Figure 5-2, and the initial system descrip-
tion, in Figure 5-3, are both mechanically derived. The grouping of predi-
cates, called STATUS in Figure 5-2, was done manually to condense Figure
5-3. This combination is automatically encapsulated later in the derivation
process.

Five system factorizations are applied to Figure 5-3, resulting in Figures
5—4 and 5-5. These are signal factorizations of M1, Mz, and C; and two
general factorizations of arithmetic. Subject terms for one of the general fac-
torizations are indicated by boxes in Figure 5-3. The transformation system
must correctly draw these terms into a single combination and synthesize an
abstract component specification.

Factorization of signal M1 (and Mz similarly) leaves residual signals
Mi.I, M1.4, and M1.D (instruction, address, and data).

M1 = MEMORY (¢, M1.1, M1.A, M1.D)

Mi.I = SEL(P,@,Q,Q QR,R, Q0,00 W, W, W, e W,e,W,
@R, W, @ W,R, W, W, @R, W,R, W, W, @R, W)

Mi.A = SEL(P, ¢,¢,4,¢, U, H, ¢, ¢,4,¢,U, H, A, $,U, ¢, A, ¢,
22,U,¢,A,Z1, A H, ¢, Z2,21,71,U, H, ¢, Z2, Z1)

M1.D = SEL(P, ¢, ¢, ¢, ¢, ¢, ¢, ¢, ¢, ¢, ¢, cell(H, D), cell(fwd, A),
Ds ¢s CGH(H,A), ¢’ -Da ¢1 ¢: ceH[H,A], ¢! D! ¢'! -D!
cell(fwd, 4), 4, ¢, D, ¢, cell(H, A), cell(fwd, A), ¢, ¢,
D)
These connect to the abstract component MEMORY, whose description in
Figure 5-5 is a byproduct of the factorization. Instructions to a MEMORY
are @ (do nothing), R (read), and W (write).

MEMORY (h, Inst, Addr, Data) < read(M)
where
M = v ! Interpret(M, Inst, Addr, Data)
and
Interpret(m, inst, addr, data) s perinst viz @:m
R:m
W : write(m, addr, data)

21

A Tactical Framework for Hardware Design

Factorization of signal C' encapsulates the combinational operations on
register C; these constitute a counter.

Next, two general factorizations of arithmetic yield three abstract com-
ponents. The operation btow is hidden in a component BYTETOWORD.
Finally, subject terms are developed from the set

{add, inc, dcr, addinc, incadd}.

As is illustrated in Section 4, generalizations of the subject terms must be
collated into signal equations. In this case, the attempt to collate leads to
clashes, which means that more than one adder is needed. When this hap-
pens, the transformation system must partition the subject terms to generate
additional component abstractions. Partitioning is interactive because it in-
volves tactical design considerations. For example, the residual signal Z2.B
in Figure 5—4 simplifies to C as a result of the partitioning choice.

Two issues of concern in this work are the degree to which specifications
must anticipate factorizations, and the effort needed to revise descriptions
when factorizations don’t satisfy engineering intentions. More serialization
of addition might be coded in the specification, but two adders are tolerated
because the intent is to keep the memories busy. On a design of this size, it is
reasonable to experiment rather than to analyze. In fact, the first derivation
attempt led to three adders, and the specification was subsequently changed.
Re-execution of the derivation went through quickly. A more timely serializa-
tion, through transformations on Figure 5.3 for example, is worth study but
is beyond the current capabilities of our system.

Subsequent algebra is directed toward a physical organization and conse-
quently toward a boolean representation of the symbolic basis. One reason for
directing this derivation toward a bit-slice implementation is the lack of mech-
anisms for imposing representations. The derivation strategy minimizes the
impact of this gap in automation. This is a central issue in the continuation
of this work, which we discuss briefly in Section 6.

Figure 5-4 is a description in which all substantial operations are factored
out. The remaining equations are in terms of selection and record manipula-
tion, and the latter are realized implicitly in the architecture. For example,
the operation ptr is simply the extraction of a 24-bit ADDRESS field from a
32-bit CONTENT. Each bit slice represents the projection of an n-bit quan-
tity to a single bit. That is, the signals in Figure 5-4, excluding @, can be
interpreted as single-bit projections; field manipulations project to identity

22

A Tactical Framework for Hardware Design

functions and can be ignored. What remains is a system of boolean selec-
tions that assemble to PAL fuse maps (Recall the generic PAL description in
Section 3.2).

In this interpretation, a bit-sliced collector is described by n instances of
Figure 5-4, connected in parallel to the component abstractions. However,
some equations are irrelevant in certain slices. The projection of bit N +m
of an N-bit vector is vacuous; equations for N-bit signals need not appear in
the description of slice N + m.

Figure 5-6 shows the physical composition of the collector. Six distinct
PAL descriptions are developed, each implementing a subset of equations
in Figure 5-4, with some differing only in their representation of constants.
Internal descriptions of components PALa through PALf can be inferred from
the equations that use them. For instance, the equation

[Ha4, Dag, M1.Dy,, M2.D,,] = PALB(CMD, M1, Mz, R)

indicates that PALD is described by equations for H, D, M1.D, and M2.D in
Figure 5-4. A broadcast command signal is specified as:

CMD = SEL(Q,0, 1, ---, 33)

The encoding is automatically synthesized to obtain description PALsel. The
decoding of CMD is manifested in the remaining components, as illustrated
in Section 3.2. Signals §, W, R, M1.I, M2.I, C.I, Z1.I, and Z=2.I are pack-
aged in a single component PALinst. The equations for multiple-bit signals
are manually replicated and constants assigned. The boolean description of
PALinst is then automatically generated.

All PAL descriptions are generated, reduced, and translated to Altera
Design Files. Simplification is done by Espresso [19]. Thirty-four instances
of eight descriptions, PALsel, PALinst, PALa, ..., PALf are assembled to
Altera PALs to implement the majority of the collector’s architecture. Figure
5-7 shows a custom PLA realization of the PALa bit slice, the largest of eight
boolean descriptions. It is generated from the same design file by the MPLA
function of the Berkeley VLSI tools [19]. Four register feedback paths are
added manually in Magic.

The STATUS combination (Figure 5-2) and two dynamic-RAM memo-
ries are built by hand. Standard LSI is used to realize specifications of the
arithmetic abstract components. The prototype is wire-wrapped on a Logic
Engine, where a microprogrammed serial interface cross-loads heap images
from an Apollo workstation. The workstation hosts the benchmark Scheme
implementation.

23

A Tactical Framework for Hardware Design

6. Summary and Directions

A digital engineer balances many considerations when developing an im-
plementation. A need to decompose descriptions in orthogonal hierarchies
is fundamental, and system factorizations are a basic mechanism for syntac-
tic decomposition. We are just beginning to explore what parameters are
involved in factorization. This paper looks at impositions of logical and phys-
ical structure, including the control/architecture decomposition, the use of
complex types in specification, and physical partitionings.

The transformation system discussed here establishes a path to physi-
cal implementation. It is envisaged as a vehicle for exploring how functional
modeling techniques can be brought to bear on a wider range of target tech-
nologies. We see a working relationship between this approach and hardware
verification research. At the same time, a transformational discipline seems
practical without being tied to formal correctness. The frontier of our work
is to confront the problem of representing abstract bases in low level digital
descriptions.

Derived implementations are correct provided that (1) their specifica-
tions are correct, (2) the transformations preserve correctness, and (3) the
physical elements used accurately model the theory of description. These are
three ways that formal verification methods integrate with a transformational
design. In the other direction, hardware verification needs automation to
compose “theorems” because hardware proofs (e.g., [8], [11], [15], [6]), almost
necessarily, follow the logical structure of design. We use Hunt’s FM8501
proof [11] as an example of the relationship. The proof has two levels, one
addressing the implementation of an arithmetic basis, the other a realization
of instruction semantics. To get a physical description of FM8501, it remains
to derive a sequential-system description from its register-transfer specifica-
tion, to incorporate the representation of the ground type, and to develop
an appropriate physical organization of the whole. It is toward these kinds
of manipulations that our transformations are directed. For the garbage col-
lector derived in Section 5, integrating Hunt’s proof of arithmetic primitives
would secure a “more correct” implementation.

There was no digital debugging of the garbage collector derived in Sec-
tion 5. Though mistakes were made in assembling the prototype, none were
found in the programmed hardware. The collector worked on its first full test.
The control algorithm was well understood. The specification and interme-
diate forms (e.g., Figures 5-1 through 5-5) are executable; implementation
proceeded directly from a tested specification. The later stages of derivation
could also have been used to explore the design, but were not in this exercise.

24

A Tactical Framework for Hardware Design

In addition, Figure 5-1 served almost immediately as a simulation of the algo-
rithm. On representative heaps, the derived collector is 62 to 98 times faster
than a compatible 68000 implementation. The hardware collects at a rate
of about 5M bytes per second. The main factors in speed improvement are
hardware support of tagged data, broader data paths, parallel activity on two
memories, and the usual gains over software implementation of an algorithm
[4]. The derivation process exposed optimizations in physical organization and
these led to revisions (i.e., manual transformations) on the initial description.
One instance discussed was the decision to switch memory paths internally
in PALs, which lead to a more conventional memory abstraction. The de-
rived collector is comparable to a design developed manually using structured
digital design techniques for the same class of components. The experience
convinces us that engineering can be done in the linear notation exhibited in
this paper. That is, the transformation system presented an adequate global
view of the design while factorizations isolated facets of immediate interest.

Targeting the garbage collector for a bit-slice PAL implementation was
an expedient derivation strategy. A number of practical problems were cir-
cumvented. At the same time, a fundamental formal issue was also bypassed;
it is the problem of incorporating representations. In the figurative sense of
Section 1, the “concrete” type I is replaced by a suitable representation, G

sefr' — Iejr — Ce;r ==t c'r"er

s

The derivation in Section 5 is tailored to make this step superficial. Bit slices
are an extreme example of orthogonal logical and physical decompositions.
They project the logical structure into each physical component. For a glimpse
at this issue, let us consider incorporating addition in the garbage collector’s
data path. Using the Adder defined in Section 2, it is not hard to see that
BitSum combinations would be incorporated in each projection. A different
physical organization, such as partitioning for 4-bit slices, would also have
to be imposed on Adder. One PAL description, PALinst in Figure 5-6, was
interactively developed for a similar reason.

Incorporating representations can be highly exacting and therefore needs
automation. However, a general treatment should not be restricted to the
simple types involved in this paper’s examples. Discussions in Section 3 sug-
gest that abstraction and hierarchy are useful in this dimension of derivation.
Considered as a component for a list processing system, the garbage collector
implements the complex type HEAP in a processor specification [21]. Theories

25

A Tactical Framework for Hardware Design

for representation are developing that will have an impact for both hardware
and software engineering methodology.

This work reflects a view of digital engineering as a creative endeavor.
Automated support should present intuitive facets of design while correctly
maintaining the relationships among them. We seek characterizations of basic
abstractions, to be codified in an algebraic framework. QOur early experience
with this approach suggests that reasonable and correct implementations can
be derived through a manageable set of general transformations. The imme-
diate challenge is to broaden the range of implementations while preserving
generality in the algebra.

Acknowledgments

Will Clinger made numerous contributions to the design exercise reported
in Section 5, including his implementation of the Scheme test bed. Eric Ost
helped establish the test environment. Bob Wehrmeister provided essential
support in the integration of design and fabrication tools. We are grateful
to David Winkel and Franklin Prosser for their insights in methodology and
their help in constructing the prototype.

References

[1] Altera Corporation, Altera Programmable Logic User System User Guide
(Version 4.0), Altera Corporation, Santa Clara, 1985,

[2] Bose, Bhaskar, Hardware Derivation from a High Level Specification: an
Automated Transformation System Implementation, in progress.

[3] Boute, R. T., Current Work on the Semantics of Digital Systems, in G.
Milne and P. Subrahmanyam (eds.) Formal Aspects of VLSI Design,
North-Holland, Amsterdam, 1986, 99-112.

[4] Boyer, C. David, A Transformationally Correct Hardware Garbage Col-
lector Implementation, in progress.

[5] Clinger, William C., The Scheme 312 Version 4 Reference Manual, 1985
(unpublished).

[6] Cohn, Avra, A Proof of Correctness of the Viper Microprocessor: The
First Level, this volume.

[7] Fenmichel, R., and J. Yochelson, A LISP garbage-collector for virtual-
memory computer systems, Comm. ACM 12(11):611-612 (1969).

26

A Tactical Framework for Hardware Design

[8] Gordon, Mike, Proving a Computer Correct, University of Cambridge
Computer Laboratory Technical Report No. 42, Cambridge, 1983.

[9] Harel, David, On folk theorems Comm. ACM 23 (7):379-389, (1980)

[10] Hill, F. J. and G. R. Peterson, Introduction to Switching Theory and
Logical Design (Third Ed.), John Wiley&Sons, New York, 1981.

[11] Hunt, Warren A., Jr., FM8501: A verified Microprocessor, Ph.D. dis-
sertation, Technical Report 47, Institute for Computing Science, The
University of Texas at Austin, 1985.

[12] Johnson, Steven D., Digital Design in a Functional Calculus, in G. Milne
and P. Subrahmanyam (eds.) Formal Aspects of VLSI Design, North-
Holland, Amsterdam, 1986, 153-178.

[13] Johnson, Steven D., Applicative Programming and Digital Design, Proc.
Eleventh Annual ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages (1984), 218-227.

[14] Johnson, Steven D., Synthesis of Digital Designs from Recursion Equa-
tions, The ACM Distinguished Dissertiation Series, The MIT Press,
1984.

[15] Joyce, Jeffrey, Formal Verification and Implementation of a Micropro-
cessor, this volume.

[16] O’Donnell, John T., Hardware Description with Recursion Equations,
Proc. 8th International Symposium on Computer Hardware Description
Languages and their Applications, Amsterdam, April, 1987.

[17] Prosser, Franklin P., and David E. Winkel, The Logic Engine Develop-
ment System—Support for Microprogrammed Bit-Slice Development,
Proc. Micro 16, 84-91.

[18] Rees, Jonathan and William C. Clinger (eds.), Revised® Report on the
Algorithmic Language Scheme, Indiana University Computer Science

Department Technical Report No. 174, Bloomington, December, 1986.

[19] Scott, Walter S., Robert N. Mayo, Gordon Hamachi, and John K. Ouster-
hout (eds.), 1986 VLSI Tools, Report No. UCB/CSD 86/272, Computer
Science Division (EECS), University of California at Berkeley, 1985.

[20] Winkel, David E., What Next for PALs. Technical Report No. 188, In-
diana Univ. Computer Science Dept., Bloomington, Indiana, February,
1986.

[21] Winkel, David E. and Christopher T. Haynes, Hardware Design Us-
ing Functionally Connected Units, Indiana University Computer Science
Dept. Technical Report No. 219, submaitted for publication.

[22] Winkel, David E., and Franklin P. Prosser. The Art of Digital Design,
2nd Edition Prentice-Hall, Englewood Cliffs, New Jersey, 1986.

27

A Tactical Framework for Hardware Design

IDLE(M1,M2,H,D,C,U, A, GO,R) =
GO — NEXT(M1,M2,*H* D, C,0,0, GO,false),
IDLE(M1,M2,H,D, C, U, A, true)

DRIVER(M1,Mg,H,D,C, U, A,GO,R) =
eq?(U,A) — LDLE{M2 Mi,H,D,C,U, A, GO,true),
NEXT(M1, M2, read(M1, U), D, C, U, A, GO, R)

NEXT(M1,M2,H,D,C,U,A,GO,R) =
pointer?(H) — OBJ(M1,M2, H,read(M2,H), C,U, A, GO, R),
bvec?(H) — DRIVEREMI,MS!,H, D, C, 2ddinc(U, btow(ptr(H))), A, GO, R),
DRIVER(M1, M2, H, D, C,inc(U), A, GO, R)

OBJ(M1,M2,H,D,C,U, A, GO,R) =
eq?(fwd, tag (D)) —
DRIVER(write(M1, U,cell H, D)), M2, H,D, C,inc(U), A, GO, R),
eq?(pair, tag(H)) —
PAIRI1(write Mi A, D), write(M2, H, cell(fwd, A)),H,D,C, U, A, GO, R),
eq?(vec, tag(H)
VEC(write(M1, U cell(H, A)), M2, H, D, ptr(D), inc(U), A, GO, R),
eq?(bvec, tag(H)) —
BVEG(write(M1, A, D], Mz, H, ceH(D btow(ptr(D))),
btow[ptr(D)) 5o GO
eq?(fbvec, tag(H)) —
DRIVER(M1, M2, H,D, C, inc(U), A, GO, R),

St

PAIRI(M1,M2,H,D,C,U,A, GO,R) =
PAIR2(write(M1, U, cell(H, A)), M2, H, read(M2, inc(ptr(H))),
C, U, inc(4), GO, R)

PAIR2(M1,M2,H,D,C,U,A,GO,R) =
DRIVER(write(M1,A, D), M2,H, D, C, inc(U), inc(A), GO, R)

VEC(M1,M2,H,D,C,U,A,GO,R) =
VLOOP(write(M1, A, D), M2, H, read(M2, 2dd(ptr(H), C)), der(C), U, A, GO, R)

VLOOP(M1,M2,H,D, C, U, A, GO,R) =
eq?(C,-1) —
DRIVER(M1, write(M2, H, cell(fwd, A)), H, D, C, U, incadd(A, ptr(D)), GO, R),
VLOOP(write(M1, incadd(C, A), D), M2, H, read(M2,2dd(ptr(H), C)),
der(C), U, A, GO, R)

BVEC(M1,M2,H,D,C, U, A, GO,R) =
BLOOP(wrlte(MI U ceH[H A)),Mz H, read(M2, add(ptr(H), ptr(D))),
der(C), mc(U) , GO, R)

BLOOP(M1,M2,H,D,C,U,A,GO,R) =
eq?(C,-1) —
DRIVER(M1, write(M2, H, cell(fwd, A)), H, D, C, U,
incadd(A, btow(ptr(D))), GO, R)
BLOOP(write(M1,incadd(C, A), D), M2, H, read(M2, add(ptr(H), C)),
der(C), U, A, GO, R)

FIGURE 5-1. GARBAGE COLLECTOR SPECIFICATION

A Tactical Framework for Hardware Design

SEL([Po, P1, P2, W:P-i,PB’PGsPT,PS: PQ:PIO’PH]:
Yo, V1, V2, V3, V4, Us, Us, U7, Ug, Vg, V10, V11, V12, V13, V14, V15, V16, V17T,
V18, V19, Y20, V21, V22, V23, V24, V25, V26, V27, V28, V29, V30, V31, Usz, 933)
1 per po viz idle: py

- U, N1
driver: p; — wg,
W — Uz, Uy
next:ps — W — wvs, vg,
pPs — Uy, Vg
obj:ps — W — wo, vy,
pr — W — vy, v,
ps — W — w3, vy,
po — W — w5, vie,

. P — vir, ¢
pairl : W — w3, v1o

pair2 : W — wap, va1
vec: W — wvgg, va3
vioop:p;; — W — wvgy, vzs,

W — wge, var
bvec: W — Ugg, Ung

bloop : p11 = W — wgo, vsy,
W — wvag, vss

STATUS(S, H,D,C,U,A,GO,W) & [§
GO
eq?(U, A)
w
pointer?(H)
bvec?(H)
eq?(fwd, tag(D))
eq?(pair, tag(H))
ea?(vec, tag(H))
eq?(bvec, tag(H))
eq?(fbvec, tag(H))
eq?(C,-1)

FIGURE 5-2. SELECTOR COMBINATION AND STATUS GROUPING

A Tactical Framework for Hardware Design

P = STATUS(S, H, D,C,C,U, A, GO,W)

1
s & SEL(P, next, idle, idle, next, next, obj, obj, driver, driver, driver, driver, paitl,
pairl, vecl, vecl, bvecl, bvecl, driver, pair2, pair2, driver, driver, vioop,
vioop, driver, driver, vioop, vioop, blocop, bloop, driver, driver, bloop,
bloop)
!

M1 & SEL(P, M1, M1, M1, M1, M1, M1, M1, M1, M1, M1,
write(M1,U, cell(H, D)), write(M1, H, cell(fwd, A)), write(M1, A, D),
M1, write(M1,U, cell(H, A)), M1, write(M1, A, D), M1, M1,
write(M1,U, cell(H, A)), M1, write(M1, A, D), M1, write(M1, A, D),
write(M1, H, cell(fwd, A)), M1, M1, write(M1,[incadd|(C, A), D),
M1, write(M1,U, cell(H, A)), write(M1, H, cell(fwd, A)), M1, M1,
write(Mi,— (C,A),D))

#!

M2 & SEL(P, M2, M2, M2, M2, Mz, M2, M2, M2, M2, write(M2, U, cell(H, D)),
Mg, write(M2, A, D}, write(M2, H, celi(fwd, A)), writeSM2 , U, cell(H, A)),

M2, write(M2, A, D), M2, M2, write(M2,U, cell(H, A)), Mg,
write(M2, A, D), M2, write(M2, A, D), M2, M2,
writegMa‘!, H, cell(fwd, A)), write(M2, |incadd|(C, A), D), M2,
write(M2,U, cell(H, A)), M2, M2, write(M2, H, cell(fwd, A)),
write(M2,[incadd](C, A), D), M2)

¢!

= SEL(P, *H*, H, H, read(M2,U), read(M1,U), H, H, H, H, H, H, H, H, H,
H,HHHHHHHHHHHHHHHHH HH)
¢!

D = SEL(P, D, D, D, D, D, read(Mt, H), read(M2, H), D, D, D, D, D, D, D, D,
cell(D, btﬁptr(.[)))), cell(D, btow(ptr(D))), D, read(M1,[inc|(ptr(H))),
read(M2,[incl(ptr(H))), D, D, read(M1,[add)(ptr(H),C)),
read(M2,[add)(ptr(H),C)), D, D, readgt,j@(ptr{H),C]),
read(M2,[add|(ptr(H), C)), read(M1,[2dd)(ptr(H), ptr(D))),
read(M2,[add)(ptr(H), ptr(D))), D, D, read(M1 ,[add](ptr(H), C)),
read(M2, [add|(ptr(H), C)))

C g SEL(P,C,C,C,C,C, C,C, C, G, C, C, C, C, ptr(D), ptr(D), btow(ptr(D)),

btew(ptr(D)), C, C, C, C, C, der(C), der(C), C, C, der(C), der(C),
der(C), der(C), C, C, der(C), der(C))
¢!

U = SEL(P, 0, U, U, U, U, U, U, [addinc|(U, btowﬁptr(ff)]), [ind(U), [ind(U),
[ind(V), U, U, lind(V), lincl(V), U, U, lincd(U), U, U, [inc(V), [ind(V),
U, U, U, U, U, U, [ind(V), lind(U), U, U, U, U)

at SEL(P,0, A, A, A, A, A, A, A, A A A A A A A A A, A, [ind(4),

[incl(4), [indl(A), [ind(A), A, A, [incadd](A, ptr(D)), [incadd](A, ptr(D)),

A,)A, A, A, |incadd|(A, btow(ptr(D))), lincadd|(A, btow(ptr(D))), A,

A

R & SEL(P, false, true, true, R, R, R, R, R, R, R, R, R, R, R, R, R, R, R, &, R,
R,R,R,R,R,R,R,RRR,R,R,R,R)

w & SEL(P, W, W, not(W), W, W, W, W, W, W, W, W, W, W, W, W, W, W,
W, W, W, W, W, W, W, W, W, W, W, W, W, W, W, W, W)

FIGURE 5-3. INITIAL SYSTEM DESCRIPTION

A Tactical Framework for Hardware Design

S & SEI{ P, next, ide, idle, next, next, obj, obj, driver, driver, driver, driver,
pairl, pairl, vecl, vecl, bvecl, bvecl, driver, pair2, pair2, driver, driver,
vicop, vioop, driver, driver, vioop, vioop, blcop, bloop, driver, driver,
bloop, bloop)

HYE SEI(P, *H*, H, H, Mo, Ms, H, H, H, H, H, H, H, H, H, H, H, H,
H H HHHHHHHBHHHHHHHH

D& SEI(P, D, D, D, D, D, My, Mz, D, D, D, D, D, D, D, D, cell(D, %),

D,
cell(D, Z3), D, Ma, Ma, D, D, My, Mz, D, D, Ma, Mz, Ma, Mo,
D, D, M, M)

Z,

UL SEYP,0,U,U,U,U,U,U, %, 71, 71, 71, U, U, 71, 71, U, U, 7, U,
U, 22, 2,U, U, U, U,U, U, Z, 7, U, U, U, U)

ALSEUPOAAAALAAALAAAAALAAAAD D,
7,2, A A 7,70, A A A A 7y, T, A A)

R & SEI(P, false, true, true, R, R R, R RRRRRRRRRRR
RRRRRRRRRRRRRRRR)

W & SEL(P, W, W, not(W), W, W, W, W, W, W, W, W, W, W, W, W, W,

WWW,W,W,W,W,W,W,W,W,W,W,W,W,W, W, W)

C= COUNT\(¢,C.I,C.D)

CI=SELP,0000Q00000QQQLLLLQCQeQQeQD,
D,¢¢D,D,D,D,¢¢D,D)

G-D:SH'(P}¢}¢’¢:¢)¢’¢:¢:¢)¢:

,D
¢, ¢, ¢, &, ptr(D), ptr(D), Z3, Z3, ¢, ¢,
6$0dddddddd e

$, 4 9)

Mz = MEMORY (¢, Ma.I, M1.A, M1.D)

Mi.I=SEI{P,Q Q@ QR,R 000 Q W, W,W,QW,CWQRWEe
W,R, W, W, @,R, W,R, W, W, @, R, W)

M.A=SELP, ¢,$, 4,6, U, H,4,4,$,$, U, H, A, $,U,$, A ¢, 2,U, §, A,
Z1, A H, ¢, 22, 21, 20, U, H, ¢, Z2, Z1)

M.D=SEL(P, ¢, $, $, ¢, ¢, ¢, 6, 4, ¢, ¢, cell(H, D), cell(fwd, A), D, ¢,
cell(H, A), ¢, D, ¢, ¢, cell(H, A), 4, D, ¢, D, cell(fwd, A), 4, 4, D,
¢, cell(H, A), cell(fwd, A), ¢, ¢, D)

FIGURE 5-4. FACTORED SYSTEM DESCRIPTION
(continued on. nezt page)

A Tactical Framework for Hardware Design

Mz = MEMORY(¢, Ma.I, Me. A, Mz.D)
Mz.I=SEI(P,Q Q QR Q QR QQWQWWWQW®e®eWwRW,
Q W,R QW,WR WR,QW,WR)

Mo.A=SEI(P, ¢,4,6,U, 6,6, H ¢, $, U, ¢, A H U, $, 4, 6,8, U, 22, A, 4,
A 2, ¢, H, Zn, 22, U, 24, ¢, H, 7, Z2)

mD"—'smP: ¢: 9‘5’ ¢" ¢: ¢} QS) ¢; ‘;ba é} CEH(E D): ¢’ -D: OeH(de,A),
CQH(H, A): ¢'! D: qsl QS: C‘eﬂ(ﬁrl A): ¢1 D: ¢1 D1 ¢) ¢: CeH(de,A), DJ
¢, cell(H, A), 4, ¢, cell(fwd, A), D, ¢)

71 = ALU1(Z1.1, Z1.A, 7. B)
ZI=SEfP,CCCCCCCGA,LLLCGLLGGLLLLLAAIA
1A IA 1A A A IA A TA TA)

Z.A=SEP, ¢, 4,6, 4,6, 6,6 U, U, U U 46U U, ¢4 U, A A A A
ptr(H), ptr(H), 4, 4, C, C, ptr(H), pir(H), 4, A, C, C)

Zlﬂ:SmPa ¢1 ¢S ¢) ¢! ¢! ¢? ¢? %1 ¢:l ¢:l ¢:l ¢! ¢! ¢! ¢:I ¢! ¢! ¢:I ¢! ¢l ¢1 ¢} C’
C, pir(D), pir(D), A, A, ptr(D), ptr(D), Z3, Z3, A, A)

Z2= ALU2(Z2.1, 2.4, Z2.B)
ZI1=SEP,CCCCCCCCCCCGCCCCGGGLLLLGG
CGAALLGGAA)

Z2.A=SEIP, ¢, $,6,6,6,4, 6,4, 4. 6, 6, 6,6, 4, ¢, 4, ¢, 6, pr(H),
g%g}?)vi U’ ¢} ¢, ¢1 ¢! pt'r(H)! m(H), U’ UI ¢1 ¢’ m(m’

22.B=SEP, ¢, 4,4, 6,4, 0,6 66 bbb bbb 6 6.4, 4,
$,¢,C,C, ¢, ¢,4,4,C,C)

73 = BYTETOWORD(Z.1, Z3.B)
ZI=S{PCCCCLCCRCCCCCCOBRBCC GG
CCCLGECERBCKC)

Z?"stm{Pi ¢7 ¢.~ ‘:ﬁ: Eﬁs ¢': ‘?5) ¢a P‘T(H): ()5, ¢'s 4(': év 96: 96! ¢'J Pﬁl‘(D), W(D);
6668 6 b 6 b & 6 ¢, ptr(D), ptr(D), ¢, ¢)

FIGURE 5-4 (CONTINUED). FACTORED SYSTEM DESCRIPTION

A Tactical Framework for Hardware Design

MEMORY (vh, Inst, Addr, Data) & read(M)
where
M = va | Interpret(M, Inst, Addr, Data)
and
Interpret(m, inst, addr, data) 4
perinst viz @:m
R:m
W : write(m, addr, data)

ALUI(Inst,A,B) £ X
where
X =per Inst vis C:0
Al : addinc(A4, B) -
I : inc(A)
A: add(A, B)
IA : incadd(A, B)

ALU2(Inst,A,B) £ x
where
X =perInst vis C:0
I : inc(A)
A : add(A, B)

COUNT(%, Inst, Data) < X
where
X = z ! Interpret(X, Inst, Data)
and
Interpret(z,inst, data) < perinst viz Q: z
L : data
D : der(z)

BYTETOWORD(Inst, Byte) & X
where
X =per Inst viz C: 0
B : btow(Byte)

FIGURE 5-5. FACTORED COMPONENT SPECIFICATIONS

A Tactical Framework for Hardware Design

COLLECTOR(GO) £ R where

P = STATUS(S, H, D, C, U, 4, GO, W)
CMD = PALsel(P)
[S,R,W, M1.I, M2.1, Z1.1, Z2.1, C.I, Z3.I] = PALinst(CMD)
M1 = MEMORY (¢, M1.I, [M1.Ay5---M1.4,]1, [M1.Dy, - M1.D, 1)
Mz = MEMORY (¢, M2.I, [M2.Ags - M2.4y1, [Mz2.Dy, -~ M2.D, 1)
Zy = ALU1(Z1.1, [Z1.Az3--- Z1.Ay], [Z1.B,3--- Z1.B, 1)
Z2 = ALU2(Z2.1, [Z2.Az3 -+ Z2.Ay], [Z2.B,5--- Z2.B,])
C = COUNT($,C.I, [C.Dys---C.Do1)
Z3 = BYTETOWORD(Z3.1, [Z3.Bys--- 73.B,1)

HE [Hy - Hpl
D& [Dsy--+-Dgl
o A
AL [Up---Up]

[Ho’ Do, UQ, AO’ Ml.Ao, MloDo, MznAo, Mz.DU
Z1.Ay, Z1.By, Z2.A,, Z2.B,;, C.Dy, Z3.B,]
= PALa(CMD, M1, M2, Z1,22,C, Z3, R)

[Hzs, D23, Uas, Azs, M1.A,s, M1.D,3, M2.Ay5, M2.D,,,
Z].-Ags, 210823, ZzoAzs, 22-323, C°D23! Z3¢st]
= PALa(CMD, M1, Mz, Z1,Z2,C, Z3, R)

[Ha4, D24, M1.D,y, M2.D,y 1 = PALB(CMD, M1, Mz, R)

[Hg'r, Dg'r, MI.DT;, MZ.D27] = PALb(CMD, Ml, Mz, R)
[Hgs, Dgs, Ml.ng, Mz.ng 1= PALC(CMD, M:I., M2, R)
[Hgg, Dgg, Ml.ng, Mz.ng 1= PALd(CMD, Ml, MZ, R)
[Hso, Dso, M1.D39, M2.Dyy 1 = PALe(CMD, M1, Mz, R)
[Hs1, D31, M1.Dyy, M2.Dy; 1 = PALf(CMD, M1, M2, R)

FIGURE 5-6. GARBAGE COLLECTOR CIRCUIT DESCRIPTION

A Tactical Framework for Hardware Design

-“'E““ B

FIGURE 5-7. PLA IMPLEMENTATION OF COMPONENT PALa

VLSI SPECIFICATION,
VERIFICATION AND SYNTHESIS

edited by

Graham Birtwistle
University of Calgary
and

P.A. Subrahmanyam
AT&T Bell Laboratories

bgl
(o

KLUWER ACADEMIC PUBLISHERS
Boston/Dordrecht/Lancaster

A Tactical Framework for Hardware Design

FIGURE 5-7. PLA IMPLEMENTATION OF COMPONENT PALa

