Dynamic Identifiers Can Be Neat

by
Bruce F. Duba, Matthias Felleisen
and Daniel P. Friedman

Computer Science Department
Indiana University
Bloomington, Indiana 47405

TECHNICAL REPORT No. 220
Dynamic Identifiers can be Neat

by
B.F. Duba, M. Felleisen, & D.P. Friedman
April, 1987

This material is based on work supported in part by National Science Foundation grants number
DCR 83-03325 and DCR 85-01277, and by an IBM Fellowship Award to Matthias Felleisen.






Dynamic Identifiers can be Neat

DYNAMIC IDENTIFIERS CAN BE NEAT
Bruce F. Duba, Matthias Felleisen, Daniel P. Friedman

Computer Science Department
Indiana University
Lindley Hall 101
Bloomington, IN 47405, USA

Abstract

Linguistic facilities to express dynamic extent are common in modern, lexically-scoped Lisps. In such
languages there is the traditional possibility of having identifiers with dynamtc scope, or the alter-
native of having statically bound identifiers with dynamic extent. The latter possibility is superior
since it inherits all the advantages of lexical scoping, however, the known implementation techniques
interfere with the correct optimization of tail-recursion. We propose a new implementation strategy
and show that it does not suffer from this problem.

1. Introduction

Static scoping is quickly becoming the standard for the Lisp family of programming
languages, but many still include some abstraction for expressing dynamic extent.
A prominent example is Common Lisp [9]. In Common Lisp it is possible to declare
special variables. Special variables in Common Lisp have no textual restriction on
where references may be made but are only accessible during the evaluation-time
of the declaration body. This semantics for variables is the same as the one in
traditional, dynamically-scoped Lisp [7].

Lexical scope gives the language designer a new alternative: he may now enforce
dynamic eztent on lexical variables. This has the advantage of only having one
scoping mechanism in the language. All variables share the security and modularity
of static scoping [3], while allowing the expression of dynamic behavior. An example
of this approach is found in MIT Scheme [1, 4, 5]. MIT Scheme includes the special



2

Dynamic Identifiers can be Neat

form fluid-let. It is typically implemented as a syntactic extension:

(fluid-let (¢d val) exp) = (let (temp id)
(set! 7d val)
(let (res ezp)
(set! ¢d temp)

res)).

Instead of creating a new binding for id, this form saves the current value of id in
a temporary variable, then assigns val to id for the time of the evaluation of ezp,
reassigns id its original value, and finally returns the result value.

While the addition of lexical variables with dynamic extent to Lisp is quite
common [1, 2, 4], it causes a serious problem. In such languages iterative algo-
rithms are generally expressed as tail-recursive functions. The defining report on
Scheme actually requires tail-recursion to be equivalent to iteration [8]. A proper
implementation of tail-recursion implies that only the evaluation of subexpressions
in applications may push information onto the control stack of the interpreter [10].
Thus, the invocation of the function

(define loop (lambda (z) (let (z z) (loop z))))

results in an infinite loop, that never causes a stack overflow. However, when we
replace the let by a fluid-let

(define loop (lambda (z) (fluid-let (z z)(loop z))))

this is no longer true. The implementation of fluid-let above forces the interpreter
to remember the reset-assignment of z after returning from the call to loop. We
believe that this is unacceptable.

In this paper we present a tail-recursive realization of the fluid-let programming
paradigm. It is based on the idea of a dynamic store, which in turn is derived from
the concept of a dynamic environment. To this end, we formalize both dynamic
scope and dynamic extent facilities in lexically scoped languages with a series of
denotational-style [11] interpreters. We show that, contrary to expectations [4, 1,
5], nesther of them causes any problems for the correct implementation of tail-
recursion. In the next section the two basic object languages are defined. The third
section contains the interpreters. In the fourth section we discuss the relationship



Dynamic Identifiers can be Neat 3

(expression) ::=
(identifier)
| (lambda ((identifier)) (expression))
| ({expression) (expression))
Figure 1a: Core of the Object Language

(expression) ::=
(dynamic-scope ({identifier)) (expression))
| (dynamic-lookup (identifier))
Figure 1b: The Scope-Language

(expression) =
(dynamic-extent ((identifier)) (expression))
Figure 1c: The Extent-Language

to other language constructs and show how they benefit from our implementation.
The fifth section addresses specific implementation details.

2. The Object Language

For the purpose of this paper we restrict our attention to the purely functional
subset of Lisp. The translation of our result into the framework of Common Lisp,
Scheme, or other programming languages with similar facilities is straightforward.

The core of the object language consists of identifiers, lambda-abstractions,
and applications. The concrete syntax is defined in Figure la. This core language
has the usual semantics. An identifier is a placeholder for a value, a lambda-
abstraction corresponds to a first-class, call-by-value procedure, and an application
invokes the value of the function on the value of the argument.

We extend the core language in two different ways. Figure 1b defines the first
extension. When a dynamic-scope expression is applied to a value, it binds its
identifier to this value for the dynamic extent of the expression. An identifier that
is bound with dynamic-scope must be accessed with dynamic-lookup. Thus,
there is no need for shadowing rules as in Common Lisp [9, page 158]; a name may
unambiguously be used as a lexical identifier and a dynamic identifier in the same
expression.



4

Dynamic Identifiers can be Neat

The second extension is defined in Figure 1c. The identifier of a dynamic-
extent expression must be bound by an enclosing lambda-abstraction. The appli-
cation of a dynamic-extent expression temporarily replaces the value of the lexical
identifier with the value of the argument. We refer to the two language extensions
as the scope- and extent-language, respectively.

3. The Interpreters

We have formalized the semantics of the languages as denotational-style inter-
preters. First, we present an interpreter for the core language. The interpreter
is a recursive function from expressions, environments, and continuations to an-
swers. An environment is a map from identifiers to values and gives meaning to
the free identifiers of an expression. A continuation is a function from values to
answers, which represents the rest of the computation. It can be thought of as an
abstraction of the control stack. By modeling control with continuations, it is easy
to reason about such issues as the proper implementation of tail-recursion.

The interpretation of a program is syntax-oriented. For the identifier case the
interpreter contains the following line:

=)o = x(ola]).

Upon encountering an identifier the interpreter looks up its value in the current
environment and passes this value to the rest of the computation.

A lambda-abstraction evaluates to a closure:
E[(lambda (z) M)]px = k(Avk,.E[M]plz « v]k,).

A closure is a functional object that encapsulates the lambda-body and the current,
definition-time environment. When a closure is applied, it evaluates the function
body in the closure-environment extended by a binding of the formal parameter to
the value of the argument.

For an application (M N) the interpreter first evaluates M and then N, and
finally invokes the resulting function closure on the argument value:

E[(M N)]pr = E[M]p(Am.E [N]p(An.mnk)).
The appropriate sequencing is accomplished with the following continuations:

ki = Am.E[N]pk: and ky = An.mnx.



Dynamic Identifiers can be Neat

The first one, ki, absorbs the value of M and goes on to evaluate the argument N;
the second, ky, performs the invocation after having received the value of N.

The defining equations of the interpreter have an interesting property: when a
closure is applied, the continuation of the body of the closure is the same as the
continuation of the application. In other words, when the evaluation of the function
body is completed, the computation simply continues, no “cleanup” is necessary.
We refer to interpreters with this property as neat. Neatness implies that tail-
recursive function calls take place with no growth of the continuation. We would
like the interpreters for the language extensions to share this property. Given this
machinery, we can discuss the implementations of the language extensions.

3.1 An Interpreter for the Scope-Language

In the core interpreter lexical scoping is accomplished by having closures include the
environment that was present at the time the lambda-expression was evaluated.
For applications the current environment is used to evaluate the subexpressions of
the application, but not the function invocation. In a dynamically scoped language
the value of an abstraction need not include an environment, instead, it expects
an environment when it is applied. Therefore, applications pass the application-
environment to the invocation of the function. To mix the two scoping mechanisms,
we use two environments.

The interpreter for the scope-language is a function from expressions, lexical
environments, dynamic environments, and continuations to answers. The interpre-
tation of a dynamically bound identifier is the same as the one for lexicals except
that is uses the dynamic environment:

¢ [zlob = s{ola]),
£[(dynamic-lookup z)]péx = (6[z]).

Both lambda- and dynamic-scope-expressions evaluate to closure objects:

¢[(lambda (z) M)]péx = k(Avé,k,.E [M]p[z « v]é,k,),
& [(dynamic-scope (z) M)]péx = k(Avé,ky.€ [M]pby[z — v]Ky).

These closures expect the application time dynamic environment as well as the
value of the argument and the continuation of the application. When applied, a
- lambda-closure extends the definition-time lexical environment while a dynamic-
scope closure extends the application-time dynamic environment.



6

Dynamic Identifiers can be Neat

In an application the dynamic environment is made available not only to the
evaluation of the subexpressions but also to the function invocation:

E(M N)]pbk = E[M]pé(Am.E[N]pé(An.mnék)).

It is obvious that this interpreter is still neat. The evaluation of the body of
either a dynamic-scope- or a lambda-closure takes place in the continuation of
the application, e.g.,

£[((dynamic-scope (z) M) N)]pék = € [N]pé(An.E [M]pé[z «— n]x).

In particular, tail-recursive calls of dynamic-scope abstractions cause no growth
of the interpreter’s control structure.

3.2 The Extent-Language

In the extent-language dynamic-extent is a form of structured assignment. All
variables are lexical, therefore there is no need for a dynamic environment. Instead,
to formalize assignable variables, we must add a store component to the interpreter.
An environment now maps identifiers to locations and a store maps locations to
values. The new continuations represent the rest of the computation relative to
some memory configuration. They take a value and a store and return an answer.

The definition of the store-based core interpreter is straightforward:

Elzlpor = k(a(p2]))e,
£[(lambda (z) M)]pox = k(Mvo,&,.E [M]plz + nlo,[n «+ v]k,)o
where n ¢ Domain(o,),

E[(MN)]pox = E[M]po(Amo,.E [N]pom(Ano,.mno,k)).

The value of an identifier is obtained by finding its location in the current environ-
ment and looking up the contents of that location in the store. When a closure is
invoked, it allocates an unused location and binds the identifier to the location in
the closure-environment, updating the store so that the location contains the value.
In the application line, the two continuations for the evaluation of M and N expect
a store. Thus, the interpreter ensures that the current store always reflects the true
state of the memory.

The interpretation of dynamic-extent is derived from a transliteration of the



Dynamic Identifiers can be Neat

syntactic extension for fluid-let:
(dynamic-extent (id) ezp) = (lambda(val)
(let (temp id)
(set! 7d val)
(let (res ezp)
(set! id temp)

res))).

The interpreter evaluates a dynamic-extent expression to a dynamic-extent-
closure. The invocation of a dynamic-extent-closure updates the location associ-
ated with the identifier in the current store, runs the body, and finally resets the
location in the resulting store to the value it had at application time:

¢[(dynamic-extent (z) M)]pox =
k(Avoyky.E [M]pos[p]z] — v](Amom .komon[plz] « ov(p]z])]))e.
This interpreter has the right semantics, but it is no longer neat! Instead of eval-
uating the body of a dynamic-extent-closure in the application-continuation, the

interpreter constructs and uses a new continuation that accomplishes the necessary
reassignment of the dynamic-extent-variable:

(Amo, .kvmay [plz] — oy (plz]))).

The scope-language is able to express dynamic extent but does not have this
problem. In the scope-interpreter the dynamic environment is not passed to contin-
uations, because they already contain the correct dynamic environment for subex-
pression evaluation. If the store were handled in the same manner, there would
be no need to undo assignments: the application-continuation would automatically
access the correct store. This, however, would preclude the addition of traditional
side-effects and would require a different implementation of lambda-closure ap-
plication. The problem is that while two environments are used to model lexical
and dynamic scope, the store must simultaneously implement both temporary and
indefinite assignments. Therefore our solution is to split the store into a main store
and a dynamic store.

The two stores have the same functionality: they take locations and return
values. But, while the main store follows the flow of control in an application, the
unchanged dynamic store is distributed to the evaluation of subexpressions:

E[(MN)]popk = E[M]pop(Amoy,.E [N]pone(Ano,. mno,pk)).

7



8

Dynamic Identifiers can be Neat

Since the resetting of the dynamic-extent-variable is now unnecessary, the inter-
pretation of dynamic-extent expressions is straightforward:

&[(dynamic-extent (z) M)]popr = k(Ivo,p,k..& [M]poves[p]z] « v]k,)o,

however, identifier lookup is more complicated. First a check must be made to see
if the location of the identifier has a value in the dynamic store. If so, that is the
value; otherwise, the identifier is looked up in the main store:

E[z]poer = k((p[z] € Domain(p) — @, ) p[z])e.
The interpretation of lambda-expressions is basically unchanged:

€[(lambda (z) M)]popr = k(Ivo,pyk,.€ [M]plz + nlo,[n « v]p,k,)o
where n ¢ Domain(o).

The new interpreter correctly realizes the semantics of the extent-language.
The major difference is that the new interpreter is neat. It is also more sensitive to
additional language features, that is, it simplifies the implementation of some, and
also allows entirely new constructs that could distinguish it from the single store
interpreter. We briefly investigate this phenomenon in the next section.

4. Additional features for the Extent-Language

There are two important features missing from the extent-language: assignments
and labels. In a two-store world assignments could possibly change either store,
but in the present framework a side-effect to the dynamic store could never be
perceived: the dynamic store does not follow the flow of control. Thus the only
feasible assignment operation in the current model modifies the main store:

& [(set-main-store! z M)]popk = E[M]pop(Ive,.kva,[p]z] « v]).

Traditionally, languages that have an operator like dynamic-extent allow side-
effects to the dynamic store. To incorporate side-effects to the dynamic store,
we would need to introduce another level of indirection. This is comparable to
the division of environments into stores and environments for the introduction of
traditional assignment.

Labels are another language facility that play an important role in conjunction
with dynamic identifiers. In Common Lisp the respective operation is catch; in



Dynamic Identifiers can be Neat

Scheme, it is the primitive call-with-current-continuation. Both cause an enormous
complication when added to the single-store language [5, 1, 4]. In particular, it
must be guaranteed that any continuation that could possibly throw the compu-
tation outside of the dynamic-extent expression will do the reset-assignment to
ensure the correct dynamic behavior. With two stores this becomes superfluous.
Each continuation object already contains the correct dynamic store. Program con-
tinuations are practically equivalent to the interpreter continuations:

& [(catch z M)]popr = E[M]p[z « nlo[n « (Moyppks.kv0y)]ek.

5. Implementation Notes

From the last interpreter for the extent-language it is clear that the only operation
that may pay for the addition of dynamic-extent is identifier lookup. This may seem
to be an unreasonable expense. However, if by static analysis or compiler directives,
it can be proved that an identifier never has dynamic-extent, its lookup can be
as cheap as those of traditional lexical identifiers. This observation is important
because it means that we are not imposing a cost on those who do not use dynamic-
extent.

An easy way to implement the dynamic store is as an association list contained
in the control stack. When a location is to be given a new value in the dynamic
store a new location value pair is pushed onto the stack. If the location already has
a value it may be overwritten as long as it is not visible from any continuation. This
gives automatic reclamation of the dynamic store and allows for a simple implemen-
tation of user continuations [6]. The association list method is usually abandoned
in dynamically scoped languages because of the cost of lookups. However, the lan-
guages that we address are lexical by default, identifiers with dynamic extent are
only used occasionally. The dynamic chain will tend to be short and rarely tra-
versed. Paying a little more for dynamic lookup will not significantly degrade the
performance of the whole system. It may seem as if the same kind of argument
could be used by those promoting the re-assignment implementation: since it is
not often used, who cares if it is not properly tail-recursive. There is an important
difference between the costs of the two implementations. For programs that use
dynamic extent heavily the worst that can happen using our method is that the
program may run slowly. While the re-assignment implementation may fail for lack
of control-stack space. In other words, correct programs may not run at all.

9



10 Dynamic Identifiers can be Neat

6. Conclusion

We have shown that the dynamic-extent facility or equivalently fluid-let need
not interfere with the correct implementation of tail-recursion. We have also argued
that the cost of providing dynamic-extent is not great and that it is well justified.

Also of interest is the use of denotational interpreters. Denotational semantics

are typically used to address mathematical properties of programing languages such
as: does the compiler preserve the functionality of a procedure definition. We believe
that it is also appropriate to use denotational descriptions of languages to study
the details of different implementation strategies.

References

. DYBVIG, R. K. The Scheme Programming Language, Prentice Hall, Engelwood

Cliffs, New Jersey, 1987.

. FRIEDMAN, D.P., C.T. HAYNES, E. KOHLBECKER, M. WAND. Scheme 84

Interim Reference Manual, Technical Report No. 153, Indiana Univeristy Com-
puter Science Department, 1985.

. GORDON, M.J. The Denotational Description of Programming Languages,

Springer-Verlag, New York, 1979.

. HANSON, C., J.LaMPING. Dynamic binding in Scheme, unpublished manuscript,

1984, MIT.

. HAYNES, C., D.P. FrRIEDMAN. Embedding continuations in procedural ob-

jects, TOPLAS, 1987, to appear.

. KRANZ, D., ET AL. ORBIT: An optimizing compiler for Scheme, Proc. SIG-

PLAN 86 Symp. Compiler Construction, SIGPLAN Notices 21(7), 1986, 219~
233.

. MCCARTHY, J. et al. Lisp 1.5 Programmer’s Manual, Second Edition, MIT

Press, Cambridge, 1965.

. REEs J., W. CLINGER. (Eds.) The revised? report on the algorithmic language

Scheme, SIGPLAN Notices 21(12), 1986, 37-79.

. STEELE, G. COMMON LISP—The Language, Digital Press, 1984.
10.

STEELE, G.L. Lambda: The ultimate declarative, Memo 379, MIT AI Lab,
1976.



Dynamic Identifiers can be Neat 11

11. SToy, J.E. Denotational Semantics: The Scott-Stratchey Approach to Pro-
gramming Languages, The MIT Press, Cambridge, Massachusetts, 1981.



