LECTURES ON THE LISP INTERPRETER

Paul E. Dawson

Daniel P. Friedman

Computer Science Department
Indiana University

Bloomington, Indiana 47401

TecHNICAL ReporT No. 22

LECTURES ON THE LISP INTERPRETER

PauL E. Dawson

DanIEL P. FRIEDMAN

JANUARY, 1975

Lectures on the LISP Interpreter

Paul E. Dawson

Daniel P. Friedman

Computer Science Department
Indiana University

Bloomington, Indiana 47401

Introduction

The subjJect of these notes is the LISP implementation and dis-
cussion of the LISP interpreter as presented in [1]. These notes
will provide the reader with a better understanding of LISP, its
capabilities and limitations. Through the explanation of the

interpreter (see Appendix B in [1]) the reader will better under-

stand such concepts as: variable bindings, evaluation of bindings,

function .definition, forms, special forms, recursion, and the func-
tional definition of the interpreter procedures.
We assume the reader has a basic working knowledge of LISP

and therefore will not attempt to introduce basic LISP concepts

as atomic symbols, S-expressions, list notation, dotted pairs,
or the writing of LISP functions.

These notes will first give the reader a broad understanding
of the LISP operating environment, function definition using DEFINE
and DEFLIST, the use of LAMBDA and LABEL notation, the function of
FUNCTION, and the use of PROG before'examining the construction
of the interpreter itself. Next, by examining the interpreter's
construction, we will re-examine these same constructs and others,
but this time the emphasis will be on those interpreter components
responsible for the recognition and interpretation of these con-
structs, and how the interpretation is carried out.

This description specifies the effect of the interpreter, not

its actual internal workings.

LISP - QOverview

The LISP language introduced by McCarthy, et al. in the early
1960's, is a functional list processor designed for symbolic data
processing. Its areas of application ére that of artificial intel-
ligence and symbolic mathematics. Because LISP is a formal mathe-
matical language, it i1s of theoretical interest. It is also a
programming language of extreme power when used for symbolic cal-
culations in differential and integral calculus, electrical circuit
theory, mathematical logilc, game playing, particle physics, meta-
compilers, string transformations, programming language syntax trans-
lation, simulations, question/answering systems, linguistics, infor-
mation retrieval, on-line text editing and formal program language

analysis.

-3-

All functions and data in LISP are written as symbolic expres-
sions, referred to as S-expressions. That is, functions are written
entirely in terms of S-expressions and operate on S-expressions
as data. This relationship allows the interpreter or universal

processor for the LISP language to be defined as a LISP function.

Variable Bindings - Association List and Property List

A variable is a symbol that is used to represent an argument

of a function. Thus we can define the function

fix) = x3/h

where x =2 . 1In this case the answer is 2. The process of
arriving at this result involved substituting the number 2 for each
occurrence of x in the function. The number 2 is bound to the
variable x , or the number 2 is associated with the atomic symbol
X
Constructing the corresponding LISP function
(F(LAMBDA (X)

(COND

((ZEROP X) 0O)

(T(DIVIDE(TIMES X X X)4))))
and executing the function with the call (F 2) , the result-is
again 2.

The information required to evaluate (F 2) 1s supplied by the
environment. The environment contains all the information which
the system processes about each of its atoms. Recall that every-
thing is an atom: function names, operators, variables, and con-

stants. There is no distinctlon made between atoms. The environ-

ment assoclates atoms with the values they represent.

When the function is applied to its arguments, (F 2) , the
existing environment is modified assoclating bound variables with
the function arguments (i.e., X is bound to 2). During the eval-
uation of the function, the current associations replace any pre-
viously existing associations for those variables. After the eval-
uation has been completed, the associations established by the
function invocation are deleted from the environment. Thus the
associations of the bound variables are temporary, existing only
while the function's form is being evaluated.

In addition to variables, the environment contains constants,
primitive functions, and functions introduced by the LISP functions
DEFINE and ﬁEFLIST, each having a name and a value. The value
is either an atomic symbol or a function.

In [1], the environment is described as an assoclation 18,

To understand bound variables adequately, we must examine how these
assocliations are constructed.

In interpretive LISP systems, whenever a lambda or program
expression 1s encountered, the variables to be bound are placed
on the association list or a-list. The a-list is a LISP list of
dotted pairs of the form

((ul g vl)(u2 . v2) i W (un . vn))
where each of the ul's is a variable and each of the vl's are the
corresponding values or bindings. Lambda or program variables
are paired with their values and the palrs are attached to the
front (leftmost) end of the a-list, with previous bilndings to the

right. In the previous example, the invocation of the function

F by (F 2) would cause the variable X to be paired with the

numeric atom 2 and attached to the a-list,
([X . 2)(u2 : v2) e (un . vn))

During the evaluation of the function, all references to the
variable X , are references to the a-list. The a-list is searched
from left to right for the first occurrence of the variable X
When it 1s located, the CDR of the bound pair is returned as the
current value of the variable. After the function has been eval-
uated, the a-list is returned to its previous state by removing the

bound variables of that function

((u2 ; v2) - (un . vn))

The original LISP had no constants, so that the single a-list
was well suited to the needs of the environment. With the addition
of constants, a new type of environment was necessary. A constant
must retain 1ts value, regardless of any bindings which may be in
effect. In addition to the temporary environment (a-list), a need
for a permanent environment arises. Assuming that a permanent
environment exists, the interpreter procedures for LISP will first
search the permanent environment whenever a variable is evaluated.
If the variable has no permanent association of the type being
sought, the search proceeds to the temporary environment, the a-
list.

The permanent and temporary environments have different prac-
tical requirements in terms of access and maintenance. Permanent
assoclations are used often and must be accessed rapidly. They

will not be altered frequently, and therefore the updating process

need not be highly efficient. Temporary associations, on the other

hand, are modified quite frequently and require a more efficient

alteration procedure. The permanent environment is implemented
to allow random access to its contents, while the association
list is manipulated in a sequential access mode.

The permanent LISP environment is implemented in terms of pro-
perty lists. Each unique atom within the LISP system has a pro-
perty list associated with it. The property list of an atom con-
tains the permanent associations of that atom, its "print name," or
any constant value. The actual structure of the property list for)
each atom is behaviorally similar to that of the association 1list,
i.e., bound pairs. The first entity of each pailr is an atomic
symbol called an indicator. The second entity is an S-expression
which represents the value that is associated with the indicator.
The temporary environment allows the association of a single value
with each bound atom. The permanent environment, on the other
hand, allows the programmer to assoclate multiple values with each
atom, in the sense that an atom may have associated with it an
indefinite number of indicator-value pairs.

The LISP system provides the user with a number of built-in
indicators that have special significance for the interpreter func-
tions. Table 1.1 shows the basic indicators utilized by the LISP

interpretive system.

Indicator Value

PNAME Atomic print name -- character sequence used
to represent atom on an OUTPUT device.

APVAL Permanent wvalue of an atom. The permanent
value of F is NIL.

SUBR Address of a machine language coded interpreter
routine (CAR, CDR, CONS, EQ, ATOM, etec.).

FSUBR Address of a machine language coded interpreter

routine for handling special forms (COND, LIST,
QUOTE, OR, AND, TIMES, etc.).

User defined function.

User defined function for handling special forms.

Table 1.1

The LISP system provides the programmer with two procedures
(SUBR's) for manipulating the property lists of atoms. The LISP

procedure (PUT atom indicator value) places the indicator-value

pair on the property list of atom. The value of PUT is atom.

The LISP procedure (GET atom indicator) retrieves the value that

is associated with indicator on the property list of atom. If
indicator does not exist on the property list of atom then GET
returns NIL, otherwise the value of GET is the stored value.

To see how the environment is used, suppose that the variable
X 1s to be evaluated. First, the property list of X is searched
for the indicator APVAL, e.g.,

(GET(QUOTE X)(QUOTE APVAL))

If the value returned by GET is non-NIL, then the CAR of the
value 1is the binding of X . The association list is searched
only if the indicator APVAL is not found, and thus an APVAL takes

precedence over any other binding.

A variable not bound by the current function definition is
a free variable. The binding of a free variable is established
outside the current function definition and will be available when
that variable is evaluated, either by locating a value on its pro-
perty list or by locating it on the a-list. The binding of free
variables is often set with one of the LISP functions, CSET, CSETQ,
SET, or SETQ. Free variables can be used in recursive functions
to reduce the length of the associlation 1list.

The complete environment consists of the association list and
all property lists. Together they provide all the information which
the system can process concerning an atom. The organization of
the environment is designed to provide rapid, random access to the

permanent assoclations and the most recent temporary bindings.

Function Definition

In LISP, as in other programming languages, we wish to write
programs that are parameterized and that compute an answer when
values are assigned to the function arguments. However, in LISP
we do not use the syntax and program structure of algebraic lan-
guages. LISP programs are formulated and written in the mathemati-
cal notation of recursive function theory. As such, procedures are
functions; parameters are constants, and variables that can be

passed between functions are arguments.

Forms and Functions

Given the algebraic expression X2 + Y evaluate the expression

for the values 2 and 3. Immediately there is a notational problem

in that we don't know whether X =2 and Y = 3 X =3
Y =2 . To resolve this ambiguity, LISP makes use of Church's
lambda notation.

In Church's lambda notation the expression X2 + Y 1s called
a form. A form is an expression that may be evaluated when a cor-
respondence has been established between its variables and a set
of actual arguments. In LISP this formula is represented in Polish
prefix notation as

(PLUS(EXPT X 2) Y)

Furthermore, in Church's lambda notation,

f = A(x,y)(x2+y)

1s a function named f , since it satisfies the two necessary con-
ditions for a function:
1. A form to be evaluated
2. A correspondence between the variables of the form and the
arguments of the function.
Invoking the function 2 3) the previous ambiguity is resolved,
since Church's lambda notation provides a correspondence between
X 4 Y . and 2, 3, such that {f 2 3) = 22 4 3
In LISP, (f 2 3) would be defined as
((LAMBDA(X Y)(PLUS(EXPT X 2)Y)) 2 3)
Lambda expressions consist of three entities:
1. The word LAMBDA.
2. A 1list of literal atoms that are to be treated as variables
(lambda variables).
3. A form to be evaluated.

After recognizing that an S-expression 1s a lambda expression, the

-10-

LISP interpreter pairs the lambda variables with the actual argu-
ments and attaches these pairings to the association list. When
the form is evaluated, any reference to a lambda variable causes
the interpreter to evaluate that lambda variable by locating it on
the association list and substituting its bound value. .

More frequently the LISP programmerlwill use lambda expressions
in conjunction with the LISP functions DEFINE and DEFLIST. For
example, rather than having to specify the lambda expression every-
time it is evaluated with new arguments, the programmer defines
the function f as:

(DEFINE (QUOTE(
(F(LAMBDA(X Y)

(PLUS(EXPT X 2) Y)))
)))

and evaluates (F 2 3) as before.

DEFINE is a function of one argument, a list of functions to
be "defined." The effect of DEFINE is to place on the property
list of the atomic function name the indicator EXPR and the lambda
expression as the value. In the previous example, DEFINE would
place the indicator EXPR and the value
(LAMBDA(X Y)(PLUS (EXPT X 2) Y)) on the property list of F
Now when the programmer executes @‘ 2 3) , the interpreter locates
the lambda expression on the property list of F ,
(GET (QUOTE F)(QUOTE EXPR)) , binds X to 2 and Y to 3, attaches -
both of these pairings on the front of the association list and
evaluates the form, producing the value 7.

DEFLIST is similar to DEFINE, except that it is more general

than DEFINE. DEFLIST is a function of two arguments,

(DEFLIST(QUOTE(flfe...fn))(QUOTE indicator)) a list of functions

to be defined and an indicator to be associated with their defini-
tions on their respective property lists. The uses of DEFLIST
will be clarified in the discussion of special forms.

DEFINEing a function allows the storing of a function defini-
tion, so that the same function definition may be applied to dif-
ferent arguments without having to redefine the function defini-
tion each time it is applied to new arguments.

Earlier we composed and evaluated lambda expressions such as
((LAMBDA(X Y)(PLUS(EXPT X 2)Y)) 2 3) . These were temporary lambda
expressions. By naming them, we could make them permanent functions
wlth DEFINE. Recursive expressions point up an inadequacy in lambda
notation that requires us to define as permanent, recursive functions
that we wish to use as temporary functions. This difficulty results
from the inability to call functions recursively since the lambda
expression is not named. To resolve this difficulty and allow compo-
sition and evaluation of temporary recursive functions LISP provides
the LABEL function. To write temporary functions that can call
themselves recursively, we write

(LABEL name lambda-expression)

(LABEL MEMBER(LAMBDA(X SET) (COND
((NULL SET)NIL)
((EQ X (CAR SET)) T)
(T(MEMBER X (CDR SET))))))

Example:

Label notation creates temporary expressions that may be eval-
uated in a recursive manner. The labeled lambda expression binds
the function name to the lambda expression and attaches the palr to

the association list. Labeled lambda expressions may be written

', B

recursively, so that each time the function is referenced internally,
its most recent function definition is retrieved from the association

list and applied to its argument.

Functions with Functional Arguments

Mathematically, it is possible to have functions as arguments
of other functions. In LISP functional arguments are extremely
useful and lend themselves to the generality of LISP as a program-
ming language.

When arguments are transmitted to a function, they are evaluated,
except when they are transmitted to a function defined as a special
form; it controls how its arguments are evaluated. When func-
tions are used as arguments, they should be transmitted unevaluated.
The special form FUNCTION is used for this purpose in LISP. FUNCTION
acts like QUOTE, and in fact FUNCTION and QUOTE may be used inter-
changeably, provided there are no free variables present. FUNCTION
is used with functional arguments to indicate to the LISP inter-
preter that a function is being passed as an argument to another
function and that its evaluation is to be suppressed. FUNCTION
is a special form that takes one argument, a function or lambda
expression. It has the form

(FUNCTION fexp)
where fexp 1s either the name of a previously defined or labeled
function, a LISP SUBR or a lambda expression.

An example of the application of functional arguments is the
LISP function MAPLIST. MAPLIST is a function of two arguments:

an argument list and a function to be applied to the list,

(MAPLIST LIST FN)
MAPLIST returns as its value a list of the values of the repeated
evaluation of FN applied to LIST. The value of MAPLIST may be
expressed as

(LIST(FN LIST)(FN(CDR LIST))...(FN(CDDD...DR LIST))
The definition of MAPLIST is

(MAPLIST(LAMBDA (LIST FN)

(COND

((NULL LIST)NIL)
(T(CONS(FN LIST)(MAPLIST(CDR LIST)FN)))))

Examples:

(SQUARE (LAMBDA(L)
(TIMES(CAR L)(CAR L)))

((LAMBDA(X) (MAPLIST X (FUNCTION SQUARE)))(QUOTE (1 2 3 4 5)))
= (1 4 9 16 25)

((LAMBDA(X) (MAPLIST X (FUNCTION CDR))) (QUOTE (THIS IS A LIST)))

= ((IS A LIST)(A LIST)(LIST)())

The LISP function FUNCTION allows the programmer to pass, un-
evaluated, functional arguments to functions. More important and
not as apparent, is the relationship between the use of FUNCTION
and the state of the environment. The LISP function QUOTE may be
used if the net result is to suppress the evaluation of a functional
argument. But there arise difficulties relating to the binding
of free variables and the use of functional arguments that are
not adequately handled by QUOTE. This relationship will be dis-
cussed in further detail in the section on the evaluation procedures

of the LISP interpreter.

-1 dj-

Special Forms

A form is an expression which can be evaluated when some corres-
pondence has been established between the variables contained in
it and a set of actual arguments. For instance, (CAR X) 1is a
form.

The procedure for evaluating a form involves evaluating the
argument X (i.e., obtaining a value fer X from the environment)
and then applying the LISP function CAR to the binding of X

These procedures are followed without regard to the partiecular
variable or function being operated upon. If all LISP forms were
evaluated in this manner the capabilities of LISP as a symbolic
data processing language would be severely limited. There arises

the need for the construction of forms that allow the programmer

to:

1. Write forms with an indefinite number of arguments, and/or

2. Write forms for which their arguments are passed unevaluated.
Forms of this nature are called "special forms." Functions can

either be built into the LISP system or defined by the programmer.
Functions that are DEFINED by the user are called EXPR's (refer to
the discussion of property lists) and are characterized as having
a fixed number of arguments and the arguments are evaluated prior
to calling the function. Functions that are built into the LISP
system, such as.gég,_CDR, CONS, EQ, and ATOM, are called SUBR's
and are likewise characterized by a fixed number of arguments and
argument evaluation prior to calling the function. Special forms
may either be built into the system or user defined. Each special

form is written as a list whose first member is a function name

and whose remaining members are expressions,

(func-name €1 €5 - . . €)

n
Special forms that are built into the LISP system are called FSUBR's
and user defined special forms are called FEXPR's.

Special forms, FEXPR's and FSUBR's, are set apart from SUBR's
and EXPR's by the manner in which their arguments are handled.
Some special forms will utilize both additional capabilities for
argument interpretation while others will utilize either one or
the other.

LISP programmers, who have used the language to any extent,
will recognize that some of the more frequently used functions
are implemented as special forms. Some of these special forms
(FSUBR's) are:

(QUOTE exp)

(LIST e, e

IR en)

(COND (p1 el) : G (pn en))

1

QUOTE 1is a special form that receives its single argument un-
evaluated. The argument may be any S-expression. QUOTE returns
the unevaluated S-expression as its wvalue.

LIST 1s a special form which takes an indefinite number of
arguments. The arguments of LIST are not evaluated prior to passing
them to the function. The value of LIST is a list of the evaluated
arguments.

(LIST e, e

LI —2

where vy represents the value of ey

COND takes an indefinite number of arguments, which are pre-

dicate-expression pairs. It accepts these arguments unevaluated;

.

as a special form it evaluates the predicate of each predicate-
expression pair until the first predicate that is non-NIL is found
and then the corresponding expression is evaluated and returned

as the value of COND.

COND is an ideal example of why special forms are needed in
LISP. if the arguments of COND were evaluated before executing
COND, the interpreter would be performing a lot of unneeded eval-
uation, in the sense that there is no need to evaluate
Pi+1 »Pi42 & w3 pn 1t pi evaluates as non-NIL. By allowing
COND to control the evaluation of its arguments it will call upon
the interpreter to perform a minimum of form evaluation.

When a form 1s encountered the interpreter looks on the pro-
perty list of the function name for one of the four indicators,
SUBR, FSUBR, EXPR, or FEXPR. SUBR and EXPR indicate that the form
is a function applied to a fixed-number of evaluated arguments,
while FSUBR and FEXPR indicate that it is a specilal form, written
in machine language or LISP respectively, for which the argument
list is indefinite in length and that the arguments are passed
unevaluated. A user-defined special form (FEXPR) must be placed
on the property list of its atomic name with the indicator FEXPR,
and hence DEFINE cannot be used. Recall the function DEFLIST is
available for placing expressions onto the property list with arbi-

trary indicators.

EVALQUOTE $
An interpreter or universal function is one that can compute

the value of any function applied to its arguments when given a

description of that function.

An interpreter executes a source-language program by exam-
ining the source language and performing the specified al-
gorithm. This is in contrast to a translator or compiler
which translates a source-language into machine language
for subsequent execution. [I]

The LISP interpreter is a function named EVALQUOTE$. It is applied
to two S-expressions from an input medium,
EVALQUOTE$(FN ARGS)
(EVALQUOTE$ (LAMBDA (FN ARGS)
(COND
((OR(GET FN(QUOTE FEXPR)) (GET FN(QUOTE FSUBR)))
(EVAL$ (CONS FN ARGS) NIL))
(T(APPLY$ FN ARGS NIL)))))
When EVALQUOTE$ 1s given a function and a list of arguments for
that function it computes the value of the function applied to
its arguments.

The evaluation procedure for LISP consists of two main functions:

the application of a function to its arguments (APPLY$) and the eval-

uation of a form (EVAL$). APPLY$'s task is to sort out the meaning

of the function, find its bound variables, palr them with the func-
tion arguments and then hand over the form to EVAL$. When EVAL$
has passed a function, it evaluates the arguments and then calls
APPLY$ to bind the variables and to update the environment.

The execution of EVALQUOTE$ (FN ARGS) involves deciding whether
or not the function FN is a special form. The question is re-
sclved by examining the property list of FN for the indicator
FEXPR or FSUBR. If FN 1s not a special form then EVALQUOTES$

calls APPLY$ with the function, the argument list, and the asso-

-18-

ciation list, which is initially NIL. If the function FN is a
special form, then EVALQUOTE$ calls EVAL$, a function of two argu-
ments, a form, and the association 1list. The arguments of EVAL$
are formed by CONSing FN and ARGS to produce a form and an
initially empty association list.

The decision to call EVAL$ or APPLY$ is determined by whether
the function is a special form. Recall that an indefinite number
of arguments and delayed argument evaluation characterize special
forms. Since one of the functions of APPLY$ is to decode varilable
bindings, it should be clear as to why EVAL$ is called when EVALQUOTE$
encounters a special form.

APPLY$ is a function of three arguments: a function FN , and
a list of arguments ARGS and the association list, ALIST.

APPLY$ first determines if FN is NIL, and if so APPLY$ will
simply return NIL. If FN is non-NIL and FN 1s an atomic symbol
APPLY$ will determine if the function 1is a user-defined function
(i.e., it has the indicator EXPR on its property list) and if so,
the value associated with the indicator EXPR is APPLY$'d to ARGS
and ALIST (i.e., APPLY$ is called recursively with the definition
of FN). If FN is not an EXPR, APPLY$ will determine if FN has
pbeen defined as a SUBR. If the function is a SUBR, APPLY$ will
be called recursively, but the function to be applied to ARGS will
be evaluated,

(APPLY$ (EVAL$ FN ALIST)ARGS ALIST)
If FN is nelther an EXPR nor a SUBR then the definition of FN
will be determined by examining the association list. If a defini-

tion for FN 1is located on the association list, then this defini-

tion is applied to ARGS:

(APPLY$ (CDR(SASSOC$ FN ALIST (QUOTE(LAMBDA()
(ERROR(QUOTE A2)))))) ARGS ALIST)

If a definition cannot be located for the atomic symbol FN (i.e.,

the function definition is not bound in either the permanent envi-
ronment or the temporary environment) then error A2 is returned,
signifying an undefined function.

If it was previously determined that FN was non-atomic then
APPLY$ checks if (CAR FN) 1is the literal atom LABEL. Recall
that the use of LABEL notation allows the programmer to define
temporary recursively callable functions. The funection definition
is temporary in that it 1s not stored in the permanent environment
(i.e., on the property list of the atomic function name) but rather
the function name is bound to its definition and placed on the
assocliation list.

When APPLY$ encounters a labeled function,

(EQ(CAR FN) (QUOTE LABEL))
it applies the function definition to ARGS and updates the ALIST:

(APPLY$ (CAR(CDR(CDR FN))) ARGS
(CONS(CONS(CAR(CDR FN)) (CAR(CDR(CDR FN)))) ALIST))

(APPLY$ (LAMBDA(FN ARGS ALIST)
(COND
((NULL$ FN) NIL)
((ATOM FN)
(COND

=2

((GET FN(QUOTE EXPR)) (APPLY$(GET FN(QUOTE EXPR))ARGS ALIST))

((GET FN(QUOTE SUBR))
(COND
((EQ FN(QUOTE DEFINE))(DEFINE$ ARGS))
((EQ FN(QUOTE CAR))(CAR(CAR ARGS)))
((EQ FN(QUOTE CDR))(CDR(CAR ARGS)))
((EQ FN(QUOTE CONS))(CONS(CAR ARGS)(CAR(CDR ARGS))))
((EQ FN(QUOTE ATOM)) (ATOM(CAR ARGS)))
((EQ FN(QUOTE EQ))(EQ(CAR ARGS) (CAR(CDR ARGS))))
(T(APPLY$(EVAL$ FN ALIST) ARGS ALIST))))
(T(APPLY$(CDR(SASSOC$ FN ALIST(QUOTE (LAMBDA () (ERROR
(QUOTE A2)))))) ARGS ALIST))))
((EQ(CAR FN)(QUOTE LABEL)) (APPLY$(CAR(CDR(CDR FN))) ARGS
(CONS(CONS(CAR(CDR FN))(CAR(CDR(CDR FN)))) ALIST)))
((EQ(CAR FN)(QUOTE FUNARG))(APPLY$(CAR(CDR FN)) ARGS
(CAR(CDR(CDR FN)))))
((EQ(CAR FN)(QUOTE LAMBDA))(EVAL$(CAR(CDR(CDR FN)))
(NCONC$ (PAIR$ (CAR(CDR FN))ARGS)ALIST)))
(T(APPLY$ (EVAL$ FN ALIST) ARGS ALIST)))))

If (CAR FN) is not equal to LABEL then APPLY$ checks if (CAR FN)
is equal to the literal atom FUNARG, (EQ(CAR FN)(QUOTE FUNARG)).
An S-expression that has the literal atom FUNARG as its first ele-
ment is a list that is created when EVAL$ encounters FUNCTION.
As stated before FUNCTION is used to pass functional arguments
to functions. In order to preserve the environment in which the
functional argument was declared, FUNCTION saves the state of the
association list at the point at which FUNCTION was encountered
by creating the S-expression:

(FUNARG function ALIST)
When APPLY$ has identified this construct, it will apply the func-
tion to ARGS within the environment ALIST:

(APPLY$ (CAR(CDR FN)) ARGS (CAR(CDR(CDR FN))))

If APPLY$ does not identify either a labeled function or a

FUNARG notation, it will try:

(EQ(CAR FN) (QUOTE LAMBDA)) 2

If APPLY$ encounters a lambda-expression, recalling that a lambda-

expression consists of (LAMBDA arg-list form), APPLY$ will evaluate
the form, but not before the environment is updated by binding

ARGS to arg-list and adding these new bound pairs to the associa-
tion 1list!

(EVAL$ (CAR(CDR(CDR FN)))
(NCONC$ (PAIR$ (CAR(CDR FN))ARGS)ALIST))

Notice that (CAR(CDR(CDR FN))) evaluates to a form and that
(CAR(CDR FN)) evaluates to the arg-list.

If APPLY$ cannot recognize any of the possibilities examined
so far, then FN 1is evaluated within the current environment and
again applied to ARGS:

(APPLY$(EVAL$ FN ALIST) ARGS ALIST)

EVAL$
EVAL$ evaluates forms using information within the current
environment. EVAL$ is a function of two arguments: a form and
the association 1list, FORM and ALIST respectively.
If FORM is NIL then EVAL$ simply returns NIL as its value.
If FORM 1s not NIL then EVAL$ checks if FORM is a numeric atom
and 1f so returns the numeric atom as its value. In other words,
LISP numbers evaluate to themselves. If FORM is neither NIL nor
a number, EVAL$ determines if the form 1s an atomic symbol. If
this test 1s true then EVAL$ will first check the permanent environ-

ment (1.e., the property list of FORM for the indicator APVAL).

=22 =

Thus, if (GET FORM(QUOTE APVAL)) is non-NIL, then the CAR of the
value is returned as the value of EVALS$.

If FORM has no binding in the permanent environment then the temp-
orary environment, ALIST, is searched. The search of the associa-
tion list proceeds in a left-to-right manner, returning the value
associated with the first occurrence of FORM.

If a binding for FORM cannot be located in either permanent
environment or temporary environment then the error A8 is returned,
signifying an unbound variable.

If the form to be evaluated is non-atomic then EVAL$ tests 1if
(EQ(CAR FORM) (QUOTE QUOTE)) and if true will simply return
(CAR(CDR FORM)). This is in keeping with what has been stated
about the LISP special form QUOTE: it simply returns its argument

unevaluated.

[EVALSILAMBOR(FORM ALIST)
(COND
TINULLS “ORM INIL
[UNUMBZRP FORM § FORM)
LCATCM FERM)
(COND
(USZT FORMULQUOTE APVA_IJICARIGET FORMIQUOTE APVALIIND
(TICORESASSECE FORM ALISTIQUETE(LAMBDA((ERRGOR
LaueT: asidtIN | !

ALISTI)
{UZQUECAR FORMIIQUOTE CONORIEEVCENSICIR FDRYY ALISTYH)
({ERICAR FORMIIQUETE FROGYIIFROGS(CDR FORM)Y ALIST 1§}
{CATOMICAR FCRMIY
(CCN3
{IGET(CAR FORMYIQUOTE EXFRINIAFPPLYSIGETI(CAR FORMI{QUOTE EXPRI)D
LZVLISSICOR FORMY) ALISTI ALISTH)
(ISZTICAR “CRMIIGUOT: FEXPRIVIAPELYSIGETICAR FORMITQJOTE FIX2R
PE(LISTICOR FORMI ALIST) ALISTI}
(ISZTICAR “CRNICQADOTI SUBRY)
({CONG
((EQECAR FCRMIIQURTE CAR¥MICARICARIEVLISSC(COR FORM)
ALISTHIIN)
(TEQICAR FCRMITQUCTEZ CORIIGCORICARIEV_ISSICOR FORMI
ALISTER)D
(CEQICAR FORMITQUOTE CONSIJUCONSCICARICZVLISSILIST
(CARICOR FORMIVIA_ISTINICARCEVLISSICORICOR F0IMI)
ALISTIREI
(CEQICAR “ORMITQUOTE ATCMI)TATOMICARIZVLISSICIR FORMI
ALISTIND)
(CEQI(CAR FORMIIQUOTE EQIIIEQICARIEVLISSILIST
(CARICDR FORMIDIALISTINICARCEVLISSICDRICIY FOIMIY
ALISTINN)
((EGICAR FORMIIQUETE ERRORIF(ERRORICARIEVLISS
{COR FORMI ALISTIINY
(LEQICAR FCRMIIQUOTE NUMBERPI)INUMBER?ICARIEV_ISS
(COR FERM! ALISTRID}
(IEQICAR FCRMITAUOTE GET#IIGETICARIEY._ISSILIST
(CARUCDR FORMIVIAL_ISTIQICARIEVLISSICORICOR F0IMII
ALISTIERE)
(TZQICAR FORMITQUOYE NCONC PIUINCONCSTICARIEVLISSILIST
(CARCCOR FCRMD)FIALISTIR(CARIEVLISSEICOR(CDR FORMI}I
ALISTIIN
(C(EQUCAR FORMIIQUOTE MAFLIST BEIMAPLISTS(CARCEVLISSILIST
(CARICDOR FORMIVIALISTINICARCEVLISSICIRMCOR “0IM))
ALISTERMD}
(EZQUCAR “ORMITQUOTE EQUAL JITEQUALSUCARIEVLISSILIST
(CARICDR FORMIVNIA_ISTHQUCARIZEVLISSECDRIICOR FOAIMID
ALISTHER)
[UEQICAR FORMITQUOTEZ RETURNII) FORMI
(CZQICAR FORMIIQUOTE MULL DICNULLSICARIEVLISSICIR SORY)
ALISTRRI) ' B
(I3ZTUCAR “CRMIIQUCT: FSUBRI)
(COND
(C(EQICAR FORMI(QUOTE LISTYNIEVWLISSICDR FORMIALIST)I]
(TZQUCAR FORMITRUOTE SEZTEIN FORY)
[LEQICAR FCRMIIGUOTE GOJY FDBRY
{{EGICAR FOCRMITQUETE PRIFIGRS ICDR FORMI} i i
ITEEVALSICONSI CORUSASSOCSICAR FORMIALISTIAQUOTEILAMIDAL)IIERRD?
(QUOTE RIVIINIIICIOR FORMIN ALISTH) i !
CTUAPPLYS(CAR FORMI(EVLISSICDR FCRMRPALISTEY ALISTH) i 3]

-

If EVAL$ does not identify the special form QUOTE, it checks
for the special form FUNCTION, (EQ(CAR FORM)(QUOTE FUNCTION))?
The usefullness of FUNCTION allows the LISP programmer to pass
functions as arguments to other functions unevaluated. It would
appear that the use of QUOTE would achieve the same result, i.e.,
suppressing the evaluation of the argument. The problem with
using QUOTE instead of FUNCTION arises when there are free variables
present. Recall that the evaluation of a function 1is dependent
on its arguments plus the environment which gives meaning to any
variables used by it or any functions that it may call. An impor-
tant point which must be realized about functional arguments (ab-
breviated FUNARG's) is that two different environments are in-
volved. The first environment is the one which 1s in effect when
the functional argument is bound as an argument. We will call
this one the binding environment. The second environment is the one
in effect when the functional argument is activated as a function
call. We will call this the activation environment (as in [5]).
Since the binding environment and the activation environment
will, in general, differ from each other, it is a nontrivial matter
to decide which environment to use in order to evaluate a functional

argument. Consider the following example:

(DEFINE (QUOTE (
(F(LAMBDA (X)
(COND
((ZEROP A) X)
(T(MINUS X)))))

(G(LAMBDA(X FUN)
(PROG()
(SETQ A 0)
(RETURN(FUN X))))) Activation Environment

(MAIN(LAMBDA(A X FUN)
)))

(MAIN 1 3 (FUNCTION F)) Binding Environment

(G X FUN)))

Note that the binding environment has A = 1 and that the activa-
tion environment has A = 0 . If we use the binding environment
to evaluate (F X) then its value will be -3 . If we use the
activation environment to evaluate (F X) 1its value will be 3
Thus the importance of determining which environment to use should
be clear.

From an implementational viewpoint it would be desirable to
use the activation environment. But from a programmer's point of
view, it will be appropriate to utilize the binding environment.

Consider now what it would require of the LISP system to restore
the binding environment for functiosnal arguments. It would require
knowing where in the association list the binding environment
exists through some pointer to it. Supplying such a mechanism is
the function of FUNCTION in LISP. That is, when one transmits a
functional argument F , which is to be evaluated in its binding
environment, one uses (FUNCTION F) instead of (QUOTE F).

FUNCTION will prevent its argument F from being evaluated,

Just as QUOTE would. The result of FUNCTION willl be an S—-expression

BB

which not only contains a reference to F but also a reference to
the state of the association list at the point at which free var-
iables were bound. Thus at the time APPLY$ is to apply the function
to its arguments, it will be able to use the binding environment.
When EVAL$ encounters FUNCTION, (EQ(CAR FORM) (QUOTE FUNCTION))

where FORM = (FUNCTION F) it returns as its value a list:

(LIST(QUOTE FUNARG)(CAR(CDR FORM))ALIST) =
(FUNARG F ALIST)

At this point let us re-examine the steps taken by APPLY$ when it
encounters FUNARG. When APPLY$ checks, (EQ(CAR FN)(QUOTE FUNARG)),
where FN = (FUNARG F ALIST), it will apply the function F ¢to
ARGS, within the binding environment:

((EQ(CAR FN)(QUOTE FUNARG))
(APPLY$(CAR(CDR FN)) ARGS (CAR(CDR(CDR FN)))))

therefore achieving the desired result.
If (CAR FORM) is not FUNCTION then EVAL$ checks,
(EQ(CAR FORM) (QUOTE COND))? If EVAL$ encounters a form structured

as

(COND (p; e;)(p, €5) « « . (P e))

where py i=1 , n are predicates and ey i=1. , n are
expressions, then EVAL$ calls upon another of the interpreter func-
tions, EVCON$ (EValuate CONditional). The value of EVCON$, as a
result of evaluating the conditional expression, will be the value
returned by EVALS$.

If the test for COND fails then EVAL$ will determine 1if the
form is a PROG definition, (EQ(CAR FORM)(QUOTE PROG)). If the
result of this predicate 1s non-NIL then EVAL$ calls upon another

interpreter function PROGS.

Now that EVAL$ has determined that (CAR FORM) is not QUOTE,
FUNCTION, COND or PROG, it will check to see if (CAR FORM) is an
atomic symbol, (ATOM(CAR FORM))? If it is an atomic symbol there
are four cases to consider. First EVAL$ checks to see if the atomic
symbol has the indicator EXPR on its property list. For example,
if we had DEFINE'd a function TEST which takes two arguments, then

EVAL$ would evaluate the form, (TEST(CAR X)(CONS X Y)), where

(CAR X) provides the first argument and (CONS X Y) the second argu-

ment. The predicate (ATOM(CAR FORM)) will return non-NIL, therefore
EVAL$ tests (GET(CAR FORM) (QUOTE EXPR)). Since DEFINE was used to
define the function TEST this predicate will likewise return true,
and the lambda-expression of TEST will be applied to its arguments:

(APPLY$ (GET(CAR FORM) (QUOTE EXPR))
(EVLIS$(CDR FORM)ALIST) ALIST) |,

where

(GET(CAR FORM) (QUOTE EXPR)) lambda-expression

(EVLIS$(CDR FORM)ALIST) list of evaluated arguments

ALIST association 1list
Recall that functions defined as EXPR's expect their arguments
evaluated, and this is the purpose of EVLIS$. EVLIS$ is similar to
EVAL$, but unlike EVAL$ which evaluates a single form, EVLIS$ will
evaluate a list of forms. With this in mind we can see in the example

that,

(EVLIS$(CDR FORM) ALIST) =
(EVLIS$((CAR X)(CONS X Y)) ALIST)

EVLIS$ will evaluate the list of forms, ((CAR X)(CONS X Y)) within

the current state of the envlironment and return a list representing
the values of these forms. If the current state of the association

list is represented by

..28-

((X.(ABC))IX.(DE)))
then the value returned by EVLIS$ would be the list,
(A ((ABC)DE)) ,
which are the arguments to which the lambda-expression associated
with TEST is applied. "
If the atomic symbol (CAR FORM) has no value associlated with
the indicator EXPR, then EVAL$ will determine if the atomic symbol
has been defined as a special form (i.e., the indicator FEXPR has
a non-NIL value associated with it). If it does, then EVAL$ will
do essentially the same thing as it did when it encountered an

EXPR, but it will apply the function definition to the unevaluated

arguments. In the case of an EXPR, EVAL$ called upon EVLIS$ to
evaluate the list of arguments before applying the function to its
arguments. With the case of a FEXPR, EVAL$ will perform the fol-
lowing:
(APPLY GET(CAR FORM) (QUOTE FEXPR))(LIST(CDR FORM)ALIST)ALIST)
Notice that (CDR FORM), which represents the list of arguments,
is passéd to APPLY$ unevaluated.
If in the last example the function TEST had been defined as
a FEXPR and EVAL$ encountered the form (TEST(CAR X)(CONS X Y))
then the list (((CAR X)(CONS X Y))) provides the list of argu-
ments (for FEXPR's always two) to which the definition of TEST is appliea.
If the atomic symbol (CAR FORM) has neither the indicators .
EXPR or FEXPR on its property list then EVAL$ looks to see if it
is a SUBR, and if so it will determine which of a predefined set
of SUBR's it is. Once EVAL$ has identified the correct SUBR it
performs the required algorithm and returns the result of the algo-

rithm as its value.

-

If EVAL$ has not been able to locate any of the four indicators,
EXPR, FEXPR, SUBR, or FSUBR, on the property list of the atomic
symbol, then it will try to locate a binding for the atomic symbol
on the assoclation list and re-evaluate the new form, created by
CONS'ing the binding of (CAR FORM) onto (CDR FORM):

(EVAL$ (CONS (CDR(SASSOC$(CAR FORM) ALIST (QUOTE (LAMBDA()
(ERROR(QUOTE A9))))))(CDR FORM)) ALIST)

118 binding for (CAR FORM) cannot be found on the association
list, then error A9 is returned, signifying an undefined function.
if in the previous example we had defined TEST with the LISP
LABEL notation, then we know that the functional definition of TEST
is not stored in the permanent environment, but rather the defini-
tion of TEST is bound to the atomic symbol TEST and placed on the
association 1list. When EVAL$ encounters the form
(TEST(CAR X)(CONS X Y)) it will search the association list for the
atomic symbol TEST, then CONS its binding onto (CDR FORM) to pro-
duce a form to be evaluated.

(EVAL$ (CONS (CDR(SASSOC$ (CAR FORM) ALIST(QUOTE (LAMBDA/()
(ERROR(QUOTE A9))))))(CDR FORM)) ALIST)

(EVAL$ (CONS(function-definition of TEST)
((CAR X)(CONS X Y))) ALIST)

(EVAL$ (function-definition of TEST(CAR X)(CONS X Y))ALIST)

Notice that because EVAL$ examines the property list of an
atomic function name for EXPR or FEXPR before it checks for a SUBR
or FSUBR the LISP programmer may redefine LISP primitives. For

example, the programmer may define the function NULL, which is a

SUBR, and have his definition override the host system definition.

30

Also, notice that the order in which forms are evaluated 1is
consistent with earlier statements, in that the permanent eﬁviron—
ment is examined for a variable binding before the temporary envi-
ronment.

When EVAL$ tests (ATOM(CAR FORM)), and the predicate returns
NIL, then (CAR FORM) will be applied to the evaluated list,
(CDR FORM) :
(APPLY$ (CAR FORM) (EVLIS$ (CDR FORM)ALIST)ALIST)

This concludes the discussion of the three primary interpreter
functions: EVALQUOTE$, APPLY$, and EVAL$. The remaining discussion
in this section is concerned with an elaboration of the interpreter's

secondary functions: EVCON$, EVLIS$, SASSOC$, PAIR$, and PROGS.

EVCON$

EVCON$ is a LISP function of two arguments, a list of predicate-
expression pairs and the association list. EVCON$ evaluates CONDi-
tional expressions.

When EVAL$ encounters the form,

(COND(p, e;)(p, e2) s & s AP

it calls EVCON$ with the CDR of the form and the ALIST.

Earlier it was stated that COND is a special

form, whose function it is to evaluate each of the predicates, P;

until one of them returns a non-NIL value and then returns the

value resulting from the evaluation of the corresponding ey
EVCON$ is a function of two arguments, CONDITION and ALIST.

EVCON$ first checks if CONDITION is NIL (i.e., if all of the predi-

cate-expression pairs have been exhausted), and if so, returns

-G

error A3, signifying the value of COND is undefined. If CONDITION

1s non-NIL, then EVCON3$ will evaluate the first predicate by calling

EVAL$, with the predicate as the form to be evaluated and the cur-
rent association list:
(EVAL$ (CAR(CAR CONDITION)) ALIST)
If the evaluation of the predicate returns a non-NIL value, then
EVCON$ evaluates and returns as its value the corresponding expres-
sion:
(EVAL$ (CAR(CDR(CAR CONDITION))) ALIST)
If the evaluation of the predicate returns NIL then EVCON$ proceeds
by recursing with (CDR CONDITION) and ALIST, therefore eliminating
the predicate-expression palr that was just examined. Example:
(EVCON$ (LAMBDA (CONDITION ALIST)
(COND
((NULL$ CONDITION)(ERROR(QUOTE A3)))
((EVAL$ (CAR(CAR CONDITION))ALIST)(EVAL$(CAR(CDR(CAR CONDITION)))

ALIST))
(T(EVCON$ (CDR CONDITION) ALIST)))))

EVLIS$

In the discussion of EVAL$, it was stated that EVAL$ evaluates
a form and that EVLIS$ evaluates a list of forms, returning as its
value a list of the values of the evaluated forms.

A logical way to view the execution of EVLIS$ is that it makes
repeated calls to EVAL$, each time using a different member of the
Llist of forms and returns a list of the values.

This 1s 1n fact the manner in which EVLIS$ is implemented. We

may express the execution of EVLIS$ as:

-

(EVLIS$ (form. form., . . . formn) ALIST) =

i 2
((EVAL$ form, ALIST)(EVAL$ form, ALIST)...(EVAL$ form ALIST))

1 2
In order to perform this mapping, EVLIS$ makes use of the LISP func-
tion MAPLIST$. MAPLIST$ is a function of two arguments, a list

£ , and a function f , to be applied to the list. MAPLIST$ is

a mapping of the 1list £ onto the new list (f &)

To evaluate a list of forms, EVLIS$ is written as

(EVLIS$ (LAMBDA(ELIST ALIST)
(MAPLIST$ ELIST (QUOTE (LAMBDA(ARG)(EVAL$(CAR ARG) ALIST))))))

Example:

(EVLIS$ ((CAR X)(CONS X Y)) ((X.(A B))(Y.(C D)))) =
¢ & ({8 B)Y €Dy)

SASS0C$

The LISP function SASSOC$ provides the interpreter with the
means of evaluating variable bindings within the temporary environ-
ment.

SASSOC$ is a function of three arugments: an atomic symbol
to be evaluated, FX , the association 1list, ALIST , and an
error function, ERRFUN , to be executed if the atomic symbol
does not have a binding on the associatlion 1list.

Variable bindings are stored on the association list as variable-
value pairs. SASSOC$ first checks 1f the association list is empty,
and if so, it executes ERRFUN, a function of zero arguments.

If the assoclation 1list 1s not empty then SASSOC$ checks 1f the
variable of the first variable-value pair is equal to the atomic
symbol that is being evaluated:

(EQ(CAR(CAR ALIST)) FX) 2

33

If the predicate returns non-NIL then SASSOC$ returns as its value
the variable-value pair (CAR ALIST). If the test for EQuality
returns NIL, then SASSOC$ recurses with the CDR of ALIST in order

to consider the remaining variable-valye pairs. Example:

ESASSO§$ X ((Y.(A B))(X.(D T)))(LAMBDA() (ERROR(QUOTE A8)))) =
XD

(SASSOC$ (LAMBDA (FX ALIST ERRFUN)
(COND
((NULL$ ALIST) (ERRFUN))

((EQ(CAR(CAR ALIST)) FX)(CAR ALIST))
(T(SASSOC$ FX (CDR ALIST) ERRFUN)))

PAIR$

PAIR$ is the LISP function that is called upon to create var-
iable-value pairs.

PAIR$ takes as its arguments two lists. The first 1list is
a list of variables and the second is a list of corresponding values.

PAIR$ CONS's each variable of the first list onto the corres-
ponding value within the second list, returning as its value a list
composed of variable-value pairs. If the variable list is longer
than the value list then error F3 is returned, and if the value
list is longer than the variable list then error F2 is returned.

Example:

(PAIR$ (X ¥ 2) (ABCYy)= (L2 . Q) (¥ .. BY (¥ .|R)
(PAIR$ (X ¥Y) ((ABC)D)))= ((¥Y.D)(X. (ABC)))

)

-34-

(PAIR$ (LAMBDA (ARGl ARG2)
(PROG(A1l A2 PLIST)
(SETQ Al ARG1)
(SETQ A2 ARG2)
AA (COND
((NULL$ A1) (COND
((NULL$ A2)(RETURN PLIST))
(T(ERROR(QUOTE F2)))))
((NULL$ A2) (ERROR(QUOTE F3))))
(SETQ PLIST (CONS(CONS(CAR Al)(CAR A2)) PLIST))
(SETQ Al (CDR Al))
(SETQ A2 (CDR A2))
(GO AA)) 3]

PROG$
PROG$ is a function of two arguments. It is called when EVAL$
encounters the form

(PROG (prog-var-1ist) exp; exp, . . - expn)

PROG$ 1s called with the CDR of the form and the association list,
PBODY and ALIST respectively.

PROG$ 1s written as a program expression with the PROG variables
B, A, GLIST, BCAR, and TEMP. Upon entering PROG$, B is bound to
PBODY, A is bound to an updated association list in which each of
the PROG variables is initially bound to NIL and GLIST is bound
to the value returned by (GOLIST$(CDR B)).

GOLIST$ takes as its argument the list of expressions (expi's)
that constitute the program definition. It searches the list for
atomic symbols, which are understood to be PROG labels, and binds
each label to the CDR of the list at the point it was encountered.
The value returned by GOLIST$ is a list of pairs in which each PROG
label is bound to a portion of the PROG definition.

At the label L1, B is bound to (CDR B), eliminating the prog-

var-1list.

At L2, BCAR is bound to the CAR of B, thé next S-expression
(of the PROG-body) to be evaluated.

Beginning at L3, if BCAR is an atomic symbol, it is interpreted
as a PROG label, and is bypassed by executing (GO L1).

If BCAR is of the form (SETQ var exp) the name of the variable

is located on the association list and its value is replaced with

the evaluation of exp.

If (CAR BCAR) is the atomic symbol GO, indicating BCAR is the
form (GO label), then B is bound to the value returned by calling
SASSOC$ with label and GLIST. B 1s bound to that portion of the
PROG-body resulting from a PROG transfer. If a transfer is made
to a nonexistent label, then label A6 is returned.

When the form (RETURN exp) is encountered the host LISP func-
tion is called with the value of exp.

If BCAR has not been recognized as one of the forms considered,
then it is evaluated within the current environment, (EVAL$ BCAR A).
If the value of BCAR is not a form using GO, SETQ, or RETURN, then
its value is ignored and a transfer is made to L1, eliminating the

form from further consideration.

Miscellaneous Help Functions

(NCONC$ ARGl ARG2) concatenates its arguments without
copying the first one. It changes
existing list structure.

(EQUAL$ ARGl ARG?2) this 1s a predicate that is true if
its arguments are ldentical S-expres-
sions, and 1s false 1f they are dif-
ferent.

-36-

(DEFINE$ ARGLIST) this function takes as its argument
a list of functions to be defined.
It places on the property list of
each atomic function name the indi-
cator EXPR and the function defini-
tion as the value.

(REPLACE$ SUB OBJ ALIST) locates SUB on the assoclation list
and replaces its current binding
with OBJ.

(NLIST$ NUM) creates a list of NUM elements where

each element is the atom NIL.

(OR$ ORL ALIST) evaluates each expression in the
list of expression ORL from left to
right, until one is found that is
true, or until the end of the list
is reached. The value of OR$ is
true or false respectively.

(NULL$ ARG) determines if its evaluated argument
is the atom NIL. If so, then it
returns true else false.

IPROSSILAMBOARIFBEDY ALISTI
(PROGIB A GLIST BCAR TEMF
(SZT@ 8 PBCOYY
ISET@ ACNCENCSU(PAIRSECAR BIINLISTS ILENEBTHSICAR BREID ALIST 1)
{SZTQ SLIST (GCLISTSICDR B1d)
L1 {SZTQ BICDR BMY
L? ({SETQR BCARCCAR B}
L3 {COND
fINJLLS BCARITERRORGQUOTE A3
{C(ATOM BCARRM(BE L1}
((ZEQ(CAR BCARIIQUONE SET8N
(SETE ALREPLACESICARICOR 3CARN)
(EVALSICARICDORICDR BCARIIDATALE
(30 L1)
({IERICAR BCARIIQUOYE 50101
(SET® BICDRESASSBCSICARICDR BCARY N BLIST
(QUOTZILAMBOAI JTERRZRIQUCTE ABIIININY
€30 L2101
{{EQICAR BCARI(QUETE RETURNIED
[RETURNCEVALSICARICIR BCARIIAND)
(TISEZTG TEMPLEVALS BCAR DI
(COND
(INCTIATON TENPIF
(COND
(CORSC(EQRICAR TEMPIMQUOTE SETEL}
(LEQICAR TEMPMIIQUOTE 6O
TLEQICAR TE4PITRUOTE RETUINIY)
(SETQ BCAR TEMFPRIEE L3})
(TIGO0 1000)
(TE30 LIOOOD 00 M 0

Conclusion

We have presented a tutorial on the LISP 1.5 interpreter (see

Appendix for fully running version) as originally developed by

McCarthy, et al. As with other programming languages, LISP is
endowed with specific programming capabilities which lend itself
to certaln programming applications.

By focussing on the mechanics of the interpreter rather than
its underlying philosophy, it is hoped that all LISP programmers
will develop an understanding of interpretive languages in general,
but more specifically they will become better LISP programmers.

We have presented the interpreter by stating its LISP defini-
tion. By deflning the LISP interpreter in LISP we have tried to
bring to focus the power of the language while preserving its simple
but elegant methods.

Within the mechanics of the interpreter lies the operational
distinction between the two data environments established, main-
tained, and utilized by the LISP system. Understanding these dif-
ferences will lead to a more efficient means of representing data
within LISP.

The definition of the LISP interpreter is not complete in that
1ts operational capabilities may be increased by adding to 1ts coded
definition. The reader is encouraged to do so, thereby increasing

his 1nderstanding of its definition.

Laf

References .

1. McCarthy, J; Abrahams, P.W.; Edwards, D.J.; Hart, T.P.; and

Levin, M.I. LISP 1.5 Programmer's Manual, MIT Press, Cambridge,
Massachusetts (1962).

2. Weissman, Clark. LISP 1.5 Primer, Dickenson Pub. Co., Belmont,
California (1967).

3. Waite, William M. _Implementing Software for Non-Numeric Appli-
cations, Prentice-Hall, Inc., Englewood, California (1973).

4. Cohen, C., and Zuckerman, C. Evalquote in simple FORTRAN: a
tutorial on ‘interpreting LISP. Bit 12 (1972), 299-317.

5. Moses, Joel. The function of FUNCTION in LISP. MIT Project
MAC, Cambridge, Massachusetts (June, 1970).

F“)-\JA&@ /“/
RPN PUBCTION e 2 4474 o
e

Gt
el "\
(Wﬂﬁl‘“ (JI‘ Jn)m “
f"\\ MEPLAR. s (£es0, £082) s Ces))
(e (a (L FO\ '
((NuL L) O \N Py (COF L) FJ))) :
f”’ ((JKFS(FTJ\V J: wr
(QnoT8 cosve))
PJ* /]’\}'—Vr'ﬁb’ Lﬁbjor‘}JUlMBQ’ZS .
, /i F.f PL - AT 'F\;l‘ ' At
(n RPCAK: >-(®UOT@(v’KPLF£L;’ o
l _'ﬁi’d_- Ff" Sl (R v
/ Lﬁﬂéﬁ]ls 44/L/ | Out™ Y

= XL X BDUN

A

\ “—U }J\ \ (‘.i‘/‘rn'.l'-l t
@\ "\Q | —
L—JL/_ ,l \ = g\
. \ —
MAReAR L ((Tamehon |t) L

B e B

?ooalnlo}t"on t;tooonutt.DUODOtooon.oooo'nOIioiltttOUtlnlot-ao-u-oonnoo?LISJ
?ocoulotooooovocavo-ooucues:---o---ocoa‘no-ltco--onoctc:.--oo:ooso.oaac?LISF
? 2LISP
? l P INTERPRETERSTS ALS P
? TLISP
?nonnotnotnlnoitnnt-n--ttnoanoulil‘...-llotnocuttoit.iunnutt-ahuuua-o-.?LI;P
TLISP

BY TLISP
2 DAWSON TLISP
TLISP

INDIANA UNIVERSITY TLISP
JZFARTYENT OF CCMFUTZI® SCIENC: TLISP
BLOOMINGTCNs INJIANN §7%01 TLISP
PLISP

MAY 1974 PTLISP

TLISP
?to-co-0|||.|ln-ottcoototov)cooooon.o---cconlototo-onoatt-ooo.ooosaolno?LISF
IDZFINZI(QUECTZIL LISP
?-octo-oono-.-oooots-.u--tttploo.-tttnntuotoo.--ouo-.--rnoi.no-u---otot?L[SF
PLISP

E¥YALAQ@QUDTES PLISP

TLISP

TLISP

ZVALGUOTZIS IS TH4E TEFLEVI. FUNCTICN OF THE LIS® INTERIPIETER. TLISP
IT TAKZS A5 LTS MRGUMENTS % TUNCTION AND A LIST 37 AIGUMINTS FOR TLISP
THAT FUNCTICN. IF THE FUNCTIEN HAS BEEN DEFINED AS A *SFECIAL PLISP
FCRM® (I.Za IT WAS DIFINED AS N “EXFR BR SSUBR) THEN THE FUNCTION “?LISP
AN) ITS MR3UMENTS AS CCNS®) TOGETHZR AND PASSZD TD ZvALS WITH A TLISP
NULL ASSECIATIEN LIST. IF THE FUNCTIEN IS NOT A *SPECIAL FORM® ?LISP
THIN THZ FUNCTICNe ITS ARGUIMTNS AND A NUL. ASSOCIATION _IST ?LISP
ARZ PASSZI) TO AFPLYS. NOTZ THAT IF THE SUNCTION IS A SPZICIAL FOIM ?LISP
ITS ARGUMENTS ARE N€T EWRALUATED FRIOR T€ FASSING THEM TO EvVALS ?LISP
ANY THZ LENGT4 0°F THI ARGUYIINT LIST IS UNDZITEIMINZD. TLISP
"Dll!tl..lll..lllllttl.'l.';'..ll..!lDll.....tttt...’!l.l.iib!t...ll....’LI;P
(EVALQUETES(LAMBDAIFN ARGSH LISP
(CeND LISP
(CORISEZT “NIQUCTZI FEXFRINISET SNIQUEBTE FSUIRIID LISP
(EVALSLCOCNS FN AREST NIL 11} LISP

(TIARPFLYS “N ARGS NILMY) L) LISP

A THOSIOI RPN OO IRI ORI P IO DODDODOOREOEENEOOORERIROPIOIBEEERROORIRIONIRT?| 5D
PLISF

LISP

PLISP

7LISP

AFPLYS AFPLIES A FUNCTICN TO ITS ARGUEMNTS. TAZ FIRST TLISP
ARSUMINT ©F APFLYS IS A FUNCTICN. If IT IS AN ATOMIC TLISP
SYMBCLs THEN AFFLYS CHECKS (1) TO SEE IF THE FUNCTION HAS BEEN PLISF
EFINZD AS AN EXPRe IF SO TYZ PRCPERTY ASSOCIATE) WITA T4E TLISP
INJICATCR *ZXPR* IS RETMIEVED FROM THE PROPERTY LIST 0° TUAT TLISP
ATEMIC SYMBOL AND IS AFPLIED Te ITS ARBUMENTs (2) IF THE ATOMIC TLISP
FUNCTICN SYMBOL 4AS 3EEN DZFINZD AS A SU3Re THEN THZ APFIOPRIATE TLISP
FUNCTYICN IS APFLIED TO YHZ ARGUMINTSe OR (33 IF IT IS NEITH:ER 7LISP
A SUBR ER EXFR THEN ITS MEANING/DEFINITICN MUST BE LOOKED UFP ON TLISP
THZ ASSOCLATLON LIST AND TH4EN MFF_IED TC THE ARGUMENTS. TLISP
I7 T4Z “UNCTICN ARGUMENT IS NOT ATOMIC AND IF THE SIIST ZLEIMENT PLISP
CF THE LIST IS °LAMBDA®e THEN THE ARGUMENTS ARE PAIRED WITH PLISP
THZIR BOUNJ VARIABLES T{THE ARGUMENTS AND THEIR BINDINGS MRS TLISP
PLACZ) CN T4Z ASSOCIATION _ISTYe AND THE FORM IS GIVEN TO :ZyALS 7LISP
TC EVALUATE. IF THE FIRST ELEMENT €F THE LIST IS °*LABEL*e THEN ?LISFP
THZ FUNCTION NAMI ANJ DEFINITION ARE ADDED T® TH:S ASSOCIATION LIST ?PLISP
AN) THZ INSIJE FUNCTICN IS ZVA_UATZIO BY APPLYS. IF THE FIRST TLEXP
ELEMENT ©F THE LIST IS °®FUNARG®"s THEN THE ELEMENT FOLLOWING TLISP
*FUNAR3S® IS AFFLIED TC THE MRGUMENTS. TLISP

FyUL

B R

?
?
¢
?
?
?
]
?
?
?

X

Lo B I I IS B B B IR R B B B B R B B B B B

IS NONZ OF THESZ CCNDITIONS ART MET THIN THT TUNCTION IS PLISP
EVALUATED BY EVALS AND REAFFLIED TC ITS ARGUMENTS. PLISP
seeNCTZowe - APFLYS HAS NC MECHCANISM 01 HANJILING SPECIAL PLISP
“CRMS. TLISP

7"l!tll'l....0‘....!“'.."‘.!...0.!l.&’k‘.......llt..llll‘lilll..l“.li‘?LI(F‘

[AFPLYSI{LAMBIALSN MRSGS I'ISTI % V 2 SO LI>?

tCeND 1 :~ LISP

(INULLS FN} NIL 1} "G LISP

[IATOM “NIL LISP

{CCND LISP

((CET FNIBUOTE EXFRPIIIAFFLYSIGET FN(QUOTE EXPRIFARBS ALIST)} LISF

[IGZT “NIQURTT SUBR)) LISP

(COND LISP

((E®@ FNCGUCTE DEFINE)IIDEFINES ARES}) LISP

[(Z0 “NIQUCTZ CARIJICARICAR ARGSHI)) LISP

[0Z@ “NLQUCTE CDRIVICDRICAR ARGS)I) LI®

(IE@ FNC{RUCTE CONSHIFICONSICAR ARGSIICARICDR ARGS)I}} LLSP

LEZ3 NIQUCTZ AMOMIVIATOMICAR AR3SHID) | LIs?

t{Z@ SNIQUCTZ E@VIIZQICAR ARGSITCARICOY AIGSINYY LISP

(TIAFPFLYSIEVALS FN BALISTE ARGS ALISTI}] | B LISP

(TIAFF_YSICORISASSOCS ~N A_ISTIQUOTEILAMBONTI)IERRO? LISP

[QUCTE A230)000) ARGS ALIST)) L] ! s LISP

= ‘(IEQICAR FNICQUCTE LABELMICAFFLYSICAR(CDRICDR FNIII ARBS o LISF

o {CONSECCNSICARRICDR “N)JIICARICORICIR FNI)OD ALISTIND \\\ LISP

Tluezatcar SNIIQBUCTZ FUNARGIIIAPPLYSICARICIR FNJ) ARGS \ LISP
L (CARICDR(COR FNIRIN} yﬁw_w LISP

[IZQ({CAR FNILQUCTE LAMBDRAON)TEVA_SICARICDIICDR FNIIY) / LI;}/

~ INCONCSIFAIRSICARICIR FNOIRRGSIALISTHN) - ANew LS Av. EuALEse

(TCAFFLYSIEVALS FN ALISLF ARGS ALIST)I I) LISP

TooRe o0 oo ROROREORRRRORREROsRO RN ORBRONRORRONRRTRIRORRRRRIRRERRRSRRIT?L TSP

ToP 90 S0 PO OPOSFROEIREORORORROROREBROOROOCROORORBROORRORRRRRIOIRSRRRORRROROROIRRSIRT? ISP

? TLISFP

2 TLISP

? TLISP

TLISP

ZVALS ZVALUATES FORMSW IT TAKES AS ITS MARGUMENTS A S0¥M aAND THE ?LISP

ASSCCIATION LIST. IF THE FORM IS A NUMERIC ATOM THEN THE NUMBER ?LISP

IS RITUINZ) AS T4:Z VA_UE D0° EVALS. IF THE FDRM IS ATOMIZ aN) NOT 15P

NUMERIC THEN ITS FREFERTY LIST IS CHECKED FOR THE INDICATOR TLISF

"AFVAL® AND IF FRESENT THEN THE FERMANENT BINDINGE IS RETURNED. TLISP

I7 THERZ IS NO INDICATCR °AFVA_' ON THE 3ROPEATY _IST THIN THE TLISP

ATOMIC SYMBCL MUST BE A VARIABLE AND ITS BINDINGE IS FOUND ON THE TLISP

ASSCCIATICN LIST. PLISP

IF THE CAR CF THE FORM IS *QUOTE®s THEN IT IS A CONSTANT TLISP

AN) THEI VALUZ RCTURNED IS THE CABR CF TH:ZI 703N, IF THE ZAR OF THE 7TLISP

FCRM IS "CONJD®e THEN IT IS 8 CONDITIONAL EXFRIZSSIBN AND ZYCONS PLISP

EVALUATES THE FREPESITIENAL TERMS IS ORDER AND RETURNS THE FORM PLISP

FCLLCWINS THZ FIRST TRUE PRZIDICAT:. PLISP
I T4Z CAR OF THE “ORM I3 ATOMIC THEN ZVALS CHICXS TO SEI IF TLISP
IT HAS BEEN DEFINED AS A FEXPRe EXFRe SUBR DR FSUBR. IF IT IS! AN | ZLISF
ZXPR THEN ITS LAM3DA DEFINITION IS APPLIZD TO ITS EVALUATE)D 2_LISP
ARGUMENTS. [IT IS & FEXPR THEN ITS LAYBOA DEFINITION IS A?PLIZD ?LISP
TC ITS UNEVALUATED ARGUMENTS. IF IT IS A SUBR OR FSUBR THEN THE PLISP
AFFRCPRIATZ CPERANTION IS PZIRFORMZD. IF THRE CaR 0 THE FORMN IS NOT 7LISP
AN IXPRe “ZIXPRe SUBR CR FSJBR THEN ITS BINJIN3 IS FOUN3 ON THE TLESP
ASSECIATICN LIST AND EVALUATED. TLLSP
TGO PP OB POND RO NROERPOERER DD OO OCBERRDRDEONBRROIRORIRODROURRIRIBEREIERERIGIREIITL 5P
(ZVALSILAMBDOALFORM ALIST) LIaP
ICEND LISP
TINULLS 0ORM INIL) LISP
[UNUMSZIRF “0DRM) FCRM) LISP
((ATEM FCRMI LISF
(CCND LISP
((3ZT SCRMIQUCTE APVA_YIMCARIGET FDIMIQGUDTE APvaLiNNg LISP
(TICORESASSOCS FORM ALISTIQUETEILAMEDAIIIERROR LISP
(QuoT=z aBYIdND)] L] LLSP

-~

B B B B B A I B I B B I B R I A e B B

) (Funenion (A (N Cons AKY) s (FUORO (3 (¢

t.'-f‘o't\)ij.(. disas Y ¥ Yoned L 3 3 pAusT)

1

— A 1) G:ﬁ-“ Q
‘S)’& ru Q‘NQRZ ‘\k\ \\\\ tf‘ _‘T“" (‘k,‘ B"“‘" M_; \,"‘::—\F_ Gf\ |} Q___\:“Q T\

L ‘e B [- Qo MOAY
—\SuRe | M
e
(. E":‘JT:.,.‘

Lfext®

EVMeT TAWGS M usT of WRRBHLIAROD Tormme | SeARCNeS THE
A-L1ST AND RSTURNS THE BNDINGS .

- (Cons A W)
3 1

A (AR (OR Fepm))

(‘h\ (LsT CCOR (CORL FoRMY))

N2
(X) BoLs(RsT CABR corm))

[LZQ(CAR FORMIIOUCTE GUOTEIIICARICIR FCRYID) LI5?
(TE@ECAR FORME(BUETE FUNCTICNMR(LISTEGUCTE FUNARGILCARICDR FORMI} LISP
ALISTI) LISP
[(ZQICAR “ORMILQUCTE CCNOIIIEVCCNSI(CIR FIRMY) ALISTIM ISP
(LEQICAR FCRMI(QURTE FROGIIIFRCGSICOR FORMI ALIST)1 LISP
[UATCMICAR FCRMID ISP
{CCND LISP
(LGET(CAR FORMI(QUCTE EXFRENIAPFLYSIGET(CAR FORMI{GUOTE EXPRIILISP
(ZVLISSICOR FO340) ALIST) ALIST)) LISP

((SZTICAR “CRMI(OUOT: FEXPRIVIAPFLYSIGETICAR FORIMIIQIOTS FIX2RLISP
PHLLISTICOR FORM! ALISTHE ALISTHI LISP

(I3ZT(CAR “CRMIIQUDTZ SU3IR}I LI3P

[COND LISP

((EQICAR FCRM)YIQURTE CARIJ(CARICARIEVLISSICDOR FORMI LISP

ALISTIIN) LISP

LUZ@ICAR “CRMITQUETZ CORINICOICACARISV_LSSICIR FORMI LIsP

ALISTINLE LISP

FEZQICAR “ORMIIQUOTE CONSIIICENSICARTZIVLISSILIST LI5P

(CARICDR FORMIPIALISTIMI(CARIEVLISS(CORICDR FORMI) LISP

ALISTINNY LISP

((EQICAR FCRMVYIGUOTE ATEMIFEATOMICARCEVLISSICDR FORM) LISP

ALISTREN] LISF

(0ZQICAR “CRMOTQUOTZ Z@)ICEQICARIZV_ISSILIST LISF

ECARICOR FORMIIEALISTIFICARIEVLISS(CDRICDR FORMI} LISF

ALISTIIN) LISP

((EQ(CAR FORMI(QUETE ERRERIIIERRORICARIEVLISS LISF

[COR FORM) ALISTIINY LIsP

(LEZQICAR “CRMIIQUOTE NUMBZIRPI)INUMIER(CAIZV_ISS LISP

CCOR FCRM) ALISTIEIE LISP

~{1ZQICAR “CRMITIUCTE SETI)IGETICARIEV._ISSILIST LISP

(CARICDR “CRMIVIA_ISTII(CARIEVLISSICIICOR “0IM)) LISP

ALISTINY LISP

JILZQICAR “ORMITQUDTZ NCONC P IINCONCBICARCZIV.ISSILIST LISF

[CARICOR “CRMIJIA_ISTIDICARIEVLISSICIMCOY “0IMN) L3P

ALISTII} LISF

 LIEQUCAR “CRMIIQUCTZ MAPLIST) IIMAPLISTSUCARCIV_ISSILIST LISP

= (CARUCOR “CRMIVIA_ISTIDICARIEVLISSICIANCIT F0AIMI) LISP
ALISTHIIE LISF

{TZQICAR “CRMIIQUOTE ZQUA. DIISQUALBTCARCEVLISSILIST LISP

(CARICDR “CRMINIA_ISTIOACARIZVLISSICORM(COR 0IMI) LISP

ALISTHIE LISP

[{ZQICAR “CRMIIQUOTZ RETURNIY TIRM) LI5P
\\§klliﬂltlﬂ “CRMITQUOTE NULL J)TNU_LSICARISVLISSICIR SORM) LIsP
ALISTENDD P I : LISP

[I5ZTUCAR “CRMIIBICT: FSUBRI) i h v, PR LISP

[CONG LISP

((EQECAR FCRMITQUOTE LISTINIEVLISSICDR FORMIALISTH) LISP

fLZQICAR FORMIIQUOTE SZTA1) FORM 1} LISP

[LEQICAR “ORMITQUCTE GRY) “ORY) LISP

((EQECAR FORMY(QUOTE ERINICRE (COR FORMIIE 1 I LISP
(TUZVALSICCNSICORISASSCCSICAR FORMIA_ISTIQUOTECLAMIDAIDIIZRIOY LESP

N (BUCTEZ AS10IFIIICIR FORYN) ALISTI) ! 1 £ LISP
M TUAFFLYS(CAR FORMIMEULISS(COR FORMIALISTI ALISTI} L} 1 LISP
?on.ooauton-o--nultoo-osi;71ﬁo3pttooooaoorooo-r:-nn-lnnaoonlno--ono.natrL[SP
A 7LISP

AT IMEV E BN S ?LISP

o 7LISP

TLISP

EVCONS EVALUATES FRCFOSITIONAL TERMSe IN BRDERe AND RETURNS PLISP

THZ “ORM “CLLOWING THE FIRST TRUI PRZIDJICAT:. PLLESP

? TLISP
?l-o—e-o-o—t-t—o--—o—t-o-c—p-u—o—c-u---u-.-o-o—o—-—o--—-—u—a—a—t—.—-—o-?LISF
(ZVICNSI{LAMBOAICONDITICN ALIST) LIs?
ICOND LL57P
(UNULLS CONDITIENITERRERIQUCTE AZERI} LISF
TIZVALSICARC(CAR CONDITIONDIA_ISTI(CYALSICARIICIANZAR CONODITIONID) LISP

ALISTRI LISP
{TIZVCONSICDR CCNDITICNY A_ISTIY) i LISP
TO0S 000980000000 83 08008000000 t00900 004990000380 000900000s0sesssesnsess? ISP
TLTS?

?LISP

PLISP

TLISP

EVLISS TAKES AS ITS ARBUMENTS A LIST €F FORMS TO BE TLISP
ZVALUATZ) AN3 THI ASSCCIATION .IST. ZVLISS EVALUATES EZAZH DF TLISP
“ORMS ANJ RITURNS & _IST ©° THZI SVALUATEJ ~03MS. TLISP

T SIS IR NP0 RN RNINTNIONININNINNEIRDBRRIRNRIRNREORIRRTRRREIRRRORRRTL ISP
[ZVLISSILAMBIALZILIST ALISTY LISP
(MAPLISTS ZLIST LQUOTZUILAN3DAIARGIIEVALSICAR ARG) ALISTIND) 1 LISP
TSROSO IMI PRI 0000000000000 IINNIIIEITIOOTSERNDIORCIOROIUETSESEPIISISEBRIBSSESRSS?L ISP
? TLISP
? SANSSO0C s TLISP
7LISF

? ELLSE
? SASSCCS SEARCHZIS THE ASSOCIATION LIST @3 AN ATOMIC SYYBOL TLISP
? AND RETURNS THE BCUND FAIR. ZLISP
TORORORPORAIROI PR OO P SRR RO E RO IR RRRRERRROROERRIOOOOERIRRIRRIREIRRRDIRRIRISIOIOIOINRSRRTY? ISP
(SASSCCS{LAMBIALFX ALIST ERARSFUNI LL5P
(CEND LISP
(fINULLS BLISTILERREUNDY) LISP
T{ZQECARICAR ALISTY) FXIICAR A_ISTH) LISP
[T{SASSECS FX €COR ALISTF ERRFUNI)] [] LISP

PO OO OB NOBRRRRRRBIRIO DR EORRERROPORREOORORERRPRIRRIIIREORRRRERTSISEIRBOIROSRRT? 5P
? 2LISP
TLISP

7LISP

FAIRS TAKES AS ITS ARGUMENTS TWE LISTS €F EQUAL LENBTH.
PAIRS 3INDS CORRZISFONDING ZLEMENTS CF SACHY LIST AND ADDS THEM
TC TAZ “RCNT OF THE ASSOCIMVTION .IST.

ORI E0 RN NL IR IR NE RN NOIIIREN VI ININIS NN NI RO NV ROIIONIOSIREOETRNERBRRIRRIRRIRIRNRRee? IST
(FAIRSILAMBIAIARSGL ARG2) o LISP
[FRCG(ALl A2 FLIST) LISP
(SETR Al ARE1} LISP
{SETQ AZ RAR32) LI>P
(CCND LI 5P
(INULLS AL RLCCND LISP
[INU_LS AZ)IRETURN PLISTI) LISP
ITIERRCRIQUETE F21)1) 1 LISP
(ENULLS AZECERRORI(QURTE FI5NE ! LISP
{SZTQ@ PLEST [CONSTICCNSICAR ALXICAR 82)) 2LISTH) LISP
(S5ZT8 AL IC3OR ALN) LISP
(SETE AZ (CDR AZ}) LISF
{3c ar) 1 1 LISP
(MAPLISTSI(LAMBODAIELIST TUNCH LISF
[CEND LISF
(INULLS ZLIST) NIL) LISP
[TECONSITUNC ESLIESTIUMAPLISTSICOR Z_IST) “UNCIIY LISP
fNCCNCS(LAMBDALARBLl ARGZ1} LISP
[FRCS(CLIST) LISP
(CCND LISP
((NULLS ARG1I(RETURN ARGZ211} LISF
(TISETA@ CLIST ARG1N)] LISP
{CCND LISP
(ENULLSICDR CLISTHIIIGE B} ; LISF
ITISET@ CLIST ICOR CLISTI)Y} LISP
t3c Al LISP
B (RFLACD CLIST ARGZY} LISF
(RETURN ARGL) L] LISP
[ZQJALSILAMBIALARGL ARG2) LISP
(CeND LISP
(IATOM ARSLIICCND LISP

[LATCM A35290Z3 ARG1 ARG2))
(T NIL} L]
(TZQUALSICAR ARGLIUCAR ARGZ2))I(ZQUA_SICIR AIGLNICIT RG220 00
I T NILLY) "
(NULLSILAMEDA(ARG)
TZCND
(LATCH AR3NLZQ 836G NILDY
W NI ! kh
(JESINZSILAMBIAIARGLIST)
(FROS(AL NLI
ISET@ AL ARBLISTI
TOF (2OND
CINJLLS A_JIIRZTURN NLI
(TCFUTECARICAR AL FI(BUCTE EXPRYI(CARICDRICAR ALLI}
(SZT@ NLICCNSUCARICAR 8.0 X_ 1))
(COND
(CNULLS AL)(RETURN NL I}
(TISET@ ALUCDR AL !
{50 TOP)) 1
(FROGEILAMBDA(FBEDY ALIST}
[PROGIB A SLIST BCAR TEMF)
15278 8 FRCOY)
ESET@ AUNCCNCSUFAIRS(CAR BIINLISTS (LENETHS ICAR BEMNL ALIST)}
[SZTO 3LLIST I(GCLISTSICDR 311}
Ll (SZT@ 3(COR B}
L2 (SETE BCARI(CAR BIF
L3 [CCND
(INUL_S BCARITERRCRIGJCTZ A3
CEATCM BCARI(GD LIFI
((ZGICAR BCARIIAQUCTE 3ZTQN)
(SZTG ALRZIPLACZSICARIICDR ICARIY
(EVALS(CAR(CDR(CDR BCARIIIBIALE
t3e L1) 1}
{0Za0(CAR BCARILQUCTE 50))
(SETE BICDRISASSPCS(CAR(CDR BCAR!) BLIST
(QUCTZULAMBDAT JTERROCRIQUCTE AGINIDYYY
(30 L2101)
LLEBICAR BCARF(QUETE RETURNIE
IRETURNUEVALSICARICIR BCARNIAL)
[TISZTA TEMPIEVALS BCAR ADY
[CCND
IINCTIATCY TEMFI)
[CCND
((CRSIERI(CAR TEMFI(QUCTE SETE)}
(LEQICAR TEMFILQUOTE GOY)
[TEQICAR TEMPITAURTE RETUINIY)

(SETE BCAR TEMFI(GE L2} ¥
(TEGC L1000)

(TU30 LLYODY 00 00 1)
(REFLACES(LAMEDAISUE ©€8BJ BALISTI
[ZCND
CUNULLS A_ISTIIEZRRCA(QUETZ ABINI
{LEQICAAR ALISTH SUB M(CCNSICENS SUB CBJFICDR BLISTII}

ITUCCNSICAR ALISTIIRIFLACIS SUB BIJICIR A_ISTINN)D 1 1
INLISTSILAMBIALINUMY

{CCND
(LZZRCOP NUMI) NI_ 1
(TUCCNS NLL INLISTS [SUBL NUMIDI)
(GCLISTS(LAMBDALEL}
ICCND
[UNULLS G_1) NIL 1O
(CATCHICAR BLENINCONCSIFAIRS (ILISTICAR GLIMILISTICODR 6L}
[GC.ISTSICDR 5.111)
[TISC_LSTE(CO GLID) i 1l
(CRSULAMBOAIORL ALIST!H
{CCND

[INUL_.S® ORLINILI
((EVALS(CAR ERLIALIST!
{TICRSICOR CRLIALISTIY
ELZN3THS(LAMBDALSEXF)
(FROCGILENI
(SZTR LZIN 2
Ad [CCND
(INULLS SEXFI(RETURN LENI}
(TESZT@ SEXFLCDR SEZXFID)
(SST@ LINCADIL LEND)
iGC AA}] [}]
(RR

T
|

1

