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Abstract

Imperative higher-order languages are a highly expressive programming medium. Compared to functional programming
languages, they permit the construction of safe and modular programs. However, functional languages have a simple
reduction semantics, which makes it easy to evaluate program pieces in parallel In order to overcome this dilemma, we
construct a conservative extension of the A-calculus that can deal with control and assignment facilities. This caleulus
simultaneously provides an algebraic reasoning system and an elegant reduction semantics of higher-order imperative
languages. We show that the evaluation of applications can still take advantage of parallelism and that the major cost
of these evaluations stems from the necessary communication for substitutions. Since this is also true for functional
languages, we conjecture that if a successful parallel evaluation scheme for functional languages is possible, then the
same strategy will also solve the problem of parallel evaluations for imperative programming languages.

1. Pro Imperative Higher-Order Languages

A programming language is a medium for expressing thoughts about problems and their solutions. This
statement is folk wisdom, yet, it has been ignored since programming became an activity performed
on real machines. In the beginning, programming languages were considered as command languages
for computers. This view grew out of the popular imperative programming languages for the early
computing machines and the necessity for maximal utilization of scarce resources.

Another phase in programming language research was determined by the advent of non-von-Neumann
computer architectures. The realization was that the traditional way of processing programs had a bot-
tleneck and that this bottleneck should be eliminated in favor of as much parallel processing as possible.
But, instead of implementing redesigned traditional languages on these modern machines, new languages
were invented. The prevailing opinion was [4, 17] that “increasing performance by exploiting parallelism
must go hand in hand with making the programming of these machines easier.”! This argument, together
with a trend for more mathematical languages, ignited interest in applicative languages [1].

Applicative languages are easy to implement on non-traditional reduction architectures. They have
a simple operational model based on reduction semantics. However, these languages lack abstractions
for expressing evaluation control and state change because these facilities invalidate ordinary reduction
semantics and thus complicate parallelization of program evaluations. Programmers must simulate these
imperative effects in applicative languages by using and optimizing tricks of denotational semantics, e.g.,
accumulators, auxiliary functions, or the clumsy passing around of state variables. Again, the burden is
borne by the programmer.

Our basic premise is that the language user should not feel any restrictions caused by the underlying
implementation machine. We agree that a language must have a clean, mathematical reasoning system,
but, we also insist that a language must include control and assignment facilities as fundamental ab-
stractions for expressing evaluation control and state change. They are necessary ingredients for secure,
modular, and compositional programming.

The starting point of our development is the A-calculus [2], more precisely, the A-value-calculus
[20], which is simultaneously a language and a reasoning system. Its advantage is that all objects,
including functions, are first-class, 1.e., there is no restriction on their use. The programming language
contains two additional facilities which preserve this property. One gives full access and control over

! [17, p.350], emphasis ours.
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the current continuation of an expression; the other abstracts the right to reassign a value to a variable.
Programming paradigms such as logic, functional, or object-oriented programming are easily emulated
in this language by implementing the respective constructs as syntactic abstractions [3, 13].

Recently [6, 7] we presented two extensions of the A,-calculus which independently model control
and assignment facilities. Here we demonstrate that the two extensions can be unified. The new
calculus automatically yields a reduction semantics for imperative higher-order languages. The standard
reduction strategy of the calculus reveals considerable potential for parallelism in the evaluation of
programs. A minor result is the introduction of a new control construct. While simplifying the reductions
of the control calculus [6], it syntactically subsumes all traditional control constructs and permits the
design of an entirely new class of programs [5].

The emphasis here is on the development of the reduction semantics since it is crucial for the parallel
implementation of programs. The reader who is more interested in the proof system is referred to the
earlier reports,? but the relevant material is repeated here for completeness. In the next section we
formalize the syntax and semantics of the programming language and demonstrate with a few examples
how some commonly found facilities of other languages are simple syntactic abstractions. The third
section contains the transformation of our abstract machine semantics into a program rewriting system.
The derivation method is new; some of the intermediate stages are remotely related to Plotkin-style
operational semantics [19]. In Section 4 we reformulate the rewriting system as a set of freely applicable
notions of reduction. Section 5 addresses implementation issues. An alternative definition of standard
evaluation reveals that the reduction system for the programming language offers ample opportunity for
evaluating programs in parallel.

2. The Programming Language

The programming language is an idealized version of such imperative higher-order programming lan-
guages as ISWIM [14], GEDANKEN [22], and Scheme [23]. Its term set A7, is an extension of the
term set A of the A-calculus. The two new kinds of expressions are F-applications and o-abstractions.
An F-application is of the form (¥M) where M is an arbitrary expression; when evaluated, it applies
M to a functional abstraction of its current continuation, i.e., a functional representation of the rest
of the computation. These abstractions have the same status and behavior as functions created by
A-abstractions. The syntax of a o-abstraction is (6z.M) for a variable z and a term M. The abstraction
does not bind the variable, but abstracts the right to reassign a value to the variable. When invoked
on a value, a g-abstraction performs the reassignment and then continues to evaluate its body, which
yields a result for the entire application. The meaning of the remaining constructs should be adapted
accordingly: variables are assignable placeholders for values, abstractions correspond to call-by-value
procedures, and applications invoke the result of the function part on the value of the argument part.
The syntax is summarized in Definition 2.1.

The sets of free and bound variables of a term M, FV (M) and BV (M), are defined as usual; the only
binding construct in the language is the A-abstraction. The set of assignable variables in M, AV (M),
contains all variables that occur in the variable position of a g-abstraction. Terms with no free variables
are called closed terms or programs. To avoid syntactic issues, we adopt Barendregt’s a-congruence
convention of identifying (=, or just =) terms that are equal modulo some renaming of bound variables
and his hygiene convention which says that in a discussion, free variables are assumed to be distinct
from bound ones. Substitution is extended in the natural way and we use the notation M[z := N] to

2 C. Taleott [24] and I. Mason 18] also have designed reasoning systems for control and [first-order] assignment abstractions, respectively.
However, their systems are not extensions of A-calculi but are equational theories based on rewriting machines similar to the ones we
present in Section 3. Neither addresses the issue of reduction systems; work on a unification of the two systems is in progress [personal

communication).
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Definition 2.1: The programming language Az,

The improper symbols are A, (, ), ., ¥, and 0. Vars is a countable set of variables.
The symbols z,y,... range over Vars as meta-variables but are also used as if they
were elements of Vars. The term set Az, contains

— vartables: z if £ € Vars;

— abstractions: (Az.M) if M € Ay, and z € Vars;
— applications: (MN) if M, N € Az,;

— F-applications: (FM) if M € Az,;

— o-abstractions: (0z.M) if z € Vars and M € Az,.

The union of variables, abstractions, and o-abstractions is referred to as the set
of (syntactic) values.

Definition 2.2: The CESK-transition function

CESK

(z,p,0,x) ($,0.6, (cret 8(p(z)))) (1)

(Az.M,p,8,k) = GEax (1,9,0, (cret (Az.M,p))) (2)

(MN, p,6,5) =2 (M, p,0, (carg N p)) (3)

(1,8,6, ((x arg N p) ret F)) =5 (N, p,6, (xfun F)) (4)

(4,0,6, ((<fun (Az.M, p)) ret V)) B2 (M, p[z := n],0[n = V],x)  (5)
where n ¢ Dom(4)

(FM,p,8,5) 5 (M, 0l := (p,x)], 0, (stop)) (6)

(£,0,0, ((<fun (p, o)) ret V)) “E5 (£,0,0, (x ® xoret V)) (7)
(o.M, p,8,5) “EE (1,0,0, (xret (02.M, p))) (8)

(1,9,0, (s fun (02.M, p)) ret V)) SEZ (M, 5, 8]p(z) := V], ). 9)

denote the result of substituting all free variables z in M by N.

The semantics of Az,-programs is defined via an abstract state-transition machine. The machine
manipulates quadruples of control strings, environments, stores, and continuations. A control string is
either the symbol § or a Ag,-expression. A variable v is reserved for exclusive use in machine transitions.
Environments, denoted by p, are finite maps from variables to semantic values and locations. Stores,
denoted by 8, are finite maps from locations and semantic values to semantic values; stores are the
identity map on values. We use the set of natural numbers as locations. If [ is an environment or store,
then f[z := y] is like f except at the place z where it is y. The set of semantic values is the union of
closures and program points. A closure is an ordered pair (M, p) composed of an abstraction M and
an environment p whose domain covers the free variables of the abstraction. Depending on the kind of
abstraction, a closure is called A- or o-closure. A program point is a p-tagged continuation code.

A continuation code remembers the remainder of the computation during the evaluation of the current
control string. The domain of continuations consists of two subdomains: p- and ret-continuations. A
ret-continuation (xret V) consists of a p-continuation code « and a semantic value V. The value is
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supplied to the p-continuation so that it can finish whatever is left to do. p-Continuations are defined
inductively and have the following intuitive function with respect to an evaluation:

— (stop) stands for the initial continuation, specifying that nothing is left to do;

— (karg Np) indicates that N is the argument part of an application, that p is the environment of
the application, and that « is its continuation;

— (xfun V) represents the case where the evaluation of a function part yielded V as a value, and « is
the continuation of the application.

Machine states of the form (M, 9,8, (stop)) are initial; if V is a closure and @ is defined on all
locations which are used by V then (1,8,0, ((stop) ret V)) is a terminal state.

The CESK-transition function is displayed in Definition 2.2. The first five rules evaliate the func-
tional subset of Ay,. They correspond to the transition rules of the SECD-machine [16]. The store com-
ponent is superfluous with respect to this subset and could be merged with the environment. (CESK6)
and (CESKYT7) describe the evaluation of an F-application and the application of a continuation to a
value; (CESKS8) and (CESK9) define the effect of an assignment application.

The evaluation of an F-application directly corresponds to the informal description of #. The
F-argument is applied to -, which stands for the current continuation. The current continuation is
transferred out of the register into a p-closure and this gives the program total control over its use. In
particular, the decision about when to use the continuation is left to the program.

The application of a continuation in a Asy,-program results in the concatenation of the applied
continuation to the current one with the auxiliary function ®:

K ® (stop) =«
k@ (x'arg N p) = (k@ «'arg N p)
k® (k'fun V) = (¢ ® ' fun V)

This causes the machine to evaluate the applied continuation as if it were a function. If the applied
continuation does not affect its continuation during the evaluation, the result is returned to the point of
application.

The effect of an assignment application depends on three different factors. First, occurrences of
variables are disambiguated via the environment, but the store contains the associated current value.
Second, the store component of a CESK-evaluation is always present. The only operations on the
store are updates and extensions. Unlike the environment, it never shrinks nor is it removed from its
register. Third, the rules (CESK8) and (CESK9) jointly manipulate the location-value association in
the store according to an intuitive understanding of assignment. (CESK8) produces a o-closure from a
o-abstraction and the current environment. Thus the transition rule (CESK9) changes the value of the
variable that was lexically visible at definition time. Because of the constant presence of the store, every
subsequent occurrence of this variable refers to the new value.

In order to abstract from the machine details, we define an evaluation function that maps programs
to value-store pairs:

evalcpsk (M) = (V) iff (M, 9,8, (stop)) SZ3K™ (1,0, 6, ((stop) ret V)).
When we refer to the extensional semantics of A7,, we mean this evalcggg-function. The intension
behind this function with respect to the CESK-machine is the CESK-transition function. In other
words, evalcpsg defines which value-store pair is the result of a program, and the transition function
says how this result is computed.
The distinction between extensional and intensional semantics is extremely important for our devel-
opment. From the extensional point of view, which is that of a programmer, the programming language
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is—exactly like the A-calculus—an entirely sequential language. To an outside observer this means that
events in an evaluation are totally ordered. No function in our language nor in the A-calculus can
thus compute the mathematical (symmetric) or-function. However, the sequentiality of our intensional
semantics depends on the granularity of the event representation. We shall see a number of different
machine architectures, each of which is extensionally equivalent to, but intensionally rather different
from the CESK-machine.

At this point, we clarify the formal semantics with a few programming examples. Beyond providing
insight into the semantics, these examples also illustrate some of the expressiveness of imperative higher-
order languages. Lack of space prohibits broader treatment of this issue. The interested reader is referred
to the literature.

F-applications are closely related to the call/cc-function in Scheme [3]. There are two essential
differences. First, when call/cc is applied to a function, it provides this function access to the cur-
rent continuation, but it also leaves the continuation in its register. This effect can be achieved by an
F-application if the F-argument immediately invokes the continuation. Second and more important,
call/cc applies its argument to a continuation object, which, when applied in turn, discards the current
continuation; an F-application, however, simply provides its argument with a function that upon invo-
cation performs the same action as the current continuation. Hence, a simulation of call/cc must pass a
function to the call/cc argument which ignores its current continuation, or, in terms of F-applications,
the object must grab the continuation without using it. Putting all this together produces the following
equivalence:

call/cc = Af.F(Ak.k(f(Av.F(Ad.kv)))).

Landin’s J-operator [15] and Reynolds’s escape-construct [21] are also closely related language facilities.
Both are syntactic variations on call/cc [8] and hence, we omit detailed treatment. None of these
facilities can implement an F-application as a syntactic abstraction because of the abortive effect of
their continuation objects.

The assignment abstraction is more conventional. In traditional expression-oriented languages, state-
ments usually come together with a block like begin (stmt) result (ezp). This is a block that first
performs the statement-part and then evaluates the expression-part to return a result. Together with
ordinary assignment this block can express an assignment abstraction as a function:

oz.M = (Av.(begin z := v result M))

where v is a fresh variable.

The inverse relationship is expressed by
begin z := N result M = (cz.M)N.

The choice of o-abstractions over assignment statements is for syntactic and proof-technical reasons only.

The implementation of call/cc and ordinary assignment as syntactic abstraction makes clear that all
programs that were written with these facilities can also be written in A 7o. However, there are control
constructs that are more easily defined with . For example, the operation halt, which is implicitly used
in the definition of call/cc, is realized by grabbing and ignoring the current continuation:

4
halt £ Xz.F(Ad.z).
An exit-facility in a function-body is an equally simple use of ¥. Suppose we want an abstraction

(function z Body)
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which is like an ordinary function, except that its function body may contain exit-expressions of the
form
(exit Ezp).

The effect of an exit-expression is an immediate return to the function caller with the value of Ezp. When
cast into continuation terminology, this description leads to the obvious implementation of function-
and exit-expressions: an exit-expression resumes the continuation of the function-application. With
call/cc we get:

d
(function = Body) Ef Az.call/cc(Ae. Body,),

(exit Ezp) ¢i:{ (e Ezp).
We hereby assume that exit’s € and the € in the call/cc-expression are the same. Although all of these
programming constructs look functional, the reader should be aware that the presence of ¥ makes them
imperative.

Assignment abstractions are also imperative in nature, but they give rise to a different class of
programs. In conjunction with higher-order functions it is easy to program reference cells with o-
abstractions. The three operations on a cell are: mk-cell, which creates a new cell with given contents;
deref, which looks up the current contents of a cell; and set-cell, which changes the contents of a cell to
a new value and returns this value upon completion. An implementation of this set of functions is:

of
mk-cell = Az.Am.mz(oz.z),
af
deref = Ac.c(Azs.z),

af
set-cell = Ae.c(Azs.s).

The definition of set-cell clarifies why we call o-abstraction “an abstraction of the right to reassign a
value to z.” When set-cell is applied to a cell, it returns a o-abstraction, which upon application changes
the content of the cell.

The implementation strategy for single-value cells generalizes to full Lisp-cons cells and Smalltalk-
objects in a straightforward manner. Furthermore, with mutable cells a program can create circular
structures to model self-referential dependencies in the real-world. A use of state variables for remem-
bering the current control state of a computation leads to simple implementations of such facilities as
coroutines [10], backtrack points [9], and relations [11].

In summary, we have demonstrated that the programming language (together with an appropriate
syntax preprocessor [13]) is interesting and expressive. Its semantics is defined via an abstract machine
that is derived from a denotational specification via a well-explored technique [12, 21, 25]. An implemen-
tation of the machine on stock hardware is straightforward and reasonably efficient. Given its character
as a rewriting system, a reduction or a rewriting machine could also serve as an implementation ve-
hicle, but, such an implementation could not utilize the inherent parallelism in these machines. The
intensional specification of the semantics is sequential in nature and any attempt to exploit parallelism
on the basis of these specifications remains ad hoc. The underlying reason is that the structure of the
machine states and the state representations are too closely tied to conventional architectures. However,
we doubt that any of the state components besides the control string is natural in the sense that it is
unavoidable for the specification of the language semantics. An elimination of these extra components
can clearly improve the comprehensibility of the machine activities and should give more insight into
the intensional aspects of the language semantics.

3. From the CESK-Machine to a Control String-Rewriting System

An evaluation of a program on the CESK-machine is a sophisticated interplay between the control string
and the other three auxiliary components. In the course of program evaluation, parts of the control string



212

are mapped to values in the environment-store system, others become a part of the continuation code.
At other points control strings are shuffled back from the auxiliary components into the control string
register. Our objective in this section is to integrate the extra state components into the control string
by extending the programming language.

3.1. Eliminating Environments

Environments map free variables of a control string to their meaning. They directly correspend to stacks
on traditional machines. For machines which only simulate stacks, quasi-substitution generally improves
the performance. Instead of storing away the meaning of free variables, quasi-substitution replaces all
free variables in a control string by their meaning. For the CESK-machine this means that applications
of A-closures to values now place values and locations in the control string. The Az,-language is modified
accordingly. Otherwise, the system remains the same.

8.2. Eliminating Continuations

An inspection of some sample evaluations on the CESK-machine reveals that the continuation code is
like a control string memory. Those pieces of the control string that are of no interest to the current
computation phase are shifted to the continuation stack. This is equally true for (syntactic) values in the
control string register. Such a step causes the machine to look in the continuation code for what to do
next. In case the two parts of an application have been identified as proper values, the appropriate action,
i.e., a function, continuation, or assigner invocation, is performed; otherwise, the search is continued.

From the perspective of the program as a whole, the machine searches through the term until it
finds a value in the left part of an application. Then it backs up and continues the search in the right
part of the application. Once an application with two values—a redez—has been found, a computation
step changes the corresponding subterm. During the search phase the contezt of the redex is moved
to the continuation. In other words, the p-continuation encodes the textual context of a redex, and
it is therefore quite natural to represent p-continuation codes as contexts. Informally, an applicative
context—or sometimes context for short—is a term with a hole in it such that the path from the root to
the hole goes through applications only. Let C[ | stand for a context, then the inductive definition is:?

— [ ] is the empty context or hole,

— VC[ ]is a context where V is a value, and

— C[ ]M is a context where M is arbitrary.

If C[ ] is a context, then C[M] is the term where the hole is filled with the term M.

The definition of applicative contexts captures the dynamic character of the search phase in the
correct way. The context hole corresponds to the current search area. If a value is in the left part of an
application, the search moves to the right; otherwise, the search space is narrowed down to the left part.

Once the continuation representation uses contexts, the control string and the continuation compo-
nent can be merged. First, the holes of the contexts are filled with the respective term, §’s are simply
dropped. Then all the search rules are eliminated. These two steps together yield a control string-
store machine whose transition function is displayed in Definition 3.1. All other concepts are modified
appropriately.

38.3. The Control String-Rewriting System

After the elimination of environments and continuations we are left with a system that is solely based
on control strings and stores. The role of the store is characterized by the three transition rules (CS1),
(CS2), and (CS5): they use, extend, and modify the store. The crucial rule is (CS2). It replaces bound
variables of a A-abstraction by a new, distinct location and thus gradually builds the store. Future

3 Generally, contexts are defined in a broader sense, i.c., as a term with at least one hole and no restriction on the location of the hole.

Since we only use applicative contexts in this paper, the terminology should not cause any confusion.
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Definition 3.1: The CS-machine
(Cln],8) 5 (C[6(n)], ) (1)
(C[(Az.M)V],8) > (C[M[z :=n]},6]n := V]) where n & Dom(6) (2)
(cl7M],0) = (M(p,C ]),0) (3)
(Cltp, Co] 1)V],6) = (C[Co[V]].6) (4)
(Cl(on.M)V],8) 55 (C[M],8n := V)) (5)

references to a bound variable are resolved via the always-present store. A request for the current value
of a variable causes a store lookup; an instruction to change the current value results in a modified store.
It is therefore important to understand the nature of bound variables.

At this point we must recall the a-congruence convention about bound variables in terms. According
to this convention, the name of a bound variable is irrelevant (up to uniqueness). Abstractions like
Az.z and Ay.y are considered to be the same. This actually means that the programming language
is the quotient of A over =,. From this perspective, a A-abstraction is an expression together with a
relation that determines which parts of the expression are equivalent. The relationship is manifested by
occurrences of the bound variable.

A unification of our ideas on the role of the CS-store and the nature of bound variables directly
leads to an abstracted view of the store. The intention behind the replacement of bound variables by
unique locations in the bodies of A-abstractions is to retain the static a-equivalence for the rest of the
computation, i.e., as a dynamic relation, even after the Az.-part has disappeared. Hence, if we want
to integrate the store into the control string language, we must find a way to express this dynamic
relationship.

The most natural possibility is a labeling scheme. Instead of placing a location into the program
text and the value into the store, the value could be labeled with the location and placed into the text
as a labeled value.* With respect to the transition relation, we replace

(Cl(Az.M)V),6) 5 (C[M[z :=n]),8[n:=V])  where n & Dom(6)

by
C[(Az.M)V] +— C[M[z := V"]] where n is not used in the rest of the program.

V"™ is the labeled version of the value V. With this labeling technique it is indeed possible to re-interpret
lookups and assignments as term manipulations.

The effect of an assignment relies on the introduction of a new substitution operation. In the
extended term language, a o-application looks like

(eU™.M)V

when it is about to be evaluated. The assignable variable has been replaced by a labeled value; all other
related variable positions carry the same label. When it is time to perform the above o-application, all
these occurrences of an n-labeled value must be replaced by n-labeled values V. To implement this, we
introduce the labeled value substitution M[n := V|. The result of M[n := V] is a term like M except

4 Labeled terms have also been used for the investigation of the regular A-cakulus |2, p.353]. Although our problem is unrelated to

these investigations we have adopted the notation in order to awoid the introduction of an entirely new concept.
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Definition 3.2: The C-rewriting system

Cvr] < CVin = V|| (1)
Cl(Az.M)V] &5 C[M[z:=V"]] where n is fresh (2)
ClFM] 5 M(p,C[ ) (3)
Clip,Col V]~ ClColV ] (4)
CleU™.M)V] s CIM][n := V] (5)

The labeled term substitution L{n := V] is defined by:

zn:=V]=z, U'n:=V|=V", UMn:=V]|=Uln:=V|" if n # m,
(Az.M)[n :=V] = Az.M|n := V],
(MN)[n:=V]=(M[n:=V|N[n:=V]),
(FM)[n:=V]=(FM[n:=V]),
(eX.M)[n:=V]=(0X[n:=V].M[n:=V]),

(P, C[ Dn:=V]=(p,C[ |[n:=V]), [ [[n:=V]=][ ]

that all subterms labeled n are replaced by V. With this new operation, the assignment transition is
definable as
Cl(eU™.M)V] — C[M][n = V].

At first glance, a variable lookup merely strips off the label from the labeled value which is now
already sitting in the right position. Yet, a closer look reveals that this strategy has a minor flaw: it
cannot deal with circular or self-referential assignments. When the label n appears not only in C[M]
but also in V, the equivalence-positions in V are not affected by the labeled value substitution. There
are two obvious ways out of this dilemma. First, we can blame the assignment statement and require
that self-referential assignment builds a circular or infinite term. Second, we can find a more intelligent
lookup transition that is knowledgeable about circularities. In other words, the assignment transition
only updates the equivalence classes within the program and leaves the equivalence positions within the
new value alone. The complimentary lookup transition is then something like a by-need continuation of
the latest assignment transition or their equivalence class:

C[V"] — C[V[n := V]|

This version of the lookup transition simultaneously strips off a label and updates all equivalence positions
within the value.

Definition 3.2 contains the formalization of the transition function. With respect to changes in
the language Ay,, we leave it at the above informal description. The eval-function for the rewriting
semantics maps programs directly to values:

evalg(M) =V iff M +Ss V.

The correspondence between the CESK- and the C-rewriting semantics is captured in the following

Theorem 1 (C-Simulation). There is 2 morphism Unload such that for all programs M € Az,
evalc (M) = Unload(evalcgsk (M)).
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Proof. The proof has four parts, each establishing the correctness of one of the transformations in this
section. For each part, we define a principal morphism that models the crucial idea of the corresponding
transformation step. Based on this morphism, an induction on the number of evaluation steps shows that
two corresponding states in two evaluation sequences are related by this morphism. The four morphisms
are:

R({M, p)) = M(z, := p(21)]...[zn := p(z,)] where FV(M) = {z1,...,za}
for eliminating environments;

S((stop)) = ]
S((xarg N)) = C[[ |S(N)] } where S(k) = Cl]
S((<fun F)) = C[S(F)] ]]

for representing p-continuations as contexts;

T(3,(C[ |ret V)) = C[V]
T(M,C[ ]) = C[M]
for merging continuations and control strings; and
U(z,8) = =,
U(n,8) = U(6(n),0(n := (Az.z)])",
U(Az.M,8) = Az.U(M, 9),
U(MN,6) = U(M,8)U(N, 8),
U(FM,8) = FU(M, ),
U((p,C[ 1),6) = (p,U(C[ ],9)),
u( .oy =1,
U(eX.M,6) = (oU(X,0).U(M, 8))
for folding the store into the control string. The rest of the proof is tedious, but routine. The required
morphism Unload is the composition of U, S, and R. O
Theorem 1 stipulates a redefinition of evalcpsk:

evalopsx (M) = Unload(V,0) iff (M, 8,9, (stop)) 25K (1,6,6, ((stop) ret V))

since the user is only interested in the final values and their relationship to the rest of the store. Given
this, the claim of the theorem is that evalc and evalogsy extensionally define the same semantics.

The advantages of the C-rewriting system are obvious. The domain of the transition function is a
minor variant of Az,; the function itself only consists of five rules. Continuations have become something
more intuitive, namely, the textual context of an evaluation redex. Labeled values, though complex at
first glance, also have a number of advantages. For example, a vacuously abstracted variable causes the
CESK-machine to enlarge the domain of the store; in the C-rewriting system the labeled value simply
disappears and with it the useless label. Unfortunately, the transition rules are context dependent. It is
therefore impossible to freely apply these rewriting rules to subterms. In the next section, we derive a
reduction calculus that is equivalent to the C-rewriting system with the desired properties.

4. The A,-CS-Calculus

The context dependency of the C-rewriting transition rules has two entirely different aspects. First, the
requirement that C[ | is an applicative context enforces the correct timing of rewriting steps. Since
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there is exactly one partitioning of a program into a redex and a context, only one action is possible
at any given time. Second, the context of such a pair represents the current continuation and can thus
become a part of the program in the form of a program point. The latter dependency can apparently be
eliminated by encoding a context as a term, but the former is inherent: by their very nature, imperative
actions must happen in a certain order.

Because of the dichotomy between timing and context dependency there is no hope of finding a set
of entirely context-free reduction relations. The closest we can get is a system where the dependency
is confined to a particular point. The root of the term offers itself for this purpose. If there is no
context to a redex, the entire extent of the reduction step is known. Therefore, the obvious solution is
to distribute the transition work to two sets of relations: ordinary reductions, whose task it is to move a
C-redex-like term to the root, and special relations, which perform the imperative action at the root of
a program. We refer to these special steps as computation rules or steps and mark them with > instead
of the customary — for notions of reduction. '

The computation rule for a A-application (Az.M)V has the same form as the C-transition rule (C2)
without context:
(Az. M)V vg, M[z :=V"|

where n neither occurs in M nor in V. Given that this rule is applicable when the redex is at the root
of the term or, put differently, in the empty context, the inductive definition of applicative contexts
requires us to consider two more cases: the embedding of a A-application to the left of an arbitrary
term N and to the right of a value U. In the first case, the C-rewriting semantics says that after the
completion of the S-step the modified A-body M(z := V"] and N form an application M|z := V"|N.
Since the second case is symmetric to the first, we suggest the two A-reductions:

(Az.M)V)N —s (Az.MN)V.
U((Az.M)V) — (Az.UM)V.

Like the SB-rule itself, these reductions rely on the hygiene convention and assume that the set of free
variables in N and U, respectively, is disjoint from the set of bound variables in M.

Although the proposed A-reductions and computations obviously simulate (C2) in the right way, it
is disappointing to realize that the ordinary §,-reduction

(Az.M)V — M|z :=V] (8.)

is lost. One would expect that an extension of the A-language as a programming language would be
orthogonal with respect to the original constructs and that therefore the new calculus would be an
extension of the Ay-calculus. The flaw in our development is the convention that assignable and non-
assignable variables are the same kind of objects. The solution is to split the variable set into two disjoint
subsets, one for each category. Accordingly, the B-rewriting rule is split into two different transitions and
the set of reductions is extended with the fB,-relation. This decision simultaneously makes our calculus-
extension conservative and clarifies why a A-application for an assignable variable must bubble up to
the top of a term. While an ordinary (-reduction discards the sharing relation of the A-abstraction, a
bg,-computation retains it for the rest of the computation and hence, if these transitions are in accord
with the original semantics, they establish these dynamic sharing relations at the appropriate time.

The simulation of assignment with reductions and computation rules is now straightforward. A
o-application can work its way to the top of a term with rules similar to those for a A-application. The
computation rule becomes

(cU™. M)V b, M[n :=V].

For the delabeling step (C1) this technique does not work since a labeled value V" does not contain a
natural continuation part. Our solution is to replace all assignable variables by a delabel-application of
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the form (D z M) where M is expected to consume the proper value of z after the delabeling transition.
A D-application at the top simply delabels the labeled value and applies M to the value:

(DV*M)op MV[n:=V].

If (D V™M) is to the left of some expression N, the D-application must somehow incorporate the argument
N into the consumer expression in order to move closer to the top. According to the intuitive semantics
of D-applications, the entire application would first delabel V", then apply M to the resulting value,
and finally, the result of this application would consume N. Abstracting from the value, this informal
description is captured in the \-abstraction Av.MvN and hence, the two necessary reductions for D-
applications are:

(DV*M)N — (DV"(Az.MzN)),

U(D V™M) — (P V" (Az.U(Mz))).

Finally, we turn to the simulation of F-applications. The crucial idea is that a context C| ] can be
perceived as a function of its hole. Based on this observation, the C-transition rules (C3) and (C4) could
be replaced by

CIFM] — M(\z.Clz])

without changing the extensional semantics of the C-rewriting system. For a reduction simulation of
this rule this means that F-applications must encode their context and apply this to their argument.
For the top-level computation rule this is rather simple:

FM vz M(Az.z)

is the required relation. For the other cases, we must again consider the two inductive cases of a context
definition. Consider the expression (¥M)N and suppose it is embedded in a context C[ |. Clearly, the
function Af.fN is a correct encoding of the immediate context of the F-application. The rest of the
context, i.e., C[ ], can be encoded by another F-application and by building this part of the continuation
into the expression Af.fN. Putting these ideas together, the reductions for F-applications should be

(FM)N —FAe.M(Af.c(fN)),
U(FM) —FAe.M(Av.c(Uv)).

The new language and its reduction and computation relations are summarized in Definition 4.1.°
Constructing the rest of the calculus is almost standard [2, 6, 7] and we omit it. With respect to the
capabilities of the A,-CS-calculus as a reasoning system the first important question is whether the
calculus is consistent. The answer is expressed in the form of a (generalized) Church-Rosser Theorem:

Theorem 2 (Church-Rosser). The computation relation, that is, the union of the computation rela-
tions and the transitive-reflexive and compatible closure of the reduction relations, satisfies the diamond
property.

Proof. The proof is a generalization of the Martin-Laf proof for the Church-Rosser Theorem for the
traditional A-calculus [2]. O

Equally important, but more relevant for our investigation of evaluation functions is the question
whether the system defines an evaluation function that is extensionally equivalent to evalcgsy. For

o original description of the assignment facet [7] contains the erroneous f,-reduction: (Az.M)V — M|z := V"|. As pointed out
above, a reduction like this could establish the dynamic sharing relationships at the wrong time. However, in the standard computation

function this rule is valid and hence, can be used as a shortcut: see also Section § below.
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Definition 4.1: The A,-CS-calculus

The improper symbols are A, (, ), ., #, 0,and D. Vars = Var, U Var, is a countable
set of variables. The set of labels is an arbitrary, infinite set. The set of values
contains variables and abstractions. U and V range over values, n over labels, and
X over Var, and labeled values. Acs contains

— wvariables: z if z € Vary;

— A-abstractions: (Az.M) if M € Acs and z € Vars;

— applications: (MN) if M,N € Acs;

— F-applications: (FM) if M € Acs;

— o-abstractions: (0z.M) and (cV".M) if M,N € A¢cs and = € Var,;
— D-applications: (D zM) and (DV™M) if M € Acs and = € Var,.

All variables in the following notions of reductions are in Vary unless explicitly
stated otherwise:

(Az. M)V By M|z := V] where V is a value, (By)
U((Az.M)V) ta, (Az.(UM))V where z € Var,, Uand V are values (0g)
(Az.M)V)N e (Az.(MN))V where z € Var,, Vis a value (Br)

U(FM) i FAx.M(Av.x(Uv)) where U is a value (%r)
FM)N I Fax M(Af.k(FN)) (72)
U((eX.M)V) =% (6 X.(UM))V where U and V are values (or)
(cX.M)V)N —"'b (6 X.(MN))V where Vis a value (or)
U XM) % (D X (Av.U(Mv))) where U is a value (Dr)

(D XM)N — (D X (Av.MuN)) (Dr)

The top-level computation rules are

(Az.M)V bg, M[z := V"] where z € Var,, V is a value, and n is fresh (5)

(FM) oy M(Az.z) | (71)
(eU™.M)V vy M[n := V] where Vis a value (o1)
(DV*M)op MV([n:=V] (Dr)

the traditional A-calculus, this is the standard reduction function which always reduces the leftmost-
outermost redex first. With the notion of an applicative context, the definition of a standard reduction_

function becomes
Mvr—s4c5y N iff there are P, Q, and C| ] such that

P reduces to Q,M = C[P], and N = C[Q].
Since we have generalized the notion of a calculus to a system that may contain computation relations,

we must also provide for these rules in the evaluation function. We call the resulting function standard
computation function, denote it by rlb,m,, and define it as:

>
—rgesu= FrgeaU Pg, UPr Ubs Ubp .

The evaluation function for programs is simply the transitive-reflexive closure of this standard compu-
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tation function:
evale, (M) =V iff M 25 V.

Jcsv

Its correctness is captured in

Theorem 3 (Standard Simulation). There is a (n injective) morphism D such that for all programs
M € Ayz,,
evalcpsg(M) =V iff evales,(D(M)) = D(V).

Proof. The morphism D is a transformation that replaces all assignable variables and labeled values
by (D X Az.z). Now, it is easy to show by induction on the structure of the context C[ | that

Cl(D V"™ M)|+>s,.,, CIMV[n:= V]|, and
C[O’Uﬂ MJV] 'L':csu G[M][n’ = Vl‘

A similar result for C[#M] can also be obtained, but the details are rather technical because the standard
computation relation actually produces an encoding of Az.C[z] and not the function itself. We refer the
interested reader to our earlier report [6]. Given Theorem 1, these equivalences are sufficient to prove
the theorem. O

The crucial consequence of this simulation theorem is that the eval.;,-function is yet another se-
mantics for Az,, but unlike the previous evaluation function the standard computation function is not
sequential in nature. In the next section we compare the two semantic frameworks in more depth and
discuss the relevance of this result with respect to implementation.

5. Parallelism for Imperative Languages

The potential for parallel evaluation of Af, programs can best be seen from the definition of the func-
tion Eval in Definition 5.1, which is an (extensionaily] equivalent reformulation of the eval,,,-function.
Because of the two-level definition of the calculus, the Eval-function needs an auxiliary function seval,
which returns the value or semi-value of an expression. A semi-value is a top-level redex and causes
another cycle of the Eval-function; a value is the final result. On one hand, the auxiliary function is
actually superfluous. An obvious way to merge seval with Eval is by introducing a top-level symbol (by
a loader/compiler) that syntactically marks the root of the term. On the other hand, factoring out this
definition facilitates a discussion about a realization of this semantics, because seval performs nearly all
of the work.

The first interesting point about seval is that a functional program is evaluated with almost no
loss of efficiency compared to an evaluator for the functional subset of our language. Second and more
important, the two parts of an application can still be evaluated in parallel. The intuitive reason behind
this parallelism is that imperative effects do not take place immediately, but cause the bubbling-up of
the respective semi-value. Thus, if an assignment is to happen, this is indicated by a o-application
in the corresponding branch of the application. Although this may cause a momentary suspension of
other evaluations, the coordination is natural and built into the system so that there is no real need for
artificial communication.

Unfortunately, this scheme has two major problems. First, the seval-function apparently does not
require the (semi-) value of the argument part of an application when the function part yields a semi-
value. Second, even though the bubbling-up of imperative redexes is a natural means of coordinating
imperative effects, it implies that one step of the sequential rewriting machine is replaced by a possibly
long sequence of reduction steps. Indeed, the bubbling-up movement may be considered as the coun-
terpart of the von-Neumann bottleneck. The speed of the evaluation function greatly depends on its
optimal implementation.
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Definition 5.1: The Eval-function

Let U and V range over values; S over semi-values, that is, -, D-, o-, and A-
applications (whose variables are in Var,); M, N, P, and Q over arbitrary terms;
and X over labeled values. Then the Eval-function is defined as:

Eval(N(z :=V"]) if seval(M) = (Az.N)V (%)

Eval(N(\z.z)) if seval(M) = (¥N)
Eval(M) = { Eval(N[n:=V]) if seval(M) = (¢U™.N)V
Eval(NV[n :=V]) if seval(M) = (DV"N)

seval(M) otherwise.

where seval is defined in four inductive clauses:
seval(V) =V and seval(S) = S;

and, if seval(M) = U and seval(N) =V, then

seval(MN) =

seval(P[z:=V]) if U= Az.P,z € Var,
uv otherwise;

and, if seval(M) = U and seval(N) = S then

(Az.UP)V if S = (Az.P)V (¥)
_ | Fac.P(Av.k(Uv)) fS=FP
sevallMN) =13 (o xuP)V if S = (6X.P)V

D X(Av.U(Pv)) if S= D XP;
and, finally, if seval(M) = S, then

(Az.PN)V if S =PV (%)
_ | FAPOfx(fN)) S=FP
evsl(MN) =1 e PN if S = (6 X.P)V
D X(Av.PuN) if S=DXP.

At this point, Theorem 3 plays an important role. According to this theorem, the reduction system
and the rewriting system are equivalent and hence, some of the insight gained from the rewriting system
can be added to the realization of the seval-function. With respect to the first point, Theorem 3 clarifies
that in most cases the (semi-) value of an argument part is needed independently of the value of the
corresponding function part. For example, one consequence of Theorem 3 and the preceding discussion
is that the evaluation function need not bubble-up a A-application with an assignable variable to the root
of a program. Once seval encounters such an application, it is the correct time to perform a substitution
with a labeled value. The only condition is that the label be unique. This condition can be guaranteed
in various ways and therefore, the three clauses (*) for bubbling-up a A-application in Definition 5.1 are
superfluous:

seval(MN) = seval(P[z := V"|) if seval(M) = Az.P,z € Var,,
and seval(N) =

Furthermore, after bubbling up a o- or D-application the seval resumes the evaluation of the applications
all the way down to the place where the imperative redex started. Based on these arguments, seval may
as well evaluate both pieces of an application when encountering it the first time. Only grabbing a
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continuation in the function part will ever require suspension of evaluation of an argument part. But
even then, the stopping point is clearly marked by the arrival of an F-application and, since continuations
are rarely thrown away, the early evaluation may still be useful later. In other words, this special case
represents the only instance of speculative parallelism in our system.

Finally, Theorem 3 also points to some major shortcuts with respect to the bubbling-up movement.
Since o-applications must resume evaluation of the o-body after the top-level step and since D- and -
applications build up new f-redexes, the respective reduction sequences can benefit from an immediate
evaluation of the internal redexes of their right-hand sides. For example, the ordinary evaluation of
(M(N(D (Az.z)™ L))) proceeds as follows:

(M(N(D (Az.z)"* L)) — (M (D (Az.z)"* (Az.N(Lz)))
— (D (Az.z)" (Az.M((Az.N(Lz))z))
— (Az.M((Az.N(Lz))z)(Az.2)
— M((Az.N(Lz))(Az.z))
— M(N(L(Az.z)))
but, a parallel reduction of the internal f-redexes shortens this evaluation:
(M(N(D (Az.z)" L))) — (M(D (Az.z)" (Az.N(Lz)))
— (D (Az.z)" (Az.M(N(Lz))))
— (Az.M(N(Lz)))(Az.z)
— M(N(L(Az.z))).

The internal reductions must be aware of free variables, yet, since these variables stand for values, they
can be treated as such until their “contents” is needed for the function position of a proper application.
This has the advantage that the end-consumer of the value can immediately absorb the variable z and the
value for z arrives sooner at its final destination, e.g., seval can immediately begin with the evaluation
of Lz in the above example.

Given the acceptance of Eval as a parallel evaluator and the preceding arguments about possible
improvements, it seems that the really expensive part of our schema is the substitution algorithm. It
imposes a necessary communication among the processors. Put differently, this argument means that
the cost of evaluating imperative programs should be comparable to the cost of evaluating applicative
programs since for the latter communication costs also constitute the central obstacle to parallel evalu-
ations. In applicative languages this cost may be avoided by compiling programs into combinator form
where variables do not exist and substitution is unnecessary. Based on on-going research, we conjecture
that a similar compilation scheme can be developed for Az, and the \,-CS-calculus.

6. Summary

In the preceding sections we demonstrated how an intensionally sequential semantics for an imperative
higher-order language can be transformed into an extensionally equivalent, yet intensionally parallel
semantics. In Section 5 we discussed a series of improvements to this semantics. Based on this discussion,
we believe that if a successful parallelization for functional languages is possible, then the same strategy
will also lead to a successful parallelization for imperative programming languages.

Many of the issues raised in Section 5 call for a thorough analysis. In particular, the demand
for a combinator-based target system for imperative higher-order languages is a challenging problem.
Despite a lack of obvious answers to many questions, we hope that our analysis stimulates research in
programming languages for programmers.

Acknowledgement. Matthias Felleisen is supported by an IBM Graduate Research Fellowship. The
work is also supported in part by the NSF grants DCR 85 01277 and DCR 83 03325.



222

References

1.

10.

11.

12,

13.

14,
15.

16.
17.

18.
19.

20.

21.

BAckus, J. Can programming be liberated from the von Neumann style? A functional style and
its algebra of programs, Comm. ACM 21(8), 613-641.

. BARENDREGT, H.P. The Lambda Calculus: Its Syntaz and Semantics, North-Holland, Amsterdam,

1981.

. CLINGER, W.D., D.P. FRIEDMAN, M. WAND. A scheme for a higher-level semantic algebra, in

Algebraic Methods in Semanties, J. Reynolds, M. Nivat (Eds.), 1985, 237-250.

. DENNIS, J.B. Programming generality, parallelism and computer architectures, Information Pro-

cessing 68, 1969, 484—-492.

. FELLEISEN, M., D.P. FRIEDMAN, B. DUBA, J. MERRILL. Beyond continuations, Technical Report

No 216, Indiana University Computer Science Department, 1987.

. FELLEISEN, M., D.P. FRIEDMAN. Control operators, the SECD-machine, and the A-calculus,

Formal Description of Programming Concepts III, North-Holland, Amsterdam, 1986, to appear.

. FELLEISEN, M., D.P. FRIEDMAN. A calculus for assignments in higher-order languages, Proc. 1fth

ACM Symp. Principles of Programming Languages, 1987, 314-325.

. FELLEISEN, M. Reflections on Landin’s J-operator: a partly historical note, Computer Languages,

1987, to appear.

. FRIEDMAN, D.P., C.T. HAYNES, E. KOHLBECKER. Programming with continuations, in Program

Transformations and Programming Environments, P. Pepper (Ed.), Springer-Verlag, 1985, 263-274.

HAYNES, C.T., D.P. FRIEDMAN, M. WAND. Obtaining coroutines from continuations, Computer
Languages 11(3/4), 1986, 143-153.

HAvNES, C. T. Logic continuations, Proc. Third International Conf. Logic Programming, London,
Springer-Verlag, 1986, 671-685; also to appear in Journal of Logic Programming, 1987.

HENSON, M.C., R. TURNER. Completion semantics and interpreter generation, Proc. 9th ACM
Symp. Principles of Programming Languages, 1982, 242-254.

KOHLBECKER, E, M. WAND. Macro-by-example: deriving syntactic transformations from their
specifications, Proc. 1{th ACM Symp. Principles of Programming Languages, 1987, 77-85.

LANDIN, P.J. The next 700 programming languages, Comm. ACM 9(3), 1966, 157-166.

LANDIN, P.J. An abstract machine for designers of computing languages, Proc. IFIP Congress,
1965, 438-439.

LANDIN, P.J. The mechanical evaluation of expressions, Computer Journal 6(4), 1964, 308-320.

MAGO, G.A. A network of microprocessors to execute reduction languages, Int. Journal of Com-
puter and Information Sciences 8, 1979, 349-385; 435-471.

MASON, I. A. The Semantics of Destructive Lisp, Ph.D. dissertation, Stanford University, 1986.

PLOTKIN, G.D. A structural approach to operational semantics, Technical Report DAIMI FN-19,
Aarhus University, Computer Science Department, 1981.

PLOTKIN, G.D. Call-by-name, call-by-value, and the A-calculus, Theoretical Computer Science 1,
1975, 125-159.

REYNOLDS, J.C. Definitional interpreters for higher-order programming languages, Proc. ACM
Annual Conference, 1972, T17-740.



22.

23.

24.

25.

223

REYNOLDS, J.C. GEDANKEN—A simple typeless language based on the prihcipie of completeness
and the reference concept, Comm. ACM 13(5), 1970, 308-319.

SUSSMAN G.J., G. STEELE. Scheme: An interpreter for extended lambda calculus, Memo 349,
MIT AI-Lab, 1975.

TALCOTT, C. The Essence of Rum—A Theory of the Intensional and Eztensional Aspects of Lisp-
type Computation, Ph.D. dissertation, Stanford University, 1985,

WAND, M., D.P. FRIEDMAN. Compiling lambda-expressions using continuations and factorizations,
Computer Languages 3, 1978, 241-263.



Lecture Notes In
Computer Science

Edited by G. Goos and J. Hartmanis

259

-

PARLE
Parallel Architectures
and Languages Europe

Volume |l: Parallel Languages
Eindhoven, The Netherlands, June 15—19, 1987
Proceedings

Edited by
J.W. de Bakker, A.J. Nijman and P.C. Treleaven




