Parsing Phonetic Segments into Syllables

by
Georg Dorffner, Stan C. Kwasny,
and Robert F. Port

Computer Science Department
Indiana University
Bloomington, Indiana 47405

TECHNICAL REPORT NO. 217
Parsing Phonetic Segments into Syllables

by
G. Dorffner, S.C. Kwasny, & R.F. Port
March, 1987

Parsing Phonetic Segments into Syllables

Georg Dorﬁneri
Stan C. Kwasny

Computer Science Department
Indiana University
Bloomington, Indiana 47405

Robert F. Port

Linguistics Department
Indiana University
Bloomington, Indiana 47405

Keywords:

Speech Analysis
(Deterministic)Parsing

ABSTRACT

of parsing segments into syllables and syllables into words.

+ This work was supported in part by the National Science Foundation under grant No.

DCR-8518725.

t Current Address: Department of Medical Cybernetics & Artificial Intelligence, Univer-

sity of Vienna, Vienna, Austria.

f

Speech recognition poses many unique problems for Computational Linguis-
tics. We are examining an approach to parsing phonetic segments into syllable
structures using a deterministic parser. Our goals are to study the role of timing
information in speech recognition and to design structures appropriate for the task

1. Motivation

Our goal in this research is to examine the potential of automatic speech recognition using
symbolic phonetic descriptions of the input signal. We are assuming the existence of a low-level
system component that can detect segments in a speech input stream and label them using rela-
tively simple, but reliable classes of labels. The phonetic segments are to be assembled into words
in order to make the recognition process complete. We believe that successful speech recognition
begins with the ability to accurately identify syllables and words in the signal and thus are not yet
considering syntactic or other levels of parsing in this project.

A simple solution to the problem would be to provide a lexicon where each entry contains a
phonetic transcription (i.e., a string of phonetic symbols) of a word. The process of putting the
symbols of the input string together to form words would then be a vast search and pattern
matching, which would quickly become too costly and inefficient if the lexicon is to contain a large
number of entries.

Therefore we decided to try parsing the string of phonetic symbols into larger units, making
the lexical access easier. One type of unit which seems to be very appropriate for this purpose is
the syllable. In most cases, words can be clearly separated into syllable-like segments. Another
reason for choosing syllables is because of features like stress which are mostly bound to syllabic
structures. These factors, when detected, provide additional valuable information about word
identity.

As a result of these considerations we have built a parser which in a limited way scans the
input string of phonetic symbols and puts them together into syllables. We have found that a
deterministic parser similar to that of Marcus (1980) is most appropriate for this purpose. Indeed,
human recognition seems to happen without extensive backtracking, therefore suggesting that
recognition is possible in a deterministic framework.

In the following sections we describe the problems we have encountered while taking a deter-
ministic approach to our problem. Furthermore, we introduce several extensions to Marcus’ origi-
nal parser that we developed and that have helped us achieve success in the task of efficiently
finding words from a selected vocabulary in a stream of symbols.

2. The Peculiarities of Speech

Parsing has been known as a tool of analyzing symbolic strings and has been applied as such
mainly to “language’” inputs, that is, inputs that contain words of a (human or formal) language
as symbols. Trying to use parsing techniques to analyze symbols which represent a continuous
speech signal is essentially analogous to that. However, there are several differences in parsing
speech that must be faced.

First of all, detecting and labeling segments in a speech signal cannot always be done reli-
ably. That means, that once one chooses an alphabet of symbols which is detailed enough for the
desired purposes it cannot always be guaranteed that all incoming speech segments can be classified
accurately according to that alphabet. This is not only due to noise that inevitably accompanies
speech signals but also to inconsistencies and errors in the production of the utterance. We there-
fore had to find a way of dealing with the input string even when we cannot be sure that all sym-
bols can be described with the same degree of detail.

What goes along with the first observation is the fact that not every single segment in a sym-
bolic stream representing speech is necessarily semantically significant and important for the out-
come of the recognition task. The process can very well be successful without knowing about all
the details of every symbol, as the signal is redundant enough to allow compensation. For this
reason, the parser should not have to wait until all information comes in, but rather be able to
continue analysis with whatever information there is.

-2.

Parsing speech involves dealing with many more ambiguities than parsing language, espe-
cially ambiguities in syllable boundaries. Reasons for this include the smaller depth of the syntac-
tic structure (we can only distinguish maybe 3 or 4 levels, like syllable, onset/coda,
consonant/vowel, etc.) and the fact that the symbols used are not as distinct in function as are
words due to their syntactic category. For example, almost every consonant segment can begin
either an onset or a coda of a syllable, therefore not giving as much information as, say, a deter-
miner does about the substructure (NP) it belongs to.

Finally, there are a variety of other sources of information besides just the symbols which
can help in making the recognition task easier. One of the most important sources, as we have
shown in many experiments (Port, et al., 1986; Dorffner, et al, 1986; Reilly & Port, 1985), is tim-
ing, that is the relation of durations of different segments. Stress, although strongly related to
timing, would be another one. A parser for speech should make use of this additional information.

3. Extensions to the Deterministic Parser

3.1. Multiple Structure Levels, Label Hierarchies and Monotonistic Structure Building

In an earlier paper (Dorffner, Kwasny, Port, 1986) we have introduced two major expansions
of Marcus’s original wait-and-see parser (WASP). We have augmented the parser to allow for
parallel construction of several structures inherent to the input, like syntax, semantics, intonation,
referential structure, etc. Applied to speech the parser is able to account for the multiple struc-
tural levels inherent in speech. The parallel building process can be utilized to coordinate informa-
tion sources in successfully completing a parse occassionally even with incomplete input.

To achieve the flexibility of the parser toward incomplete input strings (of the sort described
above) we introduced a hierarchy of labels rather than one fixed alphabet of symbols. One possible
hierarchy is illustrated in Figure 1.

More Confidence C Vocalic
../'”‘:. ; ;
stop fric nasal Vo glide
\ SN / A .
l \ A N AR A
closure (+burst) szf{ 1 m iao yw
Less Confidence tc pcl

Figure 1: Hierarchy of Labels

The parser is able to accept a label at any position in the hierarchy. This depends of course on the
degree of detail confidently known about the symbol. Additional detail may be added if it should
be possible at a later point in the parse. This means that only labels known with high enough
confidence get attached to nodes (syllables) thus never requiring the parser to detach an element or
throw away any node. This is consistent with the deterministic nature of the parser. Further-
more, as an expansion to the original WASP, our parser may add information, thereby only
increasing information on the nodestack but never changing i1t. This is what we call ““monotonistic
structure building”. More details about these features can be found in the earlier paper.

3.2. Making Use of Timing Information

As experiments we have conducted in our lab have shown (Port, et al., 1986), there is a great
deal of information about word and syllable content in segmental durations and their relations to
each other. These relations are not simple ones, as earlier attempts of describing them seemed to

-3

suggest (Port, 1981). In other words, computing simple ratios of, for example, vowel to consonant
length, is not sufficient to extract all the information contained in timing measures.

This lead us to the idea of using a statistical classification technique, called discriminant
analysis (DA), applied to a set of durational measures to predict certain properties of the speech
signal (Klecka, 1980). In our task of syllable parsing this technique can particularly be helpful in
predicting syllable boundaries. To prove this hypothesis we designed a database, called (after one
of its word entries) the “Aztec”” database. It contains tokens of sequences that all match one gen-
eral pattern of labels. We assembled the set of sequences so that it contained all possible combina-
tions of phonetic labels, syllable boundaries and stress structure. The phonetic template matched
by all sequences is:

(1) [vow] | [fric] | [stop] | [vow]
B, B, B4

This is one of many possible templates a parser might be faced with while trying to extract syll-
ables out of a string of symbols. That is, the parser has already parsed everything which comes
before the first vowel (which is recognized as being the center of a syllable) and now has to decide
where to place the boundary between the current syllable and the following one.

Excluding phonological restrictions like aspiration of a stop in syllable-initial position, there
are three possibilities for the syllable boundary in this template, depicted as B, B, and B;. We
recorded all the sequences using several speakers and hand-measured the durations of the segments
(plus some additional measures like duration of adjacent consonants, voicing stretches, etc.). Then
we analyzed the timing data using discriminant analysis in an attempt to predict the syllable
boundary (B;, By or B3). We used some of the tokens for training, i.e. computing so-called
discriminant functions, and all of the tokens for the prediction.

The results show that in many cases predictions can be made with very high confidence,
therefore suggesting that a parser can make good use of such timing information. That means
that the parser can have rules that call the discriminant function corresponding to the label tem-
plate under consideration and use the results for a decision about which symbols to attach to the
coda of one syllable and which to the onset of the next. These rules most appropriately have a
condition that asks if the prediction of one of the boundaries is above a certain threshold (e.g. 90
or 95%). If so, then the rule fires, causing one syllabic structure to be completed and another to be
initiated.

However, this will work only in some of the cases. Very often, the probabilities will not
reach the confidence threshold. To avoid too large an error rate, we do not want the parser com-
mitting to a hypothesis with a low confidence level. Therefore, the parser attempts to increase the
confidence levels returned by the discriminant function.

In the example using (1) we assumed that there exists a discriminant function that has been
trained on a large corpus of data matching a general template. This function takes the temporal
properties of the elements in the template and predicts the position of the syllable boundary.
However, by doing this we have not made use of information about other features of the signal,
like the identity of the elements. One way of incorporating that information would be to provide
a discriminant function for more specific templates, as well. For example, with the following more
specific template pattern:

(2) [vow] [s] [stop] [vow]

one would expect the confidences of predictions using DA to rise, because the variation due to the
label that had been specified was ruled out. The results of the “Astec” experiments have shown

-4-

that this is in fact the case, but the probabilities in this particular case improve only slightly.

We have also taken another approach in cases where the confidences were not above the
threshold. After discovering that the confidences p(B,), p(Bj) and p(Bj) for a sequence like (1) are
not high enough, we make an assumption that (1) had a particular syllable boundary, for example
B,. We next use another discriminant function that has been trained on only Bj-cases to predict
something else, for example the fricative identity. If there are only two possible fricatives (as in
the “Astec” database - [s| and [z]), we get the two conditional probabilities, p(s “" B;) and p(z "I
B,). Similarly, we can get p(s | B.), p(s I By), p(z] Bs) and p(z “I" Bs). Analogously in the
next step, we suppose that (1) does have an [s| (independently from what we might know about (1)
in reality). We then use a discriminant function that was trained only on templates that contain
an [s], this time predicting the syllable boundary again. Thus, we get more conditional probabili-
ties: p(B, B] s), (B, s s), ete. Using Bayesian probability theory, we can then combine all the
probabilities, according to the formula:

#(B) = p(Bils)p(s)+p(By|2)p(2)
=p(B1ls)p(s | B)p(By)+p(s | B)p(Bo)+p (s | By)p (Ba))+
p(B1l2)[p(z | By)p(B))+p (2 | Bo)p (Bo)+p (2 | By (By)]

analogously for p(B;) and p(Bjz). The probabilities p(B;), p(By), p(Bs) on the right hand side are
the original ones, which we had after the first step of the run. Those on the left side (§ (B;), etc.)
will be new values, which often are higher for the correct prediction and lower for the other ones.

By doing this, we have tested if certain predictions (here: syllable boundary and fricative
identity) are consistent with each other. The chain of reasoning, summarized, goes something like
this: If the boundary is B, (or Bj or Bj), then it should predict the fricative identity with a high
probability, and if the fric is [s] (or [z]), it should in turn predict the syllable boundary with a high
probability. Thus, the overall confidence should go up. If, on the other hand, the boundary is not
B; (or By or Bg), then the predictions of the fricative identity should be much worse, therefore
decreasing the confidence.

These ideas closely resemble the mechanism of mutual excitation (or inhibition) of partial
hypotheses that are consistent (or inconsistent, respectively) with each other, as is done in many
connectionist networks. For example, in a recognition network for visual representation of words
(like McClelland & Rumelhart, 1981) a letter unit excites all the word units that contain the letter,
while, in turn, all word units excite all the letters they contain. Similarly, in the case of applying
discriminant analysis, a hypothesis of a syllable boundary might “excite’” other properties, like the
identity of the fricative, which in turn improves the likelihood of the boundary (if they are con-
sistent).

3.3. Lexical Access

As mentioned earlier, the system is most efficient if lexical access can be postponed until the
end of the parse when all the syllables are known. However, in many cases the parse cannot be
done merely by using techniques just described. If we restrict it to a few trials, lexical access can
also be helpful in finding syllable boundaries. The restriction we have to make is that we use lexi-
cal access only while considering one of the consonant clusters between two vowels (like in the tem-
plate above), because then the parser only has to make guesses about how long the coda of the
current syllable is, and lookups in the lexicon can be done with what has already been parsed plus
a short sequence from the buffer. If we wanted to apply lexical access stretching over sequences
beyond the next vowel, we would have to make guesses about two boundaries, which very quickly

increases the number of trials.

As a result of that assumption, lexical access is only of great help during syllable parsing if
the consonant cluster that contains the ambiguity contains a word boundary, rather than only a
syllable boundary. That does not mean we never allow lexical access beyond the limit just dis-
cussed, but we want to postpone it until as late as possible (in fact at some point, if all other
attempts fail, the parser will have to do it).

3.4. Local Parallelism

If all the techniques described above fail, there might still be a more efficient way to continue
parsing before attempting a less constrained lexical access. Normally, the deterministic scheme of a
WASP does not allow for any backtracking process. That means that everything that is attached
to the nodestack has to stay there. There is no mechanism for a temporary solution which might
be revised later. All the facilities and techniques we added to the parser and that we have
described so far stay within this framework.

However, in parsing speech it might seem appropriate to incorporate backtracking to a cer-
tain, very restricted extent. It is not very likely that human recognition takes place deterministi-
cally down to the microscopic level, i.e., to the detail of recognizing phonetic elements. It is very
much conceivable that - speaking in the symbolic metaphor of mind - temporarily, over a short
period of time, several hypotheses can co-exist, from which, however, one gets sorted out very soon.

Applied to a deterministic parser this could mean the introduction of a backtracking scheme
that is restricted to be acting only locally, without allowing many branching points of hypotheses
or long stretches over which backtracking can take place. We refer to this idea as “local parallel-
ism” (or “local backtracking”!), as globally the parser would still act deterministically in Marcus’s
sense. Therefore, this idea is not counter Marcus’ original motivation. Marcus himself tried to
solve local indeterminism by providing the buffer which constitutes a restricted lookahead. In our
case, additional facilities - like local parallelism - seem to be necessary to avoid using the buffer ad
absurdum, that is, as an unrestricted lookahead.

There are several ways of achieving local parallelism:

® Allowing only one branching point per time. If another branching point is about to come up,
the decision about the old one already must have been made.

° Restricting multiple hypotheses to one or two nodes in the stack. This is not very restrictive
during syllable parsing, because, at least in our implementation, there are rarely more than
two nodes on the stack at any one time (on syllable level).

° Building a data structure between buffer and node stack for parallelism, which, like the buffer
itself, is restricted in size.

We have implemented the first idea. That is, we allow backtracking, but only once. At a
point of multiple hypotheses about syllable boundaries the current status of the parse (i.e. nodes-
tack, buffer, input string) is stored under a global variable. Also stored is a rule packet with which
the parse is to be continued in case the current status is recovered. In such cases, the first of the
hypotheses is taken to be true and the parse is continued. If at one of the next syllable boundaries
lexical access with the part that has been parsed already is successful then the hypothesis was the
correct one and a global flag is set to indicate that another branching point may be handled. If
the parse fails at one of the next potential syllable boundaries then it is assumed that the wrong
hypothesis has been taken. The old status is recovered and the parse continued with the stored
rule packet (which, in the normal case, pursues the second hypothesis), and so forth.

I Backtracking can be viewed as pseudo-parallelism of competing hypotheses.

6.

Also, the flag could be set automatically after three or four consonant clusters, restricting
backtracking to the length of one or two words.

4. The Parsing Process

The process of parsing a continuous string of phonetic symbols into syllables can be described
as follows: The center of syllables are vowels or vocalic elements. The consonant clusters between
those vowels have to be parsed into the coda of the first syllable (if any) and the onset of the next
one (if any). Therefore the main problem of the parsing mechanism is to find the boundary
between coda and onset in the consonant clusters.

Among all the ways of providing information that helps in decision making about syllable
boundaries, optimally there is a certain order which reflects itself in priorities and order of how
rules are applied: '

1. Phonological Rules
2. Discriminant Analysis

a. Direct

b. Increasing Confidence
3. Lexical Access Rules
4. Local Parallelism

5. Extensive Lexical Access

In many cases phonological rules alone help to decide. After that we try using timing information,
provided there is a discriminant function for the template. Then restricted lexical access should
take place, because in many cases that can help a lot. Finally, before extensive lexical access has
to be employed, the mechanism of local parallelism tries to find a solution.

5. Details about the Parser

5.1. Extensions to a Wait-And-See Parser (WASP)

The parser we have implemented includes a series of extensions to the original WASP in
order to accomplish all the facilities we have been describing in this paper.

To include the durations of the segments in the input string, we added a second buffer (as
well as a second input string) that contains timing measures. Both buffers are acted upon by the
interpreter in parallel so that at any point one position in the symbol buffer corresponds to one
position in the timing buffer (its duration). The introduction of the second buffer is necessary
because the durations of the segments are independent of their symbolic description and thus can-
not be simply a feature attached to the symbol.

As already described in Dorfiner, Kwasny, Port (1986) we extended the rules by dividing the
left hand sides (conditions) into two parts. The conditions in the first parts all correspond to a
buffer position (in the right order) and may trigger attention shifting rules. The conditions in the
second part can be arbitrary lisp functions (preferably one of the provided standard functions), as
long as they return a truth value. This introduces the possibility of having additional conditions
like sending a component to a frame representing one of the multiple structures (and checking if it
can be attached).

Nodes in our parser cannot only bear features but can also have additional data like a dura-
tion or a result from discriminant analysis (which has to be stored in order to be evaluated by a
rule) associated to them.

=T

Finally, a variety of standard actions have been added (to “old” standard actions like
attaching, creating nodes, etc.) to facilitate tools like discriminant analysis, lexical access and local
parallelism.

5.2. Attention Shifting Rules

Our original idea was to capture the levels of the syntactic structure (syllable - onset/coda -
consonant/vowel) with attention shifting (AS) rules. While this works very well with parsing con-
sonants (like ’stop’) as part of smaller segments (like ’closure’ and ’burst’), implementing ’onset’
and ’coda’ with the help of attention shifting rules bears some problems. In Marcus’s original
paradigm, attention shifting (AS) rules trigger deterministically and it is assumed that once the
interpreter steps down a level by firing an AS rule, the parse at the lower level succeeds and depo-
sits its result into the buffer. For example, if the presence of a determiner like “the” causes an AS
rule to fire in a syntactic parser looking for an NP, then the parse can only be successful if the
determiner is really the beginning of an NP, otherwise the parser halts. This goes along with the
determinism assumption that once the parser has built some substructure, it can never tear it
down again.

However, when parsing syllables it is not as clear what is the beginning of an onset or a
coda, because nearly any consonant label can start either of them. Therefore a rule of the form

((feature ’stop 1)
(feature ’onset 2)

—

(attach-to-node 1))

will assume that the parse of the onset in the second buffer position is successful. Otherwise we
would have to backtrack and to detach some elements we already attached to the onset (this, of
course, is counter the WASP idea).

We could get around this problem by attaching all elements of an onset or a coda at once.
Then we would have only two options: Parsing of the substructure succeeds and we attach the ele-
ments, or parsing fails, we do not attach anything and therefore can throw away the node that we
temporarily created.

But even if we solve the first problem, there are more. AS rules, as Marcus defined them, fire
every time they are triggered and, after the parse on the lower level, return the interpreter to the
previous level. There, all active rules are attempted again. That means, that if a rule asks for an
onset in one of its conditions

((feature ’onset 1)
—

")

and parsing of that onset is not successful (something that never occurs with NPs in Marcus’s ori-
ginal parser, as mentioned above), then the rule will try to trigger an AS rule again, unless some
sort of flag is set that this rule already lead to a parse that failed. In other words, the conditions of
a rule do NOT depend on the success of an attention shifting process in the original implementa-
tion. We could get around this problem by making a condition dependent on the success of atten-
tion shifting and parsing at the lower level. By doing this, however, we would drastically change
the original mechanism of the interpreter.

But there is yet another problem with using AS rules for onsets and codas. The deterministic
mechanism would not allow us to detect ambiguities in syllable boundaries, because the first suc-
cessful parse of a consonant cluster into coda and onset would be taken (if no other decision
mechanism like lexical access is employed). Discriminant analysis as it is done for the “Aztec’” data

.-

would never have a chance to help. For example,

((feature ’fric 1)
(feature ’onset 2)
=
")

could be a rule for parsing a coda that consists of only a fricative. While parsing a phonetic
representation of the utterance “the sport”, for example, this rule can fire and parse the [s] as coda
of the first syllable. This is due to the fact that according to phonological rules alone, there is more
than one place for the syllable boundaries (this is what the “Aztec” database is all about). This
ambiguity (according to phonological rules) is what we would like to detect so that the parser can
employ techniques like discriminant analysis. The deterministic nature of the attention shifting
mechanism, however, as was just illustrated, would leave the ambiguity unresolved.

For all these reasons, parsing of onsets and codas should be done on one level without the use
of AS rules. This might be less elegant but seems to be the only way to avoid all the problems dis-
cussed above. The only places where parsing an onset or a coda with an AS rule can be kept in the
system is at the beginning of the input string (first onset) and at the end thereof (last coda).

It should be mentioned that using AS rules to account for the fact that the input might con-
tain labels of different detail and confidence (as part of monotonistic structure building, described
earlier) can still be done without encountering similar problems. The only restriction is that
“onset’’ and ‘“‘coda’ cannot be part of the label hierarchy.

6. Conclusions

We see potential in the method for parsing phonetic segments into syllables described here.
To date, we have only experimented with data in the Astec database, but more experimentation is
planned. One recognized drawback to the method is the possibility that an enormous quantity of
data will be required to provide sufficient information to allow us to generate good discriminant
analysis equations. Our hope is that the equations will tend to cluster into groups and that several
discriminations can be achieved by a single equation.

Acknowledgements

We are grateful to Sven Anderson for his dedicated work in setting up the Aztec database.
We also appreciate contributions to this work by Daniel Maki.

References

Dorffner, Georg, Stan C. Kwasny, and Robert Port (1986) “Deterministic Parsing of Multiply-
Structured Inputs,” Research in Phonetics and Computational Linguistics, Report No.”5,
105-122, Department of Linguistics and Computer Science, Inidana University, Bloomington,
IN, July, 1986.

Dorflner, Georg, Daniel Maki, William Reilly, and Robert Port (1986) “Timing as Speaker
Independent Information for Speech Recognition,” Research in Phonetics and Computational
Linguistics, Report No.”5, 91-104, Department of Linguistics and Computer Science, Inidana
University, Bloomington, IN, July, 1986.

Klecka, William (1980) Discriminant Analysis, Sage Publications, Beverley Hills, CA, 1980.

Marcus, M. P. (1980) A Theory of Syntactic Recognition for Natural Language, MIT Press, Cam-
bridge, MA, 1980.

McClelland, J.L., and D.E. Rumelhart (1981) “An Interactive Activation Model of Context Effects
in Letter Perception: Part 1, An Account of Basic Findings,” Psychological Review, 88, 375-
407.

Port, Robert, William Reilly, and Daniel Maki (1986), “Using Timing Information to Discriminate
Words,” Research in Phonetics and Computational Linguistics, Report No.”5, 73-90, Depart-
ment of Linguistics and Computer Science, Inidana University, Bloomington, IN, July, 1986.
Also appearing as: “Using Global Timing to Discriminate Words,” (in press), Journal of the
Acoustic Society of America.

Port, Robert F. (1981) ‘“Linguistic Timing Factors in Combination,” Journal of the Acoustic
Society of America 69, 262-274.

Reilly W., and R. Port (1985) “Use of Timing to Discriminate Words,”” Journal of Acoustic Society
of America, 78, S21, 1985.

