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Abstract

The simplification of the extended A-calculus for program continuations leads to a new, powerful
programming language control construct. Conventional continuation semantics turns out to be in-
adequate for a denotational definition. We introduce the concept of compositional continuation
functions. Based on this solution, we conjecture that a denotational semantics can entirely rely on
the domain of function values for the modelling of control constructs.

1. Continuations, Calculi, and Denotational Semantics

First-class program continuations are powerful additions to functional program-
ming languages. They abstract a by-hand simulation of continuations [12] in a
reliable way [10] and provide non-functional control devices like function exits and
exception handlers. A major obstacle to the use of continuations has been the lack
of a purely symbolic reasoning system for extended functional programming lan-
guages. The A-calculus provides such a system for functional programs, eliminating
extraneous concepts from program manipulations, for example, environments or
interpreter continuations. Recently we have shown [2, 3] that a calculus is deriv-
able for extended A-calculus-based programming languages. This development has
led to a fundamentally different way of perceiving interpreter continuations and
continuation-accessing operations.

Convention. Functions in a denotational semantics that model the rest of the
computation are called continuation functions or, when we think of the semantics as
an interpreter, interperter continuations. When continuation functions are accessed
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via programming facilities and brought under control of a program, they become
continuation objects or just continuations. End

As our starting point we had taken the functional subset of Scheme extended
with the call-with-current-continuation (abbreviated call/cc) operator [6]. When
applied to a function of one argument, call/cc encodes the current interpreter con-
tinuation into a function-like object, a continuation object, passes this object to its
argument, and immediately installs the interpreter continuation. Upon application,
a continuation object discards the current interpreter continuation and reinstalls
the encapsulated one, so that unlike a true function, a continuation does not return
a result to the point of application.

Although this strategy is efficient because of the de facto programming style
with call/cc, it complicates the axioms for the extended A-calculus. A first vari-
ation on call/cc, called C [2, 3|, delegates the responsibility of installing the con-
tinuation to the program. It is equivalent to call/cc, but reduces the number of
additional axioms from six to three and the remaining three are shortened. A
further investigation reveals that another simplification of the axioms is possible
if the continuation-accessing operation produces a truly funectional encoding of the
remaining computation. This new operator ¥ can syntactically model € and call/cc
and it can express programs that are not conceivable in the original call/cc-language.
Convention. Functional encodings of interpreter continuations under the control of
a program are called functional continuation objects or just functional continuations.
Their semantic counterparts are compositional continuation functions. End

At first glance, the concept of a continuation object that behaves like a function
seems counterintuitive, but the simplification of the calculus is a significant argu-
ment in its favor. Programming language calculi are closer to the programmer’s
understanding of a language, and the simpler the calculus description for a specific
programming facility, the easier it is to reason with the underlying concept. An
argument against functional continuation objects is that the obvious attempt at
a construction of a denotational continuation semantics fails. This, however, is a
major inadequacy of continuation functions: the functional composition of two con-
tinuation functions does not yield a continuation function. A solution to the problem
is therefore a denotational semantics with compositional continuation functions. We
arrive at such a semantics by modifying the original derivation of the C-).-calculus
from its denotational semantics in an appropriate manner for 7. The crucial idea
in the development is the concept of a functional abstraction of a continuation.
Roughly speaking, a functional abstraction of a continuation is the semantic image
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of a syntactic abstraction that performs the same actions as the respective contin-
uation function, but upon completion resumes the current continuation. Since 7
subsumes € and C in turn is capable of explaining all traditional control facilities as
syntactic abstractions, we conjecture that the domain of functional values suffices
to model programming language control.

The main body of the paper is devoted to a presentation of the C-calculus, its
simplification to an F-calculus, and the derivation of the denotational semantics for
the latter. In the final section we summarize our work and address its relevance to
language design. We assume some familiarity with denotational semantics [9] and
Barendregt’s notation and terminology [1] for the syntactic aspects of the A-calculus.

2. A Variation on the Calculus for ¢
The core of our programming language is an applicative-order concretization of the
A-calculus. The term set A is defined inductively over a set of variables Var:

Li=z|Ax.M| MN.

We use the symbols z,... to range over Var but also as if they were elements of
the set. L, M, ... stand for A-terms.! Variables and \-abstractions are collectively
referred to as (syntactic) values.

The semantics of our programming language is defined by a denotational contin-
uation semantics. Thus we need domains for the (semantic) values of abstractions,
Val, continuation functions, Cont, and environments, Enuv:

p € Env= Var — Val (Environments)
m,n,v € Val = Val — Cont — Val (Function Values)
Kk € Cont = Val — Val (Continuation Functions)

The semantic function is

€& :A — Env— Cont — Val

£1e] = Mo.x{ola]) (€ vax)
E[Mz.M] = dpr.c(Mv.E [M]plz « v]) (€.lam)
E[MN] = pk.E [M]p(Am.E [N]p(An.mnk)) (€.app)

1 We consider A-terms equal if they are the same modulo the renaming of bound variables; we assume that

free and bound variables never interfere [1].

3
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Plotkin [5] has shown that the by-value variation of the A-calculus is the correct
medium for reasoning about programs in this language. Its basic notion of reduction
is the B-value rule:

(Az.M)N e, Mz := N] if N is a value. (8y)

This notion of reduction can be extended to a congruence relation in the usual way
and we write M =g N if M is convertible to N via some number of §,-steps.
The M,-calculus is correct with respect to the above denotational semantics in the
following sense [5]:
e the standard reduction order of the A,-calculus produces the same program
results as [an operational interpretation of] the denotational definition, and
o two terms that are equal under =3, are operationally indistinguishable by an
interpreter for £, that is, the interpreter produces congruent answers for all
computational contexts.

The principal extensions of our syntax are
Lizs=CM and Lin=3F M.

C refers to our modified call/cc, F to the version that produces functional continu-
ation objects. The denotational semantics of C is defined by extending £ with

E[CM] = Ipk.E [M]p(Am.m(Avk'.kv)I). (£€)

The derivation of a calculus proceeds in two major steps. First, based on well-
known transformations [7, 11], we reinterpret the denotational semantics as an
abstract machine. Second, we eliminate the environment and continuation compo-
nent from this machine [2]. This yields a program rewriting system, the transition
rules of which can be transformed into notions of reduction for a calculus.

The resulting calculus for € differs from the traditional A,-calculus in that it
has two classes of term relations. First, there are the usual notions of reduction:

(CM)N — C(Ak.M(Af.(CAd.(K(fN))))) (CL)

M(CN) — C(Ak.N(Av.(CAd.(k(Mv))))) where M is a value  (Cg)

But, in order to imitate the machine correctly, the calculus includes a relation that

is only applicable to entire terms. We refer to this kind of relation as computation
and denote it with p instead of the customary —:

CM > M(\z.(CAd.z)). (Cr)
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If two terms M and N are equal according to (8,), (C1), (Cr), or (Cr), and
any arbitrary mixture thereof, we write M =, N. We refer to the calculus as A.-
calculus. The calculus is Church-Rossser and has a standard reduction order. It
is correct with respect to the denotational semantics in the above sense after some
appropriate adaptations.

The additional reductions and computations of the A.-calculus are rather com-
plex. Each right-hand side of the relation schemata contains a subterm of the form
C(Ad.M) where d is not free in M. When evaluated, these subterms cause the re-
duction context to be collected and thrown away, acting like an abort operation.
These aborts occur at the beginning of a continuation object invocation and thus
achieve the proper discontinuous effect of continuation objects according to (€.C).

A brief investigation shows that a removal of these abort operations preserves
an intact calculus. This new calculus has the same properties, except that, because
we did not base it on a denotational semantics, we cannot claim its correctness with
respect to such a semantics. The term relations are:

FMv> M(\z.z) (F7)
(FM)N — F(Me.M(Af.k(fN))) (F1)
M(FN) —» F(Ak.N(\v.k(Mv))) where M is a value (Fr)

According to these equations, ¥ constructs a functional abstraction from the context
of an FM-expression. Aborts are still equivalent to #(Ad.__) and thus, C can be
defined as a syntactic abstraction:

CM = FOk.M(\w.F(\d.kv))).

To prove the correctness of this implementation without a denotational semantics
for 7, we must show that the syntactic equivalent of C M satisfies the axioms of C in
the #-A.-calculus. More precisely, the syntactic expansion of each of the two sides
of the C-term relations must be operationally indistinguishable in the #-),-calculus.
Because of the lack of a semantics for ¥, we hereby use the standard reduction order
of the calculus as an operational semantics. Operationally indistinguishable then
means that the standard reduction order for the two expressions leads to equivalent
results. We call this operational satisfaction of the axioms:

Proposition 2.1. F(Ak.M(Xv.7(\d.kv))) operationally satisfies the reduction and
computation relations of CM in the ¥-A,-calculus.

It is impossible to model F with C by a syntactic equivalence. There is no
semantically equivalent expression to #M that is obtained without knowledge of

5
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the structure of M and that otherwise is solely based on C, M-abstraction, and
application. This is due to the abortive effect of continuation objects. If at any time
during the simulation of a functional continuation a continuation object were used,
it would discard the rest of the computation and hence, violate the semantics for 7.
On the other hand, the functionality of the continuation, i.e., the program context
of #M, is needed and can only be acquired through a C-application. Therefore,
¥ is not a syntactic variation on C. If we admit a restructuring of M, then an
implementation strategy could be based on a continuation-passing-like programming
style. This question leads us to the problem of constructing a denotational semantics
for 7.

The obvious denotational definition for ¥ seems to be a modification to (£.C)
such that the two continuations in the continuation object are functionally composed
into a new continuation:

E[7 M] = A€ [M]p(Am.m{dvk'.(k' o k)v)I),

where (k' o k)v = k'(kv). However, this is wrong. Continuation functions must
always encompass the entire remaining computation. In the expression &' o k this
no longer holds for ¥ as computations in there are not aware of x'. Thus, if some
program piece in K grabs a continuation, it only has access to the continuation-
information in k and the rest in &' is lost.

This problem is inherent in continuation semantics. The use of continuation
functions in a denotational semantics is restricted syntactically. If a continuation
function is applied to a value, then this application must happen at the root of the
term. In programming jargon, the call must be tail-recursive. This guarantees that
the continuation function really represents the entire rest of the computation. The
above equation violates this restriction. When the modified continuation object is
used, the kv application is embedded in the application of k' to a value. In the next
two sections we demonstrate how to construct a continuation-free semantics for ¥,
thus avoiding the above pitfall.

3. A Denotational Semantics for 7

In our previous work [2] we derived the C-),-calculus from a denotational-style
machine for C-A. The transition function is displayed in Figure 1. The initial
configuration for the evaluation of a program M is (M, @, (stop)); the machine stops
when it reaches the state (1,0, ((stop) ret V')) for some value V. Implementing 7
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Figure 1: The CEK-transition function
(z,p,6) ¥ (1,0, (sret p(z))) (1)
(Az.M, p, k) = (1,0, (cret (Az.M, p))) (2)
(MN, p, k) 25 (M, p, (xarg N p)) (3)
(1,0, ((carg N p) ret F)) 25 (N, p, (s fun F)) (4)
(1,0, ((xfun (\z.M, p)) ret V)) 25 (M, plz := V], ) (5)
(CM, p,k) €5 (M, ple = (p, k)], (stop)),
¢ & Dom(p) (6)
(1,0, ((xfun (p, ko)) ret V)) 25 (4,0, (ko ret V)) (7)

requires a modification of the transitions that specify the behavior of continuations.
One solution is changing (CEK7) so that the invoked continuation is concatenated
to the current one:

(1,0, ((xfun (p, ko)) ret V)) 25 (1,0, (x ® ko ret V)) (CEK#7).

The result of k® Ky is like ko with the (stop)-continuation replaced by k. Although
this machine is a correct implementation of the #-\.-calculus, this construction does
not lead to a denotational semantics. Unlike continuation data structures in the
CEK-machine, a continuation function in denotational semantics is opaque. There
is no algorithm comparable to ® that produces the correct combination of two
continuation functions.

Since we know that in the #-).-calculus F constructs a functional abstraction
of the current continuation, a second implementation strategy is feasible. Instead
of passing the F-argument an encoded continuation structure and reinterpreting

the application of those, the CEK z-machine can supply a machine closure? to the
F-argument. This closure must simulate the A-abstraction in the #-).-calculus that

corresponds to the current continuation. The necessary and guiding condition for

s A machine closure is the operational value of an abstraction.

7
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the construction of the new machine is that the modified CEK z-machine and the
original one produce congruent values.

A transliteration of this second operational definition leads to a natural deno-
tational specification of ¥:

E[7M] = dpk.€ [M]p(Am.m~I), (£.-7)

where + stands for a function value which corresponds to the continuation . In-
tuitively, correspondence means, that -y, when invoked, acts like x but resumes the
current continuation upon completion. This latter condition holds by definition for
true images of A-abstractions. Given that £ maps abstractions to function values,
we can formalize the notion of correspondence:

Definition 3.1. A function value «y corresponds to a continuation x, 7y ~ &, if there
exists a closed A-abstraction ¢ such that k'y = € [c]px’ for all ', p and yI = kv for
all v. We refer to « as a functional abstraction of the continuation «.

This definition precludes the trivial correspondence Azk'.kz ~ k.

The definition of ~ is implicit. In order to reconstruct the corresponding func-
tional abstraction v for a continuation function k, we need to know how the con-
tinuation function was built. Fortunately, there are only three possible ways to
construct a continuation in the semantics of our base language:

Az.z, Im.E[N]p(An.mnk), and An.mnk,

where the free k is a continuation and m is some value. If we let ¢ be an abstraction
that denotes a function value « and « corresponds to k, then the three pre-images

Az.z, Am.c(mN), and An.c(mn),

respectively, define the corresponding function values. In other words, we can now
use € to find the right functional abstractions of the continuations:
Proposition 3.2. If ¢ denotes y and ¥ ~ k, then for the appropriate p we have
E[Az.2]pl = Azk' k'z ~ Az
E[Mm.c(mN)]pl = dmk'.E [N]p(Am.mn(Az.yzk")~ dm.E [N]p(An.mnk)

& [An.c(mn)]pl = Ik’ .mn(Az.yzK') ~ An.mnk

With this proposition we have explicated the relationship between functional
abstractions and continuations, but the definition £.7 is still implicit because of the
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opaqueness of continuation functions. The crucial idea is to replace confinuations
by a pair consisting of the old-style continuation function and its corresponding
functional abstraction. The induced adaptation of the notion of correspondence
is negligible since the evaulation of abstractions ignores the additional component.
The necessary change to Val is

Val = Val — Cont X Val — Val.
We call the new semantic function €.s and define it as:

€y : A— Env—s Cont X Val — Val

& ot [2] = Mprry.s(p[2]) (€ o -var)
€ s [Dz. M] = Apry.6(Mv.€ f[M]p[z — v]) (€ ¢f Jam)
and
€ o [(MN)] = Apr.€ o [Am.c(mN)]plc « ] (€ os-2pp)
(Am-€ cf MJ]]P

(Am.€ ¢ [An.c(mn)]plc + ][m «— m]
(A€ s [N1o(An.mniy) 1) *) ym) *.

In the last clause, we first build the functional abstractions of the respective con-
tinuations. Since this maps abstractions to values, the additional applications of
€ . ignore their corresponding functional abstractions. We use * to indicate this.
Furthermore, because these applications yield values, they may be eliminated by
explicitly computing the results. The final version of (€ ..app) thus becomes:

€ [MN] = Mprry.€ s [M]p (€ s-app)
(Ama ef [N]]P(Bcontm'fm) (Bva!'.fm))
(Am!ﬁ")f'-fcf ﬂN]p(Bcont (Bcont’c"f"Y)(Bva!'}'"f)m) (Bval (Bval']'r')')m))'

The two combinators B,y and B,,,; compose function values and continuations:

(Bua!fg) = /\mm'f-gx(Bcont’C'Tf) (Bval'}’f)s
(Bcoﬁtﬁ;'ff) = Az. fzry.

We therefore call functional abstractions of continuations compositional continua-
tion functions.
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Let 1 stand for the compositional continuation function that corresponds to the
intial continuation I(= Az.z). Then in the definition for ¥ we can simply shift the
compositional continuation function to the program:

€ o [7 M] = Mpkry.€ o [M]p(Am.mnyID) dm.myy). © (EaF)

Now we can state and prove our central correctness theorem:

Theorem 3.3. The F-A.-calculus is correct with respect to the denotational se-
mantics of the ¥-A-language.

Of course, we can also translate the defining clause for C into the new style:
& . [CM] = Mprry.€ o [M]p(Am.m(Azk'y k2)IT) Am.m(Azk'y kx)).  (E.C)
As an immediate consequence Proposition 2.1 can be restated and reproved:

Corollary 3.4. For all p, k, and 7,
& s [F M. M(Mv.F(Ad.(kv))))]prry = € s [CM] prry.

4. Continuations are Unnecessary
In the previous section we introduced the concept of a compositional continuation

function, a functional value corresponding to the current continuation function.

The important characteristic of compositional continuation functions is captured
in the second clause of Definition 3.1. It says that a functional abstraction of a
continuation delivers the same final answer as the continuation when invoked on
the initial continuation function, ¢.e., in the current framework

A ~ K implies yII = kv.

Replacing applications of continuation functions by applications of the corre-
sponding functional abstractions preserves this property with one exception: the
initial continuation function. It becomes I = Azk~y.yzIl. Whereas for the original i
it is true that

fzx~y = kz, and, in particular, IzIl = Iz =z,
this no longer holds for the new version. To avoid this problem, we introduce fasa

unique object in the Val domain, thus making it testable with a predicate isl, and

define it by
I = Azkyasly — z,~y2IL
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This version again satisfies the above equations for I. To get the types correct, we
must modify the definition of B,,; appropriately.

At this point continuation functions are superfluous since they are never invoked.
The Val domain changes to:

Val = [Val — Val — Val] + {i}.
The continuation-free version of £ is £:

Er: A— Env—> Val — Val

&[] = AovA(pl])I (€7 .var)
£z M] = Apyy(Ow.€ ;[ M]p[z — v])i (€;.]am)
EsIMN] = A€ [M]p( Ay € {[N]p(BoarYm (Boaym)))  (€7-2PP)
Er[FM] = Apy.E f[M]p(Am.mA) (€/-7)

The final definitions of the initial compositional continuation function and the aux-
iliary combinator B,,; are:

I=Xzvyisly— 7,421
B = /\fg.zlsig -5 I Axh-gx(Buthf)
The equivalence of the two definitions is captured in a congruence theorem:

Theorem 4.1. €. and &; yield congruent values.

5. Conclusions

In the preceding sections we have shown how the simplification of the calculus for
continuations leads to a powerful programming language control construct. With it
we can write a new class of programs that are impossible to express with classical
continuations. To construct a suitable denotational semantics, we have introduced
the concept of functional abstractions of continuations. We have thus demonstrated
that function values can entirely replace continuations within denotational descrip-
tions of control constructs.

Beyond these immediate consequences our development has also illustrated that
the consideration of a programming language calculus is important for the design
of a programming language. While a denotational semantics is of importance to
the implementor, a calculus is closer to the consumer’s perspective. We propose
language calculi as yet another dimension along which to measure language design.
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