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1. Introduction

Control objects, such as Algol 60 labels, are not new to programming languages. Such
objects, however, are not first-class: though they may sometimes be passed to procedures,
they may not be returned by procedures or entered in data structures. This is a con-
sequence of the stack allocation of both environment information (parameters and local
storage) and control information (return address and context). When control returns from
a given context the stack is popped, destroying information which is essential if control is

ever to return to the context.

Some Lisp dialects provide mechanisms similar to labels in an expression-oriented
rather than statement-oriented context, using catch and throw. A catch expression marks
the current continuation (control context) with a given tag before evaluating its body.
During the evaluation of the body, it is then possible to throw an arbitrary value v to the
continuation associated with the tag. This has the effect of immediately returning v as the
value of the entire catch expression. For example, during evaluation of the Common Lisp
[15] expression
(+1

(catech ’k
(* (throw ’k 2) 3)))

the catch subexpression evaluates to 2 without the multiplication being performed, and
3 is returned as the value of the entire expression. Catch is implemented by placing the
tag on the top of the control stack before evaluating the body of the catch expression.
In the example above, at the time the throw expression is evaluated the stack would be
as indicated in Figure 1, and the effect of the throw woﬁld be to pop the stack down
through the tag frame, leaving the value 2 for the addition application. As with the labels
discussed above, once the catch expression has returned (either normally or by a throw to
its tag) it is no longer possible to invoke its continuation (throw to its tag). Though catch

allows a continuation to be tagged, it does not make continuations first-class objects of
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computation. The principal uses of this mechanism are error exits and blind backtracking.

In this paper we are concerned with first-class continuations—control objects that
may be passed to and returned by procedures and stored indefinitely in data structures.
As we shall demonstrate, it is possible using such continuations to form branches in the
control structure. Control may then take on a tree structure (rather than being strictly

linear) and may therefore require heap (rather than stack) allocation.

Given access to first-class continuations, it seems possible to extend a language to
include any sequential control abstraction. For example, coroutines may be implemented
using continuations [8]. (The converse is not true.) In the context of operating systems,
continuations provide a natural way to record process state prior to a preemption [18] or
a trap [7]. In artificial intelligence, continuations provide a ready means to implement

non-blind backtracking [4,6,16].

Continuations are thus a powerful tool for language extensibility. This is particularly
true when continuations may be recorded in the local state of first-class procedures. Such
procedural objects may then be used to restrict or extend the semantics of continuations.
Such procedural embedding of continuations may allow more efficient implementation, aid
in reasoning about programs, help enforce security requirements, or assure the integrity of
other language features such as fluid bindings. In this paper we demonstrate techniques

for achieving such goals.

The next section provides a brief overview of Scheme [3,13], a Lisp dialect with first-
class continuations that is used to express subsequent examples. This is followed by an
introduction to first-class continuations. We next illustrate how continuations may be
enhanced by embedding them in procedural objects. Such objects are then used in several
simple Scheme programs that restrict or extend continuations in various ways. As our
final example, we present an implementation of the unwind-protect facility of some Lisp

systems, and two generalizations of unwind-protect that account for the first-class nature

3



(expression) =
(constant)
| (variable)
| (syntactic extension)
| (quote (object))
| (begin (expression)*)
| (begin0 (expression)*)
| (lambda ((variable)*) (expression)*)
| (let ([(variable) (value)]*) (expression)*)
| (letrec ([(variable) (value)]*) (expression)*)
| (rec (variable) (expression))
| (if (expression) (expression) (expression))
| (when (expression) (expression))
| (case (tag) [(symbol) (expression)*]*)
| (evcase (tag) [(value) (expression)*]*)
| (define (variable) (expression))
| (set! (variable) (expression))
| (application)

(value), (tag), (procedure) ::= (expression)
(syntactic extension) ::= ((keyword) (object)*)
(application) ::= (({procedure) {expression)*)

Figure 2. Syntax of a Scheme subset.

of continuations.

2. An Overview of Scheme 84

Scheme was designed and first implemented at MIT in 1975 by Gerald Jay Sussman and
Guy Lewis Steele Jr. [17] as part of an effort to understand the actor model of computation
[9]. Scheme is a dialect of Lisp that is applicative order, lexically scoped, and properly tail-
recursive. Most importantly, Scheme—unlike most other Lisp dialects—treats procedures

and continuations as first-class objects.

See Figure 2 for the syntax of a Scheme subset sufficient for the purposes of this
paper. The superscript * denotes zero or more, and * denotes one or more occurrences

of the preceding form. Square brackets are interchangeable with parentheses, and are
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used in the indicated contexts for readability. quote expressions return the indicated
literal object, and *(object) is equivalent to (quote (object)). begin (begin0) expressions
evaluate their expressions in order and return the value of the last (first). Expression
lists in lJambda, let, letrec, case, and evcase are implicit begins. lambda expressions
evaluate to first-class procedural objects that statically bind their variables when invoked.
let makes lexical bindings and letrec makes recursive lexical bindings. rec is eduiva.lent
to (letrec ([(variable) (expression)]) (variable)). if evaluates its second expression if
the first is true, and the third otherwise. when evaluates its second expression if the
first is true and returns an irrelevant value otherwise. case evaluates the tag expression,
and then returns the value of the first expression whose corresponding symbol matches
the tag. If the last symbol is else, it always matches. evcase is similar to case, but
the (value) expressions are evaluated. define assigns to a global variable. set! modifies
an existing lexical variable; if no lexical binding is apparent, it is assumed that a global
binding exists and is assigned the given value. An application evaluates its expressions (in
an unspecified order) and applies the procedural value of the first expression to the values

of the remaining expressions.

Most Scheme implementations provide a syntactic preprocessor that examines the
first object in each expression. If the object is not a keyword, then it is assumed that
the expression is an application. If the object is a syntactic extension (macro) keyword,
then the expression is replaced by an appropriately transformed expression. In this paper
the symbol = indicates syntactic extensions. (Ideally, the syntactic extensions should be .
hygienic. [10])

We require nine primitive functions. egq? returns true if its arguments are the same
reference. not is logical negation. unique returns a unique new reference that is eq? to
itself, but to no other object. cons is the conventional Lisp list structure constructor.
delg! deletes an indicated element from a list. reverse! (also referred to as nreverse [1])

does an in-place reversal of a list by modifying the list links. for-each (mapc) applies a
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given procedure to each element of a list (and discards the results). thaw receives a thunk
(2 nullary procedure) and invokes it (useful as an argument to for-each). The boolean

constants true and false are denoted by #t and #f, respectively.

The procedure call-with-current-continuation, abbreviated call/cc, evaluates its argu-
ment and applies it to the current continuation, represented as a first-class procedural
object of one argument. In the next section we present an informal description of the

semantics of such continuations.

3. An introduction to continuations

During the evaluation of an expression the system continually keeps track of the current
context of evaluation. The evaluation of each subexpression has a different context that
controls how the value of the subexpression will be used to continue the computation.
Thus contexts of evaluation are called control contezts or continuations. The continuation
of each subexpression may be represented as a function of one argument—the value of the

corresponding subexpression.

For example, consider the expression (+ 1 (* 2 3)). We may represent the seven

distinct continuations created during its evaluation as follows:

k1 = (lambda (v) (+ 1 (x 2 v)))
k2 = (lambda (v) (+ 1 (* v 3)))
k$ = (lambda (v) (+ 1 (v 2 3)))
k4 = (lambda (v) (+ 1 v))

k5 = (lambda (v) (+ v (x 2 3)))
k6 = (lambda (v) (v 1 (* 2 3)))
k7 = (lambda (v) v)

Invocation of any of these continuation with the value of its corresponding subexpression
yields the value of the entire expression; for example, (k4 (* 2 3)) = 7. If the expression
(+ 1 (* 2 3)) were being evaluated as part of some larger expression, and that part had
some continuation K, we could easily modify each of the above continuations so that it

represented the control context within the larger evaluation; for example,
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k4 = (lambda (v) (K (+ 1 v))).

Though any programming system maintains the current continuation of each expres-
sion it evaluates, these continuations are generally not accessible to the programmer. How-
ever, in Scheme the primitive function call/cc causes the current continuation to be pack-
aged as a first-class procedure of one argument and passed to a procedure provided by
the programmer. This continuation represents the remainder of the computation from the
call/cc application point. At any time this continuation may be invoked with any value,
with the effect that this value is taken as the value of the call/cc application. (The con-
tinuation of a continuation application is discarded, unless it has been saved with another
call/cc.) Related facilities include Landin’s J operator [2,11] and Reynolds’ labels and

escapes [12,14].

The simplest use of continuations is as escape procedures. For example, the catch
example above may be expressed as
(+1

(eall/cc
(lambda (k)

(* (k 2) 3))))
where k is bound to a continuation that is equivalent to k4 above. (We generally use k
to represent continuations by analogy with denotational semantics, in which meta-level
continuations are typically denoted by k.) This example does not exploit the fact that
Scheme continuations are first-class, and control remains linear; the effect of invoking k is
simply to backtrack to a previous point in the control environment. This backtracking is
blind in the sense that it is impossible to return to the point from which the backtracking

was initiated, since the continuation of that point has not been saved.

To illustrate the use of first-class continuations, we present an example of non-blind
backtracking. Suppose there are two approaches to solving some problem, with no a priors

way of knowing which is best. (Perhaps the approaches are different branches of a search
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tree.) If the answer has not been found after some time spent exploring the first approach,
we wish to try the second approach; that is, we wish to backtrack to the original choice
point and try the other choice. However, in the event that the second approach fails to
arrive at an answer, we wish to return to our previous place in the computation of the
first approach and continue from there. The backtracking from the first approach must

have been non-blind for this to be possible. This behavior is achieved with the following

program schema:

(let ([backtrack-k any]
[non-blind-k any])
(if (ecall/ec
(lambda (k)
(set! backtrack-k k)
(backtrack-k #t)))
(begin
begin the first approach
(when time-to-backirack
(call/ce
(lambda (k)
(set! non-blind-k k)
(backtrack-k #f))))
continue computing)
(begin
try another approach
(if have-answer

(non-blind-k any)))))

(We use any to indicate an irrelevant value.) Here the continuation of backtrack-k is to
branch conditionally on the value passed to the continuation. At first this continuation
is invoked with #t from the first call/cc expression. If the first approach does not look
promising, then backtrack-k is invoked with #f, causing the second approach to be tried;
but before invoking backtrack-k the current continuation is saved in non-blind-k. If the
second approach fails, non-blind-k is invoked (with an arbitrary value), thereby resuming
exploration of the first approach. |

With first-class continuations it is possible to form branches in the control structure,
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which is then in the form of a tree, rather than the traditional linear (stack) structure.
By invoking continuations, it is possible to jump between any two nodes of this tree. For
example, the dotted line in Figure 3 indicates the control transition that occurs when the
non-blind-k continuation is invoked in the above example. First-class continuations require

that control information be heap allocated, at least when branching actually takes place.

4. Enhancing Continuations

To enforce constraints, or extend the semantics of continuations, we define (as Scheme
procedures) modified versions of call/cc which pass a newly formed procedural object, or
closure, to its argument rather than a true continuation. In order to distinguish such a
closure that contains a continuation from a plain continuation, we refer to it as a Con-
tinuation OBject, or cob. When invoked, a cob performs any additional operations that
we require, and then (conditions permitting) invokes the embedded continuation (or cob).
Embedded continuations must be obtained using the original call/cc at the time the cob
is created, and be retained in the environment of the cob.

(define call/cc-whatever

(lambda (f)
(call/cc
(lambda (k)

(let ([cob (lambda (v)
whatever is needed

(k v))])
(f c0b))))))

If the cob must be invoked upon implicit as well as explicit invocation of the continuation,

then (f cob) should be replaced by (cob (f cob)).

To illustrate this technique, consider the implementation of a fluid environment [14]
using the standard functional representation of environments. The fluid environment, rep-
resented by the global fluid-env, is extended upon entering a let-fluid body, and restored

when leaving the body, thereby providing dynamic extent for fluid bindings.
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(fluid (var)) = (fluid-env *(var))

(let-fluid (var) (exp) (body)) =
(let ([own-env fluid-env]
[v (exp)]
[body-thunk (lambda () (body))])
(set! fluid-env
(lambda (z)
(if (eg? z ’(var)) v (own-env z))))
(begin0
(body-thunk)
(set! fluid-env own-env)))

Here we use the standard technique for extending functional environments. The closure
formed by evaluating the (lambda (z) ...) expression records the binding of v in its local
environment. It is assumed that fluid-env is initially bound to a function that issues an

€ITOor message.

This extension will not work in the presence of unrestricted continuations. When a
continuation is invoked, the computation should continue in the same environment in which
the continuation was obtained. Thus, the current fluid environment must be recorded when
a continuation is obtained, and this environment must be restored when the continuation

is invoked. This may be achieved by redefining call/cc as follows:

(define call/cc-fluid
(lambda (f) .
(eall/ecc
(lambda (k)
(f (let ([own-env fluid-env])
(lambda (v)

(set! fluid-env own-env)

(k v))))))))

In this case we avoid the (cob (f cob)) construction because implicit invocation of
continuations always occurs with the right fluid environment. Only explicit invocation of

the continuation requires that the cob’s actions be performed.
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5. Constraining Continuations

We now provide a sequence of examples that illustrate approaches to constraining contin-

uations.

One-shot continuations

First we demonstrate a version of call/ce, referred to as call/cc-one-shot, which delivers
explicit continuations that may only be invoked once. One can imagine certain implemen-
tation techniques for which it would be necessary to enforce this one shot constraint. For
example, it would be necessary if the heap space used to record continuation frames were

automatically reclaimed upon their invocation.

This constraint may be enforced by associating a variable with each cob that records

whether the continuation has been invoked yet (whether it is still alive).

(define call/cc-one-shot
(lambda (f)
(eall/ce
(lambda (k)
(f (let ([alsve #t])
(lambda (v)
(if alsve
(begin
(set! alive #f)
(k v))
(error ...)))))))))

Stack-based continuations

Though call/cc-one-shot assures that a given continuation may only be invoked once, it is
still possible for continuations that are its descendents to be invoked. (If control returns in
the usual way, the previously invoked continuation will eventually be reinvoked, and the
error detected. However, this detection may be too late, or may not occur at all if control
jumps to another branch of the continuation tree before the previously invoked continuation

is reinvoked.) We now wish to enforce the constraint that, when a continuation is invoked,
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neither it nor any of its descendents may be invoked a second time. This suffices to ensure

that control information may be stack rather than heap allocated.

To enforce this constraint we keep an alive flag in each cob, as before. However, this
time when a cob is invoked, not only must its own flag be set to #f, but also that of each
cob below it in the cob stack. For this, each cob maintains a reference to its child cob.
(In general a cob may have multiple children, but the discipline imposed here insures that
there is at most one child.) Each cob is an object that can respond to messages, and only
performs as a continuation if its argument is not a recognized message. When a cob is
invoked, it simply clears its alive flag and then sends a kill! message to its child (if there
is one) to do the same. In this way the flags of all the descendent cobs are cleared, as

required.

To complete this scheme, we must provide a method for setting the child references.
When a cob is created, it installs a reference to itself in its parent cob. For this purpose a
reference to the parent cob is maintained as the fluid binding of parent-cob, and all cobs are

made to respond to a set-child! message in order that the child reference may be recorded.

The symbols ‘killl’ and ‘set-child!” are not used as cob messages. They might be
mistaken for values passed to the embedded continuation. Instead, we use values returned
by unigque, which cannot be confused with any others. See Figure 4. Note that chsld must
be initialized with a cob that can absorb kill! messages sent to it, but do nothing. The

initial fluid environment must include a binding such as
(lambda (z) (lambda (y) any))
for parent-cob that can absorb set-child! messages.

The child references in call/cc-stack-based present a potential problem with respect
to garbage collection. If the child reference were maintained after invocation of the parent,
the child would not be collectible even though the child can no longer be invoked and there

may be no other references to it. Thus after the child is invoked, but before it returns, the
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(let ([ksll! (unique)] [set-child! (unique)])
(set! call/cc-stack-based
(lambda (f)
(beginO
(call/ce-fluid
(lambda (k)
(letrec
([cob (let ([chsld (lambda (z) any)]
[alive #t])
(lambda (v)
(evcase v
[ksll! (set! alive #f) (child kill!)]
[set-child! (lambda (n) (set! child n))]
[else (if alive
(begin (cob kill!) (k v))
(error ))])))])
(((fluid parent-cob) set-child!) cob)
(let-fluid parent-cob cob (cob (f cob))))))
(((Auid parent-cob) set-child!) (lambda (z) any))))))

Figure 4. call/cc-stack-based

child reference of its parent is replaced by a dummy value.

Dynamic domains

In some contexts it may be necessary to restrict the range of control jumps to some dynamic
context, which we refer to as a domain. We accomplish this by defining the procedure
domain that takes a thunk and thaws it with a new unique reference fluidly bound to
domain-ref. call/cc-domain provides a cob that signals an error unless the fluid binding
of domain-ref at the time of its invocation is the fluid binding of domain-ref at the time

of its creation. domain-ref must be bound in the initial fluid environment.
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(define domain
(lambda (thunk)
(let-fluid domain-ref (unique) (thunk))))

(define call/cc-domain
(lambda (f)

(call/cc-fluid
(lambda (k)
(f (let ([own-d (fluid domain-ref)])
(lambda (v)
(if (eg? (fluid domain-ref) own-d)

(k v)
(error ...)))))))))

Other forms of domain restriction are possible. For example, we may allow control to

exit from a domain by invocation of a continuation, but still prevent control from reentering

the domain. To implement such an ezst-only-domain, we extend the above code with a

domain-env that returns #t only if invoked with the domain-ref of a currently active

domain. Now the initial fluid environment must also bind domain-env to (lambda (z)

#41).
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(define ezit-only-domain
(lambda (thunk)
(let-fluid domain-ref (unigue)
(let-fluid domain-env
(let ([own-d (fluid domain-ref)]
[own-env (fluid domain-env)])
(lambda (d)
(if (eg? d own-d)

#t
(own-env d))))
(thunk)))))

(define call/cc-ezit-only-domain
(lambda (f)
(call/cc-fluid
(lambda (k)
(f (let ([own-d (fluid domain-ref)])
(lambda (v)
(if ((fluid domain-env) own-d)

(k v)
(error ...)))))))))

6. Unwind-Protect and Wind-Unwind

Many Lisp systems provide an unwind-protect facility, that might have the syntax:

(unwind-protect (body) (postlude)).

Normally (body) is evaluated first, and then (postlude) is evaluated. However, if control
passes out of (body) prematurely through invocation of an outer control context, then
(postlude) is evaluated immediately before the invocation takes place. A typical use of
unwind-protect is to assure that any files opened by (body) are closed whenever control
leaves (body). Unwind-protect is particularly valuable in designing fault-tolerant systems,
where the (postlude) may assure that the system is left in a stable state in the event that

an error or other exceptional condition requires that the control context shift abruptly.

It is straightforward to implement unwind-protect in Lisp systems whose control obeys
the stack discipline, but it is more complicated to define and implement an unwind-protect

mechanism in the presence of full continuations. For example, when control passes from
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one branch of a control tree to another, (1) should unwind-protects only be triggered on
the path between the current node and the closest common ancestor of the current node
and destination node, or (2) should unwind-protects be triggered only if they are ancestors
of the current node and descendents of the destination node? Also, if the same unwind-
protect is triggered more than once, (1) should the (postlude) code be executed each time,
or (2) should the (postlude) code be executed just the first time? We believe that there
are probably no general answers to questions such as these. Rather, programmers who
deal directly with such tools must be aware of these issues and answer these questions in
light of each application’s requirements. Scheme is flexible enough to implement variations
such as those above, and it is important to leave programmers with the ultimate choice.
However, if one unwind-protect facility is to be provided as part of the standard language
(as it probably should), a design decision must be made opting for one solution that is
reasonably simple and generally applicable. More research is needed, but for the time

being we choose the second option for each of the above questions.

To implement unwind-protect, we could use child references, such as were used in the
call/cc-stack-based solution. A list of references for each continuation would have to be
maintained, rather than a single reference, because in the current context the continuation
tree may branch. However, this would be undesirable. Without knowing what cobs the
user has maintained references to, child references can not be deliberately erased. The

result is that cobs could never be reclaimed by the garbage collector.

Instead of child references, each cob maintains a list of thunks that when thawed
perform the unwind-protect procedures necessary when the cob is invoked. Our unwind-
protect installs its thunk, which we call unwind, in each ancestor cob. When thawed, each
unwind causes the (postlude) associated with its unwind-protect to be evaluated and then
removes itself from all the cob lists in which it was installed. The addition and deletion of
unwinds from the cob lists is achieved by sending unique messages to the cobs, as before.

The most recent cob is always accessible as the fluid binding of parent-cob. We assume
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that unwind-protect receives body and postlude arguments that are thunks containing the
(body) and (postlude), respectively. Unwind-protect is then implemented as in Figure
5, ignoring the code within boxes. The initial fluid environment binds parent-cob as in

call/cc-stack-based.

Ifit were possible for arbitrary continuations to be invoked from within a (postlude), or
for continuations obtained from within a (postlude) to be invoked elsewhere, then unwind-
protect could be subverted. By associating a domain with the invocation of postlude, we

obtain precisely the degree of protection required.

In a traditional Lisp system where control is linear (stack-based), it is not possible for
control to reenter an unwind-protect body after control has left the body and the unwind
has been performed. However, with first-class continuations, this is possible and raises a
new problem. The (postlude) expression frequently performs operations, such as closing
files, that should themselves be undone if control reenters the body. We can extend the
unwind-protect mechanism so that some winding expression, say (prelude), is executed
upon any entry of the body, as well as providing an unwinding (postlude) that is executed

upon exit. We call such a mechanism wind-unwind, and use the syntax

(wind-unwind (prelude) (body) (postlude)).

Wind-unwind requires only a few extensions to our previous unwind-protect code. Each
wind-unwind creates a thunk. When this thunk is thawed it will, if necessary, invoke
the (prelude) of wind-unwind, and then thaw the thunk of the previous wind-unwind. A
fluidly-bound wind reference is maintained in much the same manner as the fluid parent-
cob reference to record the chain of preceding wind-unwind thunks. The initial fluid
environment includes a binding for wind, such as (lambda () any). Every cob records
the value of the fluid wind variable at the time of its creation as own-wind. Before invoking
its continuation, own-wind is thawed, thus initiating a chain of operations that performs

any required prelude operations. In order that preludes be performed only following a
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(let ([update (unique)] [delete (unigue)])
(set! | wind-unwind ; or | unwind-protect ; without boxed code
(lambda (|prelude| body postiude)
(let ([own-cob (fluid parent-cob)]
[own-wind (fluid wind)] ]
in #t] ()
(letrec ([unwind (lambda ()
(domain postlude)
[(set! in #f)]
((own-cob delete) unwind))])
((own-cob update) unwind)
(let-fluid wind (lambda ()
(if (not in)
(begin
Edomain ;;’e;';u;e)
set! in #t
(own-wind))
(begin (domain prelude)
(begin0 (body) (unwind)) | NIN)
(set! [call/cc-wind-unwind_; or | call/cc-unwind-protect ; without boxed code
(lambda (f)
(eall/cc-domain
- (lambda (k)
(let ([cob (let ([unwinds ’()]
[own-cob (fluid parent-cob)]
| [own-wind (Auid wind)]])
(lambda (v)
(evcase v
[update (lambda (z)
(set! unwinds (cons z unwinds))
[ ( ((own-ch)update) z))]
delete (lambda (z
(set! unwinds (delq! z unwinds))
((own-cob delete) z))]

[else [(own-wind)] (for-each thaw unwinds) (k v)])))])
(let-fluid parent-cob cob (cob (f ¢0b)))))))))

Figure 5. wind-unwind and unwind-protect
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corresponding postlude operation, a flag is set when a postlude is performed and cleared

when the corresponding prelude is performed.

Wind-unwind generally has the right semantics for such operations as opening and
closing files. A postlude is only performed when a direct ancestor of its continuation is
invoked. It is thus possible to transfer control to other continuations without the overhead
of invoking postiudes and preludes. For example, a coroutine resume operation involves a
transfer from one node of the continuation tree to another, and it is probably inappropriate

for each resume to close and open files associated with a coroutine.

7. Dynamic-Wind

A similar facility, called dynamic-wind, has the same syntax as wind-unwind, but subtly
different semantics. Dynamic-wind may be used to implement a fluid environment with
shallow binding.
(bind-fluid (var) (exp) (body)) =
(let ([oldvar (exp)])
(let ([swap! (lambda ()
(let ([temp oldvar])
(set! oldvar (var))
)
)

(set! (var) temp)))]) '
(dynamic-wind swap! (lambda () (body)) swap!)))
Here existing lexical variables record the current fluid environment values, whereas the
let-fluid mechanism maintains the fluid environment without side-effects to the lexical

environment.

If a continuation were invoked that was not an ancestor of the current continuation
and utilized the same lexical variable with a different fluid binding, then wind-unwind
would not yield the desired_sema.ntics. The postludes and preludes that maintain the
fluid environment would not be performed. The more dynamic dynamic-wind avoids this

problem, but requires an associated state-space [1,5].
A state-space is a tree where the root is the current state. It is possible to move
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from the current state to any other state, making the corresponding node the new root.
(Think of picking up the tree by any node and giving it a good shake so that all paths
lead to the new root.) Each dynamic-wind creates a new state that becomes the root of
the state-space. When a continuation is invoked, the unique path through the state-space
is traversed, with the postludes or preludes associated with each node being performed as -
they are passed. Whenever control passes out of body, its postlude is performed and it
is noted that control has exited. Conversely, when control passes back in, the prelude is

performed and it is noted that control has reentered.

In the code of Figure 6 the state-space is extended with a cons cell, cdr of which is
initially null, and car of which is a thunk that will be thawed when the current state moves
past the cell during a reroot operation. Note that this thunk is to do nothing in the event
that control is already in its state (in is #t) and it is the destination of a reroot operation
(indicated by a null list in the cdr of ii_:s state cell). state-space is an object that responds
to the messages ‘state’, ‘extend’ and ‘reroot’. The list being reversed represents the path

from the new state to the current state.

While useful for shallow binding, dynamic-wind may cause preludes and postludes to
be invoked too frequently for applications such as file housekeeping. Also, the current
and destination continuations may use different léﬁcical variables to record fluid bindings
(as would probably be the case in a coroutine environment), so dynamic-wind is again
unnecessarily performing preludes and postludes. This could be avoided by associating a
different state-space with each set of fluidly-used lexical variables. The lexical scope of each
of these state-spaces would then require its own dynamic-wind, call/cc-dynamie-wind, and

bind-fluid operations.

8. Conclusions

Throughout the history of programming languages, many developments have either pro-

vided more general facilities or restricted the power of existing facilities. For example,
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(define state-space
(let ([state (cons (lambda () any) ’())])
(lambda (msg)
(case msg
[state state]
[extend (lambda (new-state)
(set-cdr! state new-state)
(set! state new-state))]
[reroot (lambda (new-state)
(reverse! new-state)
(for-each thaw state)
(set! state new-state))]))))

(define dynamic-wind
(lambda (prelude body postlude)
(let ([state (state-space ’state)])
((state-space ’extend)
(let ([in #1])
(rec local-state
(cons _
(lambda ()
(if (and in (null? (cdr local-state)))
’do-nothing
(begin
(domain (if in postlude prelude))
(set! sn (not in)))))
'0))))

(domasin prelude)
(begin0 (body)
((state-space ’reroot) state)))))

(define call/cc-dynamic-wind
(lambda (f)
(call/cc-domain
(lambda (k)
(let ([state (state-space ’state)])
(let ([cob (lambda (v)
((state-space ’reroot) state)
(k o))

(7 0b)))))))

Figure 6. dynamic-wind state space.
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much attention has been given to control constructs that allow goto’s to be restricted or
eliminated. Also, abstract data types provide restrictions on the scope of variables. Con-
tinuations are more general than other control facilities, and we have only begun to explore

their power. However, continuations are clearly too powerful for many applications.

We have illustrated some techniques for constraining this power. In this process we
have emphasized semantics, while ignoring some security and efficiency issues. For security,
one should redefine call/cc, rather than creating variations with new names. Subversion
of call/cc by tampering with the fluid environment could be prevented by appropriate
use of scope control. For efficiency, the fluid environment could be represented as a data

structure, rather than as a procedure.

In recent years attention has shifted from problems of sequential control to those
of parallel control. Presumably it was felt that sequential control was well understood.
However, we are convinced by our experience with continuations that there is still much to
be learned about sequential control. Research on sequential control has a special urgency

as we plunge into the complexities of parallel control.
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