Hardware Description with Recursion Equations

by
John T. O’Donnell

Computer Science Department
Indiana University
Bloomington, Indiana 47405

TECHNICAL REPORT NO. 212

Hardware Description

With Recursion Equations
by
John T. O’Donnell
December, 1986

To appear in the IFIP 8tk International Sympossum on Computer Hardware Description
Languages and their Applications, April 1987.

Hardware Description with Recursion Equations

John T. O’Donnell

Computer Science Department
Indiana University
Bloomington, Indiana 47405

Using a stream to represent the full history of the sequence of values on a wire
in a circuit makes it possible to treat components and their ports as first-class
objects in a hardware description program. Therefore the program can directly
operate on the systems of recursion equations that define the inputs and outputs
of components. This provides the foundation for a simple, yet powerful, hardware
description methodology that can be implemented in many existing programming
languages simply by defining a library of basic functions. A hardware designer
doesn’t need to write equations for all the components in a circuit; it is often
better to write higher order functions that generate the lexically nested systems
of recursion equations that correspond to the levels of abstraction of the circuit.
Furthermore, a programming language implementation can directly interpret the
hardware description, using a set of function definitions for the primitive compo-
nents in the hardware. The designer can extract alternative meanings from a single
hardware description — such as a simulation function and a component /wiring list
— simply by providing alternative sets of primitive function definitions. Genera-
tion of geometric layouts requires additional information, which can be specified
by the designer or generated automatically. The methodology will work in any
programming language that supports first class functions, recursive functions and
data, and streams or closures, and it has been implemented in Daisy and used in
several hardware designs.

1. Introduction

A circuit designer is largely concerned with two goals: first, to develop a design and
ensure that it is correct; and second, to implement the design in a real piece of hardware.
Any circuit design methodology and “computer hardware description language” (CHDL)
must support both of these activities. This has lead to the idea of CHDLSs that can describe
both the behavior and the structure of a circuit, allowing the designer to work toward both
goals within one language [3].

The original CHDL — and still one of the best — is the schematic diagram. Schematic
diagrams contain a great amount of information, some of it explicit (what components
are present, how they are connected), and some of it implicit (how many components of
each type will be needed to construct the circuit, what the fanout of each output is, how
the components might be placed on a chip or circuit board so as to simplify the wiring).
Most importantly, a schematic diagram tells an experienced designer both the behavior
of the circuit and its structure. As we move toward more sophisticated design languages,
it is important to retain these advantages of schematics. In particular, it is important to
describe as many aspects of the circuit as possible using one document, rather than allowing
a complex description to become fragmented into many partial descriptions.

Most CHDLs that can describe both behavior and structure are based on conventional
imperative programming languages, so they use language objects like variables, assignments
and imperative control statements to describe objects in the circuit’s behavior and structure.
Unfortunately, this leads to subtle difficulties that must be overcome by adding new features
to the underlying programming language. Therefore the CHDL becomes a completely new

language, requiring its own compiler and tools, and designing such a CHDL combines all
the complexities of programming language design with those of circuit description.

A better alternative is to describe each component of a circuit with a programming
language construct that correctly captures all the relevant aspects of that component. This
leads to a much more elegant combination of behavioral and structural descriptions, and it
has many practical advantages as well. The designer can carry out all aspects of the circuit
description, simulation and implementation using just one general purpose language. This
unification reduces errors and inconsistencies that creep in when a set of design languages
and tools are used. Any existing programming language with the right set of primitive data
structures and operations will support the design methodology, and a wide range of design
tools can easily be added to the system, since the underlying language has general purpose
computing facilities. Finally, this approach can be combined gracefully with architecture
synthesis and hardware correctness proof techniques.

The remainder of this paper develops such a scheme, called “hardware description
with recursion equations” (abbreviated HDRE and pronounced as hydra). A designer using
HDRE may describe a circuit using a simple set of primitive functions written in an under-
lying general purpose programming language, and the description itself is just a function
written in that language. Executing a circuit description function provides its meaning —
its semantic content.

What is the meaning of a circuit description? While the designer is pursuing the first
goal — developing the design and ensuring that it does what it is supposed to — the meaning
of a circuit description is the behavior that the corresponding hardware circuit will have.
Thus the meaning of the description should be a simulation function that receives inputs
and produces outputs, just as the real circuit will when it is fabricated. But when it comes
time to construct the circuit using real hardware, the meaning of the circuit description is
the hardware itself — the set of components, their interconnections, and their placement.
At this point, executing the circuit description should produce a set of instructions that can
drive a wire wrapper, a VLSI mask generator, or some other automatic hardware fabrication
tool.

It is straightforward to implement the HDRE method in any programming language
that provides the right facilities, just by defining a small library of functions that will call,
and be called by, the circuit description functions. The necessary language features are first-
class functions, lists, streams (or unbounded lists), lexically scoped blocks with equations,
function recursion and data recursion (or the ability to represent arbitrary graphs). Lazy
(or normal order) evaluation is useful because it supports correct equational behavior inside
lexical blocks, as well as providing streams as a special type of list. However, it is possible
to implement HDRE without lazy evaluation. Many programming languages provide the
necessary features, or their equivalents, including Common Lisp [33], Scheme [29], ML [23],
SASL [34], Lucid [35], etc. I have implemented HDRE in Daisy [18, 19], which is ideal
because of its suspended list constructor. One of the advantages of HDRE is its ability to
run in many existing languages.

HDRE is based on previous work by Gordon [8] and Johnson [14, 15, 16, 17]. A
related approach, which considers many aspects of a circuit in addition to its structure and
behavior, is “functional descriptions of systems” [4]. The main innovations in HDRE are
its exploitation of sets of recursion equations inside letrec expressions to describe levels of
abstraction within a circuit, its use of alternative sets of primitive functions to provide the
various circuit meaning functions, its support of simulation at multiple levels of abstraction,
and its use of functional geometry [13] for generating circuit layouts.

2. The basic idea

The basic idea of HDRE is to attach multiple meanings to a single circuit description
through the use of alternative sets of primitive functions. This allows the designer to specify
all aspects of the circuit with one semantic description. In order to achieve that, however,
we must find a way to represent directly the inputs and outputs of components and the
values carried on wires (called signals).

To illustrate the problem, consider a circuit that contains an AND gate with inputs A
and B and output Y. A conventional hardware description language based on an impera-
tive programming language would represent the signals A, B and Y as Boolean variables.
However, each variable only represents the value of a signal during one clock cycle. The
hardware signal itself consists of the entire history of values represented at that point in the
circuit, one value per clock cycle. Thus the signal is partly represented by its variable, and
partly by the sequence of values assigned to that variable during the course of a simula-
tion. The circuit description functions cannot directly manipulate signals — they can only
manipulate data structures supported by the programming language.

The real problem with conventional hardware description techniques is that they do
not use “first class” objects to represent signals. A first class object is one that the language
can manipulate directly (e.g., numbers, pointers and arrays are first class objects in most
languages). However, the sequence of values that are assigned to a variable during the
execution of a program is certainly not a first class object — and this is the fundamental
reason why hardware descriptions using conventional programming language constructs end
up with separate specifications of the structure and function of the circuit.

Stream recursion equations provide a way to represent the full history of a signal as
a first-class language object. This allows the hardware description to treat the inputs and
outputs of each component as ordinary objects. By selecting different sets of functions
to operate on components, HDRE can produce either a simulation function or a circuit
wiring specification from the same circuit description, and the designer can add geometric
information in a straightforward manner in order to obtain a circuit layout.

3. Stream recursion equations and circuit behavior

This section gives an introduction to stream recursion equations and shows how they
can describe the behavior of a circuit. A more formal explanation is in [15]. The following
section shows how to construct a systematic library of behavioral descriptions using this
technique.

Consider a combinational component with one input and one output, such as an in-
verter. During each cycle the component produces an output y which is a function f of its
input z. Using an infix colon to denote function application, we can say that the behavior
of the component is y = f : z, and f is called the instantaneous behavior function.

A realistic behavioral description must account for the sequence of states that the
machine goes through, and a simple equation like y = f : z is not sufficient. On the other
hand, the form of this equation is clear; we just need a way to extrapolate the equation to
handle the component’s behavior through time. One way to do this is to use subscripts that
specify when a value exists. Thus z3 is the value of the input during clock cycle 3, and we
have y; = f : z; for : > 0.

It is possible to combine all the z; values into a single stream X, where X=[zo z; z,
...]- A stream is a list whose length is unspecified, and possibly infinite. There are three
functions that operate on streams, called “head”, “tail” and “[...! ...]":

e head:[zo z; =2 ...] returns zo. The head function is called car in Lisp.
e tail:[zg z; z; ... returns [z; 2, ...]. The tail function is called cdr in Lisp.

e [a! [zo 1 z2 ...]] returns [a@ o z; x> ...]. The notation [p ! q] corresponds to
(cons p q) in Lisp.

Now we can write a function F' which describes the behavior of the combinational component
over time, assuming that f gives its instantaneous behavior during one cycle. The input X
and the output Y are streams of individual values, and Y = F' : X describes the component’s
behavior, where

F=Xs.[f:head: s ! F : tail: g].

The notation f = Az.y means “f is a function which returns the value of y when given input
2”. Solving this equation for the first few stream elements yields

yO:f:head:s=fIf€o
gy = f s hiead 1 tail : 5= F: x4
fip= f+head s tail viall i = vy

A component with two inputs has a similar description. Let g be its instantaneous
behavior function (e.g., ¢ = A[a b].a-b describes the “and” function). Now the component’s
description equation is Y = G : [A B] where

G=MArs].[g:[head:r head:s] ! G:[tail:r tail: s]|.

The next section generalizes this to construct stream behavior functions for components
that have an arbitrary number of inputs and outputs.

Clocked components (the various kinds of flip flops) behave differently from combina-
tional components because they don’t have instantaneous behavior functions. Instead, their
output during clock cycle 7 depends on the memory they have of inputs during clock cycle
t — 1. Therefore we must write equations that directly describe the entire stream behavior
of a clocked component. The simplest case is the D flip flop, or latch, whose output is just
the value that its input had during the previous clock cycle. The stream behavior function
for a latch is simply ¥ = [0 ! X], where O is the initial value stored in the latch. It is easy
to see that y; = x;_; for 7 > 0.

The circuit C (Figure 1) combines a latch with a combinational exclusive or gate, and
it contains a feedback loop.

e X > latch D >output

input A ——>

Figure 1. Circuit C

We assume that the initial value of the latch is 0. (In a real design, of course, there
must be a provision for forcing all the flip flops into a valid initial configuration, but we
will ignore such details here.) The value d; which the latch outputs during clock cycle 2 for
¢ > 0 is just the value z;_;, which was on its input during cycle ¢ — 1. The exclusive or gate
defines z;, which is a function of its inputs a; and d;. This leads to the following recurrence
equations, which fully describe the synchronous behavior of the circuit:

4

do =0, d;=ux;4fori>0,
z; =d; ®a; fori > 0.

These equations illustrate the key difference between combinational components and
clocked components in synchronous design. The output of a combinational component (the
exclusive or gate) depends on the values of its inputs during the same clock cycle, but the
output of a clocked component (the latch) depends on the values of its inputs during the
previous clock cycle. The following diagram shows the data dependencies that are implied
by the recurrence equations:

0 di dy ds

VALALVS LA
o I Ta s
T 1T 1t 1

ap a; ag as

The recurrence equations can be solved by computing the values z; in order to calculate
the values of the circuit’s output.

output, = dp =0
output, =dy =20 =ao®do =ao®0 =ao
output, =dy =z =a; ®d, =a; Dao

output3 = d3 =9 =as D dg =a; D (a,l &) ag)

Instead of explicitly programming a simulator to work out the equations, we can simply
write a stream function that specifies the circuit’s behavior.

C=X\in.
letrec X = XOR : [D in]
D=[0!X]
in D

Since the circuit C contains feedback, its streams are defined in terms of each other.
The letrec expression implements recursive definitions of data structures. Although D is
defined using X and X is defined using D, none of the stream elements are defined circularly.
Programming languages that use lazy evaluation [12] can solve systems of recursion equa-
tions by calculating the values of stream elements one by one, as they are needed. Therefore
no one needs to write a circuit simulator algorithm in order to solve the recurrence equations.

Notice that the function C encapsulates the circuit’s behavior. The function takes an
input and produces an output, but the streams X and D are defined locally within the
letrec expression, so they are not visible outside the scope of the function definition. In
effect, this turns the description of C into a “black box”. Nested letrec expressions support
a structured, hierarchical design style. Section 8 illustrates this with the description of a
tree architecture.

4. Building primitive behavioral descriptions

In the previous section we built a stream behavior function F for each component using
its instantaneous behavior function f. This section shows how to generalize that operation
and build a set of primitive component behavior definitions.

Consider an instantaneous behavior function f that takes 7 inputs and produces k
outputs. Instead of manually constructing the corresponding stream behavior function, it
is more convenient to use a general functional star that maps f over the 2’th elements of
each of the input streams in order to compute the k output streams. Thus the equation

[Y] = (star : and) : [A B]

will define y; = a; - b; for 2 > 0.

Each component in a circuit description will have a behavioral definition similar to
this, so it is convenient to introduce a function behavior that creates stream functions from
instantaneous behavior functions.

behavior = Af. Ainputs. (star: f) : inputs

In the lambda calculus, the behavior function is just star (by two eta conversions), so we
can define behavior=star.

The expression behavior : f produces a function from j input streams that produces k
output streams. For example, an adder produces two outputs — a sum and a carry — so a
circuit containing an adder might define

[S C] = (behavior : add) : [X Y Z]

Many functional programming languages (including Daisy and SASL) allow equations with
structured left sides. A component that produces only one output will have a stream
behavior function that produces a list containing just the output stream. It is convenient
to define such a component’s function using head : behavior : f, which allows composition
of functions. For example, it is simpler to write

Y =AND:[A NOT: B]
than to use
[DUMMY] = NOT : B Y = AND : [A DUMMY)]

HDRE uses behavior to define a standard library of primitive components called behav-
tor_primitives. Some of the components (e.g. AND) return a stream, allowing them to be
composed with other functions, while others (e.g. ADD) return a list of streams representing
their multiple outputs.

AND = head : behavior : A\[a b].aAb
OR = head : behavior : A\[a b].aV b
NOT = head : behavior : Aa. @
ADD = behavior : Ajabc]. [sum: [abc] carry:[abc]]
CMP = head : behavior : A[a b]. (a =b— 1, 0)
MUXI1 = head : behavior : A[pa b]. (p=0— a, b)
MUX2 = head : behavior : A[pabcd]. (p=0—a,p=1—-b, p=2—¢, d)
LATCH =)A.[0! 4]

behavior_primitives

It is straightforward to implement the behavior function in Daisy using functional com-
bination [7], but other languages can achieve the same effect with closures and mapping
functions.

5. Systems of recursion equations

To illustrate how to describe a circuit with a system of recursion equations, it is impor-
tant to use an example that contains both state and feedback. Figure 2 shows the schematic
diagram of a three-bit shift register SR that has has inputs OP, L and R, (the opcode, left
input and right input respectively), and outputs from each of the three bits ALPHA, BETA
and GAMMA. The system has four operations:

opcode mnemonic description

0 CLR each bit stores 0

i NOP each bit retains its previous value
2 SHL shift left

3 SHR shift right

The hardware description will be at an intermediate level of abstraction, which shows how
the individual bits of the register are interconnected while suppressing the internal details
of each bit. (An example in a later section shows how to give both intermediate and low
level descriptions; this is useful in hierarchical design and simulation.)

| | il
op op op
i st~ st i st
SRB SRB SRB
+—st Iif—+—st Iip—+st rif—
st st st
! ! 1

Figure 2. Shift Register Schematic

Each bit in SR is a component of type SRB, and the function srbf gives the behavior
of an SRB during one clock cycle. The inputs OP, LI and RI stand for “opcode”, “left
input”, and “right input” respectively, and ST is the “state” of the flip flop.

SRB = A[OP LI RI)].
letrec ST = LATCH : (behavior : srbf) : [OP LI RI ST)]
in ST

srbf = Aop li ri st].
(op =00,
op =1 —st,
op=2—ri,
op=3—1)

The ST stream must be defined inside a letrec because its value appears on the right side
of the defining equation. However, this is not a circular definition, because LATCH causes
ST} to depend on OPg_y, LIx_1, RIx_1 and STk_1, so ST is not defined in terms of
ST. In a synchronous circuit all feedback loops must pass through a clocked (sequential)
component. If there is a purely combinational feedback loop, the circuit is asynchronous
and it may not settle down to a stable state in a bounded amount of time. A system of

recursion equations describing such a circuit models its behavior by diverging: the value of
S wouldbe [L L L ..lJ

The shift register is a function with inputs OP, L and R which contains a system of
recursion equations defining the individual bits and their interconnections:

SR = \[OP L R).
letrec A= SRB : [OP L B]
B=SRB:[OP A C]
C = SRB : [OP B R]
in [LABEL : [“ALPHA” A] LABEL : [“BETA” B] LABEL : [“GAMMA” C]]

The LABEL component is just used to label the outputs with names, which is necessary in
order to generate a circuit wiring list (see the following sections). The behavioral specifica-
tion ignores the labels, so LABEL is an identity function on its second input as far as the
behavior of SR is concerned:

LABEL =)[ns].s

The functions described in this section, including SR, are not written in a new hard-
ware description language. They are just ordinary functions that can be written in any
programming language that supports first class functions, letrec and streams. The next
section shows how to execute hardware description functions like SR in order to extract
their meanings.

6. The meanings of a circuit description

The SR function is meaningless until the primitive SRB is defined. Evaluating SR in
an environment where SRB is defined as in the previous section should yield a simulation
function which takes streams OP, L and R as inputs and produces streams ALPHA, BETA
and GAMMA as outputs. The higher order function meaning does this transformation.

meaning = ¢ p]. Ainputs .
letrec p
in ¢ : inputs

The value bound to ¢ must be a circuit description (like SR), and p must be bound to a
set of equations defining the primitives used by ¢. The result is a function similar to ¢
except that all the free variables referring to primitive components have been defined. Since
meaning constructs a letrec expression on-the-fly and then evaluates it, the underlying
programming language needs an operation like the Lisp eval. Daisy can interpret the
definition of meaning directly.

To demonstrate the shift register’s simulation function, we must apply it to a set of
test data. It is easy to read the data in the form of a sequence of lists of values, where each
list gives all the inputs or outputs for one clock cycle. However, the simulation function
requires its inputs and outputs to be a list of streams. The trivial transpose function
converts between these data formats, while lines inserts line breaks between the lists. The
‘|’ character makes the rest of an input line into a comment. Executing

SR_test_data =

[[3 11 21] | SHR Shift right [OPCODE LI RI]
[3 12 22] | SHR Shift right

[3: 13 23] | SHR Shift right

[3 14 24] | SHR Shift right

[2 15 25] | SHL Shift left

[1 16 26] | NOP Stay with previous value

8

[0 17 27] | CLR Clear
[2 18 28] | SHL Shift left

[1 19 29] | STA Stay with previous value
]

"Shift Register Simulation:"

lines : transpose :
(meaning : <SR behavior_primitives>)
transpose : inputs

yields the correct output:

Shift Register Simulation:
[[o 0 0]
[11 0 0]
[12 11 0]
[13 12 11]
[14 13 12]
[13 12 25]
[13 12 25]
[0 0 0]

[0 0 28]
[0 0 28]]

The simulation function helps a designer work toward the first goal — developing a
correct circuit description. However, someone trying to fabricate the circuit will interpret
SR entirely differently: it is a specification of the set of components in the circuit and their
interconnections. Given the right set of primitives, the meaning function can extract this
information from SR, instead of extracting the simulation function.

The key observation needed to write a set of “structural primitives” is that no compo-
nent knows where its outputs go, but each component does know what its inputs are — it
is applied to them. Thus if we represent signals by symbolic names rather than streams of
behavior values, any component receiving an input signal can build a list representing that
connection. A system of recursion equations inside a letrec will result in a circular graph
structure that is isomorphic to the graph structure of the actual circuit. A straightforward
graph traversal function can then print the graph in a readable form.

Each component in the connection list has a type, and other identifying information,
and each of its inputs and outputs has a local name. For example, the and gate has type
“AND”, input ports named ‘a’ and ‘b’, and an output port named ‘x’. Since all components
have a similar overall structure, it is convenient to write a function blackbox that produces
the component’s internal graph representation from its type, a list of its inputs and a list
of its outputs. We can then use blackbox to provide a set of structure primitives analogous
to the behavior primitives given earlier.

AND = blackbox : [“AND?” [a b] [z]]
OR = blackbox : [“OR” [a b] [z]]
NOT = blackbox : [“NOT” [q] [z]]
ADD = blackbox : [“ADD” [a b c] [s co]]
CMP = blackbox : [“CMP” [a b] [z]]
MUX1 = blackbox : [“MUX1” [p a b] [z]]
MUX?2 = blackbox : [“MUX2” [pabcd] [z]]

structure_primitives

An additional primitive mk_source constructs a graph representing a system input, which
can be bound to an input of the circuit description. The connectivity function traverses the
graph that results from executing a circuit description, and produces the component and
wiring lists. Executing

SR_structure =
(meaning:<SR structure_primitives>)
<mk_source:"OPin" mk_source:"Lin" mk_source:"Rin">
connectivity : SR_structure

produces a low-level description of the circuit that could directly drive a placement and
routing machine. The specification consists of a component list and a wire list. The first
element of each component specification is its unique component number; the second element
contains the component type; the third element lists the inputs; and the last element lists
each output along with its fanout (the number of inputs that are driven by that output).
Each wire is represented by a list of the form (source --> sink), where the source and
sink of the wire consist of the component number and type and the port name. For example,
the first wire connects the Rin input to the ri input port of the rightmost shift register,
which is component number 5. Note that the center shift register bit has a fanout of 3 from
its state, while the other two bits have a fanout of only 2. The reason is that only one
neighbor reads the state from the leftmost and rightmost bits, but both neighbors read the
center bit.

Components:

[0 [*OUTPORT+*] [[ALPHA]] [<"outside_interface"> 0]]
[1 [*OUTPORT*] [[BETA]] [<"outside_interface"> 0]]
[2 [*OUTPORT*] [[GAMMA]] [<"outside_interface"> 0]]
[3 [SRB] [[op] [1i] [ril] [[st] 2]]

[4 [SRB] [[op] [1i] [ri]] [[st] 3]]

[5 [SRB] [[op] [1i] [ril]] [[st] 21]

[6 [*INPORT*] [] [[OPin] 3]]

[7 [*INPORT*] [] [[Lin] 1]]

(8 [*INPORT+] [] [[Rin] 1]]

Wires:
[*INPORT* 8 Rin --> SRB 5 ri]
[SRB 4 st --> SRB 5 1i]

10

[*INPORT* 6 OPin --> SRB 5 op]
[SRB 5 st --> SRB 4 ri]

[SRB 3 st --> SRB 4 1i]
[*INPORT* 6 OPin --> SRB 4 op]
[SRB 4 st --> SRB 3 ri]
[*INPORT* 7 Lin --> SRB 3 1i]
[*INPORT* 6 OPin --> SRB 3 op]
[SRB 5 st --> *QUTPORT* 2 GAMMA]
[SRB 4 st --> *QUTPORT* 1 BETA]
[SRB 3 st --> *QUTPORT* O ALPHA]

7. Implementation of the wire list extractor

Extracting a wire list from a circuit description takes place in two stages. First, the
meaning function interprets the description with a set of structural primitives. That results
in an internal graph structure that is isomorphic to the interconnection structure of the
circuit. Second, the connectivity function traverses the internal graph structure and prints
it in a readable fashion.

Consider the circuit Y = F': G : X. The output of G becomes the input of F. Therefore
the graph structure that represents F' will contain a pointer to G. Similarly, the value of YV
is simply a pointer to the output port of F. This leads to a surprising phenomenon in the
internal graph representations: the outputs of a component representation are the targets
of pointers from devices that read those outputs, while the inputs of the component are
represented by pointers to the sources that provide the input values.

The representation of a component must contain the type of component, a pointer
to each of its inputs, and a port for each of its outputs. Each output port points to the
component, and other circuits may contain pointers to whichever output ports they need.
For example, consider a component F which has three inputs, z, y and z, and which produces
two outputs, @ and b. Figure 3 shows the notation for F' that would be used in a schematic
diagram.

&
a
inputs | Y F outputs
b
z

Figure 3. Notation for component F

Figure 4 shows the internal graph representation for F. The structure consists of a
number of cons boxes linked by their tail fields and containing information in their head
fields. There are two output ports, whose heads contain the corresponding output port
names (a and b). Both output ports point to the component description, which specifies
the type F and points to the list of input ports. Note that a component must have each
input port connected to exactly one source (we are prohibiting “wired or”). On the other
hand, there may be any number of other circuits that use each output of the component.
This does not lead to difficulties, because the component representation doesn’t contain any
pointers to the users of its outputs.

11

bFﬁF-,T->T->T
ke a

Figure 4. Internal graph representation of component F

To illustrate how this representation works, Figure 5 shows the complete internal graph
representation for Circuit C' (Figure 1).

out——>{ D

VY
=)
®
Y

®

I/
n
Figure 5. Graph representation of circuit C'

The connectivity function starts from pointers to the output ports of a circuit graph,
and traverses the graph in order to build the wiring list. This means that any components in
the circuit whose outputs are unused will not appear in the wiring list. The implementation
of connectivity is similar to Lisp pretty-printing functions, except it must handle circular
structures. As the function goes through the graph it keeps a list of components that it has
already looked at, so that it can detect when a circular pointer brings it back to a point in
the graph a second time.

8. Hierarchical circuit descriptions

Since circuit description functions are first-class objects in the programming language,
other functions can create and combine them. This allows a designer to write a function
that gives a hierarchical circuit description. The description can be evaluated (with either
structural or behavioral primitives) at any level in the hierarchy, or even at different levels
in different parts of the design. For example, if the designer is having trouble with one part
of the circuit, he or she can simulate that part at a low level, while all the rest of the circuit
is simulated at a high level. Again, this advantage is not a special feature tacked on to a
hardware description language; it results directly from the representation of components by
first-class functions.

A generalization of the shift register SR to a tree architecture TREE (Figure 6) il-
lustrates the elegance and power of functions that generate circuit descriptions. TREE
contains two kinds of components. Its leaves are called cells, and each cell is connected to
both of its neighbors as well as to its parent in the tree. Therefore the sequence of cells is
a shift register like SR, except for the extra data path. Each cell contains both sequential

12

node

node node

/N /N

— cell cell cell cell —

Figure 6. Tree Architecture

and combinational components, just like the shift register bits. The non-leaf components,
called nodes, contain no sequential components; they are purely combinational.

The TREE architecture is a simplified version of a very powerful data structure memory
[25, 26, 27], which generalizes the facilities of associative memories. Each cell contains two
storage fields: “M” (for match), and “V” (for value). The system can access data either
by shifting it through the left and right ports, or by performing associative matches that
compare cell values with an operand. The nodes perform two services: (1) they broadcast
instructions from the top port to all the cells, and collect the cells’ responses back to the
top port, and (2) they carry out a priority resolution for multiple matches. Each instruction
(which comes in through the top input TI) contains three fields: the opcode Tl op, TI.m,
and the operand TIv. There are four instructions which cause each cell to perform the
following actions:

opcode mnemonic description

0 SHFTR shift right

1 MATCH set M if V = operand

2 LEFTM leftmost cell with M is unchanged; others clear M
3 CSTOR conditionally store operand iff M

The tree nodes and cells are intermediate level components. We can define their internal
structure by:

node = A[[TLop TI.m TILv] [LLm LIv][RLm RLv]].
[[OR : [LI.m RILm]) ADD : [LI.v RIv]]
[TLop TLLm TLv]
[TLop AND : [TLLm NOT : LL.m| TIv]

cell = M[[TLop TL.m TLv] [LI.m LI.v] [RLm RIv]].
letrec ST_-m = LATCH : MUX2 :

[TLop (opcode selects result value)
LIm (Shift Right instruction)

CMP : [ST-v TIv] (Match instruction)

AND : [ST-m TLm)] (Select Leftmost instruction)
ST_-m (Conditional Store instruction)

13

]

ST v =LATCH : MUX2 :

[TLop (opcode selects result value)
LI v (Shift Right instruction)

ST v (Match instruction)

ST v (Select Leftmost instruction)

MUX1 : [ST-m STv TL.v] (Conditional Store instruction)

in [ST-m STv] [ST-m ST_v] [ST-m ST_v]]

The tree architecture consists of a number of nodes and cells connected together. How-
ever, we don’t need to write out all these components in a letrec; we can exploit the regular
structure of the architecture by a high order function tree that builds the systems of recur-
sion equations using recursive descent. The ¢ree function’s formal parameter n specifies the
depth of the tree. If n = 0 then the tree is simply a cell, but if n > 0 then the tree consists
of two subtrees and a node connected together in a letrec. The subtrees are not primitive
components; they result from recursive calls to tree. The naming convention in the tree
function indicates the relative location of each port: thus N_to is the top output from the
node, while L_ro is the right output from the left subtree.

tree = An. A[TI LI RI].
(n=0 — cell : [TI LI RI],
letrec [N_to N_lo N_ro] = node : [TI L_to R_to|
[L_to Lo L_ro] — (tree tn— 1) - [N_Io LI R-Eo]
[R_to R.lo R.ro] = (tree : n—1) : [N_ro L_ro RI]
in [N_to L_lo R_ro]

As with the shift register, we can extract the meaning of the tree circuit with either
behavior primitives or structure primitives. In addition, we can either treat nodes and cells
as primitive components themselves, yielding a high level connection list, or we can expand
them into lower level components such as and gates. The high level interpretation of tree:2
produces:

Components:

[0 [*OUTPORT*] [[A]] [<"outside_interface"> 0]]

[1 [*OUTPORT*] [[B]] [<"outside_interface"> 0]]

[2 [*0UTPORT*] [[C]] [<"outside_interface"> 0]]

[3 [node] [[ti] [1i] [ril]] [[te] 1 [1lo] 1 [ro] 1]]
[4 [cell] [[ti] [1i] [ril] [[to] 1 [1o] 1 [ro] 1]]
[6 [cell]l [[ti] [1i] [ril] [[to] 1 [1lo] 1 [ro] 1]]
[6 [*INPORT+] []1 [[AA] 1]]

[7 [node] [[ti] [1i] [ril] [[to] 1 [1lo] 1 [ro] 1]]
[8 [node] [[ti] [1i] [ril] [[to] 1 [lo] 1 [ro] 1]]
[o [+xINPORT*] [] [[BB] 1]]

[10 [cell]l [[til [1i]1 [rill [[te] 1 [lo] 1 [ro] 1]]
[11 [celll [[til] [1i] [ril] [[to] 1 [1lo]l 1 [ro] 1]]
[12 [*INPORT*] [] [[cc] 1]]

Wires:

[cell 5 1o --> cell 11 ri]
[cell 10 ro --> cell 11 1i]
[node 8 lo --> cell 11 ti]

14

[cell 11 1o --> cell 10 ri]
[cell 4 ro --> cell 10 1i]
[node 7 ro --> cell 10 ti]
[cell 5 to --> node 8 ri]
[cell 11 to --> node 8 1i]
[node 3 ro --> node 8 ti]
[cell 10 to --> node 7 ri]
[cell 4 to --> node 7 1i]
[node 3 lo --> node 7 til
[*INPORT* 12 CC --> cell 5 ri]
[cell 11 ro --> cell 5 1i]
[node 8 ro --> cell 5 ti]
[cell 10 lo --> cell 4 ri]
[*INPORT* 9 BB --> cell 4 1i]
[node 7 lo --> cell 4 ti]
[node 8 to --> node 3 ril
[node 7 to --> node 3 1i]
[*INPORT* 6 AA --> node 3 ti]
[cell 5 ro --> *0QUTPORT* 2 C]
[cell 4 1o --> *QUTPORT* 1 B]
[node 3 to =--> *QUTPORT* O A]

With the low level description of nodes and cells, the meaning of TREE with the
structural primitives expands into a connection list that contains 50 components and 103
wires (which will not be shown here!). The meaning of tree : n with the behavior primitives
is a simulation function that illustrates the operation of the machine.

9. Layouts require geometric information

Neither the shift register nor the tree circuit descriptions contain any knowledge about
where the components and wires are supposed to go; they simply give the connectivity of
a circuit without saying anything about its geometry. Thus Figure 2, the shift register
schematic, contains more information than the SR function. In order to produce either a
rough schematic or a refined VLSI mask layout, it is necessary to know where to put all the
components.

Three general approaches to this problem appear in various hardware description
methodologies:

e Make the system automatically figure out the placement of components and wires.

e Give the designer a restricted set of operations that build up larger circuits from smaller
ones, and associate a specific geometric placement for each of these operations.

e Require the designer to specify where everything goes.

Most hardware description languages combine several of these approaches. Silicon compilers
[1] often allow the designer to specify part of the placement, while automating the rest.
It is frequently useful to have the designer specify the component placements, while the
system then routes the wires. Several hardware description systems are based on the FP
language [2]. The muFP language [30, 31, 32] associates a geometric organization with each
of its circuit combining forms. A related system, vFP [28], extracts circuit layouts from
functional descriptions. The Escher system [5] allows the user to describe geometric layouts
recursively, which makes it possible for a designer to write a layout specification that has

15

the same hierarchical structure as the abstract circuit design. There is increasing interest
in using expert systems to aid in automatic component placement.

HDRE allows the user to describe the geometric structure of a circuit by providing
several high order combining functions similar to letrec. These functions specify the geo-
metric combination of several smaller components into a larger one. Two components are
connected in a VLSI layout or a schematic simply by placing them next to each other. If
their input and output ports line up properly on their common edge, then the components
are connected to each other. In HDRE, the designer may combine two components with
hbox, which lines them up horizontally, or vbox, which lines them up vertically. (These
functions are named after similar ones in the TEX typesetting system [20], which also allows
the user to specify geometric placement of components.) Each structural primitive in HDRE
is rectangular, and its description specifies which edge, and where on that edge, every port
lies. When the user combines two components with hbox or vbox, the behavioral version
of the combining function creates a letrec expression containing the equations needed to
connect the ports that lie on the components’ common edge, and it appends the ports on
the other edges to synthesize the port description for the complete circuit. Of course, the
structural version of each combining function simply generates a larger layout from the
smaller ones.

This method of generating layouts is similar to Henderson’s functional geometry [13],
except that HDRE does not currently support rotations or reflections. Rotating a building
block in a VLSI design is a tricky problem, because all the transistors must be correctly
connected up to the power supplies (VDD and GND) both before and after rotation. This
means that some layouts will happen to work properly after rotation, while others will not.
Further work is needed on these problems.

Functional geometry works extremely well on regular layouts, although it is awkward
for “random logic” circuits. Systolic arrays [22] can be generated easily with primitives
like hbox and vbox. However, many computer aided design systems will perform automatic
component placement and wire routing for small sections of random logic, while functional
geometry requires the designer to specify the relative position of all the components. It
would probably be best for the system to automatically do the lowest levels of component
placement and wire routing, while allowing the designer to specify the higher levels with
functional geometry. This would exploit the designer’s insight and experlence while making
the process of describing a circuit less tedious.

The current HDRE system builds TEX code to describe the geometric layout of a
circuit, as long as the designer uses hbox and vbox to connect the components. The TEX
code can then be included in an ordinary document to be typeset, which is very convenient
for documenting digital designs. This system generated the tree architecture layout in
Figure 7. The tree nodes are labelled ncl (for “node combinational logic”) and the cells
have subsections labelled ecl (for “cell combinational logic”) and est n (for “cell n storage”).
The organization of the layout is similar to the tree layout generator in [21].

16

est 1 est 14 est 13

cel cel I cel
| P v l B
nel nel nel nel nel nel
m :‘Ll-l [Ir -Ti
cel ch—I cel cel
cst 3 est O cst 15 est 12
|
nel | nel nel
cst 4 est T cst 8 est 11
cel ccl cel cel
n e T ' L— J e —1|I- L J il altewis
nel nel nel nel — nel — 1 ncl
| | |
cel cel cel cel
cst 5 cst 6 cst 9 est 10

Figure 7. Tree architecture layout

10. Conclusion

One of the problems with modern hardware design is the proliferation of tools and
languages for using them. A typical VLSI design system will contain layout editors, logic
simulators, design rule checkers, etc. As a circuit design spawns more and more independent
descriptions of different aspects of the circuit, inconsistencies among them become almost
inevitable. The recursion equation approach to circuit description unifies three key aspects
of any circuit: its behavior, its connectivity and its geometry.

HDRE is not a programming language. It is a technique for describing hardware using
an existing programming language. The current implementation consists of a set of function
definitions written in Daisy, comprising about five pages of code. It is by no means a
complete design environment. The opposite is true: a major purpose of HDRE is to provide
a unified basis for a set of design tools.

Several people have used HDRE to design circuits ranging from small to intermediate
in size. These include an associative memory, a RISC processor, and a distributed real-time
graphics controller. A general observation from this experience is that using HDRE is very

17

slow in terms of computer time but very fast in terms of how long it takes a designer to
experiment with a circuit and modify it quickly if necessary. (This is the reason that “rapid
prototyping” systems are becoming popular.) One designer found a bug in a circuit design
that was about to be burned into a PAL chip. It is clearly easier and cheaper to develop
and debug a circuit with HDRE than it would be with a series of physical fabrications.

An alternative to describing digital hardware with functions is to use mathematical
logic. Temporal logic can express phenomena that vary with time, and Moszkowski shows
how to use temporal logic to describe the behavior of digital circuits [24]. Temporal logic
can describe the behavior of a clock in a synchronous circuit, but HDRE cannot (HDRE’s
clock is implicitly described by the data dependencies among the stream elements). Thus
temporal logic gives a lower level description of hardware than stream functions do.

Gordon shows how to use higher order logic as an elegant hardware description language
[11]. This also leads to a lower level of abstraction than HDRE. For example, higher order
logic can express the bidirectional nature of a VLSI pass transistor [22]. For a transistor T
with gate g and diffusion ports a and b, the expression

T(g,a,0) = (92 (a =1))

specifies exactly what the transistor does, and no more: if the value on g is 1, then we can
deduce that a = b. But there is no assumption about which of a and b is the input and
which is the output. In contrast, HDRE treats every component as a function, forcing each
of the component’s ports to be identified as an input or as an output. This means that
mathematical logic is better suited than HDRE for describing low-level VLSI techniques
like bidirectional ports and precharged wires.

Although it cannot easily describe the lowest levels of circuit behavior, HDRE has a
number of advantages. It provides a very effective way of describing circuits hierarchically,
and supports mixed levels of simulation. It is easy to describe and modify a circuit design
with HDRE. When a user is satisfied with the behavior of a circuit description, HDRE will
automatically provide the structural specification needed to fabricate it , and the structural
specification is guaranteed to produce exactly the same circuit that was being simulated.

A major unresolved problem is finding the best way for the user to express the geometry
of a circuit in a description that also must express behavior. It is easiest for a designer to
use a recursive graphic language, such as Escher [5], rather than a textual notation. On the
other hand, HDRE uses applicative programming language notation for circuit description,
and this leads it to a textual specification of the geometry as well. A good solution must
provide the user with a natural notation, without separating the circuit’s behavioral and
structural descriptions. Davie discusses this and related problems [6].

The set of tools that run under HDRE needs to be extended. For example, a designer
might want to specify component placement while allowing an automatic wire router to fill
in the interconnections. HDRE doesn’t address some of the low level problems that arise
in VLSI design, as discussed above. It would be useful to combine HDRE with circuit veri-
fication techniques [9, 10]. Further research and experimentation are necessary to discover
its potential and its limitations.

Acknowledgements

I would like to thank Steve Johnson, who introduced me to recursion equations and
motivated this work, and Rosalee Nerheim and Timothy Bridges, who experimented with
the system.

18

References

1.

10.

1,

12.

13.

14.

15.

16.

17,

18.

19.

20.

Ayres, Ronald F., VLSI Silicon Compilation and the Art of Automatic Microchip De-
sign, Prentice-Hall, 1983.

Backus, John, “Can Programming be Liberated from the von Neumann Style?”, CACM
Vol. 21 No. 8, 1978.

Barbacci, Mario R., “Structural and behavioral description of digital systems”, pp.
139-223 in J. Tiberghien (ed.), New Computer Architectures, Academic Press, 1984.
Boute, Raymond T., “Current Work on the Semantics of Digital Systems”, pp. 99—

112 in G. J. Milne and P. A. Subrahmanyam (ed.), Formal Aspects of VLSI Design,
North-Holland, 1986.

Clarke, Edmund and Feng, Yulin, “Escher—A Geometrical Layout System for Recur-
sively Defined Circuits”, CMU-CS-85-150, Department of Computer Science, Carnegie-
Mellon University, 1985.

Davie, B. S., “Hardware Description Languages: Some Recent Developments”, Internal
Report CSR-198-86, Department of Computer Science, University of Edinburgh, April
1986.

Friedman, Daniel P. and Wise, David S., “Functional Combination”, Computer Lan-
guages, Vol. 3 No. 1, pp. 31-35, 1978.

Gordon, Mike, “A Very Simple Model of Sequential Behavior of nMOS”, in VLSI 81:
Very Large Scale Integration, John P. Gray (ed.), Academic Press, 1981.

Gordon, Mike, “LCF-LSM”, Technical Report No. 41, University of Cambridge Com-
puter Laboratory.

Gordon, Mike, “Proving a Computer Correct”, Technical Report No. 42, University of
Cambridge Computer Laboratory.

Gordon, Mike, “Why higher-order logic is a good formalism for specifying and verifying
hardware”, pp. 153-177 in G. J. Milne and P. A. Subrahmanyam (ed.), Formal Aspects
of VLSI Design, North-Holland, 1986.

Henderson, Peter, Functional Programming, Application and Implementation, Prentice-
Hall, 1980.

Henderson, Peter, “Functional Geometry”, Proceedings of the 1982 ACM Symposium
on LISP and Functional Programming.

Johnson, Steven D.,“Circuits and Systems: Implementing Communication with
Streams”, Proceedings of the 10th IMACS World Congress on Systems Simulation
and Scientific Computation, pp. 311-319, 1982.

Johnson, Steven D., Synthesis of Digital Designs from Recursion Equations, The MIT
Press, Cambridge, 1984.

Johnson, Steven D., “Applicative Programming and Digital Design”, Eleventh Annual
ACM Symposium on Principles of Programming Languages, pp. 218-227, 1984.

Johnson, Steven D., “Digital Design in a Functional Calculus”, in G. J. Milne and P. A.
Subrahmanyam (ed.), Proceedings of the Workshop on Formal Aspects of VLSI Design,
North-Holland, Amsterdam, 1985.

Johnson, Steven D., “Daisy Language Summary”, Indiana University Computer Science
Department, to appear.

Kohlstaedt, Anne T., “Daisy 1.0 Reference Manual”, Technical Report 119, Indiana
University Computer Science Department, Bloomington, 1981.

Knuth, Donald E., The TgXbook, Addison- Wesley, 1984.

19

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Luk, W. K. and Vuillemin, J. E., “Recursive Implementation of Optimal Time VLSI
Integer Multipliers”, in F. Anceau and E. J. Aas (eds.), VLSI 83: VLSI Design of
Digital Systems, North-Holland, 1983.

Mead, Carver and Conway, Lynn, Introduction to VLSI Systems, Addison-Wesley, 1980.

Milner, Robin, “The Standard ML Core Language”, Report CSR-168-84, Department
of Computer Science, University of Edinburgh, 1984.

Moszkowski, Ben C., Executing Temporal Logic Programs, Cambridge University Press,
1986.

O’Donnell, John T., A Systolic Associative LISP Computer Architecture with Incre-
mental Paralle] Storage Management, Technical Report 81-5, Computer Science De-
partment, University of lowa, Iowa City, 1981.

O’Donnell, John T., “An Architecture that Efficiently Updates Associative Aggre-
gates in Applicative Programming Languages”, Functional Programming Languages
and Computer Architecture, pp. 164-189, Lecture Notes in Computer Science 201,
Springer- Verlag, 1985.

O’Donnell, John T., “An efficient architecture for implementing sparse array variables,”

Twenty-third Allerton Conference on Communication, Control and Computing, Octo-
ber 1985.

Patel, Dorab; Schlag, Martine and Ercegovac, Milos, “vFP: An Environment for the
Multi-level Specification, Analysis, and Synthesis of Hardware Algorithms”, Functional
Programming Languages and Computer Architecture, pp. 238-255, Lecture Notes in
Computer Science 201, Springer-Verlag, 1985.

Rees, Jonathan and Clinger, William (eds.), et. al., “Revised® Report on the Algo-
rithmic Language Scheme”, ACM SIGPLAN Notices, Vol. 21 No. 12, pp. 37-79,
1986.

Sheeran, Mary, uFP — An Algebraic VLSI Design Language, Technical Monograph
PRG-39, Programming Research Group, Oxford University Computing Laboratory,
Nov. 1983.

Sheeran, Mary, “muFP, A Language for VLSI Design”, Proc. ACM Symposium on
Lisp and Functional Programming”, pp. 104-112, 1984.

Sheeran, Mary, “Designing Regular Array Architectures using Higher Order Functions”,
Functional Programming Languages and Computer Architecture, pp. 220-237, Lecture
Notes in Computer Science 201, Springer-Verlag, 1985.

Steele, Guy Lewis Jr., Common Lisp: the Language, Digital Press, 1984.

Turner, David A., “SASL Reference Manual”, Computer Science Department, Univer-
sity of Kent, 1979.

Wadge, William W. and Ashcroft, Edward A., Lucid, the Dataflow Programming Lan-
guage, Academic Press, 1985.

20

