Search Rearrangement Backtracking
Often Requires Exponential Time
To Verify Unsatisfiability

By

John Franco

Department of Computer Science
Indiana University
Bloomington, IN 47405

TECHNICAL REPORT NO. 210

Search Rearrangement Backtracking
Often Requires Exponential Time
To Verify Unsatisfiability
by
John Franco
December 10, 1986 (Revised July 5, 1987)

This report is based on work supported in part by the Air Force Office of Scientific Research under Grant No. AFOSR-
84-0372.

saidasrideall Jesmeganriasl dorse”
paiT lait conognd eiiivpaf 02810
witidapeisges T gl oT
. [ﬁ
sopsizd wngmol Yo rossiagl]
iarsvial saniby
e0p7h WL sorgalmsoli

ors .OW THEOYER JADIMEDIT

K dyinse

saril lsidassogxd wovinpall aasiO

goidvaridsafl raymonnsi ui

wilideRuitaeall lins)
wd
sote™ adol,

t}a l\

P (Y881 7 viul besiosfl) 2601 0/ maderaimnt]

SBCTIA oY tuash) svbuw devanesll *Eibwat Yo w80 i B sdied ey mi baroeggue tuom iy b § i e e S

3

L0k

ABSTRACT

It is shown that any form of Search Rearrangement Backtracking (SRB) requires
exponential time to verify the unsatisfiability of nearly all of a wide class of CNF boolean
expressions. This result is based on an input model which generates n independent k-literal
clauses from a set of » boolean variables. We assume that k is fixed and n and r tend to
infinity. The result holds if lim, .o n/r(r) = }, is fixed and A > In(2)/(—In(1 — 27¥)).
We also show that SRB requires superpolynomial time nearly always if A is replaced by
AM(n) = o(n?/212()) and lim,,_,co A(n) = oo (so the superpolynomial time result holds, for
example, if A(n) = (In(n))? where B is any positive constant). We also show that these
results apply to any form of the Davis-Putnam Procedure.

worinpss (BA2) paideettivat] Sosmpgaarses dviesh Yo mrol yna st awods @
sasiood TAD o mals shiw 2 Yo ls viassy Yo wilidelivdisgsy sdl @irow od senil Leisanaegr
leotii-3 javbusgabai » stsoasg. didw ol tvani ne uo Beaxd 2 towws T anceserias
ot baat v kns x bas Soxlt 0 & tadl smusns oW aslditisr neslood » ta e A med sl
K92 — Dynd - N(2)nl < 4 b o 5i 4 = (a0 ool B wblod arsy odT gigiei
el bacalaer wi L N axswhs choes smid loimeotiormase eminge: BAR tads wads oels W
7ot ablnd Hovss snit Islmenyloqeagus st e} 36 = (ol s ol ban (1775800 g e = (a0
sed! bads wesi cals SW {Jnalrany svidhipg was U G sl % (n)sl) = Lt Vi slgicsas
subasord iosein aivad sdf Yo oxaal Gus of yhgge i8en

1. Introduction

The Satisfiability problem (SAT) is the problem of determining whether there exists an
assignment of values to boolean variables (a truth assignment) which causes a given boolean
expression I to have value true. A truth assignment which causes I to have value true is
called a satisfying truth assignment and is said to satisfy I. It is well known that SAT
is NP-hard. However, it has been shown that some algorithms solve SAT efficiently in
a probabilistic sense under certain conditions. These conditions are determined by the
parameters of the input models chosen for analysis.

The model we consider in this paper and denoted M(n,r, k) is the constant clause size
model for CNF boolean formulas. An Instance of SAT generated according to M(n,r,k)
is the conjunction of n k-literal clauses (disjunctions) each selected uniformly and with
replacement from the set of all k-literal clauses that can be composed from r boolean
variables with the property that no two literals in a clause are associated with the same
variable. We will assume that k is fixed (independent of n and r), and we use k—SAT in
place of SAT when referring to instances generated by M. The problem of finding a satis-
fying truth assignment for an instance of k-SAT or verifying that no such truth assignment
exists is NP-hard if £ > 3 ([12]). The model M(n,r, k) has the interesting property [10]
that if n/r < In(2)/(—1n(1 — 27%)) then the average number of truth assignments that
satisfy random instances of k-SAT is exponential in r and if n/r > In(2)/(=In(1 — 27%))
then almost all random instances have no satisfying truth assignments (that is, they are
unsatisfiable).

Surprizingly simple and fast algorithms are very effective at finding satisfying truth
assignments when at least one exists if instances of k-SAT are generated according to
M(n,r, k). For example, the unit-clause algorithm is: repeatedly assign values arbitrarily
to variables in random order until some clause has just one non-falsified literal (a unit
clause), then assign to the variable associated with that literal the value which satisfies the
unit clause and repeat these two steps until all variables have been assigned values. In [5]
it is shown that the unit-clause algorithm finds a satisfying truth assignment for 2 random
instance of k-SAT with bounded probability under M(n,r,k) if n/r < (2571 /k)((k —
1)/(k — 2))¥~%. A generalization of the unit-clause heuristic (choose some variable that
appears in a smallest clause and assign to it the value which satisfies that clause) is shown
in [5] to find a satisfying truth assignment to almost all random instances of k-SAT if
nfr < (46 % 28 /(k + 1))((k — 1)/(k — 2))*? —1 and 4 < k < 40 and if 40 < k and
n/r < 10 (for practical purposes this is all ratios of n/r). The following algorithm is
an improvement to the unit-clause algorithm: repeatedly assign a value which satisfies
a unit clause or, if no unit-clauses exist, a value which satisfies most remaining clauses

(instead of assigning values arbitrarily). In (4] it is shown that this improvement results in

1

an algorithm that finds a satisfying truth assignment for a random instance of 3-SAT with
bounded probability under M(n,r,3) when n/r < 2.9. Similar results have been obtained
for other instance distributions (see, for example, [9], [13] and [15]).

Although the algorithms of the previous paragraph involve no backtracking, the heuris-
tics for choosing variables and values presented in those algorithms can easily be incor-
porated into a backirack structure. In fact, the Davis-Putnam Procedure (DPP), given
in [6] and [7], includes the unit-clause heuristic. Thus, the results mentioned in the pre-
vious paragraph apply directly to DPP in the case that it stops when a satisfying truth
assignment is obtained. The heuristics employed by DPP are important since without
them DPP would almost always require time exponential in r for any fixed ratio of n to r
([10], [11]). In this paper we investigate how important these and other heuristics are to
backtracking when we are interested in verifying that no satisfying truth assignment exists
for an unsatisfiable instance of k-SAT. The class of heuristics we consider, when applied
to simple backtracking, produces the class of problem solving procedures known as Search
Rearrangement Backtracking (SRB) and discussed in [2], [14], [16] and [17].

We present SRB as an algorithm in which clauses are represented as sets of literals
and instances are represented as collections of clauses. In this representation, under a
partial assignment of values to variables, a false literal is removed from a clause and a
true clause is removed from an instance. Let H(I) be a function that maps instances
I of SAT to boolean variables in I. The H function represents a wide class of heuristics
for dynamically choosing the next variable to eliminate in a backtrack search. We use the
convention that the positive literal associated with variable v is denoted v and the negative
literal associated with variable v is denoted ©. Search Rearrangement Backtracking applied
to I is

SRB(I):

If I has a null clause then return “UNSAT”

Else if I is empty then return “SAT”

Else
v — H(I)
L —{c—{v}:c€l,vé¢c}
L —{c—{v}:ce€l,5¢c}
If SRB(I;)=“UNSAT” and SRB(I;)=“UNSAT” then return “UNSAT”
Else return “SAT”

In SRB, I, is the subinstance of SAT obtained from I by assigning the value true to variable
v and I, is the subinstance obtained by assigning the value false to v. Although it is
not necessary to do so, we have restricted H by forbidding it to choose the same variable

2

twice in the same branch of a backtrack search tree. A computation in which a variable is
selected twice in the same branch can always be transformed to a shorter computation in
which no variable is selected twice in the same branch. Therefore our lower bounds using
restricted H functions apply to all H functions. Our H function is such that SRB does
not include algorithms where the choice of v is determined randomly. However, there is a
best H(I) for every I (which minimizes the time to develop a refutation for I') and this H
will perform no worse than any randomized method for choosing v. Therefore, our result

provides a lower bound for randomized methods.

Note that SRB is actually the class of all backtracking algorithms for instances of SAT
which invoke backup when some clause has become falsified or a satisfying truth assignment
has been found. Each algorithm in the class is distinguished by its H function which may
cause dynamic or static variable elimination, and need only return a valuein finite time. An
interesting class of backtracking algorithms, known as Multi-Level Search Rearrangement
Backtracking algorithms, were the inspiration for this paper. These algorithms, as analysed
in [2], [14], [16] and [17], for example, fall into the class SRB if the computational effort
required to evaluate potential variable eliminations is allowed to show up as part of the
search tree. The H functions associated with these algorithms are fairly complicated and
involve looking many levels deeper into the search tree to pick the next variable elimination
which is most likely to result in a small subtree. The results of [2] and [17] are that
the H function has a significant impact on search tree size. For example, in [17], 3-SAT
instances containing 4096 clauses composed from 256 variables (n/r = 16) were solved by
Two-Level Search Rearrangement Backtracking using 10~?7 as many search tree nodes, on
the average, as ordinary backtracking.

The most important previous work on average case analysis of backtracking algorithms
for the Satisfiability problem using the model M(n,r,k) appears in [3] and [16]. The
algorithms of both papers search for all solutions to a given input. In [3] it is shown that,
under M(n,r,k),if n/r = r*"! where 1 < a < k, a constant, then ordinary backtrack trees
contain at least e ™™™ nodes on the average. Recall that, under the condition of the
previous sentence, almost all inputs have no solutions. Therefore, the result of (3] implies
that ordinary backtracking requires exponential average time to verify unsatisfiability if
nfr = r*71, 1 < a < k, but the exponential is sublinear and decreases with o until
o« = k. When a > k (that is, n/r > r*7!) then results in [3] imply that ordinary
backtracking requires polynomial average time. In [16] the same kind of results are obtained
for Simple Search Rearrangement Backtracking. In particular, over the range1 < a < k-1,
Simple-Search-Rearrangment-Backtrack trees contain at least eOr =) i odes on
the average. Thus, Simple Search Rearrangement Backtracking has exponentially better

average case performance than ordinary backtracking if n/r = r*1, 1 < a < k- L.

3

The algorithms of [3] and [16] may be regarded as specific forms of SRB (that is, specific
H functions) if the “look-ahead” effort is taken into account. This paper shows that no
matter how clever the H function, even if it is vastly improved over another H function,
it will not be clever enough to yield polynomial average time on almost all unsatisfiable
instances of k-SAT if n/r(n) = o(n!/™2(")) and n/r(n) > In(2)/(—1In(1 — 27%)) for all
n > 0.

We are interested in the performance of SRB when inputs are almost always unsatisfi-
able; that is, when inputs are generated according to M(n,r,k) and n/r > In(2)/(—1n(1 -
27%)). We prove that all algorithms in the class SRB require time exponential in r almost
always when n/r = X where) is fixed and is greater than In(2)/(—In(1 —27%)). The proof
itself is interesting because it relies on a siructural property of instances of k-SAT which
must be present in almost all random instances and cannot be present if the search tree
corresponding to the execution of SRB on unsatisfiable instances is small. The property,
loosely speaking, is that the number of pairs of clauses containing literals associated with
the same variable is small if n/r = A for any fixed A. Although unsatisfiable instances of
k-SAT are generated under M(n,r, k) when n/r < In(2)/(—1In(1 — 27%)), we are unable
to use the property mentioned to extend the results to that range because almost all in-
stances in that range are satisfiable (so it is possible that almost all instances have the
property but almost no unsatisfiable instances do). We also show that SRB requires su-

1/1nln(n))

perpolynomial time if n/r = o(n and lim,, o n/r = oco.

We also show that the same result applies to any form of DPP. DPP looks for unit-
clauses and pure-literals. For our purposes, a pure-literal is a variable which appears only
as a positive literal or as a negative literal in I. DPP is like SRB in the sense that there
is some heuristic function H which selects the next variable to be assigned a value. The
heuristic function of DPP selects a pure-literal next or, if no pure-literals are present, a
unit-clause next or, if no unit-clauses are present, a variable with highest “weight”. DPP
differs from SRB in that either I; or I; but not both is used as a recursive argument to
DPP when the selected variable is a pure-literalin I. It is this feature of DPP that prevents
us from directly applying the results to DPP. However, we will show how to design an SRB
algorithm from a given DPP algorithm which runs faster (generates fewer nodes) than
the DPP algorithm if the given instance is unsatisfiable. This implies that the result also
holds for DPP.

The results we get are pessimistic and are possibly surprizing to those familiar with
a result of Purdom [14] which states that even ordinary backtracking can verify unsatis-
fiability in polynomial time, on the average, for a variety of relationships between model
parameters. Purdom’s random clause model and model M have certain similarities. In
both models n clauses are independently constructed from r boolean variables. But, in the

4

random clause model, instead of a fixed number of literals per clause, each literal appears
independently in a clause with probability p. Thus, if we set 2pr = k, clauses have k liter-
als, on the average, as for model M. Also,ifn/r > In(2)/(—In(1—(1—p)")) then almost all
instances are unsatisfiable. If 2pr = k this condition is nearly n/r > In(2)/(—1ln(1—e~*/2))
which is similar to the condition that almost all instances are unsatisfiable in model M.
The results of Purdom’s work in this area are that various backtracking algorithms exhibit
very different average case behavior depending on the values given to parameters. Pur-
dom’s results are interesting (and parallel our own results) because they show that these
algorithms are fast on the average if instances are usually “very” unsatisfiable, are slow
if instances are “moderately” unsatisfiable or “moderately” satisfiable (not too many lit-
eral links between clauses), and fast if instances are “highly” satisfiable. Model M also
has this property. When n/r(n) > (r(n))*~?, or n/r(n) < In(n)/n there are SRB algo-
rithms that almost always solve problems in polynomial time (see [3] and [15]). This paper
is concerned with the range In(2)/(—In(1 — 27%)) < n/r < o(n?/212(?)) which is in the
intermediate region for model M.

A result of [14] is that if 2pr = k, k fixed, then for n/r big enough, ordinary back-
tracking requires polynomial time, on the average. This result appears to be strikingly
different from ours but can be accounted for in the following way. Under the random
clause model, the probability that a random instance contains a null clause (no literals) is
1—-(1—(1—p)?)" whichis 1 — (1 — e *)" in the limit if 2pr = k. But, if a null clause
appears in the given instance, backtracking stops and states the given instance is unsatisfi-
able without doing any searching at all. The time required by backtracking in that case is
the time to locate a null clause which is O(n) at worst. If the time required by backtrack-
ing to verify the unsatisfiability of instances that do not originally contain a null clause
is (1 — e7*)~™ (that is, exponential in n) then the average time required by backtracking
isO(n)-(1—(1—e*)*)+ (1 -e*)?(1 —e*)™ = O(n). Thus it is possible that all
or nearly all random instances with no null clauses which are generated under the ran-
dom clause model with 2pr = k are solved in exponential time by backtracking and yet
the average time for backtracking is polynomial in n. Model M does not generate any null
clauses so our result is not inconsistent with polynomial average time under the random
clause model not only for ordinary backtracking but for more sophisticated forms of back-
tracking such as the algorithm in [17]. Another way to look at the relationship between
our result and the results under the random clause model is to regard model M as gen-
erating a very small and non-easy subset of the instances that the random clause model

generates.

2. Analysis

We use a binary tree, denoted T7(H), to model the execution of SRB for a particular H
function on a given instance I of k-SAT in the customary manner. Associated with each
non-leaf z in T7(H) is a boolean variable v(z) contained in I and a subinstance I(z) of
I. Associated with the edge connecting z to its left (right) child is the interpretation that
v(z) is assigned the value true (false), respectively. Associated with a path from the
root of T7(H) to any node z is the partial assignment P(z) of values to the variables
corresponding to nodes visited on that path except for z. Specifically, P(z) is a set of
variable/assignment pairs (v « t), one pair for each v associated with a node on the path
from the root down to but not including z, where t is true (false) if the left (right) son
of the node associated with v is on the path to z. We defer a discussion on the meaning
and determination of I(z) until we develop some intuition about T7(H).

Associated with leaves and edges of T1(H) are labels corresponding to clauses in I.
Let each clause in I be given a name that uniquely identifies that clause. We label every
leaf z of T7(H) with the name of the clause that is null under P(z), if at least one clause
is null under P(z). If more than one clause is null under P(z) then z is labeled with the
name of one of the null clauses arbitrarily. If no clauses are null under P(z) then z is given
no label. We associate with each edge of T7(H) a set of literal /clause-label tuples (called
edge labels) as follows. Let z be a non-leaf of T7(H) with left child y and right child =.
Let (z,y) be the edge connecting z to y, let (z,z) be the edge connecting z to z. Let v(z)
be the variable associated with z. If | is a label given to a leaf of the subtree of T7(H)
having y (alternatively z) as root, and the literal 5(z) (alternatively v(z)) is in the clause
corresponding to I then (v(z),l) (alternatively (%(z),!)) is a member of the list of labels
associated with (z,y) (alternatively (z,z)). If { is in an edge label associated with edge e

then, for brevity, we say [is associated with e.

Figure 1 contains an example of the labeling of leaves, association of labels to edges,
and the association of variables and subinstances to nodes of a subtree of T7(H) rooted at

z given the instance

I = (91,72, 74)(T3,vs,vs)(V2,v3,v4)(v2,v5, 6)(v1,V2,V3)

and some H function where z is such that P(z) = {(vs « false),(ve — false)}. To
simplify the figure we have shown only the clause labels associated with edges: the literals
of the edge labels that are actually associated with edges are implied. If z is a leaf of
TI(H) and [labels z, then the label [is associated with exactly k edges on the path from
the root of Tr(H) to = (namely those edges which represent the partial truth assignment
which falsifies all k literals in the clause labeled). If z is not a leaf and has left child
y and right child z and the edge label (3(z),!) is associated with the edge (z,y) then !

6

cannot be associated with any edge in the subtree of T1(H) rooted at z for the following
reasons: (1) v(z) cannot be associated with any node below and including z, (2) the clause
labeled ! must contain v(z), and (3) complementary literals are not allowed in the same
clause (so (v(z),!) cannot be associated with (z, z)). Consequently, [cannot be associated
with any leaf under z. Similarly, if the edge label (v(z),!) is associated with (z,z) then !
cannot be associated with any edge in the subtree of Tr(H) rooted at y and cannot label
a leaf under. y.

We now define I(z), a subinstance of I associated with node z. I(z) is the subset of
clauses in I that label leaves below z. Note that even if a clause labels many leaves below
z it appears only once in I(z). Also note that clauses in I(z) have exactly k literals.

In this paper we are concerned with verifying unsatisfiability. If an instance is unsat-
isfiable then T7(H) is a refutation tree and has the property that all its leaves are labeled
since backtracking is only due to the emergence of a null clause. From now on it will be
understood that T7(H) is a refutation tree. We make the following simplifying assumption:

Assumption S:
At least one label is associated with every edge of T7(H).

If there exists an edge (z,y) with no associated edge labels then a computation involving
fewer nodes is possible: simply replace the subtree rooted at z with the subtree rooted at
y. Thus, lower bounds derived from the simplifying assumption will apply to all search
strategies. The effect of this assumption is to allow backtracking using the pure-literal
rule. We will see this more clearly at the end of the next section when we consider the

Davis-Putnam Procedure.

Each clause label associated with a leaf of Tr(H) must also be in edge labels associated
with k edges on the path from the root of Ti(H) to that leaf or else some clause labeling
a leaf is not falsified by the truth assignment associated with that leaf. Furthermore, if a
clause labels more than one leaf then the k edges on each path from the root to such a leaf
must all be associated with the same k variables and assignments (namely those that make
the clause false). Thus, for any node z in a refutation tree such that p(z) distinct leaf
labels exist below z, the number of distinct edge labels in T;(H) due to those leaf labels is
kp(z). For every node z let c(z) be the number of distinct edge labels at or below z and
define h(z) = kp(z) — ¢(z), the number of edge labels above z which are due to leaf labels
below z. Clearly, if A(z) > 0 then z cannot be the root of a refutation tree. In Figure 1,
h(z) = 3*5— 11 = 4 with specific contributions from (vs,¢cz), (vs, c2), (vs, cs) and (vs,c4)
which are the edge labels above z that are due to the clauses labeling leaves below z. We
will show that A(z) > 0 in a small tree, with probability tending to 1. This will be used
to show that T7(H) cannot be small, with probability tending to 1.

i

We also introduce a function common(z). Let z be a node in T7(H), let ¢(z) be the
number of distinct edge labels at or below z, and let var(z) be the number of distinct
variables associated with nodes at or below z. We define common(z) = ¢(z) — var(z). For
example, in Figure 1, ¢(z) = 11 and common(z) = 1.

Finally, we define a function Jcomm(I'). Let I' be any collection of clauses. Then
Icomm(I') is the total number of literals in I' that are associated with variables that appear
two or more times in I’ minus the number of distinct variables of that kind. Icomm(I') is
also the total number of literals in I’ minus the number of distinct variables in I' since there
is exactly one literal in I' for every variable that appears once in I'. Note the similarity
between Icomm and common(z). However, Icomm is defined for any collection of clauses
and not just those sets of clauses corresponding to I(z) where z is a node of Tt (H). We
even allow Icomm(I') to be defined if one or more clauses in I' contain duplicate or
complementary literals. We make use of Icomm to bound common(z) in the following
way. Let I be any instance of k-SAT. For any H function, let z be a node in T7(H) and
suppose I(z) contains p(z) clauses and common(z) > p(z)(1 + 1/In(p(z))). Then there
is a subset I' of I containing p(z) clauses such that Icomm(I') > p(z)(1 + 1/In(p(z))),
namely all the clauses of I(z). Hence we may make the following

Observation 1:
Suppose that no subset I' of clauses in an instance I of k-SAT which contains p clauses
is such that Icomm(I') > p(1 4+ 1/1n(p)). Then, for all H functions, there does not
exist a node z in Ty(H) such that |I(z)| = p and common(z) > p(1 + 1/In(p)) where
[I(z)| is the number of clauses in I(z).

We will use observation 1 to show that if n/r(n) doesn’t grow too fast then, with
probability tending to 1, common(z) is small for every node z such that the number of
distinct clause labels below z is O(n(™)), where €(n) is not very small asymptotically. The
following theorem and corollary state this more precisely.

Theorem 1:

Let I be an instance of k-SAT generated according to M(n,r,k). Let w(n) be any
function that decreases asymptotically to 0 and is such that lim,—en¥ (™ = oo
Suppose that n/r(n) = A(n) obeys A(n) = o(n“(™) and A(n) > In(2)/(-In(1 — 27%))
for all n > 0. Let ¢(n) = 1/(In(e?k*12X(n)) + 3). Then the probability that there
exists a subset I" of I with p < n*(®) clauses and such that Icomm(I') is greater than
(1 + 1/1n(p)) tends to 0 as n tends to infinity.

Proof:

In the rest of this proof and in the remaining proofs and discussion in this paper we

8

use ¢ for ¢(n) and A for A(n) to avoid clutter. The probability that there exists a subset
I' of I containing p clauses such that Tcomm(I') > a is less than the average number
of such subsets. The average number of such subsets is the sum of the probabilities
that each p clause subset I' of I has Icomm(I') > a. This is (:) times the probability
that Jcomm(I') > a where I' is a random p-clause subset of I. The probability that
Icomm(I') = i is the number of ways to construct I’ such that Tcomm(I') = i divided
by (2" (;))p, the number of possible p-clause subsets of I. The number of ways to
construct I' such that Jcomm(I') = i is less than the number of ways to construct I'
such that Icomm(I') = ¢ if clauses were allowed to have duplicate or complementary
literals. But the number of ways to construct I' such that Icomm(I') = ¢ and I'
is allowed to have duplicate or complementary literals in the same clause is 2*7, the
number of ways to assign positive and negative literal values to kp literals, times the
number of ways to partition kp literal place-holders into kp — i variable groups with
labels taken from 1 to r. Using braces to denote Stirling numbers of the second kind,
the latter number is {kpp }(kp ;) (kp — 1)! (see [18], pages 133 and 134 for a detailed
explanation of this quantity). It can easily be shown that (f) > (r/k)* for all integers
r > k > 0. Furthermore, from the appendix, {k < (kp)*/i!. Then, the average

p—i
number of subsets of I containing p clauses and such that Tcomm(I') > a is less than

(sl

i=a

e

i=a

-Gzt

i=a

() 5° LD d "

i=a

Defining a new variable j = i+ — p, and bringing (:) into the summand, we see that
(1) is equal to

(kp)ﬁ(ﬁp)ngkkp
Z (7 + p)ip!(n — p)iri+e)

- ki? ﬁ(kp)z’(j-i-p)(n/e)nelfnnkkp
=5 2y /G + p)p(n — p)((G + p)/€)+P) (p/e)?((n — p)/e)(m—PIr(+P)

by Stirling’s formula for factorials (that is, ! = v/27z(z/e)2ef/122,z > 0,0 < § < 1).
Rearranging terms and noticing that e!/??"/r < 1 since n > 2, (2) can be bounded

(2)

9

from above by

kp—p - - (n—p) (k\/E)2(j+p)kkp i
> (?) (E) r-fpp(? + p)Ute) \/4(3' +p)p(n — p)

j=a—p

< kpi:p (n)’ (___ﬂ__) (n=P) (k. Jep)2(+P) e

v/ \n-p rIpP(j + p)li+P)

y T
j=a-p

since n > 2, € < 1/3 (and therefore p < n”s), and p > 1 implies

n 1 1
\/4(3' + p)p(n — p) T \/4(3' +p)p(1 — n=2/3) = 1.24/(7 + p)p o

(actually we could derive a similar upper bound for € < 1 but it is unnecessary to do
so to get our main result). By making use of the fact that (1 —p/n)(®"?) > e P ifn
and p are positive and using n/r = A we can make the last sum

2. (PRI (eh?)ipPpt

3 ri(j +p)P(F +p)

(3)

j=a—p
Suppose a = p + p/In(p) (that is, 7 > p/In(p)). Then for sufficiently large n

ek?p? ek?
r(J -:P) = rp <1/2
since A = o(n“(™)) and p < n¢ where € < 1/3. Furthermore,
(e*k**2pA)P
(G +p)

Therefore, the summand of (3) is less than

(1) (3-»/1n(p)) (p"‘(’:"k“")ek’p) p/1n(p)

< (E2k*20)P = (€2 k*+2))m(2)(p/1n(p))

2

2 T
for sufficiently large n. Hence the sum (1) is less than

, (pln(ezk*-'-:'\)ckzp)p/ln(;')

F

for sufficiently large n if a = p(1 + 1/In(p)). Thus, the probability that there exists
subset I' of I containing n¢ or fewer clauses such that Icomm(I') > p(1 + 1/1n(p)) is

less than 350
nt pln(e’k"+’l)ek2 P P
32 (= . (4)

T
p=2

10

The derivative of the summand of (4) with respect to p is

2 (n(e?k*+22)+1) g2 | 2/ 2P
2 (ln(ezk*“,\) i Bk r) (1 ——1—)) (p E) .

In(p) ~ In(p) r

For sufficiently large r, In(ek? /r) is a negative number. Hence, for sufficiently large
r, In(ek?/r)(1 — 1/In(p))/ In(p) becomes more positive as p increases when p > 2.

Furthermore,

T

(P(h(ezkh+2‘\)+1)ek2) pfln(p)

increases as p increases, p > 1. Therefore, the derivative of the summand of (4) is
monotonically increasing with p, p > 2, and is maximum at either p = 2, p = 3 or
p =nc. At p =2, it is straightforward to check that for any ¢ < 1/3

2(h(¢’h‘+’A)+1)ek2 2/1a(2) -
2 <n

T

for large n if A = o(n*(™) and k is fixed. Similarly for p = 3. At p = n¢, where
€ = 1/(In(e?k**2)) + 3), we have

: (n(]n(c’k"""l)-i-l)cckz) R

r

<2 (ﬂ"“ekz,\)n"!‘]"(“) < n=%

for large enough n if A = o(n“(™)). Since the summand of (4) has a maximum less than
n~2¢, the sum (4) is less than n~¢. But 1/In(n¢) = (w(n)In(n)+In(e?k**+?)+3)/In(n)
which tends to zero as n gets large so n™° tends to zero. This proves the theorem.

Corollary 1:

Let I be an instance of k-SAT generated according to M(n,r,k). Let w(n) be any
function that decreases asymptotically to 0 and is such that lim, .., n¢M™ = oo.
Suppose that n/r(n) = A(n) obeys A(n) = o(n“(™) and A(n) > In(2)/(—1In(1 — 27%))
for all n > 0. Then the following statement is true with probability tending to 1. For
all H and all nodes z in T7(H) such that the number of distinct clause labels below
z is p < /(A4 common(z) < p(1 + 1/1n(p)).

Proof:

11

Follows from Theorem 1, observation 1 and the fact that almost all instances are
unsatisfiable if n/r > In(2)/(—1n(1 — 27%)).

For the sake of simplicity we drop the subscript from T7(H) in what follows. Corollary
1 gives a property that any search rearrangement backtrack tree has with probability
tending to 1 if instances are generated according to M(n,r,k). In Lemma 1 we show
that h(z) > kp(z) — 2 * common(z) for all nodes z in T(H). This and the fact that
k > 3 means that, with probability tending to 1, h(z) > p(z)(1 — 2/1n(p)) for any node
z that is the root of a subtree containing p(z) < n¢, € = 1/(In(e?k*+2X) + 3), distinct
clause labels. In Lemma 2 we derive an important property shared by almost all random
graphs we consider. The property is that no variable appears in more than (In(n) + 1)kX
clauses. In Lemma 3 this property is used to show that, with probability tending to 1,
h(z) > h(y) — (In(n)+ 1)k where z is a node in T'(H) which is the parent of y (that is, the
h function cannot decrease by more than (In(n)+1)k) per node as we move toward the root
of T'(H)). So, with probability tending to 1, for any node z in T(H) such that h(z) > L, the
number of nodes on the path from z to the root of T(H) is at least L/(In(n) + 1)kX
(Theorem 3). In Theorem 4 we show that, with probability tending to 1, there exists
a node z such that n¥/? > p(z) > n*/2/2. This means there is at least one node z in
T(H) such that h(z) > n/2(1 —4/1n(n¢)) and that the number of nodes on the path from
that node to the root is n*/2(1 — 4/ In(n%))/(In(n) + 1)kA. We slice off all nodes in T(H)
that are deeper than n*/?(1 — 4/In(n¢))/(In(n) + 1)k and call each node at that depth a
bottomnode. In Theorem 5 we show that, with probability tending to 1, on the path from
all bottomnodes to the root there are at least 2n/4(1 — 4/1In(n¢))/(In(n) + 1)kA nodes
for which both children have bottomnodes as descendants. This implies, with probability
tending to 1, an exponential treesize for T(H) if A is fixed and superpolynomial treesize if
o(n!/I18(n)) = X\(n) and lim,—c A(n) = co (Theorems 6, 7 and 8).

First we derive some relationships between k(z), common(z) and var(z).
Theorem 2:

For all H and z in T(H), h(z) = kp(z) — common(z) — var(z).
Proof:

Recall that common(z) + var(z) is the number of distinct edge labels at or below z.
The rest follows from the definition of A(z).

Theorem 2 leads to the following useful relationship between k(z) and common(z).

Lemma 1:

For any H function and z in T(H), k(z) > kp(z) — 2 * common(z).

12

Proof:

Since every variable below z is associated with at least two distinct edge labels, ¢(z) >
2 % var(z). Therefore, var(z) < common(z). This and Theorem 2 imply h(z) >
kp(z) — 2 * common(z).

The next two lemmas and theorem show that, for any H function and any node z in

T(H) such that h(z) > n¢, the length of the path from root of T(H) to z is great, with
probability tending to 1, if A = o(n*(™) and A(n) > In(2)/(—In(1 — 27%)) for all n > 0.

Lemma 2:

Let w(n) be any function of n that tends to 0 asymptotically and is such that
lim,, o0 n*(™) = co. The probability that some variable appears in more than (In(n)+
1)kA(n) clauses of an instance of k-SAT generated according to M(n,r,k) tends to
0 as n tends to infinity if A(n) = o(n*(™) and A(n) > In(2)/(—1In(1 — 27%)) for all
n > 0.

Proof:

Let v be a variable taken from V. The average number of clauses containing v is
kn/r = k). The probability that v is in at least (In(n) + 1)k clauses is

e (n) (E) (l_ E)ﬂ_'sr‘“"“’“"s
1 T r

i=(ln(n)+1)kA

from the Chernoff bound for binomial distributions [1] and [8]. The average number
of variables that appear in at least (In(n) + 1)k clauses is therefore

—In? L i ™
re In“(n)kA/3

T eln(n)In(n)kA/3

1
= Apla(mkAr/3-1

In(n)kA/3

— 0 asn — oo.

Since the average number of variables that appear in at least (In(n) + 1)kX clauses
is an upper bound on the probability that there exists a variable that appears in at
least (In(n) + 1)k clauses the lemma is proved.

In what follows we show that the search tree for any H must be exponentially large
if the input has the properties stated in Lemma 2 and Corollary 1.

Lemma 3:

Let w(n) be any function that tends to zero asymptotically and is such that limn oo nv(®) =
0o. The following statement is true with probability tending to 1. For all H func-
tions and parent nodes z in T(H) with child y, h(z) > Rh(y) — (In(n) + 1)kX(n) if
A(n) = o(n*(™) and A(n) > In(2)/(~In(1 —27%)) for all n > 0.

13

Proof:

Let there be s, labels associated with the edge connecting z with y and s, labels
associated with the edge connecting z to z. Let N,.(i) denote the number of clauses
that appear as edge labels i times in the path from y to a leaf of T'(H) labeled by
such clauses and in the path from z to a leaf of T(H) labeled by such clauses (note
that the labels associated with these clauses contribute k — 1 to h(z) but twice this to
h(y) + h(z)). Therefore,

k
h(z) = h(y) + h(z) = (sy + 52) = D (k —)Ny (3). ()

i=1

Observe that in equation (5) k(z) — Ele(k —1)N,.(2) > 0. Hence h(z) > h(y) —
(sy + sz). But, from Lemma 2, the probability that no variable appears in more
than (In(n) + 1)k clauses tends to 1. Since the variable associated with z is in
clauses with labels associated with edges connecting z to its children, we have that
sy + 3 < (In(n) + 1)k for all H and z in T(H) with probability tending to 1. The

lemma follows.

Theorem 3:

Let L(n) be any positive integer function of n and let w(n) be any function of n that
tends to 0 asymptotically and is such that lim,_,., n“ = co. The following statement
holds with probability tending to 1. For all H functions, the pathlength of any path
from the root of T'(H) to a node z such that h(z) > L(n) is at least L(n)/(In(n)+1)kX
if M(n) = o(n“(™) and A(n) > In(2)/(—=1n(1 — 27*)) for all n > 0.

Proof:
Follows immediately from Lemma 3 and the fact that h(root(T'(H))) = 0.

Theorem 4:

Let w(n) be any function of n that tends to 0 asymptotically and is such that
limp oo n“(™ = co. Let 0 < 4 < 1 be fixed and let e(n) = 1/(In(e2k*+2)(n)) + 3).
The following statement is true with probability tending to 1. For all H functions and
k > 3, there is at least one subtree of T(H) with at least n7*(™) /2 and at most n7<(")
distinct clause labels below its root if A(n) = o(n“(™) and A(n) > In(2)/(—1n(1—27%))
for all n > 0.

Proof:

From the root of T(H) move toward a leaf y visiting nodes as follows: at each visited
node z, visit next the child of z which has the greatest number of distinctly labeled
leaves beneath it (decide ties arbitrarily). Call the path just traced P. Let z be

14

a node on P. The number of distinctly labeled leaves beneath the parent of z is
no greater than twice p(z) because the number of distinctly labeled leaves beneath
the sibling of z is less than p(z) (otherwise we would have moved in the direction of
the sibling on the way down). Furthermore, the number of distinctly labeled leaves
beneath the parent of z is at least p(z) + 1 since the clause labeling the sibling of =
cannot be below z. Thus, if we move up s nodes from y we will be at a node which
has at least s+ 1 and at most 2° distinctly labeled leaves beneath it. We can certainly
move up P from y as long as the number of distinct clauses beneath the currently
visited node is less than 8 since at least 8 clauses are required for a refutation of k-
SAT where k > 3. From Lemma 1 and Corollary 1 we have that, for any node z on
P such that p(z) < n¢, h(z) > p(z)(1 — 2/In(p(z)), with probability tending to 1.
Thus, if 8 < p(z) < n?¢, 0 < v < 1, then k(z) > 0 hence z is not the root of T(H).
Therefore, we can move up P from y to the last node z such that p(z) > n7¢/2. Since
p(father(z)) can be at most double p(z) we have p(z) < n¥. The node z is the one
required to prove the theorem.

We call a node that is the root of a subtree of T(H) containing between n¢/?/2 and
n¢/%, ¢ = 1/(In(e?k*+2)) + 3), distinct clause labels a bignode. Observe that within
the proof of Theorem 4 it was shown that if z is a bignode then, since ¥ > 3, and
n¢/2/2 < p(z) < n/?, h(z) > n/?(1 — 4/(eln(n) — 21In(2)))/2. Therefore, Theorems
3 and 4 say that, with probability tending to 1, bignodes exist for every H function
and that all paths from the root of T(H) to bignodes must contain at least n¢/3(1 —
4/(eln(n) — 21n(2)))/2(In(n) + 1)k nodes. Call a node at depth n¢/?(1 — 4/(eln(n) —
21n(2)))/2(In(n)+1)kX a bottomnode. All bignodes must be descendents of bottomnodes.
Hence at least one bottomnode exists in T(H). The next two theorems tell us that,
for any H function, the number of bottomnodes in T'(H) is exponential with probability
tending to 1 if X is fixed and A > In(2)/(—1n(1 — 27*%)). Theorem 8 says that the number
3 lnln(n))

of bottomnodes is superpolynomial with probability tending to 1 if A = o(n and

A > 1n(2)/(—1In(1 — 27%)) for all n > 0.
Theorem 3:

Let w(n) be any function of n that tends to 0 asymptotically and is such that
limp oo n“(™) = co. Let ¢(n) = 1/(In(e?k**2X(n))+3). The following statement holds
with probability tending to 1. If A(r) = o(n“(™) and A(n) > In(2)/(—In(1 — 27%))
for all n > 0 then, for all H functions, on every path from the root of T(H) to a bot-

tomnode there are at least
n /41 — 4/1n(n€™))/(In(n) + 1)kA(n)
nodes z such that both children of z are ancestors of bottomnodes.

15

Proof:

The restriction on A causes random instances of k-SAT to be unsatisfiable with prob-
ability tending to 1 so in what follows we can skip over the cases where the required
trees don’t exist and consider only those trees which are refutation trees (that is, the
trees in which all leaves are labeled with clause labels). Consider any path P from
root to bottomnode in T(H). For some nodes on P both children are ancestors of
bottomnodes and for the remaining nodes on P exactly one child is an ancestor of
a bottomnode (we call the other child an Orphan and its subtree an Orphaned sub-
tree). Call nodes of the first kind Binary and nodes of the second kind Unary. The
Capital letters distinguish Binary and Unary nodes from ordinary binary and unary
nodes of a search tree. We use the terms Binary and Unary because Binary nodes
have two connections to subtrees containing bottomnodes and Unary nodes have only
one. It will be understood in what follows that Binary and Unary nodes are on P and
that Orphans and Orphaned subtrees are attached to Unary nodes. Let Pp denote
the number of distinct clauses labeling the leaves of Orphaned subtrees.

/4. All of the clause labels associated with each edge connecting

Suppose that Pp <n
an Orphan node with a Unary are different from the clause labels associated with all
other edges connecting Orphan nodes to Unary nodes since a clause label associated
with any edge cannot appear below the sibling of its endpoint. But Pp < n¢/4 so
the number of Unary nodes is less than n€/4. Therefore, there can be no more than
n/% Unary nodes on the path from root to bottomnode. Since the number of Binary
nodes is the number of nodes on P minus the number of Unary nodes, and since the
number of nodes on P is n¢/? (1 — (4/(In(n¢) — 21n(2))) /2(In(n) + 1)k, the number
of Binary nodes on P must be at least

n¢/2 (1 — 4/(ln(n%) — 21n(2))) /4 n¢/4 (1 — 4/1n(n°))

2(ln(n) + 1)kA BT T) + %A

for sufficiently large n, and the theorem holds.

/4. We know that no Orphaned subtree contains a bignode.

Now suppose that Pp > n
Each Orphaned subtree cannot contain more than n¢/2 distinct clauses since otherwise
we could trace a path through the subtree, as in Theorem 4, and get to a bignode. Then
Pp < n® (an upper bound on the product of the pathlength of P and the maximum
number of distinct clauses below each Orphan of P). Let I(P) be the set of distinct
clauses labeling leaves of Orphaned subtrees. Let Bp be the set of edges on P which
connect a Binary node to its child on P. Each literal in I(P) corresponds to a distinct
edge label in Orphaned subtrees, edges connecting Unary nodes to their children, and

edges in Bp. Let hp denote the number of distinct edge labels which are associated

16

only with edges in Bp and are due to leaves of all Orphaned subtrees. Recall that
T(H) is a refutation tree so Pp distinct clauses labeling leaves of T'(H) generate kPp
distinct edge labels in T'(H). Define Lp = kPp — hp. That is, Lp is the number of
distinct edge labels which are associated with edges connecting Unary nodes to their
children and edges within Orphaned subtrees and are due to leaves of all Orphaned
subtrees. Let Vp denote the set of variables which are associated with Unary nodes
and nodes in Orphaned subtrees. See Figure 2 for an example showing sets mentioned
above. Figure 2 also illustrates sets mentioned below.

In this paragraph we show that Icomm(I(P)) > Lp — |Vp|. Let VBDp denote
the set of all variables that appear at least two times in I(P) but are not in Vp.
These variables are associated only with Binary nodes. Let LUSp denote the set
of edge labels which are in edges that connect Unary nodes to their children and are
associated with variables that appear exactly once in I(P). Since there is one edge
label in LUSp for every variable that is both associated with a Unary node and in
I(P) exactly once, |Vp|+ |VBDp|—|LUSp| is the number of variables in I(P) which
are in at least two clauses of I(P). Let LOUDp denote the set of edge labels which
are in Orphaned subtrees along P or are associated with edges that connect Unary
nodes with their children on P and are associated with variables that appear two or
more times in I(P). Let LBDp denote the set of edge labels not in LOUDp which
label edges in Bp and are associated with variables that appear two or more times in
I(P). Note that |[LBDp| > |VBDp| since there is at least one edge label associated
with an edge incident on a variable in VBDp which is not in LOUDp. Recall that
Icomm(I(P)) is the total number of literals in I(P) that are associated with variables
that appear two or more times in I(P) minus the number of such variables. Then,

Icomm(I(P)) = |[LOUDp| + |LBDp| — |Vp| — |VBDp| + |LU Sp|
> |LOUDP| —|Vp|+ |LUSp|.

But |LOUDp|+|LUSp| = Lp since LOUDpNLU Sp = &. It follows that Icomm(I(P)) >
Lp — |Vp]|.

Therefore, hp > kPp — Icomm(I(P)) — |{’p|.

In this paragraph we show that |Vp| < Pp. Create a forest T from T(H) by removing
all nodes and edges from T(H) except the Unaries, edges connecting Unaries to their
children, and Orphaned subtrees along P. Construct a tree T" from T' by appending
each Unary to the free edge of another Unary so that all Unaries are in the same
order as they were on P. Retain all edge label and variable associations that existed
originally. The number of variables associated with nodes in T" is, by definition,
|Vp| (exactly the Unary nodes and Orphaned subtrees remain). Perform a depth first

17

search on T" and mark leaves that contain labels distinct from all other previously
marked leaves. Eliminate all nodes that are not ancestors of marked nodes, edges on
paths to unmarked leaves and the unmarked leaves themselves. The result is a tree
containing a number of binary and unary nodes (lower case binary and unary nodes
are ordinary binary and unary nodes). Call the eliminated edges that were connected
to unaries “missing” (so there is one missing edge for each unary in T"). Except for
one Unary, Unaries on P can appear either as binaries in T" or as unaries in T" with
a clause in I(P) labeling the missing edge. The exception is the deepest Unary in P.
This Unary is the special unary node in T" and possibly has no clause in I(P) labeling
its missing edge. The number of leaves remaining in T" is Pp, each one representing
a distinct clause. Except for the special unary, a variable v associated with a unary
node in T" must be the same as the variable associated with a previously visited node
in T". This is because some clause must label the edge missing from the unary and
the edge is missing because the clause has already been visited; but, since v is in the
clause, a node asscociated with v must have been visited. Consequently, except for
the variable associated with the special unary, every variable in T" is associated with
some binary in T". The number of binary nodes in T" is Pp — 1. Hence the number
of variables in T" (that is, |Vp|) is at most Pp (after adding 1 for the special unary).

Thus, hp > kPp — Icomm(I(P)) — Pp. We next apply our familiar bound on
Icomm(I(P)).

In what follows we make statements which are true for all H applied to almost all
instances of k-SAT generated according to M(n,r,k) if A(n) = o(n*(™) and X >
In(2)/(—1n(1 — 27%)) for all n> 0; these conditions are omitted for brevity. Since
|I(P)| = Pp < n® we can obtain from Theorem 1 that Icomm(I(P)) < Pp(1 +
1/In(Pp)). Therefore, since k > 3, hp > (k —1)Pp — Pp(1 + lfln(Pp)) > Pp(1 —
1/1n(Pp)). Since Pp > n/* we have that hp > n¢/4(1—4/In(n¢)). The labels counted
by hp must be spread over edges in Bp. From Theorem 3, no edge in Bp can receive
more than (In(n) 4+ 1)k labels. Hence the number of edges in Bp must be at least
n¢/4(1 —4/1n(n%))/(In(n) + 1)kA. Since there is one edge in Bp for every Binary node
on P, the number of Binary nodes must be at least n¢/4(1 — 4/1n(n¢))/(In(n) + 1)kA
in this case. This completes the theorem.

Theorem 8:

Let T(H) be a search tree generated by SRB for any H function. If on every path
from the root of T(H) to a bottomnode there are at least s nodes whose left child and
right child are ancestors of bottomnodes then T(H) must have at least 2° nodes.

Proof:

18

Compress T(H) by eliminating all nodes from T'(H) which are not bottomnodes or
do not have two children which are ancestors of bottomnodes. The result is a binary

tree of depth at least s. The number of nodes in such a tree is at least 2°.
The following two theorems state the main results.

Theorem T:

The following statement holds with probability tending to 1. For all H functions, SRB
requires O(2"") time, & > 0, under M(n,r, k) for any fixed A > In(2)/(—1n(1 —27%)).

Proof:
Follows from Theorem 5, Theorem 6 where s in Theorem 6 is
n/4(1 — 4/1n(n¢))/(In(n) + 1)kX

and € = 1/(In(Ae?k*+2) + 3) and the fact that each node of T'(H) must be visited and
requires at least one unit of time.

Theorem 8:

The following statement holds with probability tending to 1. For all H functions,

SRB requires superpolynomial time under M(n,r,k) for all functions A(n) satisfying
o(nt/1218(n)) = X(n), imp_cc M(n) = co.

Proof:

As in Theorem 7, the number of nodes in T(H) is at least
2({::—1:{::5;::\)“‘H
(1- 41n(2)+©(1))/ In(n)nlf(ﬂn(k)‘!“ﬂ(ﬂ)
= untuiu-oauj
_ 2(1.-0!*1:;“(,\“!2‘{‘3!1{'1!)“(1ln(A)}-l{i—O((iln(l))_l])
But ©(In()))/1lnn = o(1/1nlnn) so the last term is

98((Ia(n)2) 1) @ON™H

But A(n) = o(n?/1*127) 50 the last term is

20((In(r)X) " Hnt/eCan(/12(2) _ 51/0((1n(n))~")

which grows too fast to be polynomial.

According to Theorem 8 superpolynomial time is achieved for a rather large range
of relationships of n to r. For example, we get superpolynomial time, almost always,
if n/r(n) = (In(n))? for any constant 3. We have shown superpolynomial time, almost
always, for n/r(n) almost as high as n?/!*18(") which is very nearly n to a constant power.

19

3. Davis-Putnam Procedure

As stated in the introduction, the Davis-Putnam Procedure contains three principal com-
ponents: decomposing I into two subinstances I; and I;, the unit-clause rule and the
pure-literal rule. It is the pure-literal rule that appears to be preventing the analysis
from carrying over. However we can show that for the Davis-Putnam Procedure with any
heuristic function there is a Search Rearrangement Backtracking algorithm which expands
fewer nodes of the search tree when inputs are unsatisfiable. This means that our result
holds also for the Davis-Putnam Procedure.

To see this, first develop a search tree for a given Davis-Putnam Procedure and input
I which is patterned after the search tree developed for SRB (that is, nodes are associated
with variables, leaves are labeled with clause names, edges are associated with leaf labels,
etc.). Observe any node z in the tree which corresponds to a point in the application of
the Davis-Putnam Procedure where the pure-literal rule is used for the last time before
backing up. That node has only one child which we denote by y. Create another child z
of z and subtree under z which is exactly the same as the subtree under y. Because the
pure-literal rule is applied at z, the edge (z, z) has no label associated with it. Therefore,
we can replace the subtree rooted at z with the subtree rooted at z and still have a search
tree corresponding to a verification of unsatisfiability; the difference is that there is one
less application of the pure-literal rule and the tree has fewer nodes. Continuing this
until all pure-literal applications are removed results in a search tree corresponding to
a Search Rearrangement Backtracking algorithm applied to I. This tree is smaller than
the one corresponding to the application of the Davis-Putnam Procedure on I and has the
property that there is at least one clause label associated with every edge. Therefore, the

results of the last section apply to any form of Davis-Putnam Procedure.

4. Conclusions

We have presented an analysis which shows that any form of Search Rearrangement Back-
tracking requires O(2"") time, a > 0, for almost all instances of k-SAT generated according
to M(n,r,k) if n/r = X where) is fixed and is such that almost all instances are unsatisfi-
able. We have also shown superpolynomial running time for almost all instances of k-SAT
if M(n) = o(n?/1212(") and limp—,e0 A(R) = c0. The proof of this is interesting because it
is based on a structural property of instances of k-SAT. We have shown that these results
also apply to any form of the Davis-Putnam Procedure.

5. Acknowledgement

I wish to thank Paul W. Purdom for his careful reading of this manuscript and his valuable
suggestions regarding the relevance, clarity and presentation of its contents.

20

6. References

(1]
2]
[3]
4]
(5]

(6]
[7]
(8]

[10]

[11]

[12]
[13]
[14]
[15]
[16]

[17]

Angluin, D. and Valiant, L., “Fast probabilistic algorithms for hamiltonian circuits
and matchings,” JCSS 18 (1979), pp. 155-193.

Bitner, J. R. and Reingold, E. M., “Backtrack programming Techniques,” CACM 18,
No. 11 (1975), pp. 651-656.

Brown, C. A. and Purdom, P. W.,; “An average time analysis of backtracking,” STAM
J. Comput. 10 (1981), pp. 583-593.

Chao, M. T. and Franco, J., “Probabilistic analysis of two heuristics for the 3-
Satisfiability problem,” SIAM J. Comput. 15 (1986), pp. 1106-1118.

Chao, M. T. and Franco, J., “Probabilistic analysis of a generalization of the unit
clause rule for the Satisfiability problem,” Tech. Report No. 165, Indiana University
(1985).

Davis, M. and Putnam, H., “A computing procedure for quantification theory,” J ACM
7 (1960), pp. 201-215.

Davis, M., Putnam, H. and Loveland, D., “A machine program for theorem proving,”
CACM 5 (1962), pp. 394-397.

Erdos, P. and Spencer, J., Probabilistic Methods in Combinatorics, Academic Press,
1974.

Franco, J., “On the probabilistic performance of algorithms for the Satisfiability prob-
lem,” Information Processing Letters 23 (1986), pp. 103-106.

Franco, J. and Paull, M., “Probabilistic analysis of the Davis Putnam Procedure for
solving the satisfiability problem,” Discrete Applied Mathematics 5 (1983), pp. 77-87.
Franco, J., Plotkin, J. M. and Rosenthall, J. W., “Correction to probabilistic anal-
ysis of the Davis-Putnam procedure for solving the satisfiability problem,” Discrete
Applied Mathematics 17 (1987), pp. 295-299.

Garey, M. R. and Johnson, D. S., Computers and Intractability: A Guide to the
Theory of NP-Completeness, W.H. Freeman, San Francisco, 1979.

Goldberg, A., Purdom, P. W. and Brown, C. A., “Average time analysis of simplified
Davis-Putnam procedures,” Information Processing Letters 15 (1982), pp. 72-75.
Purdom, P. W., “Search Rearrangement Backtracking and polynomial average time,”
Artificial Intelligence 21 (1983), pp. 117-133.

Purdom, P. W. and Brown, C. A., “The pure literal rule and polynomial average
time,” SIAM J. Comput. 14 (1985), pp. 943-953.

Purdom, P. W., Brown, C. A., “An analysis of backtracking with search rearrange-
ment,” STAM J. Comput. 12 (1983), pp. 717-733.

Purdom, P. W., Brown, C. A. and Robertson, E. L., “Backtracking with multi-level
dynamic search rearrangement,” Acta Informatica 15 (1981), pp. 99-113.

21

(18] Purdom, P. W. and Brown, C. A., The Analysis of Algorithms, Holt, Rinehart and
Winston, 1985.

22

APPENDIX

Lemma:

. l= “z—’,' where {} denotes stirling numbers of the second kind.
Proof:

By induction on n.
Basis: {]} =1=1°/0!.
Induction Step: From the definition of stirling numbers of the second kind

PO S e o B
L

e, ey
=n: [(”;1)2‘ (nil (1_::1) +1)

The lemma holds if the term within brackets is less than or equal to 1. We show this
as follows. Rewrite (“T‘I)2z as e2212(1-1/n)_ Notice that

< (n—2)

by hypothesis

B f BN g
n—1 n—1 n—1

[z 1 i_ 48 & fon Elameas
SR (e) 2 B

Therefore, the term in brackets is less than e2=12(1=1/n) 4 g=z1n(1-1/n) _ (zIn(1-1/n)
1

23

Figure 1: A subtree of T rooted at z showing leaf labels beneath the leaves and clause
labels associated with edges (literals are implied). Variables associated with nodes are
shown inside the nodes. For this subtree I(Z) = (ﬁl, v, ﬁ‘)(ﬁs, Us, ‘Us)(fz, vs, m)(v;, vs, 1.?5)(1?1 , U2, 113)._.
common(z) =7 and h(z) =3+5-11=4.

24

®
€1
~
b)
.
To
bottomnode
es €4
\
\
{
To
bottomnode

Binaries : These nodes are marked B
Unaries : These nodes are marked U
Orphans : These nodes are marked O
Vp : These variables are associated with unmarked nodes or nodes marked U, O or I
VBDp : These variables are associated only with nodes marked B
I(P) : These distinct clauses label nodes marked I
Bp : These edges are marked e;
LOUDg : These edge labels associate with e; edges, e; edges and some €3 — e4 pairs
LUSp : These edge labels associate with e3 edges not in LOUDp
LBDp : These edge labels associate only with e; edges

Figure 2: Illustration of terms used in Theorem 5

25

i bwiasim v avbon ol T 5

17 bafnscg v mehos wedT

' . . &Y kot wn esfion sed'T :

It © ,I¥ byvdiam wbeo 10 wben bedwwmoy ditw balatvowes swo svidfeiey se=d'P :
o & badunm wabon i glao Katmisrans 330 ideiser s T

I bedsom wbon badat wauwdy tvailall) stadT |
g5 badvasr vis weghe (T

uing 4o ~ 16 amoe baw wgbe oo angbe v Bl sheivots dsdel e sedT

o ITOT i teo seybe o dliw weisonss alsdal syl sl

wghe (s diiw yle stuiscuns wisdall sghe madl |

3 arvsoedT i hesw ewmind ¥o sontasieslll € sl

sodesatT
snizaall
ln‘q'lf.‘
qV
38y
(%R

i . |
«I02
T AR
«G0a

