BOOLEAN-VALUED LOOPS

David S. Wise
Daniel P. Friedman
Stuart C. Shapiro

Mitchell Wand

Computer Science Department
Indiana University

Bloomington, Indiana 47401

TECHNICAL REPORT No. 21
BooLEAN-VALUED LooPs
Davip S. Wise
DanieEL P. FRIEDMAN
STUART C. SHAPIRO
MiTcHELL WAND
Revisep: June, 1975

To appear in BIT.

Boolean-Valued Loops

David S. Wise
Daniel P. Friedman
Stuart C. Shapiro

Mitchell Wand

Abstract

A new control structure construct, the while-until, is intro-

duced as a syntactic combination of the while statement and the

repeat-until statement. Examples show that the use of the while-

until can lead to structured programs that are conceptually more

manageable than those attainable without it. The while-until state-

ment is then extended to a value-returning expression which is shown
to be more powerful than the classical looping structures. It
is shown to be equivalent in power to those structures with exit

when a value-returning if-then-else is allowed. As a consequence,

there are flowcharts whose implementations require control struc-

tures stronger than the while-until. Implementation details are

discussed and Hoare-like axioms are presented. A closing discus-
sion on aesthetics discourages some natural generalizations, but

i1t concludes that the basic while-until is convenient for

all parties on a programming team: coder, reader, compiler, and

validator.

CR Categories: 4.22, 5.24, 4.43, 4,.12.

-ii-

Contents

I. Introduction

II. The value-returning while-until

ITI. While-until versus while

IV. While-until versus until/exit

V. Implementation and axioms
VI. Multiple terminations and multiple values

VII. Conclusion

I. Introduction

A major suggestion of structured programming is to employ loop-
ing control structures in order to break the program down into con-
ceptually manageable units. The purpose of this paper is to pro-

pose an additional control structure construct, the while-until,

which often yields program loops that are closer to the conceptual
organization of the segment than is possible with the existing

constructs. The while-until as a statement is an iterative con-

ftrol structure with two natural exits, which can be simulated less
succinctly by existing control structures. A very natural inter-

pretation of the while-until as a Boolean-valued expression will

be shown to be a more powerful control structure than the while
or until structures discussed by Dijkstra [5].

The existing constructs by which we are directly motivated are

while B repeat s

and

repeat s until B

Dijkstra presents these graphically as in Figures 1 and 2.

The syntactic construct we are proposing is

repeat

while Bls

i

This syntax is a generalization of the authors' earlier proposal
[7]. The semicolons are separators which provide for easy expan-

sion of s s and 53 into sequences of statements.

l 3 2 3
The essence of the while-until at this level is the pair of

natural exits from within the body of a loop. It is related to

the Bohm and Jacopini structures [3], which might encourage

us to provide more exits by allowing more occurrences of "while Bi;"

or "Mantil Bj;". We postpone these generalizations until Section VI.
To allow comparison between different programs we say that two

programs are equivalent if, for every input, the programs execute the

same (possibly infinite) sequence of elementary operations and tests.
Dummy operations (e.g. CONTINUE in FORTRAN) and tests on Boolean 1lit-
erals (e.g. if true then ...) are not included in the sequence. Two

expressions are value-equivalent if their evaluation programs are

equivalent and they return the same value. A difference between this
and other definitions of program equivalence [1,14] is that two infi-

nite loops are not necessarily equivalent. For example, "while true

do print(1)" and "while true do print(2)" are not equivalent.

Existing constructs can generate programs equivalent to those

which use the while-until if we allow some duplication of code and value-

returning conditionals. The following remarks are therefore to be dis-
tinguished from those based on conditionals as valueless statements [12].
Let true(s) be a function which performs statement s and returns
The value true; we define it formally later. Then,
repeat s,; while B,; s,; until B,; 83 taeper

is equivalent to

Wk true(sl) & Bl then repeat 55

until if B, then true else true(ss) & true(s;) & 18,

and also to

if true(s;) & B, then
begin 82;
while(if 82 then false else true(sB) & true(sl) & 31)

repeat 82

end.

If exit (or escape or break) were employed another equivalent form

is

repeat
Sq
if 78, then exit;
53
if B, then exit;
®3

taeper.

In those cases where Figure 3 is the desired control structure,

it appears that the while-until yields clearer, more understandable

code. In the particular case when 84 and 53 are null, the while-

until yields particularly palatable code:

repeat while 81; $53 until 82 taeper

whose semantic content 1s easily paraphrased: "While it is possible

to try, keep trying until you succeed". If s. or s

1 3
the while-until is an instance of the "n and a half" loop attributed

is not null,

to O. Dahl by Knuth [11].

The while and until loops are simply special cases of the

while-until:

while B repeat s S gk repeat

while B3
S5

until false

taeper;

repeat s until B =def repeat

while true;

53
until R

taeper.

It is obvious from the definition of equivalence that the phrases

until false and while true are useless, so we shall drop them from

now on.

The while—until i1s a natural control structure for searching,

since every search terminates either by finding the desired element
or by determining that 1t i1s not present. As an example, we show

its use for a binary search:

comment Find item A in a sorted table T[1l:N];
low := 03
high := N+1;
repeat
while low < high-1;
try :=L(low+high)/2];
until T[tryl=A;
if T[tryl < A then low := try else high := try;

taeper.

An appropriate application for the while-until occurs whenever a

loop includes an operation which requires a test prior to its exe-
cution and a test afterwards to confirm success. An example of
this is copying a file up to the end-of-file mark onto an output
file with no record being read unless there is enough space for

it on the output file.

comment Copy file INPUT into file OQOUTPUT;
repeat
while Spaceleft (OUTPUT);
Inbuffer (INPUT,b) ;
until Endoffile (INPUT);

Outbuffer (OUTPUT,b) ;

taeper.

b

IT. The Value-Returning While-Until

In the spirit of languages in which all statements are expres-
sions which return values, such as LISP [14], ALGOL 68 [18], and

BLISS [20], we assign a value to be returned by the while-until

which is quite natural for the author and audience of a program.

The value of a while-until expression is defined to be the value

of the last expression evaluated before termination. That is,

the value of

repeat 8,3 while 815825 until 82553 taeper

is false if and only if the loop terminates due to the value of

Bl (see Figure U4). A true value results from the affirmative eval-
uation of 62. In this way we have associated Boolean values with
the two possible exits, allowing the programmer to test the cause
of termination from outside the loop.

This convention allows the while-until to behave like a single-

entrance/double-exit loop, and it is this behavior which makes it

so powerful. We present examples below in which the while-until

is used as a condition following if (or even while). In such cases,
the definition of the loop's value becomes relevant only at compile
time because the run-time effect ought to be a transfer of control
from within the loop directly to one of the two appropriate points
in the outer structure.

Zahn [21] has presented a proposal for a single-entry/n-exit
control structure which is a generalization of our proposal in the
same way that a case statement is a generalization of an if-then-

else. Accordingly, his structure is more powerful, but is, of

course, not omnipotent. (The beauty of his proposal lies in his

view: of the "situation" as a case selector.) Example algorithms which
have a loop with three or more distinct actions upon exit, however,
seem scarce.

Symes [17] has recently argued for a double-entrance/double-
exit loop which would also generalize this embellishment of the

while-until. His proposal, however, includes no viable syntax and

admits flowcharts which are not even reducible in the sense of Hecht

and Ullman [6], a property which has come to be considered necessary

for "structured programs".

Let us return to the previous example of the search routine
and convert it to a program for table insertion by using the value

of the while-until.

comment T[1:M] is a table containing
N < M active elements. Insert A in
d L (i e hot already present;
low := 03
high := N+1;
if Trepeat
try := L(lowthigh)/2];
while low < high-1;
unbdl Tltry] = Aj
if T[try]l < A then low := try
else nigh = ¥y:

taeper then Insertafter (A,T,low).

The following deMorgan-like duality shows that there is no

loss in generality from the requirement that the while occur first:

Observation 1. The following two expressions are value equi-

valent:
a) Trepeat Sy3 while 8,35 s,; until B53 S3 taeper
b) repeat s,3 until 181; S53 while 162; S5 taeper,
Therefore, we are free to use the until test before the while
test within the loop. Using Observation 1, we may also eliminate
occurrences of "if qrepeat".
A more interesting example is the following program for HEAPSORT

as specified by Knuth [10]. This program uses four while-until

structures and illustrates the use of the structure as a simple
statement, as expressions (which incidentally cannot iterate),
and as a nested loop. It is most instructive to relate this code
to the discussion by Knuth. The conceptually manageable units

which he chooses are isolated very nicely in this code.

Hi:

H2:

comment Heapsort of N Records with Keys;

£ = LN/201+1;
no:= Nj
repeat
until if £>1 then repeat £ := £-1;
R := R£;
K K£;
while false
taeper
else repeat R := R&;
E = KA;
R/,L = R£5
norm gsls
while #=1;
R£ = R;

until true

taeper;

Il
L
e

repeat 1
1 e 243
until J>nr;

if J=& & Kj<Kj+l then J = J+l;

while K<Kj;

-10-

The previous example demonstrates a particularly strong use

of the while-until loop: as the Boolean value controlling an outer

while-until loop. Whenever the control structure is so nested,

either indirectly as in the heapsort program or directly indicated

by the phrase "until repeat" (or "while repeat"), termination of

the inner loop due to the affirmative evaluation of until 82 (res-
pectively false value of while Bl) will cause the outer loop to
be terminated as well, returning the same value. This property
generalizes to any level and allows an outer loop to be terminated
because of a Boolean expression evaluated within a deeply nested
inner loop.

The property Just described is an aid to reading programs using

the while-until. In writing such programs the outer loop is properly

completed on the basis of a specification of the inner loop, and

the occurrence of even more deeply nested while-until loops is

ignored. For instance, the copy-file example from the previous
section may be expanded into a more complete function using multiple
output files. Note that the previous code remains intact, but that
the property discussed in the previous paragraph does help in reading

the code.

R

Integer function copy(file INPUT, file array OUTPUT, integer n):
begin
comment Copy file INPUT to OUTPUT[1:n] as
needed, returning the number of files used.
Return n+l if the copy is incomplete due
to lack of space;
buffer b;
gopy := 1;
if repeat
while copy < n;
Open (OUTPUT[copy 1) ;

until repeat

while Spaceleft(OUTPUT[copyl);
Inbuffer (INPUT,b) ;

until Endoffile(INPUT);
Outbuffer (OUTPUT[copyl,b)

taeper

Close (OUTPUT[copy]);

gopy = copytl

taeper then Close (OUTPUT[copy])

end copy.

We admit that this function will appear too concilse for many
adherents of structured programming. They might feel better if

each while-until were specified as a Boolean valued function, as

was necessary in previous work with while loops or until loops.
Yet this. presentation 1s Jjust as structured and even more readable

because of the interpretation of termination values discussed above.

-

IIT. While-Until Versus While

In this section we shall show that the value-returning while-

until and if-then-else are stronger than the conventional while or
until control structures when value returning conditionals are

allowed. The added power is due to the ability of a while-until

to signal what caused its termination, and for this value to be

passed through logical expressions using the if-then-else.

The standard references, notably Bohm and Jacopini [3], do not
treat value-returning conditionals although they even exist in

ALGOL 60 expressions. We define the value returning if-then-else:

if B

if B4 then 82 else 83

as in ALGOL to evaluate Bl and then one of 82 or 83 which becomes
the value of the expression. By allowing such a structure we are
adding a good deal of power, but not enough to solve the problems

in Figure 5 treated below.

Observation 2. The value returning while-until and if-then-else

cannot alone be used to simulate one another.
PROOF: We establish this observation by noting that the if-then-
else evaluates any of its operands at most once, where a single

while-until can perform a number of operations which is unbounded

as interpretation is varied. On the other hand, if some while-
until expression, ¢, is side-effect and value equivalent to a given

if-then-else, then there is an equivalent e' which evaluates with

"no wasted effort" in that every evaluated operand is essential
to the final value. Then e' consists entirely of expressions of

the form

) B

repeat while Bl; until 82 taeper

since intervening statements violate "no wasted effort". Further-
more 62 must never evaluate to false since that value would cause
an improper re-evaluation of sl. Hence, if such an e' exists 1its

value is that of

repeat while Bl'; untll frue taeper

which is the value of Bl' itself. A trivial induction on length
shows that e', and hence e, does not exist. B

To stabilize the marriage of if-then-else and while-until we

also observe that no other standard Boolean operation is needed.
Let us define notation for the ALGOL-like logical connectives
which require evaluation of all arguments, and for the LISP-like
logical connectives which are non-commutative and evaluate the

second argument only if necessary. Unary negation is denoted by -r.

binary operation ALGOL-1ike LISP-1like
conjunction A &
disjunction v B
implication = =>

Observation 3. The value returning if-then-else has more ex-

pressive power than the logical connectives.
A test using any of the connectives is value-equivalent to one

using only the if-then-else operator. For instance,

@ n B 2 AT o then B glse

if B then false else false;

Q
Ro
w
]
[
H

if o then B else false.

-1l

The rest are as easily formulated. If we try to use the standard

logical connectives to simulate if a then B else y with respect

to value and side effects, we always find a case in which one of
a, B, or vy is evaluated twice.

In that attempt and in consideration of the examples below,
it 1s important to recall that equivalent code requires
evaluation of expressions in precisely the same order as in the
simulated program. Moreover, using extra variables to remember
values and thereby to avoid a re-evaluation is not a legal opera-
tion. (LISP calls it a SETQ.) Were it allowed, as Cooper [4,11]
points out, the introduction of only one memory variable (call it
a program-counter) into any given program would allow its simula-
tion by a simple while loop on a case statement. Introducing new
variables, therefore, makes existing control structures omnipotent
and absolutely denies their importance to the vague issue of struc-
tured programming.

As a consequence of Observations 2 and 3, we conclude that value-

returning while-until and if-then-else, taken together, are the

only control structures necessary for a very large class of pro-

grams. We certify thelr marriage with a grammar for the while-until

language in which simple statements are treated as expressions:

Gl Exp ::= if Exp then Exp else Exp |
repeat (Exp;)* while Exp; (Exp;)¥* until Exp (;Exp)¥ taeper|
repeat (Exp;)¥* until Exp; (Exp;)¥* while Exp (;Exp)¥* taeper|

elementary expreésionielementary statement.

From Gl we can define notations for special expressions which

always return a constant value. We use logical operators for the

=1 5o

appropriate if-then-else expression according to Observation 3.

true(e) =4er 1f e then true else true.

false(e) . Atrue(e).

Sequences of expressions can then be reduced to a single constant

valued expression:

true(el; Css wens

true(el) & true(ez) & ... & true(en)

with false(...sequence...) defined similarly. This notation and

Observation 1 lead us to a much more simplified grammar equivalent

to Gl.
G2 Exp ::= if Exp then Exp else Exp |
repeat while Exp until Exp taeper |
elementary statement |
elementary expression
Lemma 1. Any expression in the language of Gl, where

elementary expressions can include expressions on the logical con-
nectives and parenthesizations, is value-equivalent
to one in the language of G2 and conversely.

PROOF: The logical connectives become conditionals according
to Observation 3. We need only add that the sequence can be sub-

sumed into the termination tests:

S

repeat) [repeat

S15 Sp3 +.e543 while true(sl; 553 ...si)
while Bl; & Bl &

Si415 cees Sj > = 4 true(si+l; o Sj)
until 82; until 32 i

Sig13 ceed By false(sj+l; cees 8y)
Ttaeper J Ltae}ger i

The converse is trivial. B
With this notation we are prepared for the first main result:
Theorem 1. There exist flowcharts not implementable with while

loops which can be implemented with the language of G2.

PROOF: We give an example in the language of G2 from Ashcroft
and Manna [1] whose flowchart appears as Figure 5. Their proof
shows that this example cannot be translated into while loops without
adding extra variables because of arbitrary inner looping within

the control of an outer loop. Because the if-then-else cannot effect

such loops, it 1s clear that our solution is due to the power of

the while-until rather than to any added power of if-then-else in

returning a value.

-] P

The program is

if repeat
repeat while P; h taeper;

while Q3
h;

repeat while Q; g taeper;

until 1P;

g

taeper then g else h;

Another problem from Peterson, Kasami, and Tokura [16] is solved

with the while-until in our earlier paper [7]. We can apply Lemma 1

to such solutions to eliminate all logicals, parentheses, and semi-

colons, but at the expense of clarity. R

o o

IV. While-Until Versus Until/Exit

There are several existing notations for providing alternative
exits from loops. Bochmann [2] and Evans [6] mention two, and we
have discussed some already. From a theoretical point of view, the

best understood [12] is a while or until structure used in conjunc-

tion with an exit or escape statement. We select the until/exit

structure for analysis and define its language with the grammar G3.

a3 E ::= repeat (8:)* 5 untlY¥ E |

if E then E else E |

elementary expression

S ::=E | C3 | exit | elementary statement
CS w:= 1f E Lhen (S;)* S else((S3)% 8 £1i |
if B Ehen (53)® 8 f3

Note that G3 provides both value-returning conditionals which must
have an else and conditional statements bracketed by if-fi.

The iterative structure of G3 is considered a Boolean expres-
sion whose value indicates whether control left the loop because
of execution of an exit statement or via "normal" termination.

For concreteness, let us say that an until/exit takes the.value

true on normal termination and false on execution of an exit.
The next result establishes such constructions as equivalent to

The while—until. A similar result holds for while/exit structures.

Theorem 2. To every until/exit statement (expression) from G3

there is an equivalent (value-equivalent) while-until expression

in the language of Gl and vice-versa.

i - o

PROOF: The while-until is expressible in terms of the until/exit

via Lemma 1 and the equivalence

repeat while Bl; until 82 taeper =

repeat ;£:131‘then exit fi until Bs-

For the converse, let us define two functions, ¢ and ¢'. ¢
takes a string derivable from E in G3 and converts it into an equi-

valent while-until expression derivable from Gl. ¢' takes a string

derivable from S in G3 and converts it to an expression derivable
from Gl which will evaluate to false if and only if w terminated
via an exit. Sequences of statements are then simulated by a con-
Junction of their ¢' images by the & operator giving an expression

with identical requirements on its value. Since G, is unambiguous,

3
we may follow it:
¢ (repeat S5 e+. 38, until B) =
repeat while_¢'(sl) & ¢'(sz) NN ¢'(sn); until ¢(B) taeper.
¢ (1if o then B else y) = if ¢(a) then ¢(B) else ¢(y).
¢ (elementary expression) = elementary expression.
¢'(Expression) = if ¢(Expression) then true else true

¢'(if B then s 38, else tl; v 56 F1) =

l; S
if ¢(B) then q:'(sl) & ... & d)'(sn) else ¢'(tl) & ... & q:'(tm).

¢'(if B then s

m

15+ 38, fi) = if ¢(B) then ¢'(sl) & ... & ¢'(sn) else
true

¢'(exit) = false.

¢'(elementary statement) = true(elementary statement).

The correctness of the construction is a trivial induction on

length, using the sequential operation of ";": in the repeat expres-

=2 0=

sion, Sl’ 555 etc. are executed in turn until some ¢'(si) turns
false, which happens when and only when an exit occurs. @&

A leave statement within a nested loop has been defined in
BLISS [11] so as to be able to terminate outer loops. Let us define
the statement exit-1 where i1 indicates the number of loops to be

terminated. The simple exit discussed above becomes exit-1 when

repeat/exit structures are used purely as statements (rather than

as expressions which might control an outer loop).

Corollarz
TS s
ere exists g flowechart for whieh the 1
of G3 g insufficient. "

Independently of Kosaraju [12] we arrived at Figure 6 to prove
the corollary. (The program may be started at any edge with the
same result because of symmetry.) Figure 7 illustrates more simply

the basic limitation on a while-=until. If we view a loop from outside

(top-down), only one of two Boolean values can be returned in spite
of side effects. If one of three distinct values is required, as in

Figure Tb, the while-until is insufficient.

)

V. Implementation and Axioms

Since we have approached the while-until from a programmer's

point of view, issues of compilation are secondary. Yet the ele-

gance of the while-until extends to this topic, and the observa-

tions are straightforward. The value definition requires no extra
computation at the transfer of control from the loop, since the
value of the last Boolean evaluated is in some register at that
time. It is not difficult to optimize that final jump to exit
several levels directly. We have built a compiler which restruc-
tures the loop and optimizes such jumps. Indeed, the Jump pattern
of Knuth's hand-polished MIX code for heapsort [10] is compilable.
(Optimization on register allocation and predefined input criteria
would naturally follow this jump optimization.)

In the appendix we present a LISP definition of a function
to interpret the while-until, which we have found useful in learning
its ways. We invite the reader to tinker.

Another task is required in the effort to integrate the while-
until into the programming culture. The wide acceptance of Hoare's
axiomatic approach to programming [9] obliges us to construct axioms

for the while-until. We present axioms for these two structures

in Table 8. Following Manna [13], we introduce a new Boolean-valued
register, val, to retain the value of the last (Boolean) expres-
soon evaluated. Note the simplicity of the consequent for the

while-until. Total correctness rules [13] are also available.

-00.

VI. Multiple Terminations and Multiple Values

In this sectlon we observe the natural extensions to the while-
until which satisfy demands for returning multiple values and al-
lowing multiple termination conditions. We argue that these fea-
tures should be avoided because they muddle the simple elegance
of the loop structure and offer power in excess of the spirit of
structured programming.

At the first introduction of the while-until above we suppressed

multiple occurrences of the phrases "while Bi;" or "until Bj;“.
If we now allow them, but restrict that all while's precede all

until's we get a structure of the form:

repeat ((s3)¥(while B;)*)#®
while B3
(85)*¥{until @;5)*)*
until B3
(5%
taeper.
A construction technique similar to that used in proving Lemma 1

establishes that this control structure is equivalent to the while-

until. Therefore (due more to the value returning if-then-else

than the while-until) Jacopini's Qn charts [3] are indeed expressible

using the while-until. If only side-effect equivalent code is

needed, the while and until phrases may be mixed freely since
"while B" is equivalent to "until 78" under that requirement. If
value-equivalence is needed, however, mixing while's and until's

muddies the picture: while Observation 1 still holds, the proof

- R

of Theorem 2 fails. We are dealing with a new animal, but one
so subtly different that its merit is doubtful.
It is surprisingly easy to provide for one of many (rather

than just two) values to be returned from a while-until. For example,

BLISS [20] allows many distinct values to be interpreted as true
or false when taken as Booleans. Under such a scheme, the satis-
faction of an until (or failure of a while) could terminate the
loop with one of several true (false) values which could be dis-
tinguished in the outer context. Even LISP would allow many non-
false values to be returned on termination at an until line.

(But Observation 1 will still hold only if the set of values
is partitioned into two sets--true and false--and the negation
map has the property that 71x = x.) Then the strength of the

while-until is enhanced tremendously and the corollary is invalidated

since we can return more than two values. For instance, if false

is canonically the number zero then the value of j in

repeat until 1+repeat until l+repeat until j ...

can effect an exit-i for 0 < 1 < 3 by setting J = -1i.
Such enhancements to the value-returning power of the while-
until run counter to the aesthetics which motivate this paper.

When the while-until is restricted to its original form it is ob-

Vious from its value what was the last line executed within the
loop; even if the control structure is nested, the flow is easy

to follow. The restriction makes a program easier to read, easier
to compile optimally, easier to prove, and easier to modify. It

is consistent with other constraints imposed on programmers which

ol

restrict his repertoire but improve his product. It is notable

that this property is not even shared by the value returning if-
then-else, accounting for the laék of popularity that control struc-
ture has endured. (See the consequents of Table 8.) Provisions

for multiple termination points or multiple non-false values re-

turned through while or until lines destroy this elegance. We

do not advocate them and leave their formal study to others.

-

VII. Conclusion

It is not easy to expect a new control structure for simple
loops to be willingly adopted after twenty years of programming

language development. Yet the while-until offers more than raw

expressive power. Its termination conditions and values are ob-
vious and it becomes very easy for the coder to adopt. Anyone
who reads code can readily follow its flow of control because of
its linear internal structure and because of the unique origin of
each termination value. The compiler writer is asked to provide
translation and optimization for an expression which is similar
to control structures already extant and whilch involves readily
available values. If the program must be validated or "proved"
the same properties admit an inductive analysis.

While this new control structure is not omnipotent, it does
extend the repertoire of easy-to-use programming structures. Al-

though it is side-effect equivalent to repeat/exit structures (and

also value equivalent when such statements are taken as expressions),

we feel that any value assignment to the repeat/exit cannot be

as transparent as the value assignment to the while-until. More-

over, multiple exit commands within a single loop amount to sins
on the level of GO TO abuses. Restrictions on number and position

of termination tests are very natural in the while-until.

The while-until expression allows top-down programmers, as

well as bottom-up programmers, to code the way they think. It is
much more palatable than other control structures of similar strength.
Finally, it has proved itself as a communicable control structure

in classes at Indiana University to the extent that students com-

.=

plain about its absence when introduced to the same block-struc-

tured languages which originally motivated its creation.

This neat, nested factorization of a program
serves admirably well to keep the individual
building blocks intellectually manageable,
to explain the program to an audience and to
oneself, to raise the level of confidence in
the program, and toc conduct informal, and
even formal proofs of correctness [19]

and to whet us for the discovery of new algorithms by polishing

and compacting our understanding of those already known.

>
Appendix

The following two functions define a LISP-based interpreter
for the while-until.

The use of ILLEGAL is optiocnal.

(DF REPEAT (BODI A)(PROG (REST)

(COND ((ILLEGAL BODI) (ERROR)))
TOP (SETQ REST BODI)
NEXT (COND

((EQUAL (CAR REST) (QUOTE UNTIL)) (COND

((EVAL (CADR REST)A)(RETURN T))
(T (SETQ REST (CDR REST)))))
((EQUAL (CAR REST)(QUOTE WHILE)) (COND

((EVAL (CADR REST)A)(SETQ REST(CDR REST)))
(T (RETURN NIL))))

(T (EVAL (CAR REST)A)))
(COND

((SETQ REST (CDR REST)) (GO NEXT))
(T (GO TOP)))))

(DE ILLEGAL (BODI) (PROG (WSEEN USEEN)
(COND ((NULL BODI) (RETURN T)))
NEXT (COND
((EQUAL (CAR BODI) (QUOTE WHILE)) (COND
(WSEEN (RETURN T))
((NULL (CDR BODI)) (RETURN T))

((SETQ WSEEN T)(SETQ BODI (CDR BODI)))))
((EQUAL (CAR BODI) (QUOTE UNTIL)) (COND

(USEEN (RETURN T))

((NULL (CDR BODI)) (RETURN T))
((SETQ USEEN T)(SETQ BODI

(CDR BODI))))))
(COND ((SETQ BODI (CDR BODI)) (GO NEXT))
(T (RETURN (OR (NOT WSEEN) (NOT USEEN)))))))

Note that REPEAT is a fexpr and ILLEGAL is an eXpr.

An example of the use of while-until follows:

(DE MEMBER (A L) (REPEAT
WHILE L
UNTIL (EQUAL A (CAR L))
(SETQ L (CDR L))))

_28-

References

1. Asheroft, E., and Manna, Z. The translation of "go to" pro-
grams to "while" programs. Information Processing 71, North-
Holland (1972), 250-255.

2. Bochmann, G.V. Multiple exits from a loop without the GOTO.
Comm. ACM 16, 7 (July, 1973), 443-444,

3. Bohm, C., and Jacopini, G. Flow diagrams, Turing machines and
languages with only two formulation rules. Comm. ACM 9, 5
(May, 1966), 366-371.

4, Cooper, D.C. Bohm and Jacopini's reduction of flowcharts. Comm.
ACM 10, 8 (Rugust, 1967), 463, 473.

5. Dijkstra, E.W. Notes on structured programming. Structured

Programming, Academic Press, London (1972), 1-82.

6. Evans, R.V. Multiple exits from a loop using neither GO TO
nor labels. Comm. ACM 17, 11 (November, 1974), 650.

7. Friedman, D.P., and Shapiro, S.C. A case for the while-until.
SIGPLAN Notices 9,77 (July, 1974), 7-14.

8. Hecht, M.S., and Ullman, J.D. Flow graph reducibility. SIAM
J. Comput. 1, 2 (June; 1972), 188-202.

9. Hoare, C.A.R. An axiomatic basis for computer programming.
Comm. ACM 12, 10 (October, 1969), 576-580, 583.

10. Knuth, D.E. Sorting and Searching, Addison-Wesley, Reading,
Mass. (1973), 146-148.

11. Knuth, D.E. Structured programming with GO TO statements.
Computer Surveys 6, 4 (December, 1974), 261-301.

12.

13%

14.

15,

16.

i

18.

19.

20.

2.,

=

Kosaraju, S.R. Analysis of structured programs. J. Comput.
System Sci. 9, 3 (December, 1974), 232-255.

Manna, Z. Mathematical Theory of Computation, McGraw-Hill, New
York (1974), Chapter 3.

McCarthey, J., et al. LISP 1.5 Programmers Manual, MIT Press,
Cambridge, Mass. (1962).

Nassi, I., and Shneiderman, B. Flowchart techniques for struc-
tured programming. SIGPLAN Notices 8, 8 (August, 1973), 12-26.

Peterson, W.W.; Kasami, T.; and Tokura, N. On the capabilities
of while, repeat, and exit statements. Comm. ACM 16, 8 (August,
1973) 5 503-512.

Symes, D.M. New control structures to aid gotolessness. Proec.
2nd ACM Symp. on Principles of Programming Languages (1975),
194-203.

van WiJlngaarden,; A.. (Ed.); Maillouz, B.J.; Peck, J.B.L.; and
Koster, C.H.A. BReport on the algorithmic language ALGOL 68.
Numer. Math. 14 (1969), 79-218.

Wirth, N. On the composition of well-structured programs.
Computer Surveys 6, 4 (December, 1974), 247-259,

Wulf, W.A.; Russell, D.B.; and Haberman, A.N. BLISS: a language
for systems programming. Comm. ACM 14, 12 (December, 1971),
780-790.

Zahn, C.T. A control statement for natural top-down structured
programming. Presented at "Colloque sur la Programmation",
Paris (1974).

Typed by Christopher Charles

By =

while B repeat s

Figure 1.

repeat s until B

Figure 2.

BT

— e — o — w— — — i ——] —

while 81; 52; vatil 82; 53 taeper

repeat sl;

Figure 3.

while 8

Non-false False -

value of 82 value of Bl

(of last Bi

r-———q-———_—-————_—————-————-——_-——-

Figure 4. Value returning while-until illustrated

as a standard flowchart and a proposal for .structured flowcharts

[15]

Figure 5.

Flowchart from Ashecroft

and Manna [1]

-33-

~34-

while—-until

|
t .
o
o
L
M
(@)
-
[
],_,J
Q
2
Q
3
w
I—{
ot
o
[
qu
Q
3
jo
cl
b
m
o}
Q
=
W
H
Q
Hh
o
o)
o

Figure 7a.

F

T

Figure Tb. Loops which result from node-splitting Figure 6,

indicating the values to be returned.

7

{P} sl{Q} and {R} 82{8} and {T} 53{P}
and {Q} Bl{val ARV Tval A A}
and {S} Bg{val A B v qval A T}

{P} repeat S5 while B.; S,5 until B, s3 taeper

ival A B e Sva e o

Y o “JH‘I— oy [-—:\:*"
< Tl - ‘
N o
L) Sl e s g
e iy

{E} 1f B, then B, else 83

{val A (8 v U) v aval a (T v V)}

Table 8. Axioms for Boolean valued while-until and

if—thethlSe. The Boolean variable val appears only where

explicitly mentioned.

