Macro-by-Example:
Deriving Syntactic Transformations from their Specifications

By

Eugene E. Kohlbecker
Indiana University
Bloomington, IN 47405

and

Mitchell Wand
Northeastern University
Boston, Massachusetts 02115

TECHNICAL REPORT NO. 206

Macro-by-Example:
Deriving Syntactic Transformations from their Specifications
by

Eugene E. Kohlbecker, Indiana University
and Mitchell Wand, Northeastern University

November, 1986

This material is based on work supported in part an IBM Fellowship Award to Eugene E.
Kohlbecker, and by the National Science Foundation grant numbers MCS83-03325, MSC83-04567,
DCR85-01277, and DCR86-05218.

Macro-by-Example:
Deriving Syntactic Transformations from their Specifications

Eugene E. Kohlbecker, Indiana University
Mitchell Wand, Northeastern University

Abstract

This paper presents two new developments. First, it
describes a “macro-by-example” specification language for
syntactic abstractions in Lisp and related languages. This
specification language allows a more declarative specifica-
tion of macros than conventional macro facilities do by giv-
ing a better treatment of iteration and mapping constructs.
Second, it gives a formal semantics for the language and a
derivation of a compiler from the semantics. This derivation
is a practical application of semantics-directed compiler de-
velopment methodology.

1. Introduction

Modern programming languages offer powerful facili-
ties for procedural and data abstraction which encapsu-
late commonly-used patterns of procedure invocation and
of data usage, respectively. Often, however, one encounters
typical patterns of linguistic usage that do not fall neatly
into either category. An example is the let expression,
which encapsulates an often-used pattern of function cre-
ation and call:

QQet ((i e} <.} b ...)

==> ((lambda (i ...) b ...) e ...)

This Material is based on work supported by the National Science Foun-
dation under grant numbers MCS 8303325, MCS 8304567, and DCR
8605218, Eugene Kohlbecker was supported by an IBM Graduate Fel-
lowship while part of this work was being developed.

Authors’ addresses: Eugene E. I{ohlbecker, Computer Science Depart-
ment, Indiana University, Lindley Hall 101, Bloomington, IN 47405,
Milchell Wand, College of Computer Science, Nartheastern Universily,
360 Muntington Avenue #161CN, Boston, MA 02115.

To appear in the 1987 ACM Symposium on Principles
of Programming Languages.

This is not a procedural abstraction; rather, it is a syntactic
abstraction: an abstraction of a typical pattern of syntax.

Most modern languages do not provide tools for the cre-
ation of syntactic abstractions comparable to those avail-
able for procedural or data abstractions. Even in languages
such as Lisp that allow syntactic abstractions, the process
of defining them is notoriously difficult and error-prone.
To define let as a macro, we must write a procedure that
transforms any expression which matches the left-hand pat-
tern into a corresponding instance of the right-hand pat-
tern. The code for this looks like:

(lambda (s)
(cons
(cons ’lambda
(cons (map car (cadr s))
(cddr s)))
(map cadr (cadr s))))

This code can hardly be considered transparent. It
bears no obvious relation to the transformation it engen-
ders. It is difficult to see the shape of the structure it is
building or the shape of the structure it is trying to take
apart. Furthermore, it does no error checking on its input.

Modern Lisps supply some tools to help the macro-
writer, most notably backquote and defmacro (e.g., [Foder-
aro, Sklower, & Layer 83]). Backquote makes the code for
building the output look more like the output itself, and
defmacro includes a pattern-matching facility. Using these
tools, the let macro might be defined as:

(defmacro let (decls . body)
‘((lambda , (map car decls)
, (map cadr decls)))

,body)

This is considerably better, but the mapping functions
are still mysterious. Furthermore, the backquote mecha-
nism is itself error-prone: one always leaves out at least
one comma, on the first try!

In our facility, one defines let as follows:

(declare-syntax let
[(let ((i & ...) b ...)
Clambda: {1 i) b i) e zadl)

This is close to the language used for specifying syn-
tactic extensions in the revised Scheme report [Steele and
Sussman 78] and the 1986 Scheme report [Rees, Clinger,
et al. 86], except that it is executable. The specification
language has the following features:

1. Pattern-matching, including error-checking, is done on
the input.

2. The output specification matches the form of the out-
put. No commas or other symbols are needed.

3. Repetitive elements are specified naturally on both in-
put and output.

This specification mechanism has been used in various
versions of Scheme since 1982, and has proved to be a robust
and highly useful feature. Only recently, however, did the
need for formal documentation of the mechanism lead us to
develop the formal semantics and the semantically-derived
compiler presented here.

We call this mechanism macro-by-example, or MBE. It
has allowed us to embed a number of interesting languages
in Scheme, such as:

® a type-checked Scheme variant called SPS [Wand 84]
e a coroutine mechanism [Friedman, Haynes, & Wand 86]
e an import/export mechanism for modules [Felleisen and

Friedman 86]

e two quite different semantically-derived subsets of Pro-
log [Felleisen 85, Wand 85]

The presence of this convenient syntactic extension tool
provides an important design dimension: given any pro-
posed language extension, we get to decide how much of it
should be treated as procedural abstraction, how much as
data abstraction, and how much as syntactic abstraction.
The presence of a good syntactic abstraction mechanism
means that a language extension which might be highly

cumbersome expressed in a purely procedural way can be
made far more usable by a propitious choice of syntax. (In-
deed, the declare-syntax facility itself may be viewed as
such a propitious choice of syntax). Conversely, given a
complex syntactic abstraction, we can try to convert some
of it to a procedural or a data abstraction. '

In Section 2, we give a brief description of the specifica-
tion language itself and additional examples. In Section 3,
we present a formal semantics of the specification language.
This semantics could, if desired, be used to create an inter-
preter for this language of transformations. In Sections 4
and 5, we show how the semantics can be transformed into
a compiler which takes a transformation specification and
produces Scheme code for performing the transformation
(including error checking and mapping functions).

2. The Specification Language
Consider the following example of MBE:

(declare-syntax and
[(and) true]
[(and e) e]
[(and el e2

...) (if el (and e2 ...) false)])

It illustrates some of the important features of MBE:

1. An MBE specification consists of a series of input-out-
put patterns, which are tried in order. If a call matches
none of the input patterns, then an error is signalled.

2. Backquotes and commas in the output patterns are
avoided by a simple convention: identifiers which ap-
pear in the input pattern are treated as pattern vari-
ables; all other identifiers are constants. No special
treatment is necessary for lambda or quote in the tran-
scription proper, but the result of the transcription
can be processed using the a-converting expander of
[Kohlbecker, et al. 86] to avoid capture of bound vari-
ables in macros such as:

(declare-syntax or2
[(or2 x y) (et ((v x)) (Gif v v y)OD)

which would otherwise capture any occurrences of v in
its second argument. (The production version of MBE
also allows the user to specify the capture of particular
variables).

8. Whenever the ellipsis (indicated by the atom “...”) is
used, it must be preceded by a pattern, and it must be
the last element of the pattern list or sublist. (Again,
the production version is somewhat more generous; we
do not illustrate this here). Ellipses may be nested,
so pattern variables may denote S-expressions, lists of
S-expressions, lists of lists of S-expressions, ete.

As an illustration of MBE as a language-embedding
tool, consider the following macros, which are taken from
[Wand 85]. These macros define two new special forms
whose translation produces (through details that are of no
concern here) an interface to an underlying Prolog seman-
tics.

(declare-syntax clauses

((clauses (varl ...) cl1 ...)
(lambda (z)
(let ((varl (genvar)) ...)
(call/kf.

(lambda (kf)
(ff-set-ref! *kcut-point#* kf)
(choose (clause cl1) ...))))))

(declare-syntax clause
((clause (pat actl ..
(begin
(unify (pattern pat) z)
(action actl) ...)))

)

(declare-syntax action
((action (fn el ...))

(fn (list (pattern el) D))

Without the ability to adapt the syntax, the interface
would have been impossible to use (indeed, an earlier ver-
sion of our Prolog semantics foundered on precisely this
point). With these macros in place, we can write Prolog
predicates as Scheme procedures in a moderately conve-
nient syntax, for example:

(define Append
(clauses (y a d u v)
((nil y v))
((a . & ufa.w)
(Append d u v))))

The production version [Kohlbecker 86] includes a num-
ber of additional bells and whistles. First, arbitrary tests
may be specified by an optional argument called a fender.
For example, the macro for let should include a test to
make sure the bound variables are atoms:

(declare-syntax let
[(let (i e) ...) b ...)
(mapand atom? *(i ...))
((Qambda (1 ...) b ...) e ...0D)

Second, arbitrary processing of the macro call may be per-
formed by a with-specification, which binds its variable to
the result of a Scheme calculation.
(declare-syntax new-lang
[(new-lang e ...)
(with ([code (translate-to-scheme *(e ...))])
(top-level code))])

And third, the macro-writer may also specify keywords to
serve as pattern constants in the input patterns (e.g., else)
and as terminators for ellipses.

3. Semantics

In this section, we sketch the formal semantics of the
MBE mechanism.. We restrict ourselves to a single input-
output pair, emphasizing the correct treatment of ellipses.

In our description, we employ relatively standard no-
tation. We use three closely-spaced dots (...) for the ellip-
sis symbol and center dots (+++) for ellipsis in the meta-
language. We use (z);, (z); for projection, (o = 8,7) for
conditional, and A —e+ B for the set of partial functions
from A to B.

We define the following domains:

S-ezp ::= Ident | (S-exp ++- S-exp)
Sti=S-ezp| (SH ... SF)
Pat := () | Ident | (Pat . Pat) | (Pat ...)
Env = Ident —e (Int x S*)

The function fv, defined over Pat returns a list of identificrs

contained in a pattern. The meta-variable a ranges over

Ident, p over Pat, s over S-ezp and S*, and p over Env.
The semantics is comprised of three main functions:

B: Pat — S-exp — Bool
D: Pat — S-exp —e—+ Env
T:Pat — Env —e+ S-exp

B takes an input pattern and an S-expression; it returns
a boolean indicating whether the S-expression matches the
pattern. D takes an input pattern and an S-expression and
(if it matches the pattern) returns an environment associ-
ating pattern variables with their resulting bindings. Each
binding is a pair consisting of a non-negative integer and an
element of S*. The integer indicates the variable’s level, the
number of ellipses enclosing it. The element of S is of the
corresponding type: if the level is 0, it is an S-expression;
if the level is 1, it is a list of S-expressions; if the level is 2,
a list of lists of S-expressions, ete.

T takes an output pattern and an environment and
expands the pattern in that environment. Thus a transform
function with type S-ezp —e+ S-ezp for one input-output
pattern pair (lhs rhs) may be described as:

E[(ths rhs)] = As.(B[lhs]s =T [rhs](P[lhs]s),
error)
The variable s represents a macro invocation.
We begin with the clauses for B. They are as follows:

B[O] = As.null?s
Bla] = As.true
B[(p1 - p2)] = As.pair? s A Bp;](hd s) A Bp2](tl s)
B[(p ...)] = As.list? s A mapand (B[p]) s

The pattern () matches only the empty list. The pat-
tern a is a variable and matches anything, The pattern
(p1 . p2) matches s if and only if s is a pair (that is, not an
atom and not empty), and the corresponding subpatterns
match. The pattern (p ...) matches s if and only if s is a
list and p matches each element of s.

The equations for D are guaranteed to be sensible only
on the condition that B[p]s is true:

D[O] = s
Pla] = Xs.{(a (1,9))}
Dl(p; . p2)] = As.D][p1](hd s) U Dlpa](t! s)

Here we assume that there are no variables in common be-
tween p; and ps.

To create an environment from a pattern (p ...) and a
subject S-expression s, we map D[p] across the clements
of s, creating a list of environments. Then the environ-
ments are combined componentwise, incrementing the level
associated with each variable:

Pl .)](s1 - 8a) = combine-envs (D[p]s1 -+ P[p]s.)

combine-envs
= A(p1 -+ pn) X ((p18)1 + 1, ((p12)2 -+ - (pn?)2))

Thus, in the pattern (let ((i e) ...) b ...), the
variable i becomes bound with level 1 to the list of match-
ing elements in an invocation s.

We can now move on to the processing of the output
pattern. Again, the equations are straightforward, except
for ellipses:

T[O]p=0
T la]p =(a € Dom p) =
(((pa)1 = 0) = (pa)s, error),
a

T - p2)]p =cons (T [p1]p) (T [p2lp)

If the output pattern is an identifier, we first check to
see if it is bound in the environment. If it is, and its level
is zero, then the result is its value. If the level is non-zero,
then it was bound to a list of values, not a value, so it may
not be transcribed. If it is not bound in the environment,
then it is treated as a constant.

If the output pattern is a pair (p1 . p2), its head and
tail are each processed separately. The two results are then
joined.

In processing an output pattern (p ...) with T, we have
the inverse of the problem with D: we must split a single
environment into a list of environments. To do this, we
first restrict the environment to the free variables of p. We
then check whether the variables of p include at least one
variable of level greater than 0. If not, the prototype p is
rejected, since there is no way to determine the length of
the repetition. If the prototype passes, then we decompose
the environment into a list of environments and map T [p]
over this list. The decomposition is complicated by three
considerations: First, we must decrement the level of each
non-scalar variable in the environment. Second, we copy
scalar (level 0) variables across the list, being sure not to
decrement their level, so that code like

(declare-syntax copy-it
[(copy-it 1 j ...) (bar "1 j) ...)])

correctly transcribes

(copy-it a 1 2 3)

into
Yla: 3))

Last, we must determine the length of the list. This is
the length of the lists in the environment if they are all
the same length. If they are not the same length, an error
is signalled. These tasks are performed by the following
clauses:

{bar '(a 1) *(a 2)

Tl(p ...)]o = controllablep p =
map (T[[P]]) (decompose (p | fu(p))),

error

controllable p p = v (v € dom(p | fu(p)) A ((pv)1 >0))

decompose p = UnequalLengths? p = error,

StopNow? p = (),
cons (split hd o p)
decompose (split tl o p)

split f (n,¢) = (n =0) = (0,¢), ((n— 1), (fe))

This completes the semantics.

A fender or with-specification may easily be modeled
using this semantics. They are the same as ordinary output
patterns: when encountered they are expanded using T and
then evaluated. The result of the evaluation is then used
either as a guard to decide whether to proceed with the
expansion or as a value to be inserted in the environment
for the main expansion.

4. Deriving the Cdmpiler

The original versions of MBE (along with the current
production version, detailed in [Kohlbecker 86]), used ad
hoc code generation methods to compile a specification into
Scheme code. The code generator is quite clever; for exam-
ple, for 1et it produces the code shown in the first display.
The evolution of this code generator has been tortuous, and

therefore MBE seemed to be a good real-world example on
which to exercise semantic methods.

The first step in the derivation was the production of
the formal semantics sketched above. From there, the deri-
vation proceeded in two phases: staging [Jorring and Sherlis
86] and representation [Wand 82].

The goals of staging are to identify opportunities for
early binding and to reorder and re-curry the arguments to
the various functions so that the early-bindable arguments
appear first.

Our particular goal is to avoid building intermediate
structures such as environments whenever possible. Recall
that P has functionality

Pat — S-exp —o+ (Ident —e+ (Int x S*))

We delay the binding of S-ezp by replacing Env by
Eny' = (Ident —e~+ Int) X (Ident —e+ S-ezp — S%)

and replacing D by a function D' of functionality Pat —
Env'.

An element of Env' may be thought of as a symbol
table. Instead of having the function D which takes an S-
expression and builds an environment containing S-expres-
sions, we have a new function which takes a pattern and
builds a symbol table containing functions from S-expres-
sions to S-expressions. We call these functions selectors.
A selector is later applied to the subject S-expression to
extract the values for the variables. Thus the condition we
want is that if B[p]s is true, then for all 7,

((D'[pD)se, (0'[pD)2is) = Dlp)si

This formulation also makes clear that the levels of the vari-
ables are independent of the subject S-expression to which
the pattern is matched. (This is analogous to static chain
analysis or type analysis).

It is easy to build D' as the product of two functions,
which we call D] and Dj. Each of these is obtained by

modifying the appropriate piece of the definition of D, using
the congruence condition above as a guide. Doing this, we
get:

DI[O] =0
Dila] ={(a+ 0)}
Di[(p1 - p2)] = Di[p:] L D;[p]
D/[(p ..)] = addz o D][p]

DO]=¢
Dy[a] = {(a — Xs.s)}
Dyl (o1 - p)] ={(i = Xs.f(hd) | (i = f) € Di[m]}
U{E— Xs.f(9)) | (i = f) € Dylp:]}
Dy[(p .)] ={(z — As.map fs) | (: = f) € D;[p]}
Now we can proceed to modify T to work with new-
style environments. Just as the analysis of D produced
selectors, the analysis of T produces constructors. The
new version of T will be
T': Pat — Env' — S-exp —e+ S-exp

Using the condition on D' above to illustrate how to trans-
late new environments into old environments, we see that
the condition we want T’ to obey is

T'lple's = TIpI(X-(p)17, (#)215)
With this condition, we can redefine £ as:
E(ths rhs)] = As.(B[lhs)s =T [rhs](D'[Ihs])s,

8?’!’0!’)

(+)

A simple calculation shows that this definition is equivalent
to the old one.

As usual, it is easy to write the first three clauses for
T

T'[O]

T'[a]¢

=Xs.0)

=(a € Dom (p')1) =
((p')ra=0= (p')aa, error),
(As.a)

T'[(p1 - p2)]0" =As.(cons (T'[p1]'s) (T'[p:]A's))

The analysis of T'[(p ...)] is harder; we defer it to the nexi
section.

The staging analysis shows that at compile-time we can
produce a set of tests, selectors, and constructors that can
be applied at macro-expansion time to an S-expression. In
the second phase of the derivation, we choose appropriate
representations for these functions.. In keeping with slo-
gan “target code as a representation of semantics” [Wand
82], we represent these functions in Scheme, our target lan-
guage.

We begin with the representation for selectors. To de-
termine the representation, we look at D) to see what are
the basic selectors and what are the constructors which
build selectors. This gives us a mini-language of selectors.
We then choose representations for this language in Scheme.
In particular, we represent these functions as Scheme ex-
pressions with a single free variable s. Then the function
can be applied simply by evaluating the expression in a
suitable environment.

Looking at the definition of Dj, we can see that every
selector is either \s.s or of one of the forms As.(M(hd s)),
As.(M(#l s)) and As.(map M s), where M is another selec-
tor. Thus we can represent these by the Scheme expressions
s, M[(car s)/s], M[(cdr s)/s], and (map (lambda (s)
M) s), respectively, where M[IN/v] means the substitution
of N for the free occurrences of v in M. We can fthen do a
small amount of peephole optimization on the representa-
tions (e.g., replacing (lambda (s) (map (lambda (s) s)
s)) by s). This is easy since the language of selectors is
small. We can analyze tests and constructors similarly, by
looking at the definitions of B and T'. We summarize the
representations as follows:

Tests:
s=() (null? s)
true true
As.pair? s (and (pair? s)
AM(hd s) M(car s)/s]
AN(t s) N[(cdr s)/s])
As.list? s (and (1list? s)
Amapand M s (mapand
(lambda (s) M)
5))

Selectors:
As.s s
M(hd s) M[(car s)/s]

M(t s) M[(cdr s)/s]

As.map M s (map (lambda (s) M) s)
Constructors:

As.() nil

As.a a

As.(cons (Ms) (Ns)) (cons M N)

Since the same representation is used for all these func-
tions, they can be intermixed when necessary. For exam-
ple, in T’ there is no separate representation for (p')sq,
since this is a selector whose representation is already de-
termined.

Having decided on a representation, we then go back
and modify the functions B, Dj and T' to produce these
concrete representations rather than the functions. This
gives us a compiler: a function which takes a pattern-
transcription pair and produces a piece of Scheme code
which performs the transliteration.

More precisely, we replace £ by

E"[(ths rhs)]
= (lambda (s)
(if B"[irs]

T"[rhs](D"[ths])

(error "pattern not matched")))
where the doubly-primed functions produce the concrete
representations specified in the table above. Each doubly-
primed function is obtained by modifying the correspond-
ing singly-primed function so that instead of returning a
function, it produces the representation of that function.

The function B is replaced by:
B"[O] =(null? s)
B"[a] =true
. p2)] =(and (pair? s)
B"[p][(car s)/s]
B"[p2][(cdr 8)/s])
B"[(p ..)] =(and (1ist? s)
(mapand (lambda (s) B"[p]) s)
D"[1hs] produces a pair, consisting of a level-environ-
ment, D{[lhs] as before, and an environment of concrete
seléctors in which the selector functions are replaced by
their representations. Only the selectors need to be repre-

sented concretely, since these are the only things that T"
inserts in its concrete output.

B"[(py

D"[ihs] = (0} [ihs], B} [ihs])

Yy [O]=8
Dy[a] = {(a > s)}
Dy[(p1 - p)] =
{(e > M[(car s)/s]) | (i = M) € D[p:]}
U{(Z — M[(car s)/s]) | (i = M) € D)[p:]}
DJ[(p ..)] ={(i — (map (lambda (s) M) s))
| (&~ M) € D;)[p]}

The function T becomes:

T"[O]p' =ni1
T"[a)s’ =(a € Dom (p')1) =
((p)1a=0= (p')sa, error),
a

T"[(p1 - p)]¢ =(cons T"[m]e' T"[p2]0"

Note that all this code is obtained by modifying the
output of the previous functions, not by doing any ab ni-
tio coding or analysis. In Scheme, this modification may
be accomplished by simply introducing backquotes in the
appropriate places.

This completes the compiler, except for the transcrip-
tion of ellipses.

5. Transcribing Ellipses

Transcribing ellipses is a harder problem for this com-
pilation strategy, since in general there is no way to avoid
building intermediate structures akin to environments.

Our strategy is to deal first with the most common spe-
cial case, which luckily does not require any intermediate
structures. It is easy to confirm that the following clause
satisfies the congruence relation (%), given in the previous
section, which must hold between T and T

T'[a..0]¢ = ((p)1a=1) = (o')2a, error

This takes care of what seems to be the most common
use of ellipses. In general, however, we need to attack the
congruence relation for T'[(p ...)] directly. The congruence
relation requires that

T'[p..0]'s
= T[4)10l)si, ()ais))
= map (T [p])
(decompose (Xi € fu(p)-{()1i, (¢')si))
Let us write p for the argument to decompose above. We
need to build some representation of p and of decompose p.

That representation should allow us to build as much as
possible of the environment before knowing the value of s.
Once that is done, we can attack the problem of replacing
the T in the mapping expression by T'.

Let +* = [ig,++,%;] be an enumeration of the free vari-
ables of p in a list. (We use the square brackets [--:] or
[+ @+« | I € L] to denote lists). We represent all func-
tions whose domain is fu(p) as lists, indexed by #*. Thus a
function f can be represented by the list [f(50),---, f(2)]-

Since an element of Env' is a pair of functions, we rep-
resent it as a pair of lists. We refer to these two lists as the
level component and the value component of the environ-
ment. Hence decompose p becomes

decompose [(p')1 | © € 2*] [(p')ots | 2 € 1]

The output from decompose is a list of environments,
each of which has the same level component. Hence we can
represent this list of environments as a single level compo-
nent and a list of value components. Thus we can represent

decompose(Xi € fu(p).((p)17,(p')2is)) as
(decompose-levels n*, decompose-values n® s*)

where
n = [0 i €7
s*=[()ats | 1 €4°]
decompose-levels = In*.[((n =0) = 0,n— 1) | n € n']
decompose-values
= An*s*.UnequalLengths? s* = error,
StopNow? p = (),
cons (split” hdn® s*)
decompose-valuesn® (split* tin' s*)
split* = Afn’s".[(n=0) = s, fs | (n,s) € (n’,s")]
Here the definition of split* describes mapping over two lists
of equal length.

By these manipulations, we have given ourselves the
possibility of precomputing the levels. We take advantage
of this by currying the functionality of T, changing it from

T': Pat —((Ident —e Int) x (Ident —+ S-ezp — S%))
— S-ezp —o+ S-exp
to
T": Pat —(Ident —e+ Int) — (Ident —e= S-ezp — S¥)
— S-exp —o S-exp

We may also make a similar change in the functionality of
T to reflect our new representation of environments:

T: Pat — (Ident —e+ Int) — (Ident —e+ S*) — S-ezp

With these changes, the congruence condition between
T and T' may be restated as:

T'[plerp2s = T [plps (Xi.pais) (++)

Tet p* be the selector environment D)[+*], that is, the
environment {(¢g +— As.(hd s)), (51 = As.(hd (¢s))), -}
Hence, if we have an environment represented by the pair
(n*,s*), we can use p* with T’ to retrieve elements from
s*. More precisely, we may deduce from the congruence
condition (*#) that for any pattern p', we have

Tr[[pJ]]ntp;S: = T[[pl]]ntsi

where the first s* denotes a list which is the subject of the
transcription and the second denotes the same list in its
role as the representation of a value environment.

We can use this identity to replace the T in the defini-
tion of T'[(p ...)] by T'. For clarity, we assume for the mo-
ment that the pattern p is controllable in level-environment
p1- We may now derive the new definition:

T'[(p ..)]prp2s
=T[(..)]p1(Ai.pats)
= map (T [p]) (decompose (X € fu(p).(p1%, pats)))
=let i* = fu(p); n* = [p1i |1 € "];

m* = decompose-levels n* in

As.map (T [p]m*)(decompose-values n* [pais | ¢ € 1°])
=let ¢* = fu(p); n" =[me | i €7");

m* = decompose-levelsn®; p* = Dj[¢*] in

As.map (T'[p]m*p*)

(decompose-values n* [pais | ¢ € 77])

This version of the definition allows us to write 7' as a
pure structural recursion, so that we can transcribe it into
a concrele representation as well:

T"[(p .0]p1p2
=let 3* = fu(p); n* =[mi |7 €]
m* = decompose-levelsn*; p* = Dj[¢*] in
(map (lambda (s) T'[p]m*p*)
(decompose-values (quote n')
(list patg »++ patp)))

For the last line, recall that ps contains concrete selec-
tors, which, when evaluated with s bound to s, will return
the value of pyis. Hence, if 1* = [4g,--+,%;], then the list
expression will evaluate correctly to [prs | € ¢°].

This version of the target code includes an explicit call
to decompose-values. It is possible to apply the same
methods to decompose-values, using staging to take advan-
tage of the fact that its first argument is known. The result-
ing system generates target code that includes a local let-
rec loop in place of the decompose-values, and in which
the run-time level tests are eliminated. We leave this de-
velopment as an exercise for the reader.

6. Results

The derivation, including false starts and debugging of
the resulting code, took well under one man-weck. The
production compiler, by contrast, embodies several man-
months of work.

How good is the resulting compiler? It seems to produce
code which is comparable with the production version. For
let, it produces the following code for the transcription:

(lambda (s)
(cons
(cons ’lambda
(cons (map (lambda (s) (car s))
(car (cdr s)))
(cdr (cdr s))))
(map (lambda (s) (car (ecdr s)))
(car (ecdr s)))))

which is clearly equivalent (given a reasonably optimizing
compiler) to the production version code given above. It
also produces comparable code for the tests. In view of this
performance, we regard the derivation as a success.

7. Conclusions

We have presented a “macro-by-example” facility for
Lisp-like languages. The facility allows the user to spec-
ify syntactic extensions in a natural, non-procedural man-
ner. These specifications are expanded into transforma-
tions which automatically perform pattern-matching, error-
checking, and mapping. We have given a formal semantics
for the specification language and have shown how the se-
mantics can be converted into a compiler by the use of stag-
ing and suitable choices of representations for the semantic
functions.

Dan Friedman originally suggested the idea of a new
macro declaration tool. We gratefully acknowledge his con-
tributions to this work. We also thank Matthias Felleisen
for helping implement the compiler and proof-read this pa-
per.

References

[Felleisen 85]
Felleisen, M. “Transliterating Prolog into Scherme,” In-
diana University Computer Science Department Tech-
nical Report No. 182, October, 1985.

[Foderaro, Sklower, & Layer 83]
Foderaro, J.K., Sklower, K.L., and Layer, K. The Franz
Lisp Manual, June, 1983.

[Felleisen & Friedman 86)
Felleisen, M., and Friedman, D.P., “A Closer Look at
Export and Import Statements,” Computer Languages
11 (1986), 29-37.

[Friedman, Haynes, & Wand 86]
Friedman, D.P., Haynes, C.T., and Wand, M. “Obtain-
ing Coroutines with Continuations,” Computer Lan-
guages 11 (1986), to appear.

[Jorring & Sherlis 86]
Jorring, U., and Sherlis, W.L. “Compilers and Stag-
ing Transformations,” Conf. Rec. 18th Annual ACM
Symposium on Principles of Programming Languages
(1986), 86-96.

[Kohlbecker 86]
Kohlbecker, E., Syntactic Eztensions in the Program-
ming Language Lisp, PhD dissertation, Indiana Uni-
versity, August, 1986.

[Kohlbecker, et al. 86]
Kohlbecker, E., Friedman, D.P., Felleisen, M., and
Duba, B. “Hygienic Macro Expansion,” Proceedings
1986 ACM Conference on Lisp and Functional Pro-
gramming, 151-161.

[Rees, Clinger, et al. 86]
Rees, J., and Clinger, W., eds. “Revised® Report on
the Algorithmic Language Scheme,” SIGPLAN No-
tices, to appear.

[Stecle & Sussman 78]
Steele, G.L. and Sussman, G.J. “The Revised Report
on SCHEME,” Mass. Inst. of Tech. Artif. Intell. Memo
No. 452, Cambridge, MA (January, 1978).

[Wand 82]
Wand, M. “Deriving Target Code as a Representa-
tion of Continuation Semantics,” ACM Trans. on Prog.
Lang. and Systems 4, 3 (July, 1982) 496-517.

[Wand 84]
Wand, M. “A Semantic Prototyping System,” Proc.
ACM SIGPLAN ‘84 Compiler Construction Confer-
ence (1984), 213221,

[Wand 85]
Wand, M. “The Semantics of Backtracking,” Brandeis
University Computer Science Department Colloquium,
January, 1985 (unpublished).

