The Use of PALS in CPU Design

by
David Winkel

Computer Science Department
Indiana University
Bloomington, Indiana 47405

TECHNICAL REPORT NO. 204

The Use of PALS in CPU Design
by
David Winkel
October, 1986

THE USE OF PALS IN CPU DESIGN

I) INTRODUCTION

As befits any healthy discipline, circuit design is a steadily evolving
process. In the past we viewed synthesis in the intuitively obvious way:
design with functional building blocks and map them directly onto silicon.
Huge catalogs of MSI parts are a direct result of this view. For many
years MSI was well matched to manufacturing know-how so the designer was
in equilibrium with the tools and parts available to him. We are finally
realizing that having everything you want at this level is too
restrictive: we have to stock, test, integrate, and most of all understand
far too many chips. We need to get away from chips into systems.

For aystems work, VLSI is an obvious choice; you start with virgin gilicon
and craft a circuit with no restrictions other than those imposed by die
size and routing constraints. This freedom iz not without cost, however.
Substantial financial, manpower, and CAD resources are required and limit
its application to high volume parts where costs can be amortized. Recent
programs (7) have made it available to the research community and
potentially to small commercial projects, but it is gtill likely to be
beyond reach of most practicing engineers.

Many desirable properties of VLSI can be provided by universal chips that
can be tailored to specific applications, the so called ASIC (application
specific integrated circuit). Gate arrays (8) are uncommitted chips
produced in high volume at low cost and configured by wiring standard
transistor unit cells into logic blocks at the final metalization stage.
The costs are still non-trivial, but substantially less than full custom
VLSI; turnaround times are also reduced to a few weeks. These factors have
propelled the technology into an increasingly wide application area.

Standard cells are intermediate between gate arrays and full custom VLSI.
The interface presented to a logic designer is similar to a gate array,
but logic blocks are drawn from a library, then placed and routed on
silicon by extensive CAD tools provided by the vendor.

What happens if you can’t afford all this, but still need the power
provided by ASIC technologies? Field programmable logic has long been a
designer’s dream and would be the ultimate ASIC technology if it could
accommodate large systems. In the past it was available only for small
state machines and replacement of random logic; as such it was the perfect
micro ASIC technology. Newer PALs, however, equal the power of small gate
array and standard cell devices, and will surely displace them for
development and small production runs because of their low cost and short
turnaround. As PALS become larger their application area will steadily
encroach on gate arrays and standard cells if we can find appropriate
techniques for managing their design.

Since many issues in using large PALs in system applications are
complexity related we will, of necessity, have to adopt some techniques
used by traditional ASIC designers to manage complexity. Depending on your
viewpoint, this is a boon or distasteful since success comes from a higher
level, top down, view of the design process with less emphasis on the art
(tricks?) of optimizing microscopic chunks of logic. Unfortunately, some
large PALs are poorly adapted to system degign and we must find new ways
of looking at them if we are to use them as ASIC devices.

We explore these issues by building a small CPU uging a popular CMOS PAL
with an unusually flexible logic structure (32vX10), using an ASIC design
style wherever possible. The techniques we develop extend readily to more .
complex digital systems and future PALS of greater logic power. As far as
we know, this is the first successful application of the 32VX1O0 in a
system as complex as a CPU.

As we will see, the early stages of design are independent of logic type,
but good PAL designs require very careful partitioning and asgignment of
logic to chips or the power residing in the fuse matrix will be wasted.

II) CHOICE OF TARGET ARCHITECTURE

We need a target CPU with these characteristics:
A) It must be large enough to reveal the real design issues in
using large PALS.
B) It must be small enough to permit rapid construction.
C) It must have extensive diagnostics to verify the finished hardware.
D) It must be well described in the literature.
E) It is desirable for implementations to exist across a range of
technologies so we can compare them to a PAL design.

Our choice is the DEC PDP8 which fulfills all of the above (6). We
emphasize that the particular target architecture is of little importance:
we are not interested in building a PDP8, but HOW to build one. The
philogsophy of design, algorithmic state machines, micro-coded control, and
data path derivation are extensively treated in reference (1). The PDP8 is
used in that book as a vehicle for showing the different techniques in
action, and is a source for supplementary information to this technical
report. Complete wire lists and micro-code are shown in (4).

We, in fact, have built this system in MSI, PALS, and are currently doing
a 3 micron CMOS custom VLSI data path. We have done a paper gate array-
design, but have not implemented it for cost reasons. Control has been
implemented with micro—code, hard wired state generators, and a PAL state
machine. In each case, we require finished hardware to run the complete
set of DEC diagnostics. Paper designs don’t face this acid test, and thus
may miss critical issues. This CPU is our local favorite for exploring the
nuances of different technologies.

III) THE DESIGN PROCESS

So what parts of traditional degign can we use? What changesa? What ASIC
design philosophies can we adapt? What special PAL properties are likely
to impact our design process?

Degign style is a curiously neglected area, perhaps because a traditional
study of logic design emphasizes the microscopic transistor and gate
aspects of the subject. Our experience leads us to start from the other
end, working downward from system specification to ever smaller blocks
until we reach something recognizably close to chips. The most important
result from a top—down decomposition is that chips are chosen to fit a
design instead of forcing a design to fit a preconceived chip set.

We think much like architects who start with an aesthetic building plan
and let it dictate the shape and location of doors, windows,etc. Thig is
not to deny that you can reverse the process and assemble predefined
doors, windows, stairs, and other components into a house; it’s just that

it will look like it. Elegant results require elegant tools.

Our foundation is hierarchical decomposition —— perhaps the most powerful
tool yet found for managing complex engineering designs. The idea is
essentially an application of the divide and conquer principle; the trick
is to divide properly so the smaller units are easily conquered. If we
insist that a decomposition yield a heirarchy of functionally related
units this will usually be true. This is the guiding framework for top-—
down design and we will use it to advantage in this project. We anticipate
that top level decompositions should proceed with little regard to
implementation technology. The converse would be an indication of an
insufficiently powerful formalism.

LEVEL O DECOMPOSITION

The standard textbook model of digital systems, figure la, is, of
course, correct but gives little guidance to the designer.

INPUTS | ~oMBINATIONAL |-221E8TS
LOGIC
Pgs_i% ; SN"II'EF)\S-I'TE STATE e DATA
P GENERATOR| COMMANDS | PATH
FLOPS
FIGURE 1B
FIGURE 1 A CONVENTIONAL :
P FIRST DECOMPOSITION
SEQUENTIAL SYSTEMS OF GENERAL DIGITAL SYSTEM

A decompogition into two cooperating entities, figure lb, is always
possible and desirable. This gimple division is more profound than it
looks, its possibility was shown in (2), its desirability arises from the
orthogonality of the decomposition. Command and data-path are very
different with well defined communication protocols between them. Because
they are orthogonal each part can be designed with minimal consideration
of the other. Instead of one large difficult problem we now have two much
simpler, smaller, problems. It is the divide and conquer approach in
action.

Control issues properly sequenced voltages (commands) to the data path,
each pattern lasting for one clock cycle. The data path is an obedient
slave to control and responds by carrying out some primitive micro-
operation, often a transfer of data between registers, possibly modulated
by logical or arithmetic operations. Control is an algorithm that
choreographs these primitive micro-operations into a larger useful result.
Examples might be: the fetch-execute cycle of a computer,or moving a head
to a disk track. Useful algorithms nearly always have branching structures
so they can respond to special events in the slave data path. The data
path is responsible for generating proper status information and reporting
it to control.

The independence of architecture and control permits exposition of each at

different levels. We use this to advantage here by discussing control at
the micro—code level where algorithmic aspects are apparent. We will be
able to suppress much detail in the control section and devote our
attention to the PAL data path where the issues are not as standard. We
usually do our initial algorithm development on a micro—code work station
for convenience (5), even if later versions are to use state machines
since the transformation to hardwired sequencers is straightforward. You
should realize that although micro—code source looks like assembly
language it is just a symbolic statement of voltage commands and their
delivery sequence.

LEVEL 1 DECOMPOSITION

We decompose control and data path into smaller units. If done in true
heirarchical fashion data path decomposition can.proceed independently
from control. While we know there must be some interaction, in practice it
is surprisingly small.

We start by proposing abstract data path elements and connections we
believe will support our target architecture. At this stage these are
ideal elements with just the properties we want; it is a mistake to rush
to data books at this stage since it prematurely moves us into a messy,
detailed world. That will happen soon enough; it is better to put it off,
move up a level,and design an elegant abstract machine.

Our hypothetical data path contains the following'elements:

MA a register which holds the memory address for the current read
write memory location

MB a register containing the data value to be written into memory

IR the instruction register holds the current instruction during
execution .

P the program counter points to the next instruction location

AC the accumulator holds temporary results and is always an implied

operand to the arithmetic unit
LINK a one bit register holding AC overflow

LE a one bit interrupt enable register

INT a one bit register that latches interrupt requests
SR the control panel switch register

MEM a 4k x 12 RAM

ALU a general arithmetic logic unit

INPUT the external input port
QUTPUT from the AC

Many of these registers are specified in the PDP8 handbooks (AC LINK IE
INT SR). Other hidden registers (MA MB IR PC) are common to all CPUs
gince they must have mechanisms to access memory, fetch and decode
instructions, or maintain a pointer to the current contrel point. 1/0,
memory, and interrupt facilities are universal computer functions usually
well described in programming manuals. These manuals also do a good job
of showing possible transfers between user available registers. Thus,
even for complex computers it is easy to postulate a complete set of data
path structures.

No matter how these registers are divined, we must convince ourselves
that data movement from source to destination registers (possibly
modulated by arithmetic or logical operations) can emulate the PDP8
instruction set. The demonstration is constructive: write an algorithm to
do it and you get control as a byproduct. For example, instruction fetch
must involve these micro-operations regardless of final chip details:

PC——> MA; start mem read cycle; wait for mem done; MEM-—->IR

Now we are in a position to design the control algorithm to supervise data
path activity. We can go very far without knowing exact details of the
data path chips, a reflection of the orthogonality of the two parts. For
example, a control command to move data between two registers really
doesn’t have to know at this stage whether they are JK or D registers,
although that will arise in later stages. The algorithm can be specified
by state diagrams, micro-code, or ASM charts. ASM ig our preferred
formalism for hardwired state machines since it supports a combination of
Mealy-Moore outputs (1l). Whatever formalism we use there are standard
cookbook procedures for converting a symbolic algorithm to hardware so we
can safely stay in the symbolic realm. In the next level we will be led
safely to chips.

The complete algorithm is shown in reference (4), relevant portions are
shown in Appendix A where we assume an industry standard micro-sequencer
(AMD 2901). This algorithm requires the register operations in Table 1. We
suggest that you manually trace the first 4 states which fetch the next
instruction and load it into -the IR. For simple CPUs manual tracing of the
algorithm — data path interaction is sufficient to demonstrate conformance
to the target architecture. However, we prefer a register level simulation
running against standard diagnostic programs in simulated memory for a
more rigorous demonstration. This is essential for gate arrays where it is
costly to turn around new versions. With the advent of reprogrammable PALs
simulation is less important; it may be easier to build the hardware than
the simulator. There are several register transfer gsimulators available,
but ‘we use a simple one locally written in a variant of LISP. In any
event, a register simulation is a fairly coarse tool that will reveal

ma jor faults, but miss subtle timing issues.

LEVEL 2 DECOMPOSITION i

Here is the first place we meet chips. We have an excellent description of
their desired properties from the-top down decomposition. Can we find a
good fit with available hardware? With MSI this is answered by a simple
tour through data books. With VLSI you have the freedom to design a”
perfect match; with PALs it may not be so easy. Let’s look at some PAL
characteristics that affect design:

1) PALs are strongly pin limited.
We may not have enough pins to accommodate the target logic blocks.
2) PALs have a fixed AND-OR structure.
A common problem is restricted width of the OR structure
3) Most PALs use D type flip flops.
These are poor matches to register protocols. JK or enabled D is
desired.
4) There is excess logic power in the fuse matrix. We must find
innovative ways to use it to advantage.

HOW TO LIVE WITH A PAL.

A) PARTITION CLEVERLY :

Partitioning is a standard ASIC problem, and we can use the same
techniques with PAL design. While it lies outside the logic realm it
impacts logic indirectly by dictating how much of it we can package per
chip. The basic idea is simple: partition a circuit diagram into blocks
that contain lots of logic with few wires between blocks.

B) EXPLORE SUBTLE PROPERTIES OF THE AND-OR-FLIP FLOP PATH

Some PAL structures allow us to modify internal type D storage into the
desired JK or enabled D protocol. They permit the standard register
paradigm. '

C) USE THE FUSE MATRIX CREATIVELY

There is excess logic power here that can be used in novel ways. We can
set up parallel data paths to each register, each with a private logic

unit. We can move parts of command and status generation into the fuse

matrix.

We will have to exploit all of these, let’s explore each in turn. Finding
a good partition is critical in this project. Fortunately, a standard CPU
partition has long been known, namely bit slices. This is based on the
observation that simple logical commands operate on bits independently.
For example, in a complement AC operation bit 5 is inverted independently
of bits 4 or 6. Whatever circuitry is involved is duplicated in each bit
position and has no communication with its neighbors. When we include
memory and an ALU we arrive at the standard bit slice partition shown in
Figure 2. For a 12-bit machine like the PDP8 There are 12 identical slices
working in parallel for all simple register transfers and logical
operations. Each slice has one bit of the MA, MB, IR, PC, and AC registers
with internal operations controlled by shared command lines.

3 DATA ME M ; DATA S DATA

T 11

BIT BIT BIT

SLICE SLICE SLICE

N~ 1 1 0

T) 1 :
OPB \\/ OP A
A L u
! [
N

FIGURE 2 CONVENTIONAL BIT SLICE ORGANIZATION

Now comes the big if —— IF we can fit an entire bit slice into a gingle
PAL we have an excellent chance of doing an elegant design. If not,
consider abandoning the project gince further partitioning almost always
yields blocks with increased communication requirements. There are no hard
and fast rules and little accessible theory to guide you to good
partitions. Fortunately intuition is pretty good in this area — let common
sense be your guide.

The bit slice model does have interslice communication for shift and
arithmetic commands. Right and left shifts are easily handled by
allocating two bidirectional pins per slice — one for input, one for
output —— and connecting adjacent slices with a wire carrying shift—in/
shift—out data. This is straight forward, but uses up two of our precious
pins. There is another possibility that will be clear after we discuss
arithmetic units so we hold off on this decision for now.

Carry propagation during arithmetic operations is a hidden interslice
communication problem that we must allow for. We have two options:

1) Use an external arithmetic unit.
We are moving carry propagation off slice to a word wide chip set
optimized for fast carry propagation. In this approach we need to
dedicate two pins to feed the ALU and one to receive its result. This
is the fastest way to do add/subtract which are inherently word wide
operations. Many external ALUs are capable of shifting so we can share
the ALU pins for shift operations at no extra pin cost.

2) Put the arithmetic operations in the fuse matrix.
This is easy and we also pay no pin penalty since we can share two
shift—in/out pins with carry-in/carry-out. The advantage is reduced
chip count by eliminating the external ALU; the disadvantage is slower
arithmetic operations because the carry must ripple propagate.

Since we are looking for a minimum package count in this exercise we
choose the second alternative. Also, it uses up a slight amount of the
excess logic in the fuse matrix.

So we now have a picture of the pins required per bit slice derived
strictly from partitioning arguments:

registers: MA, MB, IR, AC, PC, LINK

carry/shift path: RO/LI, LO/RI

PDP8 specific items: MEM(4k x 12), panel switch register (SWR), INPUT
control commands: C0-C4, DIR

pattern port: discussed later under status generation.
It is shown in Figure 3. ' T
1| meUT
3 | swR- W2
MB 2
. MEM IR |21
5 | Co AC | 20
5 | c PC | 19 H
2 | e LINK 18 BIT SLICE 11 ONLY
RO/ 17
g | & LOR | 16
g | C4 PAT-PORT | 15

FIGURE 3 PIN ASSIGNMENTS ON 32VX10

The five command pins suffice to set up 32 different register transfer
micro—operations which are adequate to select among the 30 entries of
Table 1. The special DIR control pin sets the direction for the tri—state
buffer on the carry/left—shift path. In principle, this could be derived
from the 5 command bits, but there is inadequate AND-OR logic on that path
go it must be externally decoded.

Now for the go-nogo decision. Can we fit the logic of Table 2 into the PAL
of Figure 3? The answer in not an immediate "yes" but by being clever with
the XOR structure of the 32VX10 we can do it. The problem is to make the
type D flip—flop implement a register transfer protocol. A register must
maintain its contents for many clock cycles until selected by control as a
destination at which time it must load in new data. But, the D flip—flop
loads every clock cycle. The desired register exitation function is:

eq 1 L = load
On+l = /L * Qn + L * ND ND = new data
Qn = flip—flop Q after n clock
pulses
Qn+l = Q after one more clock
pulse

A simple attempt at generating Table 1 operations with the standard AND-OR
PAL fuse matrix shows the inadequacy of that structure. The register
protocol of eq 1 is not only desirable, it is necessary.

Figure 4 shows the way an enabled D is synthesized in conventional MSI.
This clearly shows the recirculation path when LOAD is false and the
insensitivity to.noise on the load line except at the active clock edge.
The ability to ignore glitches is of the utmost importance when signals
are generated inside a chip since we have no way to probe internal nodes.
We must be correct by design. Figure 5 shows how an XOR in the flip flop
path allows us to realize the desired protocol. The relevant cases are:

a) recirculate when L = 0 (L=LOAD ND=NEW-DATA Q= PRESENT FF VALUE)

Y=L * (ND XOR Q) Z =0 XOR Y
=Q* 0 * (ND XOR Q)
= 0Q XOR 0
= Q
b) load new data when L =1
Y =L * (ND XOR Q) Z =0 XOR ¥
=1 * (ND XOR Q) = Q XOR (Q XOR ND)
= (ND XOR Q) = (Q XOR Q) XOR ND
= 0 XOR ND
= ND
O .y
v) z . Q REG
y out
—] =
MUX D Q Y = L AND (N XOR Q) .
NEW DATA Q
LOAD]
> CLK N
L

FIGURE 5 CHANGING TYPE D FF
FIGURE 4 ENADLED D FF TO ENABLED D TOSUPPORT REGISTER PROTOCOL

As (3) shows the AND-OR-XOR structure is capable of much more. We can use
it to convert the type D flip-flop to any other kind, a JK for instance. A
really striking result is that we can generate ANY logic function of
inputs to the fuse matrix. Each register now has its own private logic
unit, and they operate in parallel! This gives a new dimension to PAL bit
slices, as compared to conventional ones with just a single internal data

path. Later we use this result to cut states from our control algorithm,
thereby speeding up our system compared to standard bit slice

architectures.

It is a pity the XOR structure is not standard in PALs. It

appears to be hidden in some vendor’s storage cells, but not in a form

that can be modified on the fly,

as in the 32VX10.

We have come a long way to a final hardware realization of our top down

CPU decomposition.

In fact, we have done more than create a data path.

Refer to the expanded level 0 decomposition, Figure 6A, of our standard
MSI benchmark implementation. The controller is broken down into a pure
state generator and logic which converts state and status into control

signals.

In similar fashion,

the data path is decomposgsed into pure

register transfer elements and status generation logic. In each block the
number of MSI chips devoted to it is given in parenthesis. Note the

complexity of command and status generation. It is tempting to move this
into the left over logic of the bit slices.

Refer to the 44 chips used for command generation. Their sole function is
to convert state into 34 control lines for the data path. Why do we have
so many command lines? In MSI each register requires separate control: the
ALU requires 5 bits to specify what it does, 3 bits are required to

specify a source register for the ALU.

It goes on and on until suddenly

you have far more required control information than you thought necessary.
The reason there are so many is each data path element requires its own

control field,

and there are lots of separate elements.

MSI forces small

partitions to match chips and the'explosion of wires between chips is a

reflection of a non-optimum partition.

Consider the PAL bit slice which contains just as many registers as the

MSI version.

Pin limitations have forced us to send in a 5-bit command

field which is INTERNALLY decoded into multiple data path control. Without
thinking abopt it we have moved a huge chunk of command generation logic

inside the PAL.

Interesting!

Thus 40 of the 44 command generation chips

and 34 data path chips are now hidden inside the 12-bit slice chips. We
have replaced 78 chips by 12, Figure éb. Now there’s power for you.

STATE GENERATOR

STATE GENERATOR STATUS | STATUS GENERATION
(18 CHIPS) (14 CHIPS)
! $
v |
GOMMANDS
COMMAND GENERATION ! DATA PATH
(44 CHIPS) (34 CHIPS)
FIGURE BA

CHIP COUNTS FOR MSI IMPLEMENTATION

STATUS
3 [STATUS GENERATION
; (2 CHIPS)
5
DATA PATH
COMMANDS +
/ COMMAND
e GENERATION
(12 CHIPS)
FIGURE 6B

CHIP COUNTS FOR PAL IMPLEMENTATION

Can we be as clever with status generation logic? Status is often
concerned with the presence of patterns across a multi-bit register, but
bit slices don‘t know about their nearest neighbors,

must be detected outside the slices.

so this information
We are forced to use a pattern

checker oriented perpendicular to the bit slices. A list of the patterns

that must be detected is shown in Table (3).

Once again we are presented

with a decomposition and seek an elegant representation in real chips. The
abstract pattern checker is shown in the lower part of Figure 7. Its
function is to check a 12 bit field for the patterns shown in Table (3).
Pattern type can be gpecified by only 5 bits and the matcher reports its

presence or absence back to control to affect possible algorithm
branching.

These elements cooperate in the following way. The state generator knows
that a succeeding state will test some register for a certain pattern. In
preparation, it latches the register of interest into the pattern register
where it will be stable during the following test state. Upon transition
to the test state the algorithm generates a pattern number and sends it to
the match PAL and waits for a single bit status reply (equal or not equal)
to set up a two—way branch at the end of the test state.

Again we are left with lots of unused logic, but there is no way to use it
for other functions. Indeed, there is not much unimplemented logic left.
The best we can do is throw in a few one-bit status flip-flops like, HALT,
IE, and INT. The remaining status information concerns the front panel
switches which are tested in a switch-test PAL for report back to the
algorithmic state machine. '

RW 4K X 12 STATIC RAM
CIL
—= EN 2
D D D D D D D D
Al 0 A1 0 A1 o A1 0
o1 o1 10°10 10 1t 1 9 0 0 0
CODE FROM "
CTL . s . 2Vx10
MM Ié W WM WM m Bl
A A B A B
A B g - 5 : 1
Lo RO » 10 A | MES L1 RO Lo RO 5
- |
I
s g | s g | s R o1 $ 5 | ¢
W N w N " w T N W N x g
T T LRt T IR5 IR6 IR7 RS I I I T
11 11 10 10 1 1 0 0
32VX10] e
e PATTERN MATCH PAL s E
FROM CTL “ 2
& A E
5 T R
T3 U ?
TEST RSLT RV TEST PAL (INTERNAL FF ARE HALT,IE,RQ) S
e 0
T0 CTL IDMA LDMB DM LDR (LDPC LDAC CONT CLEAR DEP EX HLT INTREQ ACCLR ORAC N

"0 17 o g . Fr% 0w R

FIGURE 7 PALIMPLEMENTATION OF PDP8

The final results are impressive: 92 MSI chips replaced by 14 medium and
and one small scale PALs, Figure 7. The fuse patterns are implied by the
equations shown in table 2. We have not discussed control since there are
well known techniques for implementing state machines. Our testing was
done on a micro-code work station for convenience (5).

Figure 7 is very close to a final wiring diagram and is remarkable for its
paucity of wires. Where did they all go? A byproduct of PAL bit slices is
the use of the fuse matrix as a general interconnection device, in
addition to its logical properties. Viewed in this fashion we have a
crossbar switch with 100 switch points, something no designer would dream

of building because of it‘s expense, but we get it free. A remarkable
luxury.

A COMPARISON OF PALS TO OTHER TECHNOLOGIES

1) MSI

OQur MSI version has 92 chips and 1290 wires. There are not many reasons
for doing it this way, although there are some niche applications where
it is still appropriate. Very small systems may fit MSI well. Some
applications do not map well into PALs, and you may have no other choice.
This will surely become less important as more powerful PAL devices are
produced. Some applications have highly optimized MSI chip
representations which will be replaced with difficulty; arithmetic units
come to mind.

2) CONVENTIONAL BIT SLICES

Standard commercial products are 4 or B8 bit slices through an ordinary
register CPU. If your target architecture is a standard register machine
bit slice chips will probably host it without much forcing. In this case
it comes close to being the technology of choice. There are minor
problems of implementation: commercial bit slices require many command
bits (24 in the 2903). Memory requires a dedicated MA register, which
means you need a separate hardware register copying one of the internal
bit slice registers. These are still minor quibbles. Major problems arise
when your target architecture is non-standard, a stack machine for
example. Then your options are limited to lengthy micro-instruction
sequences to emulate stack behaviour with the bit-slice internal register
set.

3) VLSI

Thig is a pleasant method if you have extensive design aids, can tolerate
sizable development costs, live with fabrication delays, and enjoy
working at the primitive silicon level. Working directly in silicon does
have a gspecial set of constraints, however. At first sight you can tailor
data-paths and control in arbitrary fashion. This is not true. Wires, not
logic, are the constraint in VLSI. Many things that can easily be done at
the one or two-bit level break down for replicated data-—-path structures,.
so you choose simple logic that lays out well on a two dimensional '
gurface. Pin constraints are minimal with pin grid packages so
partitioning becomes less of an external problem. The cost of one
design/fabrication cycle is so high that extensive simulations of
functionality and timing become a part of the design process throughout
all stages.

4) GATE ARRAYS

Here we have a wide choice of design specification. Many vendors support
a master document in MSI logic format using some subset of standard TTL
chips. The vendor partitions this circuit, reduces the MSI specification
to a - logical gate array equivalent, auto-routes the metal path, tests and
packages the dice, and delivers the finished product. Naturally these
services are not free, but there are many applications where this
technology is cost effective. At the other end of the spectrum, the user
can wire up the primitive gates. In any event, the user should not
abdicate total responsibility for there are testability and partitioning
issues that must be incorporated from the beginning. One of the real
pluses of gate arrays is the ability to fit an entire system in one
package, thereby eliminating the partitioning problem altogether. Package
pins range from 16 to over 200, which provides a good ratio of
pins/logic. A PDPB can easily be packaged in a one—chip gate array.

5) PALs
At present this is our favorite technology for. special CPU/memory
architectures for several reasons:

a) Field programming is an excellent development tool for rapid
prototyping.

b) Field reprogrammability is an even better tool.

c) It is by far the cheapest way to develop systems.

d) Having multiple internal parallel data paths, each with a private
logic unit, is unique to PALs. This leads to maximum speed
implementations.

e) Fuse patterns can be automatically derived in certain cases which
gives correctness by design. This is relatively easy with PALs,
much harder in other technologies.

f) We are not limited to standard register/von Neuman architectures.
Stack machines or special list memory architectures are readily
mapped into PALs, but are difficult in other technologies.

g) Compact systems with few wires are natural results,

REFERENCES

1) Prosser, Franklin P., and Winkel, David E., “"The Art of Digital
Design", 2nd ed. Prentice-Hall, Englewood Cliffs, N.J.,1986

2) Snyers, D., and Thayse, A., "Algorithmic State Machine Design and
Automatic Theorem Proving: Two Dual Approaches to the Same Activity", IEEE
Trans. Comput., vol.C-35, pp 853, Oct., 1986

3) Winkel, David E., Tech Report 188, IU Comp. Science dept., Bloomington,
Ind.

4) Prosser, Franklin P., CS421 Lab. Notes, IU Bookstore, Bloomington, Ind.

5) Prosser, Franklin P., and Winkel, David E., "The Logic Engine
development System", Proceedings of MICRO-16, October 1983, pp84-91.

6) Bell, C. Gordon, "Computer Structures: Readings and Examples"™, Ch 5, Mc
Graw Hill, 1971.

7) MOSIS Project, USC Information Sciences Institute, 4676 Admiralty Way,
Marina Del Rey, CA 90292-6695.

8) "CMOS Macrocell Manual", LSI Logic Corporation, 1551 McCarthy Blwvd.,
Milpitas, CA 95035,

APPENDIX A
MICRO-CODE SOURCE FOR A PDP8

*/ The complete micro-code, micro—assembler conventions, and micro-code
development station are described in (1). We have relegated some of the less
interesting sections like manual switch processing to that reference; the
register transfers listed in table 1 are derived from the complete control
algorithm however.

Complete wire lists are given in (4) /*

*/ This algorithm is shorter than reference (1) because we have parallel data
paths and logic units. Also, the test PAL has enough intelligence to collapse

interrupt test states. A ;*** in the comment field shows where more powerful PAL
data-paths have shortened (speeded up) the algorithm. /*

FETCH EQU =
JUMP IDLE IF HALTFF=%T JUMP F2 IF NOINTRPT=%T AR
PROCESS.INT JUMP EXECUTE ;JAM.JMS
F2 CALL READ.TO.IR
JUMP EXECUTE IF NO.MEMORY; EA.TO.MA
F3 CALL READ.TO.MB
JUMP EXECUTE IF DIRECT.ADDRESSING
F4 CALL AUTO IF AUTO.INDEXING
F5 JUMP EXECUTE IF NO.INDIRECT.OPERAND; MB.TO.MA
Fé CALL READ.TO.MB
EXECUTE JMAP ::instruction decoding in mapping ROM

AND.CODE JUMP FETCH; MB.AND.AC.TO.AC
TAD.CODE JUMP FETCH; MB.PLUS.AC.TO.AC COND.COMP.LINK et
ISZ.CODE CALL WRITE; INC.MB

JUMP FETCH; COND.INC.PC sk
JMS.CODE CALL WRITE; PC.TO.MB

JUMP FETCH; INC.MA.TO.PC
JMP.CODE JMP FETCH; MA.TO.PC
I0T.CODE */ see reference ()

OP.CODE " " /*
TABLE 1 DATA PATH OPERATIONS
CODE SYMBOLIC OPERATION PAT. PORT DIR LINK

NAME : DFLT=IR DFLT=LINK
0 HOLD PRESERVE ALL REGISTERS PAT.PRT Z DFLT
1 SW.TO.MA SWITCH REG —-> MA DFLT Z &
2 SW.TO.MB = MB " Z i
3 SW.TO.PC = PC " Z "
4 SW.TO.IR S IR 2 Z "
5 SW.TO.AC " AC ™ Z "
6 PC.TO.MA.MB.PCINC PC ——> MA,MB PC+l : ™ LFT "
7 MEM.TO.IR MEM(MA) ——> IR " 7 >
8 PGO.TO.MA %(00000) (IR6-IR0O) --> MA & Z y
9 CURPG.TO.MA %(MB11-MB5)(IR6—-IR0) ——> MA " Z o
10 MEM.TO.MB MEM(MA) --> MB MA YA "
11 INC.MB MB+1 MB LFT "
12 JAM.JMS %100000000000 —> IR DFLT Z !
13 CLR.LINK CLEAR LINK " 4 0
14 AND MB AND AC —> AC % Z DFLT
15 PLUS MB plus AC ——> AC -

complement LINK if ovflo " LFT cond.com

16 AC.TO.MB AC —> MB i YA DFLT
17 PC.TO.MB PC —> MB Y Z "
18 INC.MA MA + 1 » LET s
19 MA.TO.PC MA —> PC & Z *
20 INC.MA.TO.PC MA + 1 ——> PC = LFT il
21 CLR.AC 0 —> AC i Z &
22 INPUT INPUT OR AC —> AC " Z "
23 COM.LINK complement LINK % z comp
24 COM.AC complement AC b Z DFLT,

25 INC.AC AC +]1 conditionally comp LINK T LFT *

26 RT.SHIFT AC,LINK rotate rt 2 RT AC11
27 LFT.SHIFT AC,LINK rotate 1ft i LFT ACO
28 AC.OR,SW AC OR SWITCH REG " Z DFLT
29 SKIP.AC=0 FC # 1 AC LET "
Table 2 SELECTED FUSE EQUATIONS FROM TABLE 1

code c4-c0 AND — OR equations

comments

2 00010 Je4* /c3* fe2¥cl*/c0 * MB * /SR + load MB from SW:
JC4* /C3*/C2*%C1*/CO */MB * SR MB = LD*(SW XOR MB)
18 10010 C4*/C3*/C2*C1*/CO0 * RI increment MA:
RI = carry in
sum = MA XOR carry in
MA is one input to XOR
LO = /cé*/c3*/c2*%cl*/cO * MA * RI carry out = MA * carry in
25 11001 cd%cI®fc2xicl?*el * RI for least sig 11 bits
increment AC is like inc
LO = c4*ec3*/c2*%/cl*c0 * AC *RI MA
c4*c3*/c2*fcl*c0 * RI in most sig bit ovflo must
: complement LINK
LINK = cd4*c3*/c2*/cl* cO * AC *RI LINK is input to XOR
TABLE 3 STATUS GENERATION
test .
0 NOINTRPT = (IR eq 110000000001) + /IE + /IREQ
1 NO.MEMORY = (IReq ll-——————) +
(IR eq 1—-0———=——=) +
(IR eq -110————nur)
2 DIRECT.ADDRESSING = /IR3
3 AUTO.INDEXING = (MA eq 000000001-—-)
4 NO.INDIRECT.OPERAND = (IR eq 10—————————) + (IR eq O01]l————————)
5 SKIP = IR4 XOR (IR7*ACl]1 + IR6*(AC eq 0) + IRS*XLINK)
6 AC=0 = (AC eq 000000000000)
7 MB=0 = (MB eq 000000000000)
8 MANSW = LDMA + LDMB + LDMEM + LDPC + LDIR + LDAC + DEP +EX + CONT + CLR
9-18 MANUAL SWITCH TESTS

