A Calculus for Assignments
In Higher-Order Languages

By

Matthias Felleisen & Daniel P. Friedman
Department of Computer Science
Indiana University
Bloomington, IN 47405

TECHNICAL REPORT NO. 202

A Calculus for Assignments
In Higher-Order Languages
by
Matthias Felleisen & Daniel P. Friedman
October, 1986

This report is based on work supported in part an IBM Fellowship Award to Matthias Felleisen, and by the National
Science Foundation grants numbered DCR 83-03325 and DCR 85-01277.

This report also appeared in the Conf. Record of the 1th Annual ACM Sym. on Principles of Progremming Langueges,
Munich, W. Germany (Jan. 1987), 314-345.

" B
- ¥ I -

A CALCULUS FOR ASSIGNMENTS IN HIGHER-ORDER LANGUAGES

Matthias Felleisen, Daniel P. Friedman

Computer Science Department
Indiana University
Lindley Hall 101
Bloomington, IN 47405, USA

Abstract. Imperative assignments are abstractions of
recurring programming patterns in purely functional pro-
gramming languages. When added to higher-order func-
tional languages, they provide a higher-level of modularity
and security but invalidate the simple substitution seman-
tics. We show that, given an operational interpretation of
a denotational semantics for such a language, it is pos-
sible to design a two-level extension of the X,-calculus.
This calculus provides a location-free rewriting semantics
of the language and offers new possibilities for reasoning
with assignments. The upper level of the calculus factors
out all the steps in a reduction sequence which must be
in a linear order; the lower level allows a partial ordering
of reduction steps.

1. Pros and cons of assignment statements

The assignment statement is an abstraction commonly
found in algorithmic programming languages. It repre-
sents and expresses the concept of a state change. Like
any other mental abstraction it is associated with intel-
lectual costs and benefits. Here the question about its
usefulness centers around the dichotomy between modu-
larity and security on one hand and ease-of-understanding
and simplicity of the language semantics on the other.

Programs without assignment statements can be un-
derstood in terms of a simple substitution model. As-
signments can be imitated in a higher-order functional
programming language, e.g., the A-calculus, by passing
a functional abstraction of the current store to all func-
tions and by returning an updated store abstraction. In
practice this solution is implemented by passing all rel-

To appear in the 1987 ACM Symposium on Principles
of Programming Languages.

evant state variables around and by refurning a com-
pound structure which reflects the new state. Clearly,
the more state variables, the longer the parameter lists.
Even worse, more functions than necessary have access to
the state variables and every one of these functions can
corrupt the current state by altering the value of a state
variable. These arguments obviously call for a more mod-
ular and secure solution. The assignment statement is the
traditional answer.

In a higher-order language with assignments, a state
variable can be hidden in the scope of those functions
which deal with that particular part of the state [8, 10].
However, the introduction of assignment statements has a
price: the simple program rewriting or substitution model
for the evaluation of functional programs no longer works.
In order to reason about programs one now has to rely on
a denotational or operational store semantics.

The introduction of a store means that variables are
placeholders for locations which contain a value and whose
contents may be altered. Although this defines a mathe-
matical meaning of state and assignments, the model has
some problems. To begin with, the store model does not
abstract enough from traditional machine architectures.
Given a store semantics it is relatively easy to implement
this language on a store machine, but it does not provide
any insight on how to implement an imperative language
directly on a non-von Neumann machine.

Another problem with these models is that they can-
not be used in a straightforward manner in proofs of pro-
gram properties. The standard versions fail to identify
intuitively equivalent program pieces. A classical exam-
ple is the block

begin var z = 0; skip end.

It is impossible to prove this block equal to the statement
skip unless the semantics explicitly deallocates locations
upon exit from a lexical scope. The freedom to declare
variables in an arbitrary order provides another example.

" Even though the sequence of declarations in

begin var £ =0, y = 1; (¢emd) end

should not matter, an ordinary store semantics cannot
prove this block equivalent to

begin var y =1, z = 0; (emd) end.

For restricted programming languages one can get by with
a location-free store.semantics [1, 3, 5] that has the de-
sired properties. But these solutions do not generalize to
higher-order languages. A denotational store semantics
with appropriate attributes is also available [7], but it is
rather complicated. What is missing is a simple, syntactic
calculus for reasoning about these and other equivalences.

The same general problem emerges when non-func-
tional control operators are introduced into functional lan-
guages. We have shown [6] that, given an operational se-
mantics of a thus extended A-calculus programming lan-
guage, we can design a two-level axiomatic extension of
the calculus which corresponds to these additional opera-
tions. A similar derivation also produces a solution to the
problem at hand. The result is },, a two-level extension of
the A,-calculus [12] which incorporates assignment expres-
sions. It makes it possible to manipulate programs with
assignments in an algebraic manner. In particular, it is
trivial to show that the program pieces of the above exam-
ples are equivalent. The standard reduction sequence of
the calculus defines a location-free operational semantics
of higher-order programming languages with assignments
which could be used for a rewriting machine.

In the next section we present a A-calculus based pro-
gramming language with an expression-oriented assign-
ment construct. We assume some familiarity with the
terminology and notation of the traditional A-calculus [2].
The semantics of this language is defined via an abstract
store machine. We systematically transform this machine
into a program-store rewriting system. In Sections 3 and
4 we design the extended calculus on the basis of this
rewriting system. Section 4 also contains the key theo-

rems about the A,-calculus: a variation of the Church-
Rosser Theorem, a Standardization Theorem 2 la Curry-
Feys, and two correspondence theorems. The fifth section
is devoted to examples. Section 6 summarizes our devel-
opment and discusses related work.

2. A with assignment abstractions

Adding an assignment statement to an expression-orient-
ed language like A confronts the language designer with
a problem: if added naively, the language is divided into
two major syntactic categories, namely statements and
expressions. In an expression-oriented language there is
almost no restriction on how expressions may be joined to
form a larger expression; in a divided language a user is
required to know where he can use one sentence category,
but not the other. In order to avoid this difficulty we have
added o-abstractions to A. Their syntax is (0z.M) where
z is a variable and M is an expression. A ¢-abstraction
does not bind the variable, but it abstracts the right to
assign a variable a new value. When a o-abstraction is
applied to a value, it assigns z that value and M is eval-
uated to yield the result of the application. The meaning
of the remaining constructs should be adapted accord-
ingly: variables are re-assignable placeholders for values,
abstractions correspond to call-by-value procedures, and
applications invoke the result of the function part on the
value of the argument part. The syntax is summarized in
Definition 1.

The set of free and bound variables of a term M,
FV(M) and BV (M), is defined as usual; the only binding
construct in the language is the A-abstraction. The set of
assigriable variables in M, AV (M), contains all variables
that occur in the variable position of a o-abstraction:

AV (z) =8,
AV (Az.M) = AV (M),
AV(MN) = AV(M) U AV(N),
AV(cz.M) = {z} U AV(M).

Definition 1: The language A,

— variables: z if z € Vars;

The improper symbols are A, (,), ., and o. Vars is a countable set of
variables. The symbols z,... range over Vars as meta-variables but are also
used as if they were elements of Vars. The term set A, contains

— A-abstractions: (Az.M) if M € A, and z € Vars;
— applications: (MN) if M,N € A,;
— o-abstractions (0z.M) if M € A, and z € Vars.

The union of variables and abstractions is referred to as the set of values.
A, the term set of the traditional A-calculus, stands for A, restricted to
variables, applications, and abstractions.

2.

Terms with no free variables are called closed terms or
programs. Since we want to avoid syntactic issues, we
adopt Barendregt’s convention of identifying (=, or just
=) terms that are equal modulo some renaming of bound
variables and his hygiene condition which says that in a
discussion, free varigbles are assumed to be distinet from
bound ones. Substitution is extended in the natural way
and we use the notation M[z := N] to denote the result
of substituting all free variables = in M by N.

The semantics of A,-programs is defined via an ab-
stract machine. The machine manipulates quadruples of
control strings, environments, stores, and continuations.
A control string is either the symbol § or a A -expression.
Enuvironments, denoted by p, are finite maps from vari-
ables to natural numbers (or locations); stores, denoted
by @, are finite maps from natural numbers to A- and o-
- closures. If f is a function, then f[z :=y] is like f except
at the place £ where it is y. A closure or semantic value is
an ordered pair (M, p) composed of an abstraction M and
an environment p whose domain covers the free variables
of the abstraction, i.e., FV (M) C Dom(p). Depending
on the kind of embedded abstraction a closure is called -
or o-closure. A continuaiion code represents the remain-
der of the computation, i.e., it encodes what the machine
has left to do when the current control string is evaluated.
The representation is defined in two stages. If NV is a A,-
term, p is an environment such that FV(N) C Dom(p),
and V is a semantic value, then a p-continuation has one
of the following forms:

(stop), (a:arg Np), (Nfll.n V)

where & is a p-continuation. A ret-continuation is of the
form
(xret V)

where & is a p-continuation and V is a semantic value.
A CESK-machine state is either a quadruple of the

form (8,8, 0, &) where is a ret-continuation or a quadru-

ple of the form (M, p, 8, k) where M is a A,-term, p is an

environment with FV (M) C Dom(p), 6 is a store with
Ran(p) C Dom(@), and « is a p-continuation. Machine
states of the form (M, 8,0, (stop)) are the instial states;
if V is a closure and @ is defined on all locations which
are used by V then ($,6,0, ((stop) ret V)) is a terminal
state. The state transition function is displayed in Ta-
ble 1. We use GESK* and %ESK 4o denote the transitive
and transitive-reflexive closure, respectively.

In order to evaluate a program M, the machine is
started in the initial state (M,9,0, (stop)). When the

" machine reaches a terminal state, it stops and returns the

value on the stack together with the store as the answer.
The evaluation function is defined on closed terms M by:

evalcesk(M) = (V,6), if

(M, 8,8, (stop)) S (1,8, 6, ((stop) ret V).

Since the transition function is clearly defined on all legal
states except for terminal ones, the machine, when started
in an initial state, either halts in a terrninal state or never
terminates.

The CESK-machine is an operational interpretation
of a denotational semantics for A,. This machine yields a
mechanism for the evaluation of A,-programs. A program-
mer, however, prefers to reason more directly about pro-
grams. The environment and continuation components
can be eliminated by simple transformations [6]. An en-
vironment is a machine-oriented representation of substi-
tutions. By carrying out these substitutions at the right
time, environments become superfluous. Since environ-
ments map identifiers to natural numbers, substitutions
replace free identifiers by numbers: the language of con-
trol strings must be extended appropriately.

The continuation component of an abstract machine
remembers the context of the next executable subexpres-
sion while the machine is taking the program apart on
its search for this redez. The CESK-machine recognizes
two kinds of redexes: an identifier (or a location) and an

Table 1: The CESK-machine

(z,p,0,K) +— GESK ($,9,0, (xcret 8(p(2)))) (1)
(Az.M, p,6,x) SEEK (1,0,6, (xret (Az.M,p))) (2)

(MN,p,6,k) =25 (M,,0,(karg Np)) (3)

(£,8,0, ((xarg N p)ret F)) =5 (N, ,6, (xfun F)) (4)

(4.8,0, ((<fun (3z.M,p)) ret V) 555 (M, plz :=n],0[n := V],) (5)
where n & Dom(f)

(02.M, p,8,) GEZ (1,0,0, (cret (02.M,p))) (6)
(1,8,0, ((<fun (0z.M, p)) ret V)) SE5K (M, p,6[p(z) :=V],x) (7)

3.

application with semantic values in both positions. All
other machine transitions are simply moves within the
context of a redex to find the redex. They determine that
the search proceeds through applications in a preorder
traversal. We therefore define the set of sk-contexts and
use them to represent continuations:

(skC1) [] is a context,

(skC2) VC[] is a context where V is a value, and
(skC3) C[]M is a context, where M is arbitrary, and
in the last two clauses C[] stands for a context. If C[]
is a context, then C[M] is the term where the hole is filled
with the term M.

Given a context representation of continuations, we
simplify the machine by combining the continuation and
control string components. The combination consists of
two steps: first, the context holes are filled with the con-
trol string, §’s are simply dropped; second, all search rules
are now identity steps and may be eliminated. Putting
these three transformations together we arrive at the
control string-store machine whose transition function is
given in Table 2. The evaluation function is adapted in
the obvious way:

evalgs(M) = (V,6) iff (M, 8) <> (V,6).
The translation of closures in the CESK-machine to ab-
stractions in the CS-machine is accomplished by a func-
tion R which replaces free variables by locations:

R((M,) =Miz1 := pa]... [2n = pz.]
where FV(M) = {z1,...,2Za}.

With R and its natural extension X on stores we can de-
scribe in what sense the two machines correspond:
Theorem 2.1 (CS-Simulation). For any program M,

eUan_g(M) = (R(V),'I(ﬂ)) iff wafcggK(M) = (V, 9).

Proof. The proof proceeds in three stages according
to the three transformations. For each transformation
step the resulting machine is constructed and shown to be
equivalent to the original one. Two auxiliary morphisms
are needed in order to prove that sk-contexts correctly
represent continuations and that they can be eliminated
by combining the control-string component with the con-

tinuation component. We omit the details because the
formalization is lengthy, but straightforward. O

The CS-machine is close in spirit to a Plotkin-style
[11] operational semantics of A,. With the above deriva-
tion and theorem we have shown that the system reflects
a more conventional operational interpretation of a deno-
tational store semantics. In the next section we transform
the machine into a storeless program rewriting system.
We then proceed to develop a true calculus of assignments.

3. Designing a control string rewriting system
Before we can combine the store component of the CS-
machine with the control string part, we need to clarify
what the store accomplishes. According to rule (CS2),
the store remembers which positions in the body of a A-
abstraction were labeled by the same variable. In other -
words, the store retains the bound varigble equsvalence re-
lation among subterms beyond the point of application.
In rule (CS3) the machine utilizes this information. It
assigns a new value to all the positions which are descen-
dents of the same bound variable, thus implementing the
assignment application.

The static relationship among the bound variables of
a A-abstraction is, for example, captured in de Bruijn's
nameless A-notation [4]. In this representation of an ab- *
straction all variable names are replaced by a (static dis-
tance) pointer to the binding A-symbol. If numbers are
used for these pointers, they generally count the number of
A's between the occurrence and the binding A-symbol, e.g.,
Az.Ay.zy becomes A.).10. Drawing arrows from the occur-
rence to the A-symbol is an equivalent, but less machine-
oriented way.

In terms of the arrow notation the store in the CS-
machine retains the connecting arrows after the abstrac-
tion was applied and the variable occurrences were re-
placed by values. One way to express this equivalence
relation in a textual form is to mark all these value oc-
currences with the same label. This would roughly corre-
spond to a replacement of locations in the control strings
of the CS-machine by labeled values® of the form V" where
6(n) = V. Since every (CS2)-step retains an arrow that is

Table 2: The CS-machine

(Cln), 0) ©> (ClB(n)], 0)
(Cl(Az.M)V],8) 55 (C[M]z := n]],0[n :=V]) where n & Dom(6) (2)
(Cl(on.M)V],8) 5 (C[M],6[n := V])

(1)

(3)

! Labeled terms have also been used for the investigation of the regular
A-calculus [2, p.353]. Although our problem st heand is unrelated to these

4.

investigations we have chosen to adopt the notation in order to avoid new
terminology.

different from all others, the label must be unique. In
the framework of our store semantics we expressed this
as n € Dom(0), i.e., picking an unused location. For the
. rewriting system we say that the label must be fresh. For
the discussions and proofs below we assume that when-
ever @ new label is introduced for a transition or derivation
step, this label is distinct from all others used in the same
textual context. Keeping this condition in mind reason-
ing with labels is similar to reasoning with substitution

in conjunction with the hygiene condition for bound pa-

rameters. Accordingly we refer to this condition as the
hygiene condition for labels.

The identity of fresh labels is of no importance. They
only name an equivalence class which is already implic-
itly there. In order to avoid naming problems in this
context, we consider two terms equivalent if? they are
a-equivalent except for their labels and if there is a bijec-
tion between their label structure. We call this equiva-
lence label-equivalence and denote it with =j;;. We shall
furthermore extend the notation = to mean the union of
a- and label-equivalence.

These considerations nearly lead to a combination
of the store and control string components of the CS-
rewriting system. Store values which contain a direct or
indirect reference to their own location cause a minor com-
plication. On traditional machines this corresponds to a

circular structure. Infinite terms would directly represent

these structures but would also unnecessarily burden the
mathematical treatment. A simpler solution ignores self-
referential locations for an assignment of the location n
to a value V and relies on the dereferencing transition to
_pravide a proper value which contains the current value

at these positions.
The transliteration of the three rules is easy. The sub-

stitution step (C2) performs the unique labeling of the
.values so that assignment expressions may trace the ori-

gin of their variable part. The assignment, in turn, is
implemented by a replacement algorithm which changes
all subterms with the same label to a new value. Our
notation for this operation is L[n := VJ; it is defined in
Table 3. The algorithm does not replace n-labeled values
inside of V. As motivated earlier the dereferencing rule
maintains the invariant that all values with label n in-
side of V" are updated to the current value, V". Hence,
dereferencing means to step from V" to V[n := V] in an
sk-context. The pure control string rewriting system is
summarized in Table 3.

A translation of CS-states into labeled A,-terms is im-
possible. By the above argument self-referential values in
assignments always contain a part or all of their “assign-
ment history.” Hence, for a proof of the simulation the-
orem we need to formulate a variant of the CS-machine
whose store component keeps around the store history.
In other words, a store is now a finite map from loca-
tions to value-history pairs—uval and his are the respective
selectors—where the his component represents the history
of the location contents. The machine transition function
becomes: '

(Clr), 6) = (Clual(8(n))), 6)
(Cl(Az.M)V],6) = (C[M]z = n]}, 0 := (V, *)])
where n & Dom(6)
(Cl(on.M)V],0) s (C[M], b[n :== (V,6(n))).
This modified machine is clearly in accord with the orig-

inal one. Its history mechanism permits a translation of
location expressions to labeled terms:

8(z,0) ==,
$(n,8) = $(val(6(n)),0[n := his(8(n))))",
S(z.M,8) = Az.§(M,0),
S(MN,8) = §(M,68)$(N,6),
$(0X.M,0) = (08(X,6).5(M,0)).

Table 3: The C-rewriting system

OV +S CV[n =V (1)
Cl(rz.M)V]+S C[M[z :=V"]] where n is fresh (2)
Cl(eU.M)V] % C[M][n :=V] (3)

The labeled term substitution L{n :=V] is defined by:
gln=V]=z, U'ln:=V]=V", U n:=V]=Un=V]" ifn#m,
(Az.M)[n :==V] = Az.M[n:=V],
(MN)[n = V] = (Mln := VIN|n = V1),
(eX.M)[n :=V]=(oX[n:=V].M[n:=V]).

2 Por the representation of circular structures (see below) we are even

more generous and say that the contents of embedded self-references does

" not matter,

With these technical modifications we can now show that
the new machine still computes the same values:

Theorem 3.1 (C-Simulation). For any program M,
evalos(M) = (V,6) if M+Ss" §(V,6).

Proof. The proof verifies that every step of the (his-
tory) CS-transition function is reflected by the C-rewriting
system.

The C-rewriting system could be a reasonable basis
for the design of an assignment calculus. The transition
function specifies the standard reduction function of the
calculus and, hence, determines the basic notions of reduc-
tion. Indeed, these notions of reduction must be context-
independent versions of the C-transition rules. This de-
pendency, however, is somewhat hidden in our current
rules and we therefore construct an intermediate rewrit-
ing system which bridges the gap to the next section.

The rule for assignment applications (C3) is evidently
context-sensitive, but, contrary to appearances, the dela-
beling rule depends on its context as well. The unique par-
titioning of a program into an sk-context and a C-redex
implicitly ensures that the delabeling of a labeled value
happens at the right time and produces the correct value.
If C[] were not an sk-context, the delabeling might un-
dermine the effect of an assignment to that very variable®.
The application rule is free of this problem. Both parts
are values and cannot be altered; only embedded refer-
ences to labeled values may be changed, but this is, as we
show below, irrelevant.

The application transition per se is not context-
sensitive, but it is troubled by a'different problem. In the
assignment-free sublanguage A, a variable always stands
for a value and (Az.M)y is a valid axiom in the corre-
sponding A,-calculus. It is safe to say that variables are
values.

Variables cannot be treated as values in the full lan-
guage. The A,-semantics replaces all bound variables by

labeled values. Labeled values must be delabeled at the
correct time in order to become values. This is equally
true for assignable and non-assignable variables. Reason-
ing with variables has become impossible. If nothing is
changed, the),-calculus cannot be a subcalculus of a rea-
soning system for A,. This is clearly undesirable.

‘The root of our problem is the equalizing treatment of
assignable and non-assignable variables. Put differently,
although non-assignable variables can never change their
associated value, we impose the same intellectual cost on
them and assignable variables. We can improve on this
by partitioning the set of variables, Vars, into a subset

-of assignable variables, Var,, and non-assignable ones,

Var,. In order to emphasize the higher cost we change
the syntax and introduce a delabeling application in which
assignable variables must be embedded. This not only un-
derlines their different character, but also makes clear that
the delabeling must happen at a particular point in time.
Although this does not quite solve the above delabeling-
timing problem, it at least reminds the user of its exis-
tence.

A natural form of the delabeling application could be

(D z) and (D V™), respectively, where D is a terminal sym-
bol. However, in anticipation of the next section, we in-
troduce the form (D XM) ¢ where M is an arbitrary ex-
pression which is to consume the delabeled value. The
modified transition rule (C1) becomes:

Cl(p V" M)] =S C[MV[n :=V]).

The transition rule for application is split according to the

" partitioning of the set Vars:

Cl(\z.M)V) =S C[M[z := V] where z € Var,,
Cl(Az.M)V] = C[M[z:=V"]]
where z € Var, and n is fresh.
The new language Ag is displayed in Definition 2. In

Definition 2: The language Ag

Ag contains
— variables: z if £ € Var,;

The improper symbols are A, (,), ., 0, and D. Vars = Var, U Var, is a
countable set of variables. We use the set of natural numbers, w, as labels.
The set of values contains variables, abstractions, and o-abstractions. V]
ranges over values, n € w over labels, and X over Var, and labeled values.

— A-abstractions: (Az.M) f M € As and z € Vars;

— applications: (MN) if M,N € A,-;;

— o-abstractions: (cz. M) and (6V".M) if M, N € As and z € Var,;
— D-applications: (Dz M) and (DV" M) if M € As and z € Var,.

3 This is a different characterization of the fact that sssignment state-

" ments enforce a precise sequencing of events in a machine.

1 This could not have beca done il we had not partitioned the set of

variables: we could not have written & consumer A in this case.

As expressions like ((DI'I)(D0')) are legal and have a
well-defined meaning, but they do not represent a stage
in the evaluation of some A,-program. This is another
indication that labels are an abstraction of locations. It
is only on von Neumann machines that labels are most
conveniently implemented as locations.

The splitting of the B-transition step complicates the
comparison of the two transition systems. Since the mod-
ified C-rewriting system omits labels from non-assignable
values, we need to keep around this information for the
morphism from A, to As. One way to achieve this is to
tag the values of a f-step with a truth value indicating
the set membership of the original placeholder:

Cl(Az.M)V] s CIMz = V™)),
where 7 <=> z € AV(M) \ BV(M).

For the following theorem and proof we use the self-
explanatory symbols 8 and & for 7. The rest of the tran-
sition rules are adapted accordingly.

This slightly modified C-rewriting system clearly com-
putes the same value as the original one, if one simply re-
moves the tag information at the end. Given these tech-
nical changes we can define a simulation morphism and
‘prove a simulation theorem. A labeled Aj-expression M
is translated to a Ag-expression M according to the fol-
lowing definition:

z=zif 2 € Vary,Z= (D zl) if z € Var,,
VnE =V, Vre =(DV"I),
Xy.M =M,
MN=MN,
oz.M = oz.M, oV"?.M =oV".M.

The translation assumes that the nature of a variable is
known beforehand. Without that the translation would
become more complex, but not more instructive. The
simulation theorem becomes:

Theorem 3.2 (mC-Simulation). For any program M
(in A,) and value V,

M viem =S

Proof. As above one can directly prove that every C-step
is mirrored by some mC-transitions. O

From the modified C-rewriting system it is only a
short step to the),-calculus. As mentioned above we
accept the transition function as the specification of the
- standard reduction function and derive the basic notions
of reduction and computation relations, i.e., we eliminate
the context dependency of assignment and delabeling rules
as much as possible.

4. The A,-calculus
The rewriting rules for regular applications are already

context independent. They induce the well-known §,-no-
tion [12] and the B,-variation:

(GzM)V 25 Mz = V] (8.)
where z € Var) and V is a value,
(Az.MV L4 Mz :=V") (8,)

where z € Var,, V is a value, and n is fresh.

The transitions for the other redexes depend on their
context. In order to obtain notions of reductions we ana-
lyze the possible cases for the construction of sk-contexts.
From the case of the empty sk-context, we get relations
which work when the redex is at the root. of the term:

(eU™.M)V b, M[n:=V] where Vis a value (»,)
(PV"M)pp MV[n:=V]. (>p)

We call them computation-relations and emphasize this
by using a p instead of the customary — for a notion
of reduction. When the redex is nested inside a proper
sk-context, it must proceed to the root so that it can use
the computation relation and complete the assignment or
delabeling step. There are two cases: namely, when a
redex is to the right of a value and when it is to the left of
an arbitrary expression. In both instances the redex must

" incorporate the next piece of the context and then do the

same to the rest of the context, Incorporating a piece

of the context means extending the continuation part of

the redex in the appropriate way. For a o-abstraction the.
body is the first part of the continuation and a o-redex can

make the next context subexpression a part of its body:

N((oX-M)V) 2% (eX.(NM))V (on)
where N and V are values
(¢ X.-M)V)N 25 (¢ X.(MN))V
. where V is a value.

(01)

In a D-application the consuming function corresponds to
the first piece of the rest of the computation. Therefore a
D-redex introduces a new function which, when applied to
a value, will channel the value to the original consumer:

NOXM) 2 (0 X(wNMY) (Dz)
where IV is a value
(0 X MIN 25 (0 X (Av.MoN)). (01)

If these four notions of reductions are applicable to
deeply nested redexes, they clearly move any C-rewriting
redex to the root of an sk-context where the computa-
tion relations can finish the simulation of a C-transition
step. To this end, we form the compatible closure of the
notions of reductions. Because of the f,-rule this con-
struction differs slightly from the usual one. A f,-step
requires a unique labeling of its argument part, hence, if
we want to perform such a step inside of an application,
for example, we pick a representative of the new term
which satisfies this need. In principle, this construction

is unnecessary if we simply observe the hygiene condition
for labels; it merely shows that the condition could be ex-
plicitly enforced. Otherwise the definition of the one-step
reduction is quite standard and is formalized in Defini-
tion 3. The natural extensions of this one-step reduction
are the transitive-reflexive closure and the respective con-
gruence relation,

Since the computation relations are only applicable at
the root of a term, they cannot be treated like notions
of reduction. In particular, it is impoasible to form the
compatible closure over them. Doing so would obviously
introduce inconsistencies. On the other hand, these rela-
tions are needed to simulate the entire C-rewriting sys-
tem. We therefore add these two rules to the transitive-
reflexive closure of the reductions where they can do no
harm. This yields the computation relation and the com-
putational equivalence relation. We sometimes refer to
this construction as the upper level of the calculus. From
a different perspective the upper level of the calculus fac-
tors out all the steps in a rewriting sequence that must
be in a linear sequence whereas the lower level allows a
partial ordering of reduction steps. The two levels of the
calculus may be understood as a characteristic of the im-
perative nature of the computations involved.

The first result about the X,-calculus is a substitution
theorem:

Theorem 4.1 (Substitution).

(i) IfV =, U, both are values, and z € Var) then Mz :=
V) =u Mz :=U].

(ii) IV =p U, both are values, = € Var,, and n is 2 label
(that may occur in M), then Mz :=V"| =, M[z:=
U]

Proof. The proof is a straightforward induction on the
structure of M. The hygiene condition for labels plays
an important role. Without the knowledge that labels
introduced by the =,,-step do not occur in M, the proof
is invalid. O

The next question to be addressed is whether the A,-
calculus is consistent. In other words, do the relations
—y,, and b, satisfy the diamond property?
Theorem 4.2 (Church-Rosser).
(i) The relation =+ is Church-Rosser.
(ii) The computation relation b, satisfies the diamond

property, i.e., if M v, N and M v, L then there exists
a K such that Nv, K and Lv, K.

(iii) If M =,, N then there exists an L such that M —»,
Land N —,, L.

«(iv) If M =, N then there exists an L such that M v,* L

and Nv,* L.

Proof. The proof of point (i) is an extension of the cor-
responding proof for the traditional A-<alculus [2]. For
(ii) we prove that —#,, commutes with >, and >p. Both
parts are tedious and not instructive. The last two points
are consequences of the first two. O

Another question of interest about a calculus like A,
is whether it defines an operational semantics, i.e., if
there is a standardization theorem. For the proof of this
theorem we follow Plotkin’s strategy and define a stan-
dard reduction function (of type M), +—,m, which al-
ways picks the lefimost-outermost redex and reduces it:

C[M] —,m C[N), if

C[]is an sk-context and M -~ N.

Definition 3: The A,-calculus

M N=>M—,N;

D Dx

Let Bi=try b,y oy o5 u 24y P55 Then define the one-step

M-reduction —»,, as the compatible closure of —+:

M—, N=\x.M—_, \z.N;
M-—,N=>LM—, LN, ML —_, N'L;
M —y N = (0X.M) —m (0 X.N');

M — . N=> (oM".L) —m (oN".L) if M and N are values;
M—nN=>(DXM)—n(DXN);,
M—,N=3>(DM'L)—, (DN"L)if M and N are values;

where L is an arbitrary term, X is a variable in Var, or a labeled value,
and /' is a relabeled representative for N so that a (possible) f, argument
in N is uniquely labeled. The M-reduction is denoted by —,, and is the
transitive-reflexive closure of —,,. We denote the smallest congruence re-
lation generated by —»,, with =,,.

The eomputation v, is defined by: p,=p, U >p U —, . The relation =, is
the smallest equivalence relation generated by p,.

8.

Standard reduction sequences (of type M) are then some-
thing like compatible closures of reduction sequences ac-

cording to +—,,. The computation relations are added
on top of this construction:

45 =bg Ubp Ur—tym .

and they yield standard reduetion sequences (of type S) for
the entire calculus. Definition 4 formalizes these notions.

They imply:

Theorem 4.3 (Standardization).

(i) M v,* N iff there exists an S-SRS L,..., L, with
M =L, and L, = N.

(ii) M —», N iff there exists an M-SRS L,,..., L, with
M=L, and L, = N.

Proof. The proof of the standardization theorem is a
modification of the corresponding proof for the control
caleulus A, [6]. O

An important consequence is the following:

Corollary 4.4. M v,* N for some value N iff M —,,°
N' for some value N'.

This corollary says that the standard reduction function
defines an operational semantics for the calculus or, in
other words, the calculus is an abstract machine. We can

prove the eéu.ivalence of the original CESK-machine and
the standard reduction semantics of A,:

Theorem 4.5 (Simulation). For any program M and
value V, M v—,,° V iFM &SV

This first correspondence theorem is to some degree huilt
into the calculus since we have derived it from the modi-
fied C-rewriting system. The theorem assures us that our
calculus is correct with respect to the original semantics
of assignments. An important consequence is that the

., mC-transitions are available within the calculus. This,

in conjunction with the second correspondence theorem,
greatly facilitates reasoning about programs.

The second correspondence theorem establishes a con-
nection between the calculus and the equivalence of be-
haviors of program pieces [12, 6]. Space does not permit
the development of all the necessary technical details, We
appeal to the reader’s intuition for an understanding of
the notion of operational equivalence. Roughly speaking,
two terms M and N are operationally equivalent, nota-
tion M s N, if there does not exist a (n arbitrary) pro-
gram context—any program with a hole, not necessarily
an sk-context—which can distinguish them hygienically,
i.e., without violating the hygiene condition for labels in
M and N. Given this we state

Definition 4: Standard Reduction Sequences

tains all variables:

and

and

The set of standard reduction sequences of type M, abbreviated M-srs, con-

z £ Vary = z is an M-SRs;
furthermore, it is closed under syntactic compatibility:

M,,..., M; is an M-SRs =>
(Az.M),...,(Az.M;),(c2.M),...,(02.M;), and (PzM,),...,(DzM;)
are M-srs’s for appropriate variables z;

M,...,M; and N,,...,N; are M-srs's =
MiNy,...,M;M,...,M;N, is an M-sRs;

M,,...,M; and V;,...,V; are M-srs’s and the V’s are values, =
(eV". M), ..., (eV] . My),...,(eV . M;) and
OV M), ..., (DVML),..., (DV]" M;) are M-sRs’s;

and, finally, the set is closed under standard reductions:
M v, My, and M,,...,M; is a M-srs => M, M,..., M, is an M-sgs.
A standard reduction sequence of type S, S-sRs, is defined by:

M,...,M; is an M-srs = M,,..., M, is an S-sRs;
Mv+—,, M, and M;,..., M, is an S-srs = M, M;,..., M; is an S-srs.

Theorem 4.6 (Operational Equivalence). Let M and
N beinAg. IfC[M] =, C|N] for all sk-contexts C[], then
M s N. Also, if M =,, N, then M ss N.

The two correspondence theorems play a key role in

- the proof of program properties. Some examples in the

next section demonstrate how the two theorems interact
and what kind of conclusions they allow.

5. Examples

Our first example illustrates the treatment of circular
structures in our calculus—a topic that we have only al-
luded to formally. For an example we investigate the ex-
pression

(Af.(Ag.(0g9.Dg1)()z.f(DgI)z))'0") F where F is a value. .

An application of the first correspondence theorem shows
that the evaluation in an arbitrary sk-context proceeds as
follows:

Cl(Ag.(09.(DgL))(Az.F(DgI)z))'0)]
=,0[(¢"0"™.(PT0™]))(Az.F(D'0O'"T)z)]
=,C[D(Az.E(P'O™I)z)"1].

At this point we have created a circular structure. The
value (Az.F(D'0™1)z) is labeled with m and also contains

an m-labeled value (whose actual contents is irrelevant).
We now perform the delabeling step and obtain

oo = CP2.F(D(A2.F(P'O™1)z)"1)z). *)

If the inner delabeling is ever performed, it will produce
the same value. In some sense we have constructed an
assignment-delabeling-by-need system.

Beyond a demonstration of how circular structures are
maintained in the calculus the first example points to an
interesting connection between circular structures and the
implementation of recursion. Let us introduce the abbre-
viation

Z = Af.(Ag.(0g.DgI)(Az.f(Dgl)z))0".

Given Z, we have shown in the preceding paragraph that
according to the second correspondence theorem

ZF % P(\z.F(D'0™1)z)" 1.

By the definition of operational equivalence we can replace
two indistinguishable terms in any context. In particular,
we can replace D(Az.F(D'0'™I)z)™1 in (*) by ZF and by
transitivity we get

ZF w3 Az.F(ZF)x.

This is the same operational equation that the by-value re-
cursion operator Y, = Afz.(Aa.aa)(Aea. f(Az.aaz))z for

functionals satisfies. Although this does not imply that
the two recursion operators are equivalent, we feel more
justified using Z for the implementation of recursive func-
tion definitions.

Next we return to the examples of the introduction.
For the transliteration of these program pieces into As we
assume that all relevant variables are in Var,. As usual,
blocks are translated into appljcations of A-abstractions
to the initial values [8]. Thus the program piece

begin var z = 0; skip end

becomes
(AzX)'0"

where the function I is an arbitrary representation of the
command skip. It follows that this block is equivalent to
I, i.e., skip:
(Az.1)0' =, I[z:="0"] =1.
The labeled value ('0") simply disappears.
It is similarly trivial to show that the sequence of dec-
larations in a block header plays no role. With the natural

transliteration for

begin var z=0, y = 1; (cnd) end
we get
(Aay. MYO'T =, Mz =07y := 111"
= My :="1"¥][z := 0]
=n (Ayz.M)'110,
The last expression represents
begin var y = 1, z = 0; (cmd) end.
The important point is that each f,-step introduces a
fresh label and the identity of these labels does not matter.
The last example is derived from a problem posed by
Halpern et al[7]. Suppose the expression
let z=01in let d=p(0) in =
is given and the additional information that it is always
used in a context where the free variable p is bound to a
terminating function. The result of this block should be
0; the side-effects are those of the invocation of p. The
question is whether this is provable for all possible cases.
The answer is yes:
ClAz (A=) (p0))0)]
=,C[(\d.(D'0"1))(p'0")] where ! is fresh
=,C'[(p'0'1)]
since p always terminates, possibly with side-effects
=,C'l0Y]
=,C[(Ad."0")(p'0")].

In other words, the above expression is operationally in-
distinguishable from

let d =p(0) in 0.

The hygiene condition for labels plays a crucial role in
this proof. No matter what expression is substituted for
the free variable p, it cannot contain a reference to z and,
hence, it cannot access the label {.

The preceding proof is also possible in the framework
of denotational semantics. The notion of a cover as in-
troduced by Halpern et al [7] supports this proof in a
nice way. The cover of a command is roughly the set of
all accessible locations. It is used to describe the correct
way to allocate a new location. Their central condition
is then that new locations which are allocated at the en-
try of a block must be from outside of the cover of the
block body. This corresponds to our own requirement
that a label is fresh and that in any context we need to
make sure that there is no interference with labels from
other terms. For example, in the above block these two
conditions enforce that whatever we substitute for p does
not invalidate the f, step. The freshness and the hygiene
condition are simpler because we can always decide about
them by inspection of some finite terms. Another factor
which contributes to this simplicity is that programs in
As have no control over locations. We feel that this is
justified. Locations are a relic of the time when language
design was driven by a particular machine architecture.

Although important, the hygiene condition is not the
central point of our development. In the next section we
discuss research efforts that are directly related to the
central objectives of our work.

6. Summary and related work
In the preceding sections we have shown that

o we can derive a calculus of assignments from a control-
string-store rewriting system,

o this calculus is correct, and

o its standard reduction function defines a location-free
rewriting semantics for a higher-order programming
language with assignments.

This development has two central consequences. On the
practical side we have demonstrated that there is a se-
mantics of assignment languages which can be directly
implemented on rewriting machines. The existence of the
calculus and of standard reduction sequences shows that
even in an assignment language events are not ordered in
a linear sequence. The two levels of the calculus cleanly
separate the classes of actions which must happen in to-
tally or in partially ordered sequences. On the theoretical
side we have an improved understanding of assignment in
programming languages. Potential uses are in the area of
program proofs and transformational programming.

1.

Mason's work [9] comes clogest in spirit to the theo-
retical aspect of our work. He is interested in first-order
Lisp programs which destructively change the store. His
work is based on a Plotkin-style computational theory
with control string-store configurations—memory objects
in his terminology. Since the language is restricted to the
class of first-order Lisp-programs, the theory is—except
for access to the addresses of locations—a special case
of the CS-machine in Section 2. An operational equiv-
alence relation is-then defined based on this operational
semantics, i.e., a relation which compares Lisp programs

« relative to their results. Several extensions of'this base re-

lation compare various extensional and intensional aspects
of destructive and purely functional programs. The mem-
ory object isomorphism equivalence captures the spirit of
our =44-relation; indeed, on this level our own operational

- equivalence relation a la Theorem 4.6 and Mason’s rela-

tion have comparable power. Our primary advantage is
our choice of the primitive assignment and a higher-order
language as the starting point. The memory object iso-
morphism cannot deal with the examples of the preceding
section. Furthermore, with the lower level, i.c., =, we
have a more fine grained equivalence relation, although we
do not yet know if this yields any additional possibilities
for the understanding of assignments. It is not clear how
the other relations fit into our system since they explicitly
refer to locations and garbage collection. The paper does
not include 2 calculus for reasoning about these equiva-
lences, nor is there any attempt to eliminate the explicit
store.

Landin’s idea of a sharing machine [8] anticipated our
perception of the store as an equivalence relation. The
sharing machine is an extended SECD-machine. The ad-
ditional component is an equivalence relation which des-
ignates certain parts of the state as equivalent. When an
update occurs, all equivalent components of the state are
changed to contain the new value. This is clearly the same
idea except that it is applied to a 4-tuple rewriting sys-
tem or abstract machine. Landin himself did not foresee
the possibility of applying this idea to terms. He feared
that “the meaning of an IAE [imperative applicative ex-
pression], ... is completely dependent on an abstract ma-
chine.”®

Other efforts to eliminate the concept of locations
from semantics have concentrated on imperative first-
order languages [1, 3, 5]. The basic approach models
the store directly with the environment and uses auxil-
jary means such as equivalence relations or update con-
tinuations in order to realize more complicated features
like aliasing and call-by-name procedures. We have not
yet seen any generalizations to the case of higher-order

languages.

5 See (8], page 92.

Beyond these developments in store semantics there
is of course a bulk of work on the Flayd-Hoare logic of
programs. The relationship to this work is not clear, but
certainly merits consideration.

Our investigations have demonstrated that assign-
ments in higher-order languages can be nnde}'stood with
a rather simple model. There are many locse ends to be
explored, but we feel that this calculus offers new opportu-
nities to reasseas the role of assignments in programming

languages.

Acknowledgement. Sussman and Steele’s paper “Scheme:

" an interpreter for eztended A-calculus™® stimulated us to
consider how such a calculus for assignments in higher-
order languages could be constructed. Bruce Duba, Car-
olyn Taleott, and Mitch Wand provided helpful comments
on earlier drafts of the paper. Matthias Felleisen is sup-
ported by an IBM Graduate Research Fellowship. The
work is also supported in part by the NSF grants DCR 85
01277 and DCR 83 03325.

References

1. ABDALI, S.K., D.S. Wise. Storeless semantics for
ALGOL-style block structure, Proc. Conf. Mathe-
matical Foundations of Programming Semantics, Lec-
ture Notes in Computer Science, Springer- Verlag, New
York, 1985, to appear.

2. BARENDREGT, H.P. The Lambda Caleulus: Its Syn-
taz and Semantics, North-Holland, Amsterdam, 1981.

3. BRooKEs, S.D. A fully abstract semantics and a
proof system for an Algol-like language with sharing,
Proc. Conf. Mathematical Foundations of Program-
ming Semantics, Lecture Notes in Computer Science,
Springer-Verlag, New York, 1985, to appear.

4. DE BRUNN, N.G. Lambda calculus notation with
nameless dummies, a tool for automatic formula ma-
nipulation, with applications to the Church-Rosser
theorem, Indagationes Mathematics 37, 1972, 381-
392.

5. DONAHUE, J.E. Locations considered unnecessary,
Acta Informatica 8, 1977, 221-242.

6. FELLEISEN, M., D.P. FriepMAN. Control oper-
ators, the SECD-machine, and the A-calculus, For-
mal Description of Programming Concepts III, North-
Holland, Amsterdam, 1986, to appear.

6 Memo 349, MIT Al-Lab, 1975.

11

12,

7. HALPERN, J.Y., A.R. MEYER, B.A. TRAKHTEN-
BROT. The semantics of local storage, or What makes
the free-list free?, Proe. 11th ACM Symp. Principles
of Programming Languages, 1984, 245-257.

8. LANDIN, P.J. A correspondence between ALGOL 60
and Church’s lambda notation, Comm. ACM, 8(2),
1965, 89-101; 158-165.

9. MAsoN, I. A. Equivalences of first-order Lisp pro-
grams, Proe. First Symp. Logi¢ in Computer Science,
1986, 105-117.

Mornris, J.H. Protection in programming languages,
Comm. ACM 16(8), 1973, 15-21.

PLOTKIN, G.D. A structural approach to operational
semantics, Tech. Rpt. DAIMI FN-19, Aarhus Univer-
sity, Computer Science Department, 1981.

PLOTKIN, G. D. Call-by-name, call-by-value, and
the A-calculus, Theoretical Computer Science 1, 1975,
125-159. :

10.

12.

