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Introductory Remarks

Presently, most proposed computational (artificial intelligence) models of cognitive
or perceptual activity fit squarely into the conceptual mainstream of computer science:
manipulation of small, simple, rigid data structures by intricately laid out top-down serial
algorithms (or interacting serial algorithms). It is my intuition that such manipulation, or
indeed, any manipulation of inert data structures by typographically specified serial com-
putation is an unrealistic way of reproducing massively parallel activity observed in nature,
especially aspects of human cognition and perception. In its place, I propose a compu-
tational framework that largely breaks with the various von Neumann legacies evident in
present computer science thinking. This theory, which I call Computational Metabolism
(ComMet), proposes to view computation as a dynamical interaction of localized patterns
of structure in a tessellated medium:

o The patterns are of communication, be it as flux of adjacency (cellular automata), to-
kens (computer networks, neurotransmitter uptake), etc. They are active structures,
as defined below.

e The medium is an interconnected, discrete structure, directly realizable in 2- or 3-D
space. Its connectivity may change.

To see something like ComMet as characteristic of many natural computations is to give
nature its due. Elmar Holenstein, the German phenomenologist, stresses the omnipresent
“plurifunctionality” of living systems in his recent essay “Natural and Artificial Intelli-
gence” [Holenstein85]. It seems only plausible to postulate plurifunctional mechanisms for
such “alive” phenomena as metaphor-making, to cite a fine example. ComMet is meant to
be just that.

Why Active Structures

Inert structures need to be shunted around: data structures, for example. Active
structures are a kind of organism [Hofstadter82, Holenstein85]. They are subject to en-
vironmental pressures and possess a “metabolism”. However, they are not subject to
exclusive manipulation by a process. Bricks, B-trees, pieces of jigsaw puzzles and disserta-
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tions are not active structures. Like data structures, active structures have internal state,
accept input, and produce output. However, active structures themselves change other
structures and undergo change themselves. An active structure:

e is an organism distinct in figure-ground terms from its environment
e is not a piece of text manipulated by a program

e accepts (rather, reacts to) input from its environment

e returns (rather, emits) output into its environment

e has internal state (substructure)

changes during computation in size, i/o profile, substructure

affects other active structures (independently of i/o)

may arise or may disappear during computation

possibly modifies its medium (connectivity, geometry, etc.)

Incidentally, I regard computation as state-changing described by some machine, and
I regard machine as that which can be constructed and which can change state. A compu-
tation involving active structures might give an algorithmician a headache: The structures
are not synchronized. Perhaps neither their substructure nor their behavior is coded for
by typographical strings of formal symbols. If it is, such encoding may not be at all useful
or easy to obtain. Certainly, it is difficult to make the distinction between instructions
and data when inspecting the activity of active structures. Thus, the most kindred model
to that of active structures that computer science has to offer, Multiple Instruction Mul-
tiple Data (MIMD) processing, hardly suffices because here we lack the orderly symmetry
so universally “evolved” by clocked digital hardware design. What goes on amongst ac-
tive structures is more akin to metabolism as seen in biology or astrophysics than to the
processes of logical deduction or program execution. Hence, Computational Metabolism.

Why Fluid Medium

Fixed media impose a certain rigidity on the sort of phenomena occurring within them.
Computer science has incorporated the concept of fixed medium into its very fabric. There
are good reasons for that, mostly technological (wire) and methodological (logic), but there
are even better ones for constructing dynamic media. For one, nature is crammed with
dynamic media. For example, gravity pulls on space-time: The hydrodynamics of a star
is a tumultuous medium of plasma held in a multitude of equilibria by the curvature that
all this plasma imprints on space-time. Closer to home, the fluid medium we call sky or
the fluid medium we call living muscle tissue consuming oxygen attest to what makes fluid
media interesting: geometry in flux, topology in motion. It is an act of faith to think that
computation in fixed media captures the fluid media well enough to capture nature.

The lure of computer science — programming — ought to naturally extend from the
traditional, typographically fixed medium to the ancient dynamics that are the world. I
am not sure why this extension has not been tried earlier, but I partly blame the dearth
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of suitable programming schemas. I presume that by now software and hardware tools
have evolved to the point of inaking this prospect attemptable, if nor realizable. What is
needed is the willingness to shift the point of view. If one hopes to mimic, say, human
performance — which is wrapped up from head to toe in fluid media, about the least one
can do as serious constructor is to construct artificial fluid media first. This course of
action is at least as plausible as the mainstream artificial intelligence’s belief that given
enough (algorithmic) complexity some interesting effects will come about. A fluid medium
bearing aggregates of active structures alone makes a plausible point of departure for a
new breed of computing.

How to Think of a Discrete Fluid Medium

Cellular automata have conventionally been laid out on fixed grids [Preston85]. What
if we were to abandon this convention in favor of grids that are altered by local accumu-
lations of active cells? For example, we may fold up Conway’s Life, embedding it in
three-space. We could then postulate local changes in the connectivity of the grid effected
through changes in concentration of active cells in proximate (in three-space) areas of the
grid. I call this sort of thing “gravity effect”. Local changes may include the appearance
of new squares or the removal of old cells, as opposed to mere turning on and off. Such
computations would take us considerably closer to the replication of, say, morphogenesis.
It would require the phasing out of Al’s “digitized Euclideanism” — perhaps with returns
similar to non-Euclidean geometry’s.

Massive networks that grow and lose nodes and connections are another possibility.
Here, not only do the interconnections change in importance (connection weight); they
may change in number. Active structures and their aggregates could impart such changes
locally, again, through proximity effects reaching a critical mass, and these changes could
in turn feed back and feed forward to the active structures’ computation. The thing
to gain here over existing and proposed connectionist networks is vast improvement in
dynamic range of computation. Today, one may start with 2,000 connections on 200
nodes, with most connection weights set to near zero [Hinton81]. But what recourse does
one have when all the weights have been employed - and still more (or different topologies
of them) are needed? This issue is highly reminiscent of Fortran’s static memory allocation
and of the stifling effect it had on Al programming before garbage collection and hidden
memory management (as in Lisp) were made available. Dynamic connectionist networks
seem of similar practical importance. Also, setting up static aggregates consisting of fixed
connections begs the self-organizational issues.

The one possibility I choose to develop in this paper is that fluid discrete media may
actually be . . .fluids. The particles that make up the medium- fluid could be allowed
to migrate, interchanging positions as they move about. This could allow viscosity effects
and other dynamical qualities to enter the computation. Fluidity in this sense might even
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provide a fairly straightforward mechanism for undoing active structures — dissolving. New
structures could also be literally precipitated out of the medium. The computation would
still be discrete, but it would be pervaded by the analog constraints of fluid dynamics.
Questions of inter-molecule contention for position swaps could be resolved by arbitrary
choice, at once obviating the need for routing algorithms and erasing transient deadlocks
(the latter observation is Marlies Gerber’s). There is no reason to bristle at the thought
of devising computational devices with explicitly patterned physics. Certainly, the von
Neumann machine comes with its own physics that, rather insidiously, has stamped the
form and substance of computer science.

How Large a Medium

To experiment with the local properties of a medium, a few hundred elements should
suffice. The nice thing about Computational Metabolism media is that they can be ex-
tended in size a great deal before encountering constraints of physics on information flow.
In a Computational Metabolism medium:

e all communication and explicit computation is local

“gravity effects” diminish with distance, increase with “mass”
e power supply is local

o there is no external synchronizing

e medium components may change, appear, or disappear

e connectivity of the medium may vary

One of the important insights stemming from the scaling up of computers is that the
physical limits on the flux of information flow start to matter as the machine grows more
complicated [Hillis85]. In Computational Metabolism, as in living systems, this constraint
is relaxed by a two-fold principle of locality: (1) Design of information flow postulates
locality rules, and (2) locality rules naturally guide and constrain the scaling up of this
design.

What Sort of Mechanism Are We Talking About?

As indicated above, let us assume the medium-as-digital liquid alternative in order
to hint at a sample Computational Metabolism. Our system is a hierarchical dynamical
structure with explicit locality constraints set up on the bottommost level. These con-
straints in turn permit emergent effects on all levels, but they do not absolve us from the
responsibility to design useful embedded patterns, both top-down and bottom up. These
are the levels:
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Computational Metabolism

level . description event
topmost level: global pattern of active structures steady image
active structure (aggregate of bonds) communication

amongst bonds

tile bond (functional aggregate of tiles) bond making
and breaking
tiles neighborhood (flipping, bonding) flipping and
bonding tiles
bottommost: tile intra-tile
oscillation

Level 5 (the anatomy of a tile)

On the bottommost level, the medium is a set of restricted finite state automata called

tiles; they uniformly tessellate the medium and may be thought of as convex polygons (e.g.
triangles, squares, hexagons, cubes). Each tile is of a color. There may be many colors.
A tile comprises:

e An oscillator, which is always in some well-defined state. The states form a period,
like the pulses of a lighthouse. We call this succession of states a tile’s “signature”,
or Sig. Tiles recognize other tiles by listening for patterns in signatures.

ee Each Sig state corresponds to a small integer.

ee All tiles of a color exhibit a common, fixed Sig.

e A set of templates, called “attractor sequences”, or AtSeq’s. The attractor sequences
tell what Sig fragments a tile recognizes.

e Recognition takes place when the recognizing AtSeq matches a sequence of con-
secutive Sig states of its neighbor.

ee Each tile’s edge (or facet, in 3-D ComMet) has a pair of AtSeq’s: one for recognizing
“bond partners” (AtSeqB) and one for recognizing “fipping partners” (AtSeqF).
Bonding takes place when an AtSeqB recognizes a neighbor. This recognition
acts as an if-part of an if-then rule whose then-part is a rule that causes the tile
to change state. Flipping is a pairwise swap of tiles. Flipping may happen when
two tiles recognize each other. It may be preempted.

ee Each color’s AtSeqB’s and AtSeqF’s are initially the same.

® The then-parts of bonding: a set of rules for changing individual tile’s attractor
sequences. “If AtSeq(i) then set my AtSeq’s to these values”. “AtSeq(i)” means “the
AtSeqF (or AtSeqB) on the ith edge has just recognized its neighbor”. Vary with
color.



A quick glimpse of instances of tiles

Computational Metabolism

Here is a simple example of specifications for two tile colors:

AtSeqF-n: 22 2 1 AtSeqF-n: 0

AtSeqB-n: 3 2 3 AtSeqB-n: 0

e I Jusssrnepanis J
AtSeqF-w: |Green |AtSeqF-e: AtSeqF-w: [Orange |AtSeqF-e:
2221 |----- 12221 0 J------ | o
AtSeqB-w: |Sig: |AtSeqgB-e: AtSeqB-w: |Sig: |AtSeqB-e:
323 12221 1323 0 1323 |0

AtSegB-s: 3 2 3 AtSeqB-s: 0

AtSeqF-s: 22 2 1 AtSeqF-s: 0O

i1 rule for Green:

No rules for Orange.

. -

If bond-recognize(Orange) then set 3rd AtSeqF clockwise from the bond edge
to ‘‘2 2°°, set other AtSeqF’s to ‘2 2 2 1°°.

We can expect the following to take place in our two-color ComMet:

© Green tiles flip-recognize only other Green tiles. Orange tiles remain fixed in place.
The never-bonded Green flip isotropically against each other, performing random
walks. Bonded Green flip in one direction unless bonded again or stuck among
bonded Green.

e Bond recognition by Green deflects or accelerates them in the 9 o’clock direction with
respect to the bonded edge (12 o’clock).

e We can construct complex routing devices reminiscent of pinball machines, analog
sorters, oscillators, accelerators, scatterers, bottom-up set partitioners. We can im-
plement annealing directly.

Some implications of our definition of a tile

Our definition of a tile has many implications. Here are a few:

e Only adjacent tiles (“neighbors”) can recognize each other.

e Recognition is the basic characteristic of self-organization in ComMet for it specifies a
mechanism through which tile behavior and properties become context dependent.

e No provision has been made to alter a tile’s state through global feedback. Global
feedback is undesirable because it bucks the strictly local information flow, creating
bandwidth limitations. We wish to explore the limitations of total locality (if any).

e No provision has been made as yet to allow individual mutation of a tile’s state.
Each tile color has a fixed finite and somewhat small set of possible states.
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e No provision has been made just yet to change the number of tiles through self-
reproduction, sexual reproduction, or “gravity effects”. At present, the system is a
constant-set tessellation of space, unspecified in size. On the other hand, not satisfying
an AtSeq for lack of physical neighbor is the same as never recognizing. This allows
bounded systems, or ones “with holes”.

e Like Conway’s Life, ComMet is a universal computer.

Level 4 (tile flipping takes place)

Now that we have specified tiles with substructure in part dependent on the surround-
ing environment, we recognize these properties of tile interaction:

e Indeterminacy is an integral part of Computational Metabolism because one tile may
be ready to enter several flipping events, yet it is physically constrained to enter only
one at a time.

o A flipping event is a pairwise swap in tile positions such that the participating tiles
exchange their ordered sets of neighbors.

The flipping event introduced above has to be carried out “in hardware”. What does
this imply? In the case of implementing the Computational Metabolism in biochemical
structures, we hope to devise tiles (likely, 3-dimensional) mimicking the shape, function
and action of enzymes or viruses. It is likely that we could thus afford to relax the require-
ments of adjacency, discreteness of computational steps (such as intra-tile oscillations),
recognition of neighbors, tessellation, and consequently, flipping — simply by exploiting
thermal properties of real fluids and propagation through them. We could then afford
to discard much of what we had to specify for our Computational Metabolism’s physics,
because an alternative, real physics, would do the job. The presentation as it stands
is biased towards clocked digital hardware implementation for the sake of tractability of
analysis (though perhaps not of synthesis) afforded by computer science. Thus, in the
case of digital hardware, we must provide for the flipping by constructing hardware for
noticing, flagging, and manipulating flip-ready tiles. In vivo, we may delegate this task to
heat.

Level 8 (bonds arise amongst tiles)

We also hope to specify the properties of individual tiles so that the flipping described
above may permit the emergence of recognizable and useful arrangements of tiles. These
might be seen as adjacency rules, e.g.:

e A White, Blue and Green adjacent tiles constitute a W-B-G bond provided that Blue
and Green are not themselves adjacent.

We must keep in mind that these rules are not executed by an interpreter, because
there is no interpreter. They are merely patterns that happen to arise from some initial
pattern through thermodymamics-like computation.
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Mimicking conventional cellular automata, one could regard bonding to be an ephem-
eral phenomenon similar to the propagation of gliders in Conway’s Life: an initial config-
uration reestablishes itself after several iterations, maybe displaced [Preston85]. However,
unlike Life, we may not count on a deterministic recurrence of patterns, as our pattern
formation is not driven by inference engines but by local choices made in absence of global
clocking.

Bonds could be viewed as functional entities which get particular jobs done. Under
this interpretation, any sufficiently persistent pattern of tiles could be viewed as a bond,
even if its components fail to be spatially adjacent. The persistence requirement is with
respect to the job being done, and it may be fulfilled by a one-shot configuration that
dissipates while computing.

Level 2 (active structures arise)

Aggregates of bonds in certain geometric formations force the manifestation of larger
structure. A geometric pattern of bonding consisting of message- exchanging bonds could
function like a biological enzyme in that it could act on substrates and physically alter
its medium. It is this enzymatic entity that we call an active structure (AS). This entity
could communicate with other active structures by means of substrate-product cycles, thus
creating a chemical-like information flow [Fetzer85], reducible, of course to Level 4 flipping
events. Perhaps the toughest design work ahead lies on Level 2.

Level 1 (a steady image emerges)

Once the active structures begin to interact with one another, we hope to see an
emergent dynamical equilibrium. That is, at some point, no change (or only small amount
of change) will be seen amongst AS’s. At this point, input can be profitably supplied to
the system — perhaps via “epidemics”: infecting one region of the medium with virus-
like “enzymes” (individual tiles, aggregates) whose passage through the medium would
result in an altered steady image. Alternatively, Level 1 input could be attained via
juxtaposition with the steady state set up on a separate Computational Metabolism. We
could also overlay one steady image with portions of another and hope to achieve a new
steady state. Or we could postulate a calculus for deciding what it means to cross one
ComMet with another.

Whatever it will be, a means of throwing the system out of its equilibrium in order
to allow it to settle on a different but related one is clearly desired. The relatedness
will come about from overlapping topological and geometric features of aggregates of tiles.
Thus, a constancy of image associated previously in some arbitrary way to the word “dog”
could settle on a different image associated previously to “cat”. One could then say that
the image “cat” (“target equilibrium”) was evoked from the image “dog” (”vehicle”) by
infecting it with a certain input (”context”). Of course, indeterminacy of flipping is likely
to cause a perturbed steady image to settle not into a unique resultant state but into one of
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a class. Its membership property may well be more aptly computed via thermodynamics
than data structure-pushing Lisp predicates. Such, I believe, may be the real nature of
metaphor-making, my intended arena for ComMet.

Using ComMet to Implement Algorithms: Abacus Sort

Apart from its Al potential, Computational Metabolism lends itself to direct appli-
cations in computer science, quite often for easy encoding of analog algorithms. This is so
because the pictorial content of analog algorithms maps directly to steady configurations
and moving patterns of tiles. One such example, suggested by Anthony McCaflrey of
Indiana University, is sorting small nonnegative integers. The sort can be performed on
an abacus, with each item encoded as a solid vertical column of beads, each bead on its
own rod, each item’s height (number of rods) representing magnitude. The sort is carried
out when the initial set-up is slammed to either side.

We obtain a direct implementation of this mechanism in a two-color ComMet with
distinct signatures, and with all AtSeq’s (both bonding and flipping) set to nil except one
AtSeqF per color - to facilitate sorting. One color simulates the beads and one simulates
empty air. The bead-color’s active AtSeqF recognizes the empty air-color’s signature,
only. The empty air- color’s active AtSeqF recognizes only the bead-color’s Sig. The
active AtSeqF’s are arranged in mirror-image fashion (bead-color’s on the East edges,
air-color’s on the West).

Here’s the picture. For clarity, the empty air-color tiles are left out:

] |Red | | | | | I i | IRed |
......................... | - e
I I | | | ] | | I | I !
| |Red | |Red | | after 14 flips: | | I IRed [Red |
_________________________ | ———————) iy s s s e . Al et
] I | | | | I | I | I I
[Red [Red I|Red [Red | | | |IRed |[Red |Red [Red |
......................... | - - - -
| | | | | | | | | | | I
IRed |Red IRed |Red | I ! |Red [Red |Red [Red |
2 4 2 3 0 0 2 2 3 4

This application is not what ComMet was invented to do, but its viability nicely answers the
inevitable “Yes, but what can you do with it?” Finding other answers to this question may
itsell advance the basic project on the intended path: modeling the cognitive/perceptual
activity found in nature.
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A Note on Implementation and Acknowledgments

I am about to simulate the system on a Xerox 1108 workstation. I have already
seen the abacus sort in action, thanks to my Fortran Programming students (Spring 1986
term), who did it as homework.

Computational Metabolism is still a very young project, but already I am indebted
to several people for inspiration or ideas. They are John Barnden, Jim Burns and Dirk
Van Gucht at Indiana University, Douglas R. Hofstadter at University of Michigan, Carl
Hewitt and Marvin Minsky at Massachusetts Institute of Technology and my friends in
Bloomington, Anand Deshpande, Marlies Gerber, Tony McCaffrey and Elma Sabo.

This paper was distilled from my ongoing dissertation research at the Indiana Uni-
versity Computer Science Department, “Metaphor as Computational Metabolism”. John
Barnden is the thesis advisor.
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