THE FRAME MODEL OF COMPUTATION

Mitchell Wand
Computer Science Department
Indiana University

Bloomington, Indiana 47401

TecHnIcAL ReporT No. 20

THe FrRAME MopEL OF COMPUTATION

MiTcHELL WAND >

DecemBer 1, 1974

This report has been submitted for publication elsewhere and
has been issued as a Technical Report for early dissemination

of its contents.

The Frame Model of Computation
Mitchell Wand
December 1, 1974
Computer Science Department
Indiana University
Lindley Hall 101

Bloomington, Indiana 47401

Key words and phrases: frame model, formal semantics,
modular programming, reduction, control regimes,
coroutines, backtracking, direct semantics,

axiomatic semantics.

CR Categories: 5.24, 4,22

The Frame Model of Computation

Mitchell Wand

Indiana University

Abstract: This paper gives an informal description of a new seman-

tic model of computation called the frame model.

A common criticism of formal semantic models is that they fail
to be perspicuous. One may spend so much time on coding details
that essential concepts are obscured. An extreme example would be
the use of a Turing machine as a semantic model. One reason the
Turing machine makes an lnadequate model is that its structure is
quite different from the structure of programming languages or of
"well-structured" computations. It is the purpose of this paper
to describe a semantic model of computation whose structure we
believe is well-suited to the description of computations. A well-
structured model would also be a "frame" in the sense of Minsky
[24]: a declarative structure whose components correspond to the
terms in which one normally thinks of a computation.

We view a semantic model as describing a class of programming
languages which work in essentially the same way, but have differ-
ent elementary operations. We will indicate two different ways in
which the frame model may be turned into a programming language.

Section 1 is concerned with some epistemological vinegar.
Section 2 describes the internal workings of the model. Section
3 1s essentilally a defense of our choice of components. Section
4 returns to the transition from model to language. Section 5
suggests the formal methods underlying our development, and Section

6 compares the frame model with related systems.

1. Semantic Models and Programming Languages

In a traditional semantic model, two steps must be performed
before the model can execute an algorithm. The programmer first

expresses the algorithm as a program in some programming language.

-

The program is then transformed into an initial state of the model.
In principle, therefore, the set of initial states of a semantic
model constitutes a programming language just like any other. In
practice, however, no one would write an applications program in
the language of initial states of any existing semantic model --
the structure of the models is not well-suited to writing programs.
One goal of a perspicuous model, therefore, is to make the asso-
ciated language of initial states a reasonable programming language.

If our goal is a model with "appropriate structure," it is
reasonable to ask what it is we mean by "a structured set." A set,
after all, is identical up to renaming (bijection) to any other
set of the same cardinality. What is distinctive about a structured
set is its accompanying description: " S has 2 elements and comes
equipped with an associative binary operation and a two-sided iden-
tity for it." One may then refer to the elements of S in terms
of this description, e.g., "the identity element" or "the non-iden-
tity element." It makes no difference whether the set S 1is
{a,b} , {0,1} or {e,y} . This is nothing more than the "axio-
matic approach": rather than specifying a set by naming its elements,
(which we call the "exhaustive approach"), we give axioms which
the set must satisfy. Then the language in which the axioms are
given can also be used to specify elements of the set.

The structure of our semantic model, therefore, carries with
it a language -- the language in which the structure is specified.
Furthermore, since this 1s the language in which initial states are
specified, it is also something very much like a programming lan-

guage. In general, these relationships are clearest in the proper

mathematical context, which is the theory of categories [23], but
it is in part the purpose of this paper to describe the progres-
sion from structure to language in a particular case. In order

to do that, we must describe our semantic theory.

2. The Frame Model

Our model is based on the "little man" metaphor of Papert [25].
We imagine a community of little men, who converse in order to
perform computational tasks. If a particular man M is given a
datum on which to work, he might do some work on it and pass the
altered datum to M', along with a note saying: "When you have fin-
ished with this datum, please pass your answer to M", who will
finish the job." (It is, of course, up to M' to decide whether
to follow this recommendation.) A typical stage in a computation
then consists of a "man" instantiated with a datum to work on.
We call such an instance a frame. Most frames consist of the fol-
lowing:

(1) an action which specifies the task to be performed by the
frame,

(2) a datum or argument on which the action is to be performed,

(3) a binding which specifies the meanings of identifiers occur-
ring in the action, and

(4) a continuation which specifies the frame to be executed

when the action is completed.
Notice that as yet we have made nc commitments as to what actions,
data, bindings, or continuations look like. We have not, for example,

made an ab initio distinction between local and global variables or

imposed any kind of stack discipline. We will draw such a frame
as in Fig. 2.1. (Note that the components are reversed from the
above discussion; this choice seems to yield more comprehensible

diagrams.)

C continuation
B binding

D datum

A action

Figure 2.1: Schematic symbol for a frame

Let us now consider how a complex action might be performed.

The most obvious nonsimple action is a composition. If al and

a2 are two actions, let us denote by alj;a2 the action which is
thelr serial composition. How would the serial action alja2 be

performed? Clearly [9] one ought to perform al in a frame whose

continuation is a frame whose action is a2 . So, to execute
the frame Fl in Fig. 2.2, we execute instead the frame F2 :
We say Fl reduces to F2 , and write Flk- F2 . We will call

Fl the antecedent and F2 the consequent.

@
AV
Q

alsa2 al az

Figure 2.2: Executing a serial action

Note that in Fig. 2.2, F3 is a part of F2 . The use of arrows
in no way implies that we are talking about pointer variables; it
is merely a graphical device to increase legibility.

Another thing a frame might do is to ask another frame to pro-

cess its value. Such an action is called an invocation. We call

the frame which the current frame is trying to invoke the target
(this terminology is due to Hewitt [15]). This reduction is shown

in Fig. 2.3. Since a frame is to be a complete computational entity,
any identifiers appearing in the target's action should refer to

the target's bindings; if the situation arose from a serial decom-
position then the current frame's bindings are available in the

continuation. (See Fig. 2.4.)

AT

<

CT
BT
DT
AT

Figure 2.3: Invoking a target frame

Q
\4

A2

- < Y
—< ©

Cl
Bl
B

Al

Qe

3 AP D1

Al

\

Al

A2

Figure 2.4: A more complex action

Reductions in which one frame attempts to start another occur

in many situations. We call such a reduction a transaction between

the two frames. Transactions will be studied in greater detail
in section 3.

We distinguish four types of actions in the model. The first
two, composition and invocation, we have already explained. The

others are transmission and identification. An action of transmis-

sion is used to perform an action with an argument other than the
current datum. Transmission is typically used to call a subrou-
tine with an argument. The reduction for a transmission is shown
in Figure 2.5. An identification is used when the target frame is
known by name only. This typically occurs in a recursive call or
in interpreted code. The reduction for an identification is shown
in Fig. 2.6. In Figure 2.7, a subroutine, referred to by name,

is called with an argument from a frame. This typical programming

situation 1llustrates all four types of actions.

C C
s || 3
D i
<A TVS A

FPigure 2.5: Transmission

Q

H O w

Figure 2.6: Identification

s Bk

-a_+—< U w o

<L, V> ;R

I
g W
v w i vV O

__l__
=i =
bz o v R 5 o |

"

B2
D2

s 0 S oo B s H o |

A2

__T__—

W
=
o B o B o s I |

A2

Figure 2.7: Calling subroutine

I

with argument V

-] T

According to this picture, a computation is accomplished by
continually applying the four basic reduction rules, breaking down
the action of a frame into simpler and simpler subactions. Amidst
this vision of frames and actions endlessly dividing and subdividing,
one might easily ask: "When does any useful work get done?"

The simple answer is, of course, never. The problem is that
There is no provision for any frame to say: "The buck stops here!"
It is not sufficient at this point to say, "This only appears to
be what happens!" (for an infinite regress appears to terminate
only from the point of view of something like generalized computa-
bility [27] rather than the more conventional variety) or to appeal
to a lattice-theoretical bootstrap argument (the least fixed point
of Ax."undefined" is still "undefined"). What we have is an
induction argument without a base step, or a grammar missing ter-
minal productions, and the solution in either case is simple: add
what was missing.

We must, therefore, add something like the notion of an atomic
frame to the model. Again it is insufficient to say that some
frames will be executed by hardware, for there are at least two
quite distinct issues involved:

(1) What frames will the programmer regard as predefined?

(2) What frames will the implementor regard as predefined?

Qur answer to the first question determines what features will
be available to the programmer, while the second determines how
these features will be achieved.

In an exhaustively defined model, 1t 1s easy to confuse these

two issues: if one says "frame F dis atomic" then F 1is atomic

B

to all concerned. On the other hand, in an axiomatic system, one
can say, "There is a frame F which performs task T ." Whether
F 1is atomic, has the usual four components, or is some transcenden-
tal beast not explicitly describable in our terms is not specified
by this axiom, but the programmer has what he needs to know: what

F does. The implementor is then free to implement F as he sees
Lig:

There are, therefore, two notions which are confused in an
exhaustive model: the concept of an atomic frame, which is an imple-
mentation concept, and the concept of "a frame F which does task
T ," which is a semantic concept. In our model, we express doing
task T as a reduction: that is, corresponding to each such frame

there will be a set of reduction rules (one such rule is shown in

Fig. 2.8). We therefore call these axiomatic frames.

> — ct ot
B B! +h. B
D D! D
T A Al
:

frame-

for-

null-

action

Figure 2.8: Sample reduction rule for axiomatic frame

=) Y

We are now left with the task of finding a sufficient set of
axiomatic frames. Before giving an answer, it will be useful to
preview some of the tasks that our atomic frames will be called

upon to perform.

3. The Universality of Reduction

In the last section we saw two examples of the notion of reduc-
tion: to execute a frame (the antecedent) with a complex action,
we created another frame (the consequent) with a simpler action
and executed 1t instead. Reduction is a universal control primi-
tive: all known control flow/data flow regimes are expressible as
reductions. In this section we will describe some traditional pro-
gramming language constructs in terms of reductions in the frame
model.

To say that reduction is a universal control primitive is not
a strong contention. All it says is that for evefy nonfinal frame
F , there is a frame 6(F) such that F + 6(F) . 1In other words,
there is a set Q of frames (states of the model) and a "next
state" transition map 6:Q - Q@ ; that is, we have an infinite
automaton or information structure model [30]. Our improvement
is that ¢ becomes "well-structured": given the structure of the
frame F it is easy to compute &(F) . Just how easy will be
seen from the examples.

1. The Subroutine return. The subroutine is the current frame;
the caller to which the subroutine is trying to return is the target.
The action to be performed is the action of the target; since this

is a return the target's bindings are restored. The subroutine

B

returns its value by placing it as the datum of the consequent.
Last, a returning subroutine assumes that its caller knows how to
proceed further, so the continuation of the consequent is the tar-

get's continuation. This situation is summarized in Figure 3.1.

Current Target
C1 c2 c2
Bl B2 o B2
D1 D2 D1
Al A2 A2

Figure 3.1: Executing a return

Here the current frame is the antecedent and the target its
continuation, but this need not always be the case. For example,
this transaction also models the resume typical of backtracking
systems. There the current frame is the failed frame and the target
frame is the "next alternative" frame; everything about the failed
frame 1s forgotten except for the message (datum) it sends to the
next alternative. If the current frame were an iterator and the
target an iteration operator [7], then the datum returned could
include a frame for the consequent to call later on.

2. The subroutine call. The main program is the current frame;
the frame corresponding to the subroutine is the target. The action
to be performed is the action of the target. Since the subroutine

is to be invoked on the datum suggested by the main program, the

) R

datum of the consequent is the datum of the current frame. The
bindings of the consequent may be either the bindings of the target
(as in ALGOL) or the bindings of the current frame (as in LISP).+
The continuation of the consequent should be a frame which performs
the remainder of the task of the current frame. This reduction

is diagrammed in Figure 3.2.

Current Target Consequent
Cl c2 > Cl
Bl B2 Bl or B2 Bl
< N
D D2 D1 D1
Al A2 A2 Al%®
By o Fa Fy

Figure 3.2: Calling a subroutine

Hopefully at some point F3 will do a return to its continua-
tion, causing Fh (the remainder of the main program) to be instan-
tiated with the value of the subroutine as its datum, and allowing
the main program to continue. One sequence achieving a subroutine-
call reduction has already appeared as Figure 2.4.

We summarize the reductions so far in Figure 3.3. Here the

entry C or T means the component of the consequent is copiled

from the corresponding component of the current frame or the target

T These bindings are normally preceived as free variables or non-
locals [26]. The first task of the subroutine is to create an appro-
priate local binding by, say, evaluating its argument (the datum).

We view this as the task of the subroutine rather than the interpreter.
Typically a utility function is available for argument evaluation.

iy

frame, respectively; the entry C¥ indicates that a copy of a var-
lant of the entire current frame is inserted in the position. In
every case the action of the consequent is the action of the target
and the datum of the consequent is the datum of the current frame;
this is in keeping with the picture of the current frame trying to
"pass the buck" to the target frame. At this point enumerative

creativity becomes appropriate: what other combinations are possible?

Continuation Binding Datum Action Use
T T it & i return/resume
2. C¥* I G T call(ALGOL)
3. C¥ C e ' call(LISP)
b, 1 ¢ (& T ?
Figure 3.3: Table of transactions
Continuation Binding Datum Action Use
by, i 8 5 i goto
5. (3 m G L invocation (closed)
6. C 3 & T invocation (open)/macro
expansion/structured goto
i T & T T pure side-effect
8 i i I ik pure restart
. @ ¢ Ip T valueless call (open)
18 £ T T i valueless call (closed)

Figure 3.4: More transactions

For example, what are we to make of the fourth line in Figure
3.3? The current frame says to the target, "Go whither thou willt
goest, but do it with my variables!"™ This, too, is recognizable
as a familiar programming construct: the goto!

3. Invocation of a frame. As we have seen in Figure 2.4, the
transaction of calling a subroutine (as in Figure 3.2) may be
divided into two steps: a serial decomposition (Figure 2.2) and
the invocation of the subroutine's frame (Figure 2.3). The latter
is a transaction, so we add it as line 5 of Figure 3.4. In this
case, the current frame is the antecedent frame and the target is
the antecedent's action. Just as in the case of the return, the
same transaction may also occur in other situations. For example,
the action of the antecedent may refer to a frame not explicitly
but by an identifier (as is customary in interpreted languages).
In this case the target is found by referring to the current frame
bindings.

4. Open invocation. The invocation transaction just discussed
was one step in the ALGOL-style call. A similar invocation occurs
in the LISP-style call. Since the ALGOL-style invocation corres-
ponds to a lambda-calculus closure (an action with all free variab
bound), we distinguish this invocation (and the associated call)
by calling it open. Another occurrence of this transaction is as
a macro expansion: a pilece of code (the action of the target) to
be inserted in the current frame. Here most often the target is
referred to by an identifier in the action of the current frame.
This transaction also models the structured goto of Knuth [20]

or the "event" of [31], in which a piece of code, referred to by

=18

's

les

~-19-

name, is executed without modifying the stack (continuation).

5. Valueless transfers. Programming languages ever since
FORTRAN have distinguished between subalgorithms which return a
value and those that do not. 1In the frame model, these are modeled
by the transactions of lines 7 and 8 of Figure 3.4. Note that
these are distinet from so-called "null-valued" procedures, which
return a value from a data type consisting of a single element.
Similarly, one may propose "valueless calls" (lines 9 and 10).

Many other programming language constructs are modellable by
reductions as simple as the ones considered here. A frame may
cause a "side effect" by modifying the bindings of 1its continua-
tion prior to resuming it. The action of a subroutine typically
starts with a frame which creates the appropriate bindings for the
remainder of the action. (For example, it may evaluate its argu-
ments.) This is nothing more than an execution-time declaration.
Some of the information in a declaration may be processed prior
to executlon time; for example, identifiers occurring in actions
may be replaced by the frames to which they refer. This may be
done either at compile time or at load time (see, for example,
[6] on the possible subtleties). Compiled code typically insists
that all such "external references" be "resolved" prior to execu-
tion, while interpreted code generally relies on identifiers per-
sisting through execution. The frame model allows a systematic

study of such trade-offs.

4, Criteria for Axiomatic Frames

In section 3 we suggested that the "transition function" §

should be "well-structured." After reviewing the examples there,

i

we can propose at least one criterion for well-structuredness:
every reduction is expressible as a local transformation of the
top-level frame. The predefined reductions of section 2 were well-
structured, as were all of the transactions of section 3. This

suggests a necessity criterion for axiomatic frames: The effect

of every axiomatic frame must be describable as a local transfor-

mation of the top-level frame. This means that axiomatic frames

are describable in the same language (the language of finite dia-
grams) as the interpreter, and therefore the language is complete
EXls

This necessity criterion tells us what axiomatic frames are
permissable, but it does not tell us which of the permissable
axiomatic frames we should supply. On the other hand, the criter-
lon for well-structuredness does give us a clue. If every reduc-
tion is expressible as a local transformation of the top-level
frame, then if we capture all the (infinitely many) local trans-
formations, then we surely capture all the reductions. Therefore,

we can state a sufficiency criterion: A set of axiomatic frames

is adeguate if it allows the programmer to express every local

transformation.

This says that every transaction of every control structure
is equivalent (in a fairly transparent way) to a local rear-
rangement of a particular data structure.

There are many ways to choose an adequate set of axiomatic
frames. Each such set provides a set of initial states in which
one can write useful programs -- that is, a programming language.

Furthermore, all such languages "work the same way" -- they all

= |

rely on the same four basic reductions corresponding to the same
four kinds of actions. This explains the comment in the introduc-
tion that a semantic model describes a class of programming lan-
guages.

One way to obtain an adequate set of axiomatic frames is to
notice that the structure of frames is basically a product type
so that one may quickly write down one sufficient set of axiomatic
frames:

a. Constructors and selectors. For frames, we will have the
four obvious selectors and a constructor consframe. Our informal
syntax will be <consframe an-action a-datum a-binding a-continuation>
This syntax passes over the need for a convention for multiple-argument
transmissions and over the distinction between the identifier cons-
frame and the frame to which it is bound, neither of which are a
concern at this point.

b. Frames for evaluating arguments. Constructors and selectors
evaluate their arguments, which means that they are not immediately
describable iIn terms of local transformations. This may be solved
by introducing some axiomatic frames that evaluate lists of argu-
ments.

c. Predicates. Examination of the formal language of diagrams
suggests that our predicates fall into two classes. The first
is the class of "form-checkers" such as atom in LISP. The second
is the equality predicate. An analysis of the axioms in the formal
definition shows that it is sufficient to test equality only on
identifiers. Luckily, this axiomatic frame is describable directly
in terms of finite diagrams, while a more general equality opera-

tor would be much more difficult to formalize.

o s

d. Self-referential operators. This requirement seems well-
known to designers of real programming languages (CONNIVER, B&W),
but seems to have first been stated clearly in the theoretical
literature by Backus [1]. The problem is that a frame needs to
know where it is. In CONNIVER, for example, this task is accom-
plished by the function FRAME, and in RED's by "meta" operations.
In the frame model, for a frame to accomplish a reduction, it needs
fo obtain as a datum the current frame in order to decompose it.
We therefore need a self-referential atomic frame. There are var-
ious ways to perform self-reference; one choice, called callthis,
is diagrammed in Figure 4.1. An action of the form <callthis I>

is analogous to (SETQ I (FRAME)) in CONNIVER.

C C
B 1\ - B
D D
T A2 L c
B
D
<gallthis I>; A2
A2

Figure U4.1: Self-reference

e. Starting a new frame. Once having constructed a frame,
we have to get it started. This is easily accomplished by the

frame startframe, which not only constructs a frame with consframe

but also makes the resulting frame the consequent.

=PRL

Figure 4.2 shows the intended reduction for a simple SETQ-like

operation, and Figure 4.3 gives the action for a frame that performs

the operation.

(@ G
B > - }‘ > +B
> | A . A
! B 1. D'
T A2

<setq I I'™; A2

Figure 4.2: Goal for an assignment operator

<callthis x> ;<startframe<action<continuation x>>
<datum <continuation x>>
<addbinding <first<datum x>>
<eval <second <datum x>>>
<binding<continuation x>>>

<continuation<continuation x>>>

Figure 4.3: Action for setg

i

; C
B : a ¢
WP L | 2
I' D' setq e
nullframe
st TIoue | ,,
Y nullframe
initbind
<callthis x>;<startframe...> null¥al

<ecallthis x ; startframe...>

C

C = B

initbind B - +initbind D
L D ol a A2

| o [
¥

<callthis x>;<startframe...> <startframe...> | . . . " &

. initbind B

(E T2 D
Y A2

<gtartframe...:>

(5
+B
AN

Figure 4.4: Using self-reference with setq.

Figure 4.4 shows some of the reductions undertaken by the setg
frame. Clearly any local rearrangement can be coded in similar

fashion. This establishes the sufficiency of this set of axiomatic

frames.

=P

This is not the only adequate set of axiomatic frames. For
example, a somewhat more parsimonious set may be obtained by regard-
ing pattern matching as a primitive operation. The choice of axio-
matic frames 1s very much a choice of programming style.

Of course, to make any of these languages truly practical, there
are still many details to be ironed out -- an initial frame for
error handling, an initial binding in which some atomic frames are
bound to identifiers for use by programmers, and, of course, some
useful data like integers and characters--put with the choice of
axiomatic frames the semantic portion of the design task is essen-

tially finished.

5. Formal Definition Systems

Our discussion of the frame model has largely been in terms
of diagrams. If we seek a formal definition of the frame model,
there are several ways in which we may proceed. Although we do not
propose to give any formal definition here, it is worthwhile to
discuss some of the alternatives.

1. The obvious way in which to proceed is to give a rigorous
definition of the set of diagrams and of the relation "}F" . This
makes the set of diagrams a set of machine states and the relation
m." g (possibly nondeterministic) transition function. Under such

a view, this becomes what is known as an interpretive semantics.

We also classify this scheme as an exhaustive semantics, since it

attempts to specify a particular set of states and a particular
transitive funection. This is the niche into which the most popular

semantic models fall. The frame model enjoys the advantage over

=261

others in this category of having what we called a "well-structured"
transition function.

There are two classes of objections to this style of semantics.
The first objection is to the attempt to be exhaustive. We have
already suggested two of the pitfalls in exhaustiveness. It is
difficult, we argued in section 1, to be simultaneously exhaustive
and well-structured. Exhaustiveness also confuses the issue of
atomic frames. As we have intimated, we may replace exhuastive sys-
tems with axiomatic ones and avoid most of these difficulties.

There has been some work on axiomatic interpretive semantics,
notably [5].

A second objJection 1s that interpretive semantics lays too much
stress on how a computation works and not enough stress on the result
of the computation. According to this view, rather than dealing
with an infinite automaton (Q,8) , we should be dealing with a
model (L,V,u) consisting of a set L of programs, a set V of
values, and a function u:L - V (possibly partial or multivalued)
mapping a program to its result. This formulation 1s a variant
of that of Knuth [8,18,19], who called it "declarative" semantics;
supporters of automaton models call this a compiler-oriented seman-
tics, charging that all this scheme accomplishes is a compilation
from one language into another. The viability of this scheme has
been demonstrated only very recently, most notably in the work of
Scott et al. [28,29] (under the name of "mathematical" semantics)
and Backus. In the face of this display of synonymy, we adopt the
somewhat more value-free (no pun intended!) appellation "direct

semantics" for the (L,V,u) approach and its variations.

-

Both Scott and Backus deal with exhaustive direct semantics,
but axiomatic direct semantics is also possible, and is perhaps
the most attractive of the four possibilities. The most straight-
forward approach to axiomatic direct semantics is what we might
call the "first-order structure" approach. Conventionally, a first-
order structure S consists of a set and some functions, predi-
cates, and constants. If A 1is a class of formulas (in, say,
first-order logic), we say S 1is a model of A 1if every formula
of A 1is true in S8 . We may think of A as describing the
class M(A) of models of A . If the formulas in A are restricted
to certain forms, there are structure theorems that tell us about
the class M(A)

To apply this method to our case, we need to introduce the
notion of a many-typed structure. Instead of having a single set,
our structures will have several sets, one for each "type." 1In
our case, we would have sets of frames, bindings, data, and actions.
We would also have functions, predicates, and constants. A diagram
becomes a term in the language for such structures. For example,

the consequent of figure 2.2 is represented by the term
frame(frame(C,B,D,A2),B,D,Al)

where C 1is a frame-valued variable, B a binding-valued variable,
D a datum-valued variable, and Al and A2 action-valued variables.
In addition to these "constructor" functions we introduce a function

u:frames - data . Now, for each palr of terms Tl T, in the

definition, we introduce the universal closure of the formula

-28-

u(Tl) = U(Tg) as an axiom. Then an implementation of the frame model

is any model of the desctiption A

As 1t turns out, this procedure is needlessly general, since

all the formulas in A are of a very special form -- algebraic
identities -- and there is a body of mathematical techniques for
handling such identities -- categorical algebra, especially the

algebraic theories of Lawvere [21] and their extension to many-
typed theories [2,10]. In this system, the statement T, F T,
, Which asserts the equality of a

becomes the axiom WoT, = ot

1. 2
single pair of maps, rather than the equality of a large class of
palrs of elements as does the previous version. Furthefmore, the
structure theorems give a particularly good picture of M(A) ,
telling precisely how to go about building a model of A , and
in particular how to build a model and an interpretive semantics

wlth the property that if a computation gives a certain answer

in the model, it will give the same answer in every model (as it

turns out, almost every model of the frame model has this property).

For these reasons, categorical algebra will be used for the formal

definition of the frame model.

6. Positive and Normative Models

The last section discussed the technical alternatives for formal

definition schemes. In this section we willdiscuss some of the
design decisions In the frame model and compare them with similar
decisions in existing semantic models.

It was our intention to have the fewest reasonable number of

basic structures. On the other hand, if two things are habitually

29

treated differently, the model should not lump them together.

Thus, even though the continuation and the datum could be regarded
as parts of the binding, they are made separate because most trans-
actions treat them specially. Similarly, bindings are not frames.
To this extent the frame model is a positive model -- that is, it
tries to describe how computations really work.

In other respects the frame model is a normative model -- that
is, it tries to describe how computations ought to work. In this
respect it is somewhat rigid in rejecting distinctions which are
Judged to be implementation issues rather than semantic issues.

In this class we place the distinction between local and nonlocal
variables. The semantic issue for any frame is the entirety of

its bindings. If a frame wants to change another frame's bindings,
it must construct a new frame with the appropriate contents. We
have resisted the temptation to make what we think are unnatural
acts illegal —-- we have merely made them expensive.

We can now discuss the relation of the frame model to four
related systems, two more normative than ours and two more positive.
The model to which our intellectual debt is greatest is the impor-
tant PLANNERT73 or ACTOR model of Hewitt [11,15,16]. It is also
explicitly based on the "little man" metaphor. Its communication
is framed in terms of a "message sending" metaphor which is then
implemented in terms of reduction: "conceptually at least a new
actor is created every time a message is sent" [16, p. 155]. The
PLANNERT73 model has been criticized for being overly monotheistic
[3]; the frame model, because it aspires to positivity, makes some

distinctions which we believe are useful. In particular, the frame

model demonstrates that the useful control flow/data flow ideas
in PLANNER73 can be decoupled from its extensional (or "implieig")
data structures. Another feature of PLANNER73 which has caused
some confusion is the apparent lack of primitive actors. We believe
that our discussion of axiomatic and atomic frames will clarify
this issue.

Another model, to which our debt is not so immediately obvious,
1s the closed applicative language (CAL) model of Backus [1].
The intent of this model was to obtain a rigorously defined class
of languages by incliuding only a very small set of components.
Such a model is almost entirely normative. The frame model may be
thought of as extending the CAL model to make it more positive.
The frame model has adopted several important ideas from the CAL
model, most importantly the reduction metaphor (and the associated
trick for simulating interpretive semantics in a direct semantics).
Also from this model comes the notion of a class of languages that
behaves the same way (which we identify with the notion of model)
and the importance of self-reference.

A third model which resembles the frame model 1s the GLOSS
model of Herriott [12,13,14]. It shares our concern for perspicuity
and our emphasis on finite transformation of diagrams. On the basis
of the published material, GLOSS appears to be very much more posi-
tive and less normative than the frame model.

The frame model, the GLOSS model, and PLANNERT73 are all (in
lesser or greater measure) generalizations of the contour model
[17]. The contour model established the importance of finite dia-

grams as a mode of explication, and gave a clear discussion of the

creation of bindings from local and nonlocal segments. The frame
model modifies the contour model by making it more "democratic":
the contour discipline on bindings is eliminated, and binding,
datum, and continuation are separate and coequal. This choice

arises out of our more nomative intentions.

f. Conclusions

We have presented a semantic model of computation called the
frame model. We believe that the model is well-suited for discus-
sing semantic issues in programming languages, such as compllation
versus interpretation, the processing of declarations, and alter-
native schemes for coroutining. The frame model also clarifies
the relationship between models and programming languages. It
emphasizes the importance of the axiomatic approach and supplies
a criterion for axiomatic frames. We believe the frame model will
be useful not only for the study of semantics of particular pro-
gramming languages but also for the creation of new models and

languages in the future.

Typed by Christopher Charles

i

o

References

1. Backus, J. Programming language semantics and closed applica-
tive languages. Proc. 1lst ACM Symp. on Principles of Program-
ming Languages, Boston, 1973, pp. 71-86.

2. Benabou, J. Structures algebriques dans les categories. Cahiers
de Topologie et Geometrie Differentielle 10 (1973), 1-126.

3. Bobrow, D.G., and Raphael, B. New programming languages for
artificial intelligence research. Computing Surveys 6 (1974),
155174

4. Bobrow, D.G., and Wegbreit, B. A model and stack implementation
of multiple environments. Comm. ACM 16 (1973), 591-602.

5. Burstall, R.M. Formal description of program structure and
semantics in first-order logic. Machine Intelligence 5 (Meltzer
& Michie, Eds.), Edinburg University Press, 1970, pp. 79-98.

6. Earley, J. Naming Structure and Modularity in Programming Lan-

guages, University of California at Berkeley, Technical Report
No. 17.

Te =mmm—m——— . High level operations in automatic programming.
SIGPLAN Notices 9, 4 (1974), 34-42,

8. Fang, I. FOLDS, A Declarative Formal Language Definition System,

Stanford University Computer Science Report CS-72-329, 1972.

9. Friedman, D.P. The Little LISPer, Science Research Associates,
1974,

10. Goguen, J.A., and Thatcher, J.W. Initial algebra semantics.
Proc. 15th IEEE Conference on Switching and Automata Th., New
Orleans, 1974.

-33-

11. Greif, I., and Hewitt, C. Actor semantics of PLANNER-73. Proc.
2nd ACM Symp. on Principles of Programming Languages, Palo
Alto, 1975.

12. Herriot, Robert G. GLOSS: a semantic model of programming lan-
guages. SIGPLAN-SIGOPS Interface Meeting, Savannah, Georgia,
April 1973, SIGPLAN Notices 8, 9 (September, 1973).

13, =—— . GLOSS: a high level machine. ACM SIGPLAN-
SIGARCH Symposium on the High-level-language Computer Architec-
ture. University of Maryland, College Park, MD, November 1973,
SIGPLAN Notices 8, 11 (November, 1973).

14, ——mmmmmme . A uniform view of control structure in pro-
gramming languages. Proc. IFIP 74, 331-335.

15. Hewitt, C.; Bishop, P.; and Steiger, R. A universal modular
actor formalism for artificial intelligence. Proc. IJCAI 3,

San Francisco.

16. Hewitt, C., et al. Actor induction and meta-evaluation. Proec.
1st ACM Symp. on Principles of Programming Languages, Boston,
1973, 153-168.

17. Johnston, John B. The contour model of block structured pro-
cesses. SIGPLAN Notices 6, 2 (February, 1971).

18. Knuth, D.E. Semantics of context-free languages. Math Sys. Th.
2 (1968), 127-245,

19, e . Examples of formal semantics. Symp. on Semantics

of Algorithmic Languages, (E. Engeler, Ed.), Berlin, Springer
Verlag, 1971, pp. 212-235.

20, ———mmmme . Structured programming with GOTO statements. Com-
puting Surveys 6 (1974).

21

22

25

24,

25,

26.

2%

28.

29.

30.

31.

.

Lawvere, F.W. Functorial semantics of algebraic theories. Proec.
NAS USA 50 (1963), 869-872.

McDermott, D.V., and Sussman, G.J. The CONNIVER Reference Manual.
MIT Artificial Intelligence Memo No. 259A, 1974,

MacLane, S. Categories for the Working Mathematician, New York,

Springer-Verlag, 1971.

Minsky, M. A Framework for Representing Knowledge. MIT Arti-
ficial Intelligence Memo No. 306, June, 1974.

Papert, S.A. Teaching children to be mathematicians versus
teaching about mathematics. Int. J. Math. Educ. Sci. Technol.
3 (1972), 2h49-262.

Pratt, T. Programming Languages (to appear).

Rogers, H. Theory of Recursive Functions and Effective Comput-

ability, New York, McGraw-Hill, 1967.

Scott, D. Outline of a mathematical theory of computation.
Proc. dth Ann. Princeton Conf. oh Info. Sei. & 8ys.; 1970, 169~
176.

Scott, D., and Strachey, C. Toward a mathematical semantics for
computer languages. Computers and Automata, J. Fox (Ed.), New
York, Wiley, 1972, 19-46.

Wegner, P. Operational semantics of programming languages.
Proc. ACM Conf. on Proving Assertiong about Programs, Las Cruces,
1972, 128-141.

Zahn, C.T. A control statement for natural top-down structured
programming. Symp. on Programming Languages, Paris, 1974.

