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THE SIZE OF LR(O) MACHINES 

ABSTRACT: Simple formulas are given for estimating the size (number 

of ~~ates and transitions) of an LR(O) parser. The results for 

number of states also apply to the SLR(l) and LALR(l) parsers of 

DeGe~c~ . The formula3. which result from studyin~ the LR(O) machines 

f,)", .. • :)4 Dub l ished r~rarnrnars, have a n accuracy of about 10 oercent. 

'f"·ic results indlcate t hat for normal applications the number of 

staLes increases linearly with the size of the grammar. For example 

" f c:, :...s' ~ 
= 0 .620 - O. OOOlS ± 0.072 where Ds is the number of states and 

sis t he size of the grammar (the total length of the ri~ht sides 

plus the number of productions). Since there exist grammars for 

which the number of states of an LR(O) parser increases exponentially 

with the size of the grammar, the question of why the ~arser for nost 

nrartica~ ~rammars are so small is also considered. The results are 

~~erl to comonre the space for LR(O) parsers and weak precedence parsers. 
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Tt.J':'P.ODUCTION -- -· - ·---- ----- -----· 
DeRemer(l) has developed methods for buildin~ fast LR(k) type 

ar~er$ which usually have a much smaller number of states than those 

uilt by Knuth's(2) ori~inal al~or1thms. When comparing a parser 

1rorluced by DeRemer's method with one oroduced by another method, one 

mportant consideration is the amount of space required to store 

iach narser. 

Consider the followin~ set of grammars (similar to one found by 

,eynolds ( 3)) : 

R~Aiui 

A1-,c j Ai v j 

Ai-=,ciBiwi I dixi 

Bt_:,cjBiyij I dizi 

(1~ i~n) 

(1~1Ji!j~n) 

(1~1".=:n) 

( 1 ~ 1, j~ n), 

where R is the starting symbol, { A1 , Bi} are nonterminal symbols, 

and {ci, di, u
1

, vi, wi, xi, yij' z1 } are terminal symbols. These 

~rammars can be parsed hy the simple precedence method of Weber and 

wirth(4). Sirnole precedence method requires an amount of storage equal 

to that required to store the grammar plus about N
2 

bits where N is 

the number of symbols in the grammar. Thus the storage required to 

then 
th is O(n4 ) bits if a simple precedence parser is 

oarse grammar 

usecl. There is a trivial fast pars in~ method for this set of p.;rammars 

2 n) bits (the space for storing 
which can be stored in O(n lo~ 

a copy 

of th.e ~rammar). On the other hand an LR(O) parser for this grammar 

n 2 n has O( n? ) states and O(n? ) transitions. Therefore, the amount 

? n nf stn ra~e required 1s O(n? 1o~ n) bit~ tf the pRrser is stored in 

th<' way 1 nd.tca ted hy De Remer ( 1). 
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Although th~ above example shows that LR(k) oarsers can be 

very lar~e, empirical studies by DeRemer(l), by Hornin~ and LaForde 

(5), and by Anderson, Eve, and Hornin~ (6) show that SLR(l) parsers 

are usually of reasonable size. Furthermore Kemp(7) recently found 

a formula for the exact size of an LR(O) parser. Although his formula 

is extremely complex for the ~eneral case. it shows that certain 

~rammars have an LR(O) parser with no more states than 2 plus the 

length of the right sides of the productions. 

The algorithms of DeRemer build the finite control for a push· 

down automaton from any ~rammar. If the grammar is in the appropriat e 

class for the al~orithm then the control is deterministic. In this 

paper the resultinr, machine will often be called a parser even if it 

is not deterministic. Since the main potential application of LR(k) 

methods is for parsing programminr, languages, the main interest is 

in the SLR(l) and LALR(l) methods ~iven hy DeRemer (1). Since the 

control built by the LR(O) algorithm has nearly the same number of 

states as that built by the SLR(l) and the LALR(l) al~orithms, the 

formula for the size of LR(O) parsers can be used to estimate the 

size of SLR(l) and LALR(l) parsers. 

The results of this paper were obtained by first building parsers 

t o note t he ~eneral trend in their si~e as a function of various 

characteristic~ of their rrammar, then by doin~ a theoretical exam­

i nation of the al~orithms to identify which simole features of the 

~ramMRr rould bPst hP u~ed to nredict the size of the parser, ~nd 

r tn~lly t,y ~oin~ a statistical f1t to the data obta1ned by buil d1n~ 

~RrsPrs. This resu l tPd in very simple form,•l Rs for oredictin~ the 

~11 ~h~r of states with an accuracy of about 1 0 percent. This can be 
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cornnared with Kemp's (7) result, which 1~ exact, but which in ~eneral 

takes a considerable effort to comoute. 

The statistical results were obtained by considering 134 published 

~rammars, including 84 LALR(l) grammars. Additional details about 

these ~rammars are ~iven in the appendix. 

It is assumed that the ~rammars are reduced and that the starting 

symbol is not used on the right side of any production. 

Unlike Kemp(7) the formulas of this paper do not include the 

final state. Thus he always obtains one more state. 

The statistical results are summarized in table 1 where various 

quantities y have been fit to quantitities x usin~ a least squares fit 

to y 1 =a+ bxi + ei where ei is the 1th error. The standard error 

is (r e 2 I (n-2)) 112 wnere n is the number of data points. 
• 1 
~ 

The 

meaninR of the various symbols in the x and y columns are given in 

the following sections. 
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2. THE GRAMMAR FOREST 

To study the size of LR(O) parsers it is useful to represent the 

~rammar as a forest where there is a tree for each nonterminal. In 

the tree for any nonterminal A, each node on the ~th level can be 

reached by a unioue strin~ of symbols of len~th k (k~O) which is 

the first k symbols of the right side of one or more productions that 

has A as left side symbol. Each node on level k of the tree for A 

has a transition under each symbol x such that the strin~ used to 

reach the node followed by xis the same as the first k+l symbols 

of some production that has A as the left symbol. The number of 

arcs in the tree for A can easily be obtained by countin~ the 

length in symbols of each oroduction that has A on the left side, 

but omitting those symbols that make up an initial string that is the 

same as an initial string of some production of A that has already 

been counted. 

The augmented grammar is formed by addin~ symbol #1 (which Js 

not u~ed elsewhere in the prammar) to the ri~ht enct of the 1th 

production for each production in the ~rammar. This grammar is used 

in the construction of the parser. 
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3, NONDETERMINISTIC MACHINE 

As indicated by DeRemer(l) the nondeterministic machine can be 

built by building the forest for the augmented grammar, combining all 

the leaves into a single node, and for each node that has a transition 

under a nonterminal symbol add a transition under the empty symbol to 

the root of the tree for that nonterminal (omitting arcs connecting 

a node to itself). The root of the tree for the starting symbol 

becomes the initial state and the node formed from the leaves becomes 

the final state. 

The number of states, NS, and transitions, NT, are given by 

NS= NN + T 

NT= P + T + TN - RI 

where NN is the number of nonterminals, Tis the number of arcs in 

t~e ~rammar tree, Pis the number of productions, TN is the number 

of nonterminals arcs in the tree, and RI is the number of immediately 

left recurs\ve nonterminals. 

Since many properties of the parser can be estimated from the 

~~a~mar Rize , s, which is the number of productions plus the sum of 

the l~n~th of riv.ht sides of all productions, table 1 also contains 

r1ts to ~Sand NT in terms of S. 

For what follows it is useful to divide the status of the non­

determinisitc machine jnto two classe8. 

Oef1ntt1on: A Rtate that ar1sr~ from the root of a trPe (pxcPpt the 

trr>P f'nr the st~r·t ~:vmtiol) l::\ CRllNi a nonv!t·,1 st11t P. Any othrr ~tate 

1s called a vital state. 
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The no~vitaJ states are reached only by£ -transitions. The vital 

~ta~rs Rre never reach~d by an e-transttion. 
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4. DE~ERMINISTIC MACHINE 

The determ1njstic machine , which recognizes characteristic strin~s, 

can be built by a standard al~orithm which associates each set of 

states in the nondeterministic that can reach from the initial state 

with a state of the deterministic machine. Following DeRemer(l) , 

1owever, the state corresponding to the empty set and all transitions 

to it are omitted. When referrinr, to both the nondeterministic 

machine and to the deterministic machine , the states of the determin-

istic machine will often be called state sets to emphasize their 

relation to sets of states in the nondeterministic machine. 

Theorem: The machine producted by the above algorithm operat~ng 

on a nondeterministic machine produced by the preceding algoritms is 

a reduced machine. 

P~oof : The vital states in a state set determine which nonvital 

.;t.1.t ,,:; are in the state set. Also there j s onlv one final ~tat(• l;i-•e!=tu<5e 

of the unique symbols , 11 1 , whi ch cause transitions to the final stat e . 

~o~slder t wo distinct state sets of the deterministic machine neither 

of which i s the final state. Then there is a vjtal state in one set 

that j s not in the other. Consider the sequence that will cause the 

nondete rMinis tic machine to ~o from that state to the final state 

without followin~ any £-transitions. The same sequence will cause the 

determ1n1st1c machine to po from the state set containin~ that state 

to the final state set. No other state of the nondeterministic 

mach1nP will ~o to thr f1n~l statr unctPr the 8equence he1n~ considerPd 

0vrn 1r 1t f ol lows iwmc E -t1·;rnsittons. 1'h1r, follows because 1) thP 

·,~<'~ 1 ne> lia~ :1 t.rer strud,ure excPnt for the f -~. r·:lm,ition~ and the \'inal 

.. ,t·,t ,, . ;>) the la~;t svmbol of thr s rouenc-e (· · , ,,..1-1 1.:; of the form #1 ) 
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is used on only one transition in the mac~ine, 3) the £ -transitions 

to to the root of trees, and 4) a vital state can not be reached 

from Rn~ other state by an£ -transition. Point 2) implies a unique 

next to last state on the nath. Points 1) throu~h 3) imoly that any 

oath under the sequence must go throu~h the vital state under discussion 

and must ~et there without using any symbols of the sequence. Point 

4) 1mnl1es that at least one symbol must be read to get to that vital 

state from any other state. 

Since only one of the two state sets under discussion contains 

the state from the nonneterministic machine which can reach the final 

state with the selected sequence, the other state set can not reach 

the final state set under this sequence. Since all pairs of states 

can be distinguished the machine is reduced. 

As indicated by DeRemer(l) the machine built by this section 

needs some modification to produce a practical LR(O), SLR(l), or 

LALR(l) parser. We will not consider these algorithms e~ceot to 

remark that for those cases where the statistical formulas in table 1 

give accurate answers usin~ DeRemer's method will increase the 

number of states by about NN (the number of nonterminal symbols) and 

the number of transitions by the amount required for lookahead. If 

the methods of Aho and Ullman(8) are used, only the transitions are 

increased (by the amount required for lookahead). The results are 

directly comparable to those of Kemp(7) except that he counts one more 

state. 
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5, FACTORS AFFECTING THE SIZE OF THE PARSER 

The experimental data indicated that the number of state sets is 

about equal to the number of vital states. Considering what can 

happen with two v i tal states i and j, since 1 and j must both be in 

the final machine, one can have the followjng types of state sets: 

1) {1,J} , 2) {i}{j} , 3) {i}{i,j} , 4) {j}{1,j} and 5) {i}{j}{t,j} , 

where all states except 1 and J have been omitted from the sets. The 

first results in one state set from 1 and j. The last results in 

three. The remaining cases result in two. 

Generalizing these ideas to more than 2 states, the followin~ 

definitions for types of state sets are useful: 

simple: contains only one vi tal state. 

replacement: contains t wo or more vital states, includin~ at 
least one that does not appear in any other state set. 

simnle replacement: a replacement set that contains no more 
than one vital state which appears in another state set. 

other replacement: a replacement set that is not a simple 
replacement set. 

chain: a nonr eplacement state set that contains at least one 
v1tal state that anpears in no state set except those 
containin~ all the states of the chain state set. 

roMnlex: any other state set. 

Tf t he determinlstic machine has only simple states then it 

contains~+ 1 states (the numbPr of vital states). If it contains 

n com~ l ex states, then it contains no more than n + T + 1 states. 

Table 2 shows that most of the states in a machine are usually simole 

states and that simple replacement states make up a lar~e portion of 

the remainder. The machines hRve very few complex states. 

Define LA to he the set of all symbols which are the first symbol 

(in the au~mented ~rammar) of the right s1oe of ~ome nroduct1on with 
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A a~ ~~e left side. When A is a terminal symbol LA is empty. Then 

+ LA is the set of all symbols that are the first symhol of a strin~ 

derivable from A 1n one or more steps and L: is L+UA. A symbol A 

+ is left recursive if AtLA. 

The state set for the initial state or the deterministic machine 

is simnle. The transition from one state set under some symbol A 

will ~o to a simple state set if and only 1f the original state set 

contains exactly one state with a transition under the symbol A. 

A transition under some symbol A will go to a complex state set if 

and onlv if the ori~1nal state set contains two states with transitions 

under ft. there ~x1sts a state set (corresponding to a state in the 

reduced deterministic machine) with the first of these two states 

but not the second and there exists also a state set with the 

second state but not the first. 

To understand the relation between properties of the ~rammar and 

the types of state sets , it is useful to rephrase th~se results in 

a way that draws narticular attention to the vital states in a state 

+ set and wherP. thP. sPts of the tvoe LA are used to determine the 

t~~~~1t1~n ~~om t,hp nonv1t~l stRtPS 1n thP st~tP. SP.t. ~h1~ ~pproach 

oermits one to understand why a machine has mostly simple states 

~nd very few complex sta~es. 

The initial state set of the machine is simple. Also the state 

sets that are reached by transitions obeying the conditions in the 

rest of thts para~ranh are simplP. For any symbol A, if A causes a 

trans\tlon from one of thP vital states in the ~tate set, if A does 

not cause a trans1t1on from any other vital statPs in tt,e state set, 

and A ts not an element of L: for Rny symb~l B (oerhaps equal to A) 
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which causes a transition from a vital state in the state set, then 

the state set reached by a transition under A is simole. If A is 

a symbol that does not cause a transition for any vital state of the 

state set, but + A EL
8 

for some symbol B that does, then A causes 

a t~ansition to a simple state set unless there exists C, D, and E 

where C cau~As a transition for some vital state of the state set, 

n ~ F !'., E I+ F. I+ 
;s1 ,- ' ' 'B ' . E , C ' This includes all the ways 

R stmole state can be reached. It indicates why one might expect 

a lot of simple states hut also indicates that most machines will 

have some nonsimple states. 

The followin~ are the conditions that will cause a transition 

under a symbol A to go to a compl~x state. If A causes a 

transition both for some vital state i and for some other vital state 

j of a state set, and the machine also has a state set with 1 but 

not j, and one with j but not 1, then the state set reached by a 

transition under A is complex. If A causes a transition for some 

vital state 1 of a state set, + A e: 1
8 

with B I A where B causes 

a transtion for some other vital state j of the state set, the 

machine also has a state set with i but not j, and the machine has 

some other state with a transjtion under B, then the state set reached 

is comnlex. If A does not cause a transtion for any vital state, 

hut + A e: 1,
8 

where B noes, then if c causes a transition for some 

vital :~\,ate anct there exists D anct E w:1th A ELD, 

and + I· EL c then the state set reached by A j~ comnlex providin~ 

thP~r exists a statP set with a trans1t1on unoer n but not E and 

ont" w1 t. h a transit ion under F. but not D. 'l'hese arf> al 1 the 

condit~ons that cause transitions to complex state sets. Only the :ast 
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cond1tion can cause a transition f r om a simple state to a complex 

state. This is the condition that Revnolds(3) made extensive use of 

tn his ~rammar set. As tndicated by the above conditions, it takes 

rea! oerversity to ~et many comolex states into a ~rammar. 

Transitions from a simple state set under a left recursive 

syr.bol always leads to a replacement state set. If the symbol is 

immediately left recursive, the state set will be simple replacement . 

~~ese are the most imnor tant, but not t he only ways that a replace-

ment state set can be r eached. 

~or each recursive symbol there is at least one vital state 

(exactly one for immediately recursive symbols) that never occurs 

except with other vita l states, and those other vital states never 

occur without the state (s) associated with the recursive symbol. 

Thus for mach i nes with no complex state sets , the number of states, 

D
3 , obeys t he relation o

3
~ T + 1 - R where R is the number of 

recursive symbols. 

One may completely analyze a machine with the above methods 

by assumin~ the deterministic machine consists entirely of simple 

state sets. For each state set the vital state and its transitions 

can be determined immediately from the p,rammar forest. Usually the 

analysis will indicate that some vital states are combined into 

nonsimole state sets, and part of the analysis must be repeated for 

these state sets. One continues until no new state sets arise. For 

most r•rammars the analysis wi 11 conver~e rapidly. 

lf a machine had all simple states, the number of trans1t1on8, 

D~ . would be equal to Q where . 



Q = 
l=(vital states) 

LJ 
A causes 

a transition 
from state i 

where ILi indicates the number of elements in set L. If all 
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nonsimnle state sets contajn only vital states that do not appear 

in ot,P~ state sets, DT will be less than Q. Most other cases 

will cause DT to be ~reater than Q. One can calculate Q in 

* 0(T~) steos if an appropriate algorithm is used to calculate LA 

( See q) • 
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6. EXPERIMENTAL RESULT~ 

Table 1 gives several experimental results for the size of the 

deterministic machine. The number of states can be estimated with 

an error of 12% from just the grammar size. Usin~ T + 1 - R1 

oermits estirnatin~ the number of states for LALR(l) grammars with 

an error o~ only 5% (R
1 

was used rather than R because it is much 

<>risier to calculate). 

The simple estimates of the number of transitions from the 

~ra~mar size or vocabulary size give only a rou~h estimate of the 

ave~a~e number of trangitions per state. The data does not even 

r-;ive a clear indication of what function of S or N should be 

used . An examination of DT/DS vs. N for the LALR(l) data showed 

that D'I'/0
3 

increased rapidly for I~~ N~ 15, and much more slowly for 

N)l5. There were only 19 LALR(l) ~rammars with more than 15 

symbols. Fittin~ each region separately ~ave 

DT/DS = 0.998 + 0.113N ± 0.286 

DT/Ds = 2.183 + o.038N "± o.805 

(lt~N~15) 

(16~ N). 

The two results are equal for N just under 16. The other fits 

were examined on each set of LALR(l) grammars, but only DT/D8 vs. S 

rave si~nificantly different fits for the two reg1ons. The non-

LALR(l) 17.rammars all had 17 or less symbols so separate fits were 

not madP. for the two re~lom,. 

The Ast1matP of nT from Q was much better than those from the 

N ~nrl ~' but the error was Rtill bi~~er thAn that of the estimate 

frr thP numb0r of st~tr.R. Evidently thel't' :\ ~ R lot of variatton tn 

* the avera~e size of LA for various ~rammar~ 
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U3lni:s t,e d.::i.ta in tables 1 and '3 it is po::rn.tbl<-> to do a roup;h 

co~oar:son betwee~ th~ soace for LR(k) parser and precedence oarser 

(·~c~ as weak ore~P~e~ce (ln)). ~o store an LALR(l) oarser in the 

way tnuicated by DeRemer (1~nor1n~ the space for lookahead transitions 

and t~~ space saved by overlappin~ transition tables) requires about 

D~--::: T, NN · ... O. 5N, and T '_ 1. 4:J, this reduces to about 
) 2 

1. 9 !~ lop; 
2 

( 2 • 4 N + 0 • 0 6 N' ) + (LI • 8 N + 0 • 12 N ) 1 o g 
2 

( 1. 4 N ) b it s • If the 

looK~~ead and overlao effects are 1nc1udPd, my measurements indicate 

·~~t t~e ~17.e of t'le t:':1t·spr 'ls -r<'duc(>(' by ahout n f:lctor of?. 

For weak orecedence, tf the precedence matrjces are stored with 

no comoactin~, the required storaRe is S(lo~
2

N) + N(?N - NN) hits. 

UsinP' ~N ··· 0. 5N and S ~ 1 . 1 T ', 1. 6N, this reduces to ahout 

l.6N lor.2N + l.5N 2 bits . Thus for N tn the ran~e usually considered 

for parsers (a few hundred) the LR(k) method should take less storagP. 

If the f and p; functions of Floyd ( 1) are used for> and if< is ir,norf-d, 

then a weak precedence parser required ahout S(lo~?N) + (2N - NN)lo~2N 

tltR, whjch is about 3.lNlo~N bjts. Thus for N 1~ the ran~e of a few 

~undrect, this version of weak prpce~Pnc~ shoulrt rPouire somewhat less 

~tora~P, as~umin~ the techn~que wil! worY on thP rP0uirPd ~rR~mar. 

rn ~a~y cases thr stzP 0f the qrRmmar must be 1ncrP~sed to use weak 

r~Pcede~ce and thts effpct hns not hPPn considered 1n the above analyses. 

Th0sP results su~PPst that for larre LR(k) tvpe parsers a major 

rroblP~ ii; to f1nd ~ n0re pff1~lr·nt w·,v to store the trans1.tj,m table. 

rnP r- 0 P1od to <io J.1Hlr) n:-\~s1nr: w~t? • n :v1"11 t::lhle 1s to use r·:arly's(l?) 

..,,~0r~·J~I""!, but more v-:orl< 1s needer\ to sec·~,.. ' r.an be adantnl4 ".(' 

"~ortuce narsrrs wh1ch run as faot as those , ·~ed ~v DPRe~~r's w.ethod(l). 
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APPRNDIX: THE GRAMMAR 

The ~rammars for this study consist of all the published, reduced 

r.r~M~a~s frow a set of grammRrs selected to test the author's oarser 

rpner~~1n~ nro~raM except for the Al~ol 60 P,rammar(l1) (which ls too 

!~rue r0~ the current version of the parser buildin~ pro~ram) and the 

EXP(2) ~rammar(3) (which is an examole from a set of ~rammars for 

which the results of this paper do not hold). They were selected to 

include both a lar~e number of oro~ramminP, lan~uage ~rammars (to test 

the narser builder for its expected 1.rne) and a large number of p;rammars 

from articles on grammar theory (to find bu~s that would show up 

only under unusual conditions). The author feels that this same set 

of ~rammars should be useful for nrerlictin~ the size of oarsers and 

ror ind tcatin~ when the predict1 on formulas a.re not very accurate 

(bv causi np; large error terms) . 

~rom each source every reduced ~rammar that was presented in the 

rorMat of a context free ~rammar was selected (except EXP(2) in (3)). 

If the start symbol was used on the left, a new start symbol and 

production of the form 

wa~ ·1dclf'Cl where ;, waf; thf' old ntart symbol and s
0 

was not used in 

the ori~innl ~rammar. If the rcsulttn~ parser reauired lookahead 

oast the final statP, the 1n1tial oroduction 

s
0 
~ s I 

wa:; ,H!ded im,teact (where # was n0t used ln the orip;inal grammar). 

~~en d•lt'llcnte p;rammnrs were found, only the "lr~t published one 

w.1:; retrt inect. 



18 

The sources of the grammars were DeRemer(l), 6 grammars; Early(l2 ) , 

12 ~rammars; Floyd(ll), 2 grammars; Floyd(l4), I~ grammars: Griffith 

and Petr1ck(l5), 11 grammars; Hopcroft and Ullman(l6), 31 grammars; 

Korenjak(l7), 1 grammar; Knuth(2), 10 ~rammars; McKeeman, Horning 

and Wortman(l8), q4 ~rammars; Pager(l9), 1 grammar; Williams(20), 

r. ~ra~mars; Wirth and Weber(4), 2 grammars; and Wise(21), 1 ~rammar. 

The ~rammars of Wirth and Wber(4~ were modified by addin~ to 

the end or each production that had non null semantics a nonterminal 

of the form Pi and a production Pi+€. The ... 'sin the ~rammar 

or ~cKeeman. Horning. qnd Wortman(18) were i~nored. 

Some of the characteristics of the grammar set are ~iven in table 3. 

The non-LALR(l) grammars included only one grammar with more than 15 

svmbols (it had 17). There were 4 grammars with 30 to 70 symbols and 

4 r.rammars with more than 70 symbols. The lack of numerous large 

rr1m~~rs was probably the main draw back to the data used for this 

stu1y. ~he few lar~e ~rammars cttd, however, have a major effect 

on the slope of the f1ts. 
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I Summary of Results 

x y a b standard case 
error 

s NS/x 0.810 -0.00009 +0.087 J\LL 
0.816 -0.00002 +0.080 LALR(l) 

s NT/x 1.221~ 0.0004 +0.103 ALL 
i 1.224 0.0004 +0.093 LALR(l) 
I 

Is I 

DS/x 0.620 I -0.0001 :!:_0.073 ALL 
' 

l 0.6?.4 -0.0001 +0.068 LALR(l) 
I 

T+l-RI n3/x 0.983 0.00008 +0.072 ALL 
0.977 0.00002 :!:_0.050 LALR(l) 

s DT/DS 1. 779 0.014 +0.6'-18 ALL 
1. 778 0.014 :!:_0.647 LALR(l) 

-
N DT/DS 1. 723 0.042 :!:_0.581 ALL 

f 1.677 0.043 :!:_0.516 LALR(l) 
I 
I 

IN 1/2 DT/DS 0.363 0.582 :!:_0.587 ALL 

I 
I 
1 0.192 0.611 :!:_0.485 LALR(l) 
I 
I 

'Q DT/x 1. n5c:; I -0.00007 +0.171 /\LL 
I 

I 1. 014 I -0.00006 +0.114 LALR(l) I 

IN 
I I -

--
T/x 1.5~0.002 +o.687 ALL 

1.376 0.003 +0.162 LALR(l) 

Table 1. Least squares fit of y1 =a+ bx1 + e1 where e1 
is an error term to 134 p;ramrnars and to f:.11 :..ALR(l) grammars. 



I Types of States All Grammars LALR(l) 

Simple 2835 2190 

Simple Replacement 447 359 

Other Replacement 7 5 

Chain 42 7 

Complex 10 7 

TOTAL 3341 2568 

Table 2. The number of states of various types from 
the machine built with the test grammars. 

20 
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LALR(l) 
Properties of the Grammars All N~l5 N>l5 Max. (Grammar) 

Number of grammars 134 65 19 

Number of terminal symbols 922 299 437 77(Euler(4) ) 

Number of nonterminal symbols 949 254 466 128(Euler(4)) 

Number immediately left re- 153 37 89 2l(Algo1(17)) 
cursive symbols 

Number of productions 1693 442 838 170(Algo1(17)) 

Length of productions 3332 815 1645 323(Algol(l7)) 

Tree length 3049 761 1556 310(Algol(l7)) 

Table 3, The number of various items used in the grammars and 
the maximum valu~ for any ~rammar. 
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