
!i~JETI~E

TECHNICAL REPORT No, 2 _..,,
THE SIZE OF LR(O) MACHINES

PAUL WALTON PURDOM JR.

INDIANA UNIVERSITY
LIBRARIES

BLOOMINGTON

,a1n • u. l L~ ... c.i. :i.

TECHNICAL REPORT No, 2
/'

THE SIZE OF LR(O) MACHINES

PAUL WALTON PuRDnM JR.

Sn!N
QA
7h
.I f1S
no.z.

THE SIZE OF LR(O) MACHINES

ABSTRACT: Simple formulas are given for estimating the size (number

of ~~ates and transitions) of an LR(O) parser. The results for

number of states also apply to the SLR(l) and LALR(l) parsers of

DeGe~c~ . The formula3. which result from studyin~ the LR(O) machines

f,)", .. • :)4 Dub l ished r~rarnrnars, have a n accuracy of about 10 oercent.

'f"·ic results indlcate t hat for normal applications the number of

staLes increases linearly with the size of the grammar. For example

" f c:, :...s' ~
= 0 .620 - O. OOOlS ± 0.072 where Ds is the number of states and

sis t he size of the grammar (the total length of the ri~ht sides

plus the number of productions). Since there exist grammars for

which the number of states of an LR(O) parser increases exponentially

with the size of the grammar, the question of why the ~arser for nost

nrartica~ ~rammars are so small is also considered. The results are

~~erl to comonre the space for LR(O) parsers and weak precedence parsers.

2

Tt.J':'P.ODUCTION -- -· - ·---- ----- -----·
DeRemer(l) has developed methods for buildin~ fast LR(k) type

ar~er$ which usually have a much smaller number of states than those

uilt by Knuth's(2) ori~inal al~or1thms. When comparing a parser

1rorluced by DeRemer's method with one oroduced by another method, one

mportant consideration is the amount of space required to store

iach narser.

Consider the followin~ set of grammars (similar to one found by

,eynolds (3)) :

R~Aiui

A1-,c j Ai v j

Ai-=,ciBiwi I dixi

Bt_:,cjBiyij I dizi

(1~ i~n)

(1~1Ji!j~n)

(1~1".=:n)

(1 ~ 1, j~ n),

where R is the starting symbol, { A1 , Bi} are nonterminal symbols,

and {ci, di, u
1

, vi, wi, xi, yij' z1 } are terminal symbols. These

~rammars can be parsed hy the simple precedence method of Weber and

wirth(4). Sirnole precedence method requires an amount of storage equal

to that required to store the grammar plus about N
2

bits where N is

the number of symbols in the grammar. Thus the storage required to

then
th is O(n4) bits if a simple precedence parser is

oarse grammar

usecl. There is a trivial fast pars in~ method for this set of p.;rammars

2 n) bits (the space for storing
which can be stored in O(n lo~

a copy

of th.e ~rammar). On the other hand an LR(O) parser for this grammar

n 2 n has O(n?) states and O(n?) transitions. Therefore, the amount

? n nf stn ra~e required 1s O(n? 1o~ n) bit~ tf the pRrser is stored in

th<' way 1 nd.tca ted hy De Remer (1).

3

Although th~ above example shows that LR(k) oarsers can be

very lar~e, empirical studies by DeRemer(l), by Hornin~ and LaForde

(5), and by Anderson, Eve, and Hornin~ (6) show that SLR(l) parsers

are usually of reasonable size. Furthermore Kemp(7) recently found

a formula for the exact size of an LR(O) parser. Although his formula

is extremely complex for the ~eneral case. it shows that certain

~rammars have an LR(O) parser with no more states than 2 plus the

length of the right sides of the productions.

The algorithms of DeRemer build the finite control for a push·

down automaton from any ~rammar. If the grammar is in the appropriat e

class for the al~orithm then the control is deterministic. In this

paper the resultinr, machine will often be called a parser even if it

is not deterministic. Since the main potential application of LR(k)

methods is for parsing programminr, languages, the main interest is

in the SLR(l) and LALR(l) methods ~iven hy DeRemer (1). Since the

control built by the LR(O) algorithm has nearly the same number of

states as that built by the SLR(l) and the LALR(l) al~orithms, the

formula for the size of LR(O) parsers can be used to estimate the

size of SLR(l) and LALR(l) parsers.

The results of this paper were obtained by first building parsers

t o note t he ~eneral trend in their si~e as a function of various

characteristic~ of their rrammar, then by doin~ a theoretical exam­

i nation of the al~orithms to identify which simole features of the

~ramMRr rould bPst hP u~ed to nredict the size of the parser, ~nd

r tn~lly t,y ~oin~ a statistical f1t to the data obta1ned by buil d1n~

~RrsPrs. This resu l tPd in very simple form,•l Rs for oredictin~ the

~11 ~h~r of states with an accuracy of about 1 0 percent. This can be

4

cornnared with Kemp's (7) result, which 1~ exact, but which in ~eneral

takes a considerable effort to comoute.

The statistical results were obtained by considering 134 published

~rammars, including 84 LALR(l) grammars. Additional details about

these ~rammars are ~iven in the appendix.

It is assumed that the ~rammars are reduced and that the starting

symbol is not used on the right side of any production.

Unlike Kemp(7) the formulas of this paper do not include the

final state. Thus he always obtains one more state.

The statistical results are summarized in table 1 where various

quantities y have been fit to quantitities x usin~ a least squares fit

to y 1 =a+ bxi + ei where ei is the 1th error. The standard error

is (r e 2 I (n-2)) 112 wnere n is the number of data points.
• 1
~

The

meaninR of the various symbols in the x and y columns are given in

the following sections.

5

2. THE GRAMMAR FOREST

To study the size of LR(O) parsers it is useful to represent the

~rammar as a forest where there is a tree for each nonterminal. In

the tree for any nonterminal A, each node on the ~th level can be

reached by a unioue strin~ of symbols of len~th k (k~O) which is

the first k symbols of the right side of one or more productions that

has A as left side symbol. Each node on level k of the tree for A

has a transition under each symbol x such that the strin~ used to

reach the node followed by xis the same as the first k+l symbols

of some production that has A as the left symbol. The number of

arcs in the tree for A can easily be obtained by countin~ the

length in symbols of each oroduction that has A on the left side,

but omitting those symbols that make up an initial string that is the

same as an initial string of some production of A that has already

been counted.

The augmented grammar is formed by addin~ symbol #1 (which Js

not u~ed elsewhere in the prammar) to the ri~ht enct of the 1th

production for each production in the ~rammar. This grammar is used

in the construction of the parser.

6

3, NONDETERMINISTIC MACHINE

As indicated by DeRemer(l) the nondeterministic machine can be

built by building the forest for the augmented grammar, combining all

the leaves into a single node, and for each node that has a transition

under a nonterminal symbol add a transition under the empty symbol to

the root of the tree for that nonterminal (omitting arcs connecting

a node to itself). The root of the tree for the starting symbol

becomes the initial state and the node formed from the leaves becomes

the final state.

The number of states, NS, and transitions, NT, are given by

NS= NN + T

NT= P + T + TN - RI

where NN is the number of nonterminals, Tis the number of arcs in

t~e ~rammar tree, Pis the number of productions, TN is the number

of nonterminals arcs in the tree, and RI is the number of immediately

left recurs\ve nonterminals.

Since many properties of the parser can be estimated from the

~~a~mar Rize , s, which is the number of productions plus the sum of

the l~n~th of riv.ht sides of all productions, table 1 also contains

r1ts to ~Sand NT in terms of S.

For what follows it is useful to divide the status of the non­

determinisitc machine jnto two classe8.

Oef1ntt1on: A Rtate that ar1sr~ from the root of a trPe (pxcPpt the

trr>P f'nr the st~r·t ~:vmtiol) l::\ CRllNi a nonv!t·,1 st11t P. Any othrr ~tate

1s called a vital state.

7

The no~vitaJ states are reached only by£ -transitions. The vital

~ta~rs Rre never reach~d by an e-transttion.

8

4. DE~ERMINISTIC MACHINE

The determ1njstic machine , which recognizes characteristic strin~s,

can be built by a standard al~orithm which associates each set of

states in the nondeterministic that can reach from the initial state

with a state of the deterministic machine. Following DeRemer(l) ,

1owever, the state corresponding to the empty set and all transitions

to it are omitted. When referrinr, to both the nondeterministic

machine and to the deterministic machine , the states of the determin-

istic machine will often be called state sets to emphasize their

relation to sets of states in the nondeterministic machine.

Theorem: The machine producted by the above algorithm operat~ng

on a nondeterministic machine produced by the preceding algoritms is

a reduced machine.

P~oof : The vital states in a state set determine which nonvital

.;t.1.t ,,:; are in the state set. Also there j s onlv one final ~tat(• l;i-•e!=tu<5e

of the unique symbols , 11 1 , whi ch cause transitions to the final stat e .

~o~slder t wo distinct state sets of the deterministic machine neither

of which i s the final state. Then there is a vjtal state in one set

that j s not in the other. Consider the sequence that will cause the

nondete rMinis tic machine to ~o from that state to the final state

without followin~ any £-transitions. The same sequence will cause the

determ1n1st1c machine to po from the state set containin~ that state

to the final state set. No other state of the nondeterministic

mach1nP will ~o to thr f1n~l statr unctPr the 8equence he1n~ considerPd

0vrn 1r 1t f ol lows iwmc E -t1·;rnsittons. 1'h1r, follows because 1) thP

·,~<'~ 1 ne> lia~ :1 t.rer strud,ure excPnt for the f -~. r·:lm,ition~ and the \'inal

.. ,t·,t ,, . ;>) the la~;t svmbol of thr s rouenc-e (· · , ,,..1-1 1.:; of the form #1)

9

is used on only one transition in the mac~ine, 3) the £ -transitions

to to the root of trees, and 4) a vital state can not be reached

from Rn~ other state by an£ -transition. Point 2) implies a unique

next to last state on the nath. Points 1) throu~h 3) imoly that any

oath under the sequence must go throu~h the vital state under discussion

and must ~et there without using any symbols of the sequence. Point

4) 1mnl1es that at least one symbol must be read to get to that vital

state from any other state.

Since only one of the two state sets under discussion contains

the state from the nonneterministic machine which can reach the final

state with the selected sequence, the other state set can not reach

the final state set under this sequence. Since all pairs of states

can be distinguished the machine is reduced.

As indicated by DeRemer(l) the machine built by this section

needs some modification to produce a practical LR(O), SLR(l), or

LALR(l) parser. We will not consider these algorithms e~ceot to

remark that for those cases where the statistical formulas in table 1

give accurate answers usin~ DeRemer's method will increase the

number of states by about NN (the number of nonterminal symbols) and

the number of transitions by the amount required for lookahead. If

the methods of Aho and Ullman(8) are used, only the transitions are

increased (by the amount required for lookahead). The results are

directly comparable to those of Kemp(7) except that he counts one more

state.

10

5, FACTORS AFFECTING THE SIZE OF THE PARSER

The experimental data indicated that the number of state sets is

about equal to the number of vital states. Considering what can

happen with two v i tal states i and j, since 1 and j must both be in

the final machine, one can have the followjng types of state sets:

1) {1,J} , 2) {i}{j} , 3) {i}{i,j} , 4) {j}{1,j} and 5) {i}{j}{t,j} ,

where all states except 1 and J have been omitted from the sets. The

first results in one state set from 1 and j. The last results in

three. The remaining cases result in two.

Generalizing these ideas to more than 2 states, the followin~

definitions for types of state sets are useful:

simple: contains only one vi tal state.

replacement: contains t wo or more vital states, includin~ at
least one that does not appear in any other state set.

simnle replacement: a replacement set that contains no more
than one vital state which appears in another state set.

other replacement: a replacement set that is not a simple
replacement set.

chain: a nonr eplacement state set that contains at least one
v1tal state that anpears in no state set except those
containin~ all the states of the chain state set.

roMnlex: any other state set.

Tf t he determinlstic machine has only simple states then it

contains~+ 1 states (the numbPr of vital states). If it contains

n com~ l ex states, then it contains no more than n + T + 1 states.

Table 2 shows that most of the states in a machine are usually simole

states and that simple replacement states make up a lar~e portion of

the remainder. The machines hRve very few complex states.

Define LA to he the set of all symbols which are the first symbol

(in the au~mented ~rammar) of the right s1oe of ~ome nroduct1on with

11

A a~ ~~e left side. When A is a terminal symbol LA is empty. Then

+ LA is the set of all symbols that are the first symhol of a strin~

derivable from A 1n one or more steps and L: is L+UA. A symbol A

+ is left recursive if AtLA.

The state set for the initial state or the deterministic machine

is simnle. The transition from one state set under some symbol A

will ~o to a simple state set if and only 1f the original state set

contains exactly one state with a transition under the symbol A.

A transition under some symbol A will go to a complex state set if

and onlv if the ori~1nal state set contains two states with transitions

under ft. there ~x1sts a state set (corresponding to a state in the

reduced deterministic machine) with the first of these two states

but not the second and there exists also a state set with the

second state but not the first.

To understand the relation between properties of the ~rammar and

the types of state sets , it is useful to rephrase th~se results in

a way that draws narticular attention to the vital states in a state

+ set and wherP. thP. sPts of the tvoe LA are used to determine the

t~~~~1t1~n ~~om t,hp nonv1t~l stRtPS 1n thP st~tP. SP.t. ~h1~ ~pproach

oermits one to understand why a machine has mostly simple states

~nd very few complex sta~es.

The initial state set of the machine is simple. Also the state

sets that are reached by transitions obeying the conditions in the

rest of thts para~ranh are simplP. For any symbol A, if A causes a

trans\tlon from one of thP vital states in the ~tate set, if A does

not cause a trans1t1on from any other vital statPs in tt,e state set,

and A ts not an element of L: for Rny symb~l B (oerhaps equal to A)

12

which causes a transition from a vital state in the state set, then

the state set reached by a transition under A is simole. If A is

a symbol that does not cause a transition for any vital state of the

state set, but + A EL
8

for some symbol B that does, then A causes

a t~ansition to a simple state set unless there exists C, D, and E

where C cau~As a transition for some vital state of the state set,

n ~ F !'., E I+ F. I+
;s1 ,- ' ' 'B ' . E , C ' This includes all the ways

R stmole state can be reached. It indicates why one might expect

a lot of simple states hut also indicates that most machines will

have some nonsimple states.

The followin~ are the conditions that will cause a transition

under a symbol A to go to a compl~x state. If A causes a

transition both for some vital state i and for some other vital state

j of a state set, and the machine also has a state set with 1 but

not j, and one with j but not 1, then the state set reached by a

transition under A is complex. If A causes a transition for some

vital state 1 of a state set, + A e: 1
8

with B I A where B causes

a transtion for some other vital state j of the state set, the

machine also has a state set with i but not j, and the machine has

some other state with a transjtion under B, then the state set reached

is comnlex. If A does not cause a transtion for any vital state,

hut + A e: 1,
8

where B noes, then if c causes a transition for some

vital :~\,ate anct there exists D anct E w:1th A ELD,

and + I· EL c then the state set reached by A j~ comnlex providin~

thP~r exists a statP set with a trans1t1on unoer n but not E and

ont" w1 t. h a transit ion under F. but not D. 'l'hese arf> al 1 the

condit~ons that cause transitions to complex state sets. Only the :ast

13

cond1tion can cause a transition f r om a simple state to a complex

state. This is the condition that Revnolds(3) made extensive use of

tn his ~rammar set. As tndicated by the above conditions, it takes

rea! oerversity to ~et many comolex states into a ~rammar.

Transitions from a simple state set under a left recursive

syr.bol always leads to a replacement state set. If the symbol is

immediately left recursive, the state set will be simple replacement .

~~ese are the most imnor tant, but not t he only ways that a replace-

ment state set can be r eached.

~or each recursive symbol there is at least one vital state

(exactly one for immediately recursive symbols) that never occurs

except with other vita l states, and those other vital states never

occur without the state (s) associated with the recursive symbol.

Thus for mach i nes with no complex state sets , the number of states,

D
3 , obeys t he relation o

3
~ T + 1 - R where R is the number of

recursive symbols.

One may completely analyze a machine with the above methods

by assumin~ the deterministic machine consists entirely of simple

state sets. For each state set the vital state and its transitions

can be determined immediately from the p,rammar forest. Usually the

analysis will indicate that some vital states are combined into

nonsimole state sets, and part of the analysis must be repeated for

these state sets. One continues until no new state sets arise. For

most r•rammars the analysis wi 11 conver~e rapidly.

lf a machine had all simple states, the number of trans1t1on8,

D~ . would be equal to Q where .

Q =
l=(vital states)

LJ
A causes

a transition
from state i

where ILi indicates the number of elements in set L. If all

14

nonsimnle state sets contajn only vital states that do not appear

in ot,P~ state sets, DT will be less than Q. Most other cases

will cause DT to be ~reater than Q. One can calculate Q in

* 0(T~) steos if an appropriate algorithm is used to calculate LA

(See q) •

15

6. EXPERIMENTAL RESULT~

Table 1 gives several experimental results for the size of the

deterministic machine. The number of states can be estimated with

an error of 12% from just the grammar size. Usin~ T + 1 - R1

oermits estirnatin~ the number of states for LALR(l) grammars with

an error o~ only 5% (R
1

was used rather than R because it is much

<>risier to calculate).

The simple estimates of the number of transitions from the

~ra~mar size or vocabulary size give only a rou~h estimate of the

ave~a~e number of trangitions per state. The data does not even

r-;ive a clear indication of what function of S or N should be

used . An examination of DT/DS vs. N for the LALR(l) data showed

that D'I'/0
3

increased rapidly for I~~ N~ 15, and much more slowly for

N)l5. There were only 19 LALR(l) ~rammars with more than 15

symbols. Fittin~ each region separately ~ave

DT/DS = 0.998 + 0.113N ± 0.286

DT/Ds = 2.183 + o.038N "± o.805

(lt~N~15)

(16~ N).

The two results are equal for N just under 16. The other fits

were examined on each set of LALR(l) grammars, but only DT/D8 vs. S

rave si~nificantly different fits for the two reg1ons. The non-

LALR(l) 17.rammars all had 17 or less symbols so separate fits were

not madP. for the two re~lom,.

The Ast1matP of nT from Q was much better than those from the

N ~nrl ~' but the error was Rtill bi~~er thAn that of the estimate

frr thP numb0r of st~tr.R. Evidently thel't' :\ ~ R lot of variatton tn

* the avera~e size of LA for various ~rammar~

16

U3lni:s t,e d.::i.ta in tables 1 and '3 it is po::rn.tbl<-> to do a roup;h

co~oar:son betwee~ th~ soace for LR(k) parser and precedence oarser

(·~c~ as weak ore~P~e~ce (ln)). ~o store an LALR(l) oarser in the

way tnuicated by DeRemer (1~nor1n~ the space for lookahead transitions

and t~~ space saved by overlappin~ transition tables) requires about

D~--::: T, NN · ... O. 5N, and T '_ 1. 4:J, this reduces to about
) 2

1. 9 !~ lop;
2

(2 • 4 N + 0 • 0 6 N') + (LI • 8 N + 0 • 12 N) 1 o g
2

(1. 4 N) b it s • If the

looK~~ead and overlao effects are 1nc1udPd, my measurements indicate

·~~t t~e ~17.e of t'le t:':1t·spr 'ls -r<'duc(>(' by ahout n f:lctor of?.

For weak orecedence, tf the precedence matrjces are stored with

no comoactin~, the required storaRe is S(lo~
2

N) + N(?N - NN) hits.

UsinP' ~N ··· 0. 5N and S ~ 1 . 1 T ', 1. 6N, this reduces to ahout

l.6N lor.2N + l.5N 2 bits . Thus for N tn the ran~e usually considered

for parsers (a few hundred) the LR(k) method should take less storagP.

If the f and p; functions of Floyd (1) are used for> and if< is ir,norf-d,

then a weak precedence parser required ahout S(lo~?N) + (2N - NN)lo~2N

tltR, whjch is about 3.lNlo~N bjts. Thus for N 1~ the ran~e of a few

~undrect, this version of weak prpce~Pnc~ shoulrt rPouire somewhat less

~tora~P, as~umin~ the techn~que wil! worY on thP rP0uirPd ~rR~mar.

rn ~a~y cases thr stzP 0f the qrRmmar must be 1ncrP~sed to use weak

r~Pcede~ce and thts effpct hns not hPPn considered 1n the above analyses.

Th0sP results su~PPst that for larre LR(k) tvpe parsers a major

rroblP~ ii; to f1nd ~ n0re pff1~lr·nt w·,v to store the trans1.tj,m table.

rnP r- 0 P1od to <io J.1Hlr) n:-\~s1nr: w~t? • n :v1"11 t::lhle 1s to use r·:arly's(l?)

..,,~0r~·J~I""!, but more v-:orl< 1s needer\ to sec·~,.. ' r.an be adantnl4 ".('

"~ortuce narsrrs wh1ch run as faot as those , ·~ed ~v DPRe~~r's w.ethod(l).

17

APPRNDIX: THE GRAMMAR

The ~rammars for this study consist of all the published, reduced

r.r~M~a~s frow a set of grammRrs selected to test the author's oarser

rpner~~1n~ nro~raM except for the Al~ol 60 P,rammar(l1) (which ls too

!~rue r0~ the current version of the parser buildin~ pro~ram) and the

EXP(2) ~rammar(3) (which is an examole from a set of ~rammars for

which the results of this paper do not hold). They were selected to

include both a lar~e number of oro~ramminP, lan~uage ~rammars (to test

the narser builder for its expected 1.rne) and a large number of p;rammars

from articles on grammar theory (to find bu~s that would show up

only under unusual conditions). The author feels that this same set

of ~rammars should be useful for nrerlictin~ the size of oarsers and

ror ind tcatin~ when the predict1 on formulas a.re not very accurate

(bv causi np; large error terms) .

~rom each source every reduced ~rammar that was presented in the

rorMat of a context free ~rammar was selected (except EXP(2) in (3)).

If the start symbol was used on the left, a new start symbol and

production of the form

wa~ ·1dclf'Cl where ;, waf; thf' old ntart symbol and s
0

was not used in

the ori~innl ~rammar. If the rcsulttn~ parser reauired lookahead

oast the final statP, the 1n1tial oroduction

s
0
~ s I

wa:; ,H!ded im,teact (where # was n0t used ln the orip;inal grammar).

~~en d•lt'llcnte p;rammnrs were found, only the "lr~t published one

w.1:; retrt inect.

18

The sources of the grammars were DeRemer(l), 6 grammars; Early(l2) ,

12 ~rammars; Floyd(ll), 2 grammars; Floyd(l4), I~ grammars: Griffith

and Petr1ck(l5), 11 grammars; Hopcroft and Ullman(l6), 31 grammars;

Korenjak(l7), 1 grammar; Knuth(2), 10 ~rammars; McKeeman, Horning

and Wortman(l8), q4 ~rammars; Pager(l9), 1 grammar; Williams(20),

r. ~ra~mars; Wirth and Weber(4), 2 grammars; and Wise(21), 1 ~rammar.

The ~rammars of Wirth and Wber(4~ were modified by addin~ to

the end or each production that had non null semantics a nonterminal

of the form Pi and a production Pi+€. The ... 'sin the ~rammar

or ~cKeeman. Horning. qnd Wortman(18) were i~nored.

Some of the characteristics of the grammar set are ~iven in table 3.

The non-LALR(l) grammars included only one grammar with more than 15

svmbols (it had 17). There were 4 grammars with 30 to 70 symbols and

4 r.rammars with more than 70 symbols. The lack of numerous large

rr1m~~rs was probably the main draw back to the data used for this

stu1y. ~he few lar~e ~rammars cttd, however, have a major effect

on the slope of the f1ts.

10

I Summary of Results

x y a b standard case
error

s NS/x 0.810 -0.00009 +0.087 J\LL
0.816 -0.00002 +0.080 LALR(l)

s NT/x 1.221~ 0.0004 +0.103 ALL
i 1.224 0.0004 +0.093 LALR(l)
I

Is I

DS/x 0.620 I -0.0001 :!:_0.073 ALL
'

l 0.6?.4 -0.0001 +0.068 LALR(l)
I

T+l-RI n3/x 0.983 0.00008 +0.072 ALL
0.977 0.00002 :!:_0.050 LALR(l)

s DT/DS 1. 779 0.014 +0.6'-18 ALL
1. 778 0.014 :!:_0.647 LALR(l)

-
N DT/DS 1. 723 0.042 :!:_0.581 ALL

f 1.677 0.043 :!:_0.516 LALR(l)
I
I

IN 1/2 DT/DS 0.363 0.582 :!:_0.587 ALL

I
I
1 0.192 0.611 :!:_0.485 LALR(l)
I
I

'Q DT/x 1. n5c:; I -0.00007 +0.171 /\LL
I

I 1. 014 I -0.00006 +0.114 LALR(l) I

IN
I I -

--
T/x 1.5~0.002 +o.687 ALL

1.376 0.003 +0.162 LALR(l)

Table 1. Least squares fit of y1 =a+ bx1 + e1 where e1
is an error term to 134 p;ramrnars and to f:.11 :..ALR(l) grammars.

I Types of States All Grammars LALR(l)

Simple 2835 2190

Simple Replacement 447 359

Other Replacement 7 5

Chain 42 7

Complex 10 7

TOTAL 3341 2568

Table 2. The number of states of various types from
the machine built with the test grammars.

20

21

LALR(l)
Properties of the Grammars All N~l5 N>l5 Max. (Grammar)

Number of grammars 134 65 19

Number of terminal symbols 922 299 437 77(Euler(4))

Number of nonterminal symbols 949 254 466 128(Euler(4))

Number immediately left re- 153 37 89 2l(Algo1(17))
cursive symbols

Number of productions 1693 442 838 170(Algo1(17))

Length of productions 3332 815 1645 323(Algol(l7))

Tree length 3049 761 1556 310(Algol(l7))

Table 3, The number of various items used in the grammars and
the maximum valu~ for any ~rammar.

1. DeRemer, F.~. Practical Tran~lators for LR(k) Lan~ua~e~.

Project MAC TR-65 MTT(l969). also U.S. ClearinghOURe

AD 699501. Much of this information 1s also in DeRemer,F.L.

Simole LR(k) Grammars. CACM 14(1q71) p. 453-460.

2. Knuth, D.E. On the Translation of Langua~es from Left

to Ri~ht. Info. and Control 8(1965),p. 607-639,

3, Reynolds, John, See Early, J.C. An Efficient Context-Free

Parsin~ Algor1thm, thesis, Carne~ie-Mellon U., 1968,

p. 128-129.

4. Wirth, N. and Webe!', H. EULER: A Generalization of ALGOL,

and its Formal Definition. CACM 9(1966), p. 13-23, 89-99.

2?

5, Hornin~, J.J. and Lalonde, W.R. Empjrical Comparison of V

LR(k) and Precedence Parsers. Computer Systems Research

Group, U. Of Toronto, 1971.

6. Anderson, T. Eve, J. , and Horn1nr:, J • .T , F. f'fj cient LR (l)

Parsers. Comput1n~ Laboratory, 19~9.
,,

7. Kemp, R. Orossf• Von LH(O)-likzept,-:,ren . Tll(·ode des automates

des langa~es et de la pro~rammation (r~sum~s des communi-

cations) 1972.

8. Aho, A. V. and U}. lrr1an. J. D. A '11echnic.rne for Speeding Uo

LR(k) Parsers. Proceedln~s of Fourth Annual ACM Symposium

on Theory of Computing.]972, p. 2Sl-26l.

9, Purdom, P.W. A Transitive Closure Algortthm. BIT 10 (1q70),

p. 74·-91L

10. Ichbiak, J.D. and Morse, S.P. A Technique for nenerating

Almost Optimal Floyd-Evans Productions for Precedence

Grammars. CACM 13(1970), p. 501-508.

11. Floyd, R.W. Syntactic Analysis and Operator Precedence.

JACM 10 (1963), p. 316-333,

12. Early, J.C. An Efficient Context-Free Parsin~ Al~orithm,

thesis, CarneglP-Mellon U., 1968.

13. Naur, P. and Wood~er, M. (Eds.) Revised report on the

alr,orithmic lanr;uap;e ALGOL 60. CACM 6, (1961), 1-20.

14. f<'loyd, R. W. Bounded Context Syntactic Ana lysls. CACM 7,

(1964), p. 62-67.

15. Griffith, T.V. and Petrick, S.R. On the Relative Effi­

ciencies of Context-Free Grammar Reco~n!zers. CACM,

8(1965), p. 289-300.

21

16. Hopcroft, J.E. and Ullman, J.D. Formal Lanr;uages and their

Relation to Automata, Addison-Wesley, Readln~, 1969.

17. Korenjak, A.J. Deterministic Lan~ua~e Processin~, thesis,

Princeton U., 1967.

18. !1.foKeeman, W.M., Horninr:, J . .r., and Wortman, D.B. A Compiler

Generator, Prentice-Hall, ~n~lewood Cliffs, 1970.

19. Pa~er, David. A Solution to An Onen Problem by Knuth.

Info. and Control, (1970), p. 4~2-473,

20. Williams, ,T.H. Rounded Context Parsahle Grammc1r::;, U. of

Wisconsin, ComputPr SciencP Report, No. SA, 1q~g.

?l. W1se. D.S. /\n Ir1rrovement to Donv,11<1 ~ r,lr;orithm, U . of

W i ;- c on s 1 n , Comp u t e r Sc 1. en c c Re o or t , ·~ 1' • ' · · • 1 9 7 n .

NEW BOO,.~ '~1:EIJ
DATE DUE

~~ iali Libr ~I'Y.

DEMCO 18 297

Cover design by Indiana University Publications

